Copy Detection Mechanisms for Digital Documents

*

Sergey Brin, James Davis, Hector Garcia-Molina
Department of Computer Science
Stanford University
Stanford, CA 94305-2140

e-mail: sergey@cs.stanford.edu

Abstract

In a digital library system, documents are available in
digital form and therefore are more easily copied and
their copyrights are more easily violated. This is a very
serious problem, as it discourages owners of valuable in-
formation from sharing it with authorized users. There
are two main philosophies for addressing this problem:
prevention and detection. The former actually makes
unauthorized use of documents difficult or impossible
while the latter makes it easier to discover such activ-
ity.

In this paper we propose a system for registering doc-
uments and then detecting copies, either complete copies
or partial copies. We describe algorithms for such detec-
tion, and metrics required for evaluating detection mech-
anisms (covering accuracy, efficiency, and security). We
also describe a working prototype, called COPS, describe
implementation issues, and present experimental results
that suggest the proper settings for copy detection pa-
rameters.

1 Introduction

Digital libraries are a concrete possibility today because
of many technological advances in areas such as storage
and processor technology, networks, database systems,
scanning systems, and user interfaces. In many aspects,
building a digital library today is just a matter of “doing
it.” However, there is a real danger that such a digital
library will either have relatively few documents of in-
terest, or will be a patchwork of isolated systems that
provide very restricted access.

The reason for this danger is that the electronic
medium makes it much easier to illegally copy and dis-
tribute information. If an information provider gives a
document to a customer, the customer can easily dis-
tribute it on a large mailing list or can post it on a bul-

*This research was sponsored by the Advanced Research
Projects Agency (ARPA) of the Department of Defense un-
der Grant No. MDA972-92-J-1029 with the Corporation for
National Research Initiatives (CNRI).

letin board. The danger of illegal copies is not new, of
course; however, it is much more time consuming to re-
produce and distribute paper, CDs or videotape copies
than on-line documents.

Current technology does not strike a good balance be-
tween protecting the owners of intellectual property and
giving access to those who need the information. At one
extreme are the open sources on the Internet, where ev-
erything is free, but valuable information is frequently
unavailable because of the dangers of unauthorized dis-
tribution. ' At the other extreme are closed systems,
such as the one that the IEEE currently uses to dis-
tribute is papers in CD-ROM. This a completely stand-
alone system where users can look for specific articles,
view them, and print them, but cannot move any data
in electronic form out of the system, and cannot add any
of his or her data.

Clearly, one would like to have an infrastructure that
gives users access to a wide variety of digital libraries
and information sources, but that at the same time gives
information providers good economic incentives for offer-
ing their information. In many ways, we believe this is
the central issue for future digital information and library
systems.

In this paper we present one component of the infor-
mation infrastructure that addresses this issue. The key
idea is quite simple: provide a copy detection service
where original documents can be registered, and copies
can be detected. The service will detect not just ex-
act copies, but also documents that overlap is significant
ways. The service can be used (see Section 2) in a va-
riety of ways by information providers and communica-
tions agents to detect violations of intellectual property
laws. Although the copy detection idea is simple, there
are several challenging issues we address here involving
performance, storage capacity, and accuracy that need to
be resolved. Furthermore, copy detection is relevant to
the “database community” since its central component
is a large database of registered documents.

We stress that copy detection is not the complete so-
lution by any means; it is simply a helpful tool. There
are a number of other important “tools” that will also
assist in safeguarding intellectual property. For exam-

'As just one example, Knight-Ridder Tribune recently
(June 23, 1994) ceased publishing on ClariNet the Dave
Barry and the Mike Royko columns because subscribers re-
distributed the articles on large mailing lists.

ple, good encryption and authorization mechanisms are
needed in some cases. It 1s also important to have mech-
anisms for charging for access to information. The arti-
clesin [5, 7, 9] discuss a variety of other topics related to
intellectual property. These other tools and topics will
not be covered in this paper.

2 Safeguarding Intellectual Property

How can we ensure that a document is only seen and
used by a person who is authorized (e.g., has paid) to see
1t? One possibility lies in preventing violations from oc-
curring. Some schemes along these lines have been sug-
gested, such as secure printers with cryptographically se-
cure communications paths [12] and active documents [6]
where users may interact with documents only through
a special program.

The problems with all such techniques is that they are
cumbersome (requiring special software or hardware), re-
strictive (limiting access means to the document), and
not completely secure (from someone with an OCR pro-
gram for example). The alternative is to use detection
techniques. That is, we assume most users are honest,
allow them access to the documents, and focus on de-
tecting those that violate the rules. Many software ven-
dors have found this approach to be superior (protection
mechanisms get in the way of honest users, and sales
may actually decrease).

One possible direction is “watermark” schemes where
a publisher incorporates a unique subtle signature (iden-
tifying the user) in a document when it is given to the
user so that when an unauthorized copy is found, the
source will be known [13, 3, 4, 2]. One problem is that
these schemes can easily be defeated by users who de-
stroy the watermarks. For example, slightly varied pixels
in an image would be lost if it is passed through a lossy
JPEG encoder.

A second approach, and one that we advocate in this
paper (for text documents), is that of a copy detection
server [1, 11]. The basic idea is as follows: When an
author creates a new work, he or she registers it at the
server. The server could also be the repository for a
copyright recordation and registration system, as sug-
gested in [8]. As documents are registered, they are
broken into small units, for now say sentences. Each
sentence is hashed and a pointer to it is stored in a large
hash table.

Documents can be compared to existing documents in
the repository, to check for plagiarism or other types of
significant overlap. When a document is to be checked,
it 1s also broken into sentences. For each sentence, we
probe the hash table to see if that particular sentence has
been seen before. If the document and a previously regis-
tered document share more than some threshold number
of sentences,; then a violation is flagged. The threshold
can be set depending on the desired checks, smaller if we
are looking for copied paragraphs, larger if we only want
to check if documents share large portions. A human
would then have to examine both documents to see if it
was truly a violation.

Unlike the case with watermarks, it 1s not easy for a
user to automatically subvert the system, i.e., to make
an undetectable copy. For example, if the decomposi-
tion units are sentences, a user would have to change a
large number of sentences in the document. This involves
more than just adding a blank space between words (as-
suming that the hashing scheme ignores spaces). Of
course, a determined user could change all sentences,
but our goal is to make it hard to copy documents, not
to make it 1impossible. This makes it hard to rapidly
distribute copies of documents.

This basic scheme has much in common with sif, a tool
for finding similar files in a file system, created by Udi
Manber [10]. However, there are a number of differences
in finding similar files versus finding similar sections of
text which COPS addresses. First, since we are deal-
ing with text, we operate on a syntactic level and hash
syntactic units as opposed to fixed length strings. We
also consider the security of copy detection (Section 3.3)
and attempt to maximize its flexibility by dealing with
violations of varying granularities (Section 4). One of
the most important differences is that it 1s much more
difficult to test a system like COPS since there are no
databases of actual copyright violations (Section 5).

The copy detection server can be used in a variety
of ways. For example, a publisher is legally liable for
publishing materials the author does not have copyright
on; thus, it may wish to check if a soon-to-be-published
document is actually an original document. Similarly,
bulletin-board software may automatically check new
postings in this fashion. An electronic mail gateway may
also check the messages that go through (checking for
“transportation of stolen goods”). Program committee
members may check if a submission overlaps too much
with an author’s previous paper. Lawyers may want to
check subpoenaed documents to prove illegal behavior.
(Copy detection can also be used for computer programs
[11], but we only focus on text in this paper.) There are
also applications that do not involve detection of unde-
sirable behavior. For example, a user that is retrieving
documents from an information retrieval system or who
is reading electronic mail, may want to flag duplicate
items (with a given overlap threshold). Here the “regis-
tered” documents are those that have been seen already;
the “copies” represent messages that are retransmitted
or forwarded many times, different editions or versions
of the same work, and so on. Of course, potential dupli-
cates should not be deleted automatically; it is up to the
user to decide if he wants to view possible duplicates.

In summary, we think that detecting copies of text
documents is a fundamental problem for distributed in-
formation or database systems. And there are many
issues that need to be addressed. For instance, should
the decomposition units be paragraphs or something else
instead of sentences? Should we take into account order
of the units (paragraphs or sentences), e.g., by hashing
sequences of units? Is it feasible to only hash a fraction
of the sentences of registered documents? This would
make the hash table smaller, hopefully still making it
very likely that we will catch major violations. If the

hash table is relatively small, it can be cloned. Our mail
gateway above could then perform its checks locally, in-
stead of having to contact a remote copy detection server
for each message. There are also implementation issues
that need to be addressed. For example, how are sen-
tences extracted from say Latex or Word documents?
Can one extract them from Postscript documents, or
from bit maps via OCR?

These and other questions will be addressed in the rest
of this paper. We start in Sections 3 and 4 by defining the
basic terms, evaluation metrics, and options for copy de-
tection. Then in Section 5 we describe our working pro-
totype, COPS, and report on some initial experiments.
A sampling technique that can reduce the storage space
of registered documents or can speed up checking time
is presented and analyzed in Section 6.

3 General Concepts

In this section we define some of the basic concepts for
copy detection and for evaluating mechanisms that im-
plement it. (As far as we know, text copy detection
has not been formally studied, so we start from basics.)
The starting point is the concept of a document, a body
of text from which some structural information (such
as word and sentence boundaries) can be extracted. In
an initial phase, formatting information and non-textual
components are removed from documents (see Section
5). The resulting canonical form document consists of
a string of ascii characters with whitespace separating
words, punctuation separating sentences and possibly
a standard method of marking the beginning of para-
graphs.

A wiolation occurs when a document infringes upon
another document in some way (e.g., by duplicating por-
tions of text). There are a number of violation types
which can occur including plagiarism of a few sentences,
exact replication of the entire document, and many steps
in between. The notion of checking for a particular type
of violation between two documents is captured by a vi-
olation test. If t is a violation test and ¢(d,r) holds,
then document d violates document r according to the
particular test. For example, Plagiarism(d,r) is true if
document d has plagiarized from document r. We also
extend this notation to include checking against a set of
documents: ¢(d,R) is true if and only if ¢(d, r) holds for
some document r € R.

Most of the violation tests we are interested in are not
well defined and require a decision by a human being.
For example, plagiarism is particularly difficult to test
for. For instance, the sentence “The proof is as follows”
may occur in many scientific papers and would not be
considered plagiarism if it occurred in two documents,
while this sentence most certainly would. If we consider
a test Subset that detects if a document is essentially a
subset of another one, we again need to consider if the
smaller document makes any significant contributions.
This again, requires human evaluation.

The goal of a copy detection system is to implement
well defined algorithmic tests, termed operating tests

(with the same notation as violation tests), that approx-
imate the desired violation tests. For instance, consider
the operating test ¢1(d,r) that holds if 90% of the sen-
tences in d are contained in . This test may be con-
sidered an approximation to the Subset test described
above. If the system flags ¢; violations, then a human
can check if they are indeed Subset violations.

3.1 Ordinary Operational Tests

In the rest of this paper we will focus on a specific class
of operational tests, ordinary operational tests (OOTs),
that can be implemented efficiently. We believe they can
accurately approximate many violation tests of interest,
such as Subset, Overlap, and Plagiarism.

Before we describe OOTs we need to define some prim-
itives for specifying the level of detail at which we look at
the documents. As mentioned in Section 3, documents
contain some structural information. In particular, doc-
uments can be divided into well defined parts, consistent
with the underlying structure such sections, paragraphs,
sentences, words, or characters. We call each of these
types of divisions a unit type and particular instances of
these unit types are called units.

We define a chunk as a sequence of consecutive
units in a document of a given unit type. A doc-
ument may be divided into chunks in a number of
ways since chunks can overlap, may be of differ-
ent sizes, and need not completely cover the docu-
ment. For example, let us assume we have a docu-
ment ABCDEFG where the letters represent sentences
or some other units. Then it can be organized into
chunks as follows : A ,B,C,D,EF G; or AB,CD,EF,G;
or AB,BC,CD,DE EF FG; or ABC,CD,EFG; or A,D,G.
A method of selecting chunks from a document divided
into units 1s a chunking strategy. It 1s important to note
that unlike units; chunks have no structural significance
to the document and so chunking strategies cannot use
structural information about the document.

An OOT, o, uses hashing to detect matching chunks
and 1s implemented by the set of procedures in Figure 1.
The code is intended to convey key concepts, not an ef-
ficient or complete implementation. (Section 5 describes
our actual prototype system.) First there is the pre-
processing operation, PREPROCESS (R, H), that takes as
input a set of registered documents R and creates the
hash table, H. Second, there are procedures for on-the-fly
adding documents to H (registering new documents) and
for removing them from H (un-registering documents).
Third is the function EVALUATE(d, H) that computes
o(d,R).

To insert documents in the hash table, procedure
INSERT uses a function INS-CHUNKS(r) to break up a
document r into its chunks. The function returns a set
of tuples. Each <t,1> tuple represents one chunk in r,
where t is the text in the chunk, and 1 is the location of
the chunk, measured in some unit. An entry is stored in
the hash table for every <t,1> chunk in the document.

Procedure EVALUATE(d, H) tests a given document d
for violations. The procedure uses EVAL-CHUNKS func-
tion to break up d. The reason why we use a different

PREPROCESS (R, H)
CREATETABLE (H)
for each r in R INSERT(r,H)

INSERT (r,H)
C = INS-CHUNKS(r) /* 00T dependent */
for each <t, 1> in C
h = HASH(t)
INSERTCHUNK (<h,r,1>, H)

DELETE (r,H)
C = INS-CHUNKS(r)
for each <t, 1> in C
h = HASH(c)
DELETECHUNK (<h,r,1>, H)
EVALUATE (d,H)
C = EVAL-CHUNKS (d)
SIZE = |C|
MATCHES = {} /* empty set */
for each <t, 1d> in C
h = HASH(t)

/* get all <r, lr> with matching h */
SS = LOOKUP (h, H)
for each <r, 1lr> in S8

MATCHES += <|t|, 1d, r, 1lr>

return DECIDE (MATCHES,SIZE) /* 00T dependent */

Figure 1: Pseudo-code for OOT

chunking function at evaluation time will become appar-
ent in Section 6. For now, we can assume that both
INS-CHUNKS and EVAL-CHUNKS are identical and we use
CHUNKS to refer to them.

After chunking, procedure EVALUATE then looks up
the chunks in the hash table H, producing a set of tu-
ples MATCH. Each <s,1d,r,1r> in MATCH represents a
match: a chunk of size s at location 1d in document d
matches (has same hash key) as a chunk at location 1r
in registered document r. The MATCH set is then given
to function DECIDE(MATCH, SIZE) (where SIZE is the
number of chunks in d) that returns the set of matching
registered documents. If the set is non-empty, then there
was a violation, i.e., o(d, R) holds.

Note that an instance of an OOT is specified sim-
ply by its INS-CHUNKS, EVAL-CHUNKS and DECIDE func-
tions. That is, this is the only way in which OOTs differ.
In particular, in Section 5 we will start by considering
an OOT where both its CHUNKS functions extract sen-
tences, and its DECIDE function selects registered docu-
ments that exceed some threshold fraction ¢ of matching
chunks. That is, let COUNT(r, MATCH) be the number of
tuples of the form <-,-,r,->in MATCH. Then document
r will be selected if COUNT(r, MATCH) is greater than
@SIZE. For example, if ¢ = 0.4 and the document to
check has 100 sentences, then registered documents with
41 or more matching sentences will be selected. We call
this DECIDE function the match_ratio function.

In the code of Figure 1 we only store the ids of regis-
tered documents in H, not the full documents. That is,
for a tuple <h,r,1> in H, r is simply the name or id of

r. The copy detection system may also store separately
the registered documents. (Our COPS prototype does
this.) This can be useful for showing a user the match-
ing documents and highlighting the matching chunks.

3.2 Measuring Accuracy

As described earlier, OOTs (and operational tests in gen-
eral) are intended for approximating violation tests such
as Plagiarism and Subset. It is therefore important to
evaluate how well an OOT approximates some other test.
It is also important to evaluate the security of OOTs, i.e.,
how hard it is to subvert the copy detection, as well as
their efficiency, i.e., what computational resources they
require. Accuracy and security are discussed in the rest
of this section; efficiency is addressed in Section 6.
Assume a random registered document Y chosen from
a distribution of registered documents RE. That is, the
probability that Y is a particular document r; out of a
population of registered documents is R(r1). Similarly,
assume a random test document X is selected from a
distribution of test documents D. We can then define the
following accuracy metrics, each implicitly parametrized

by R and D.

Definition 3.1 For a test t, we define freq(t) =
P(X,Y)). (“P” stands for “probability.”)

Intuitively, freg measures how frequently a test 1s true.
If an operating test approximates a violation test well,
then their freq’s should be close but the converse is not
true since they can accept on digjoint sets. If the freq of
the operating test is small compared to the violation test
it 1s approximating, then it is being too conservative. If
it 1s too large then the operating test is too liberal.

Suppose we have an operating test {5 and a violation
test ¢1. Then we define the following measures for accu-
racy. (Note that these can also be applied between two
operating tests and in general between any two tests).

Definition 3.2 The Alpha melric corresponds to a
measure of false negatives, i.e., Alpha(ti,t2) =
P(—t2(X,Y) | t1(X,Y)). Note Alpha is not symmet-
ric. A high Alpha(ty,t2) value indicates that operating
test t5 1s missing too many violations of t1.

Definition 3.3 The Beta metric is analogous to Alpha
except that it measures false positives, i.e., Beta(ty,t2) =
P(t2(X,Y) | =t1(X,Y)). Beta is not symmetric either.
A high Beta(ty,ts) value indicates that t2 is finding too
many violations not in ty.

Definition 3.4 The Error metric is the combination
of Alpha and Beta in that it takes wnto account both
false positives and false negatives and 1s defined as
Error(ty,t2) = P(t1(X,Y) # 2(X,Y)). It is symmet-
ric. A high Error value indicates that the two tests are
dissimilar.

3.3 Security

So far we have assumed that the author of a test doc-
ument does not know how our copy detection system
works and does not intend to sabotage it. However, an-
other important measure for an OOT is how hard it is

for a malicious user to break it. We measure this no-
tion of security in terms of how many changes need to
be made to a registered document so that it will not be
identified by the OOT as a copy.

Definition 3.5 The security of an OOT o (also ap-
plicable to any operating test) on a given document r,
SEC(o,7), is the minimum number of characters that
must be inserted, deleted, or modified in r to produce a
new document v such that o(v',r) is false. The higher a
SEC (o,7) value is, the more secure o is.

We can use this notion to evaluate and compare OOTs.
For example, consider an OOT o0; that considers the en-
tire document as a single chunk. Then SEC(o1,7) = 1
for all », because changing a single character makes the
document not detectable as a copy. 2

As another example consider OOT 05 that uses sen-
tences as chunks and a match_ratio decision function.
Then SEC(02,7) = (1 — ¢)SIZE where SIZE is the num-
ber of sentences in r. For instance, if ¢ = 0.6 and our
document has 100 sentences, we need to change at least
40 of them. As a third example, consider an OOT o3
that uses pairs of overlapping sentences as chunks. For
instance, if the document has sentences A, B, C, ... ,
o3 considers chunks AB, BC, CD, ... Here we need
to modify half as many sentences as before (roughly),
since each modification can affect two chunks. Thus,
SEC (03, r) is approximately equal to SEC (02,7)/2, i.e.,
o3 1s approximately half as secure as o0s.

Note that our security definition is weak because 1t as-
sumes the adversary knows all about our OOT. However,
by keeping certain information about our OOT secret we
can enhance security. We can model this by having a
large class of OOTs, O, that vary only by some param-
eters, and then secretly choosing one OOT from O. We
assume that the adversary does not know which OOT
we have chosen and thus needs to subvert all of them.
For this model we define SEC(O,r) as the number of
characters that must be inserted, deleted, or modified to
make o(r’, r) false for all 0 € O. For examples of using
classes of OOT’s see chunking strategy D of Section 4.2
and Section 6 (consider the seed for the random number
generator as a parameter).

Finally, notice that the security measures we have pre-
sented here do not address “authorization” issues. For
example, when a user registers a document, how does the
system ensure the user is who he claims to be and that he
actually “owns” the document? When a user checks for
violations, can we show him the matching documents,
or do we just inform him that there were violations?
Should the owner of a document be notified that some-
one was checking a document that violates his? Should
the owner be given the identity of the person submitting
the test document? These are important administrative
questions that we do not attempt to address in this pa-
per.

2This assumes a decision function which doesn’t flag a
violation if there are no matches (a reasonable condition).
For instance, if 01(d, r) is always true, no matter if there are
matches or not, then our statement does not hold.

4 Taxonomy of OOTs

The units selected, the chunking strategy, and the deci-
sion function can affect the accuracy and the security of
an OOT. In this section we consider some of the options
and the tradeoffs involved.

4.1 Units

To determine how documents are to be divided into
chunks we must first choose the units. One key factor
to consider is the number of characters in a unit. Larger
units (all else being equal) will tend to generate fewer
matches and hence will have a smaller freq and be more
selective. This, of course, can be compensated by chang-
ing the chunk selection strategy or decision function.

Another important factor in the choice of a unit type
is the ease of detecting the unit separators. For exam-
ple, words that are separated by spaces and punctuation
are easier to detect than paragraphs which can be dis-
tinguished in many ways.

Perhaps the most important factor in unit selection
1s the violation test of interest. For instance, if it
is more meaningful that sequences of sentences were
copied rather than sequences of words (e.g., sentence
fragments), then sentences and not words should be used
as units.

4.2 Chunks

There are a number of strategies for selecting chunks.
To contrast them we can consider the number of units
involved, the number of hash table entries that are re-
quired for a document, and an upper bound for the se-
curity SEC(o,r). 3 See Table 1 for a summary of the
four strategies we consider. (There are also many vari-
ations not covered here.) In the table, |r| refers to the
number of units in the document r being chunked, and
k is a parameter of the strategies. The “space” column
gives the number of hash table entries need for r, while
“# units” gives the chunk size.

(A) One chunk equals one unit. Here every unit (e.g. ev-
ery sentence) is a chunk. This yields the smallest
chunks. As with units, small chunks tend to make
the freq of an OOT smaller. The major weakness
is the high storage cost; |r| hash table entries are
required for a document. However, it is the most se-
cure scheme; SEC(o,r) is bounded by |r|. That is,
depending on the decision function, it may be neces-
sary to alter up to |r| characters (one per chunk) to

subvert the OOT.

One chunk equals k nonoverlapping units. In this
strategy, we break the document up into sequences
of k consecutive units and use these sequences as our
chunks. It uses (1/k)™ the space of Strategy A but
is very insecure since altering a document by adding
a single unit at the start will cause it to have no
matches with the original. We call this effect “phase

(B)

For our discussion we assume that documents do not have
significant numbers of repeating units.

| strat | summary | ezample on ABCDEF (k =3) | space | # units | SEC <]
A 1 unit ABCDEF 7| 1 7|
B k units, 0 over ABC,DEF [r]/k k 1
C k units, k-1 over ABC,BCD,CDE,DEF 7] k [r]/k
D | hashed breakpoints AB,CDEF [r]/k k 7]
Table 1: Properties of Chunking Strategies
dependence”. This effect also leads to high Alpha the test and the registered document is above a certain

€Irors.

(C) One chunk equals k units, overlapping on k—1 units.
Here, we take every sequence of k consecutive units
in our document as our chunks. Therefore we do not
suffer from phase dependence as in Strategy B but
unfortunately the space cost is equivalent to Strat-
egy A. Comparing an OOT o4 that uses Strategy
A, and an OOT o¢ that is the same except for its
use of Strategy C, one can see that Alpha(o,oc) >
Alpha(o,04) and Beta(o,0¢) < Beta(o,04) for any
violation test o. This is because o¢(d, r) being true
implies that o4(d,r) is true. Thus Strategy C is
prone to higher Alpha errors (but lower Beta errors).
Also, Strategy C' is relatively insecure (though more
secure than B) in that modifying every &** unit of a
registered document is sufficient to fool the system.

(D) Use nonoverlapping units, determining break points
by hashing units. We start by hashing the first unit
in the document. If the hash value is equal to some
constant x modulo k, then the first chunk is simply
the first unit. If not, we consider the second unit. If
its hash value equals x modulo £, the the first chunk
is the first two units. If not we consider the third
unit, and so on until we find some unit that hashs
to # modulo k, and this identifies the end of the first
chunk. We then repeat the procedure to identify the
following nonoverlapping chunks.

It can be shown that the expected number of units
in each chunk will be k. Thus, Strategy D is similar
to B in its hash table requirements. However, unlike
B, it is not affected by phase dependence since sim-
ilar text will have the same break points. Strategy
D, like €', has higher Alpha (and lower Beta) errors
as compared to A. Furthermore, all else being the
same, freq should be only slightly less than that of
C because significant portions of duplicated text will
be caught just as in C'.

The key advantage of Strategy D is that it is very
secure. (It is really a family of strategies with a secret
parameter; see Section 3.3.) Without knowing the
hash function, one must change every unit of a test
document to be sure it will get through the system
without warnings.

4.3 Decision Functions

There are many options for choosing decision functions.
The match_ratio function (Section 3.1) can be useful for
approximating Subset and Overlap violation tests. An-
other simple decision function is matches (with parame-
ter k) that simply tests if the number of matches between

value k. This would be useful for detecting violations
such as Plagiarism. One might also consider using or-
dered_matches which tests whether there are more than
a certain number of matches occurring the same order
in both documents. This would be useful if unordered
matches are likely to be coincidental.

5 Prototype and Preliminary Results

We have built a working OOT prototype to test our
ideas and to understand how to select good CHUNKS and
DECIDE functions. The prototype is called COPS (COpy
Protection System) and Figure 2 shows its major mod-
ules. Documents can be submitted via email in TEX (in-
cluding IATEX), DVI, troff and ASCII formats. New doc-
uments can be either registered in the system or tested
against the existing set of registered documents. If a
new document 1s tested, a summary is returned listing
the registered documents that it violates.

|TextoASCII| |DVI toASCIIl |trofftoAscu|

Sentence I dentification and Hashing
(] (]

Document Processing Query Processing

—~ >

Figure 2: Modules in COPS implementation.

COPS allows modules to be easily replaced, permit-
ting experimentation with different strategies (e.g., dif-
ferent INS-CHUNKS, EVAL-CHUNKS and DECIDE functions).
We will begin our explanation with the simplest case
(sentence chunking for both insertion and evaluation,
and a match_ratio decision function) and later discuss
possible improvements. A document that has been sub-
mitted to the system is given a unique document ID.
This ID is used to index a table of document informa-
tion such as title and author. To register the document,
first it must be converted into the canonical form, i.e.,
plain ASCII text. The process by which this occurs is
dependent upon the document format. A TEX document
can be piped through the Unix utility detez, while a doc-
ument with troff formatting commands can be converted

with nroff. Similarly DVI and other document formats
have filters to handle their conversion to plain ASCII
text. After producing plain ASCII we are ready to de-
termine and hash the document’s individual sentences.
Using periods, exclamation points, and question marks
as sentence delimiters, we hash each sentence into a nu-
meric key. The current document’s unique ID is then
stored in a permanent hash table, once for each sentence.

When we wish to check a new document against the
existing set of registered documents, we use a very sim-
ilar procedure. We generate the plain ASCII, determine
sentences, and generate a list of hash keys, and look
them up in the hash table (see Section 3.1). If more
than @¢SIZE sentences match with any given registered
document we report a possible violation.

5.1 Conversion to ASCII

The procedure described above is the ideal case. In prac-
tice a number of interesting difficulties arise. Let us first
consider some of the challenges associated with the con-
version to ASCII text. The most important is that no ex-
act objective method of reducing a formatted document
to ASCII exists. Documents are formatted using TEX
or troff precisely because there is some “value added”
over plain text. This extra formatting cannot be rep-
resented in ASCII, and so will be lost. For example,
embedded graphs have no ASCII equivalent. We can re-
tain any text items or labels associated with the graph,
but the primary structure is not translatable. Equations
and tables are difficulties as well. In our implementation
we discard graphs, equations, tables, pictures, and all
other pieces of information that cannot be represented
naturally in ASCII. We also choose to discard all text
formatting commands that effect the presentation, but
not the content, of the document. For example, com-
mand sequences to produce italic type and change font
are removed and ignored.

The conversion process is not perfect. If the document
input format is DVI, then it is sometimes impossible to
distinguish “equations” from “plain text”. Consider the
sentence, “Let X4Y equal the answer.” This sentence
will be translated to ASCII exactly as it is shown. How-
ever, if we begin with TEX, then the equation will be
discarded, leaving the sentence “Let equal the answer.”
Since the conversion to plain ASCII produced different
sentences, our system would be unable to recognize that
a sentence match occurred. Later in this section we will
discuss some system enhancements that allows us to de-
tect matching sentences, despite imperfect translations.

Another complication with DVI is that it gives direc-
tions for placing text on a page but it does not specify
what text is part of the main body, and what is part
of subsidiary structures like footnotes, page headers and
bibliographies. Our DVI converter does not attempt to
rearrange text; it simply considers the text in the order
it appears on the page. However, one case it does handle
is that of two column format. Instead of reading char-
acters left to right, top to bottom (which would corrupt
most sentences in a two column format), the converter
detects the inter-column gap and reads down the left

column and then the right one.

An input format COPS can not handle in general is
Postscript. Since Postscript is actually a programming
language, it is very difficult to convert its layout com-
mands to plain ASCII text. Some Postscript genera-
tors such as dvips, enscript, and Microsoft Word pro-
duce relatively simple Postscript from which text can
be extracted. However, others such as Interleaf produce
Postscript code which would require the generation of
page bit maps. These could be scanned with OCR (op-
tical character recognition) to analyze and reconstruct
the text. This process is difficult and error prone.

In summary, the approach we have taken with the
COPS converters is to do a reasonable job converting
to ASCII, but not necessarily perfect. Most matching
sentences that are not translated identically, will still be
found by the system, since enhancements discussed later
attempt to negate the effects of common translation mis-
interpretations. Even if some matching sentences are
missed, there should be enough other matches in over-
lapping documents so that COPS can still flag the vi-
olations. Later, we present experimental results that
confirm this.

5.2 Sentence Identification and Hashing

Difficult problems also arise in the sentence identifica-
tion and hashing module. In particular, even if we are
given correctly translated plain ASCII, it is not always
clear how to extract sentences. As a first approxima-
tion, we can identify a sentence by merely taking all
words up to a period or question mark. However, sen-
tences that contain “e.g.” or other abbreviations will
be broken into multiple parts because of the embedded
periods. An extension to our simple model explicitly
watches for and eliminates common abbreviations such
as “e.g.” and “i.e.” so that sentences will not be bro-
ken in this way. Nevertheless, unexpected abbreviations
will still cause difficulties. For example, given the ac-
tual sentences, “I am a U.S. citizen.” and “The U.S.
is large.” our system will identify the following set of
sentences. “I am a U.”| “S.” “citizen.”, “The U.”, “S.”,
and “is large.” Notice that the sentence “S.” is identi-
fied twice. The system will flag this as a match, even
though the actual sentences are not the same. To reduce
this sort of error we can disregard sentences composed
of a single word; however, other similar errors may still
occur. For example, title and author names at the head
of a document are also difficult to extract as sentences,
since they rarely end with punctuation. We discuss later
some further improvements to the simple algorithm we
have described here. Note that paragraph detection, if
it were needed, would involve similar issues. COPS cur-
rently does not detect paragraphs.

The units used by COPS’ OOT are words and sen-
tences (see Section 3.1). COPS first converts each word
in the text to a hash key. The result i1s a sequence of hash
keys with interspersed end-of-sentence markers. The
chunking of this sequence is done by calling a procedure
COMBINE(N-UNITS, STEP, UNIT-TYPE), where N-UNITS
is the number of units to be combined into the next

chunk, STEP is the number of units to advance for
the next chunk, and UNIT-TYPE indicates what should
be considered a unit. For example, repreatedly call-
ing COMBINE(1, 1, WORD) creates a chunk for each
word in the input sequence. Calling COMBINE(1, 1,
SENTENCE) creates a chunk for each sentence. Us-
ing COMBINE(3, 3, WORD) takes every three words as
a chunk, while COMBINE(3, 1, WORD) produces over-
lapping three word chunks. COMBINE(2, 1, SENTENCE)
would produce overlapping two sentence chunks. Thus,
we can see that this scheme gives us great flexibility for
experimenting with different CHUNKS functions. How-
ever, it should be noted that once a CHUNKS function 1s
chosen, it must be used consistently for all documents.
That is, the flexibility just described is useful only in an
experimental setting.

5.3 Exploratory Tests

To evaluate the accuracy of the system, we conducted
some exploratory experiments using a set of ninety two
Latex, ASCII, and DVT technical documents (i.e., pa-
pers like this one). These experiments are not intended
to be comprehensive; our goal is simply to understand
how many matching chunks real documents might be
expected to have, and how well our converters work.

The documents average approximately 7300 words and
450 sentences in length. Approximately half of these
documents are grouped into nine topical sets (labeled
A, B, ..., T in the tables). The two or three documents
within each group are closely related, usually multiple
revisions of a conference or journal paper describing the
same work. The documents in separate topical groups
are unrelated except for the author’s affiliation with our
research group at Stanford. The remaining half of the
documents not in any topical group are drawn from out-
side Stanford and not related to any document in our
collection.

All of these documents were registered in COPS, and
then each was queried against the complete set. Our
goal is to see if COPS can determine the closely related
documents. Using the terminology of Section 3, we are
considering a violation test Related(d, r) that evaluates
to true if d and r are in the same group. This will be
approximated by an OOT that computes the percentage
of matching sentences in d and r. If the number if high,
the documents will be assumed to be related.

Table 2 shows results from our exploration. Instead
of reporting the number of violations that a particu-
lar match_ratio would yield, we show the percentage of
matching sentences in each case. This gives us more in-
formation regarding the closeness of documents.

The first result column in Table 2 gives the precent
matches of each document against itself. That 1is, for
each document d in a group, we compute 100 x COUNT (d,
MATCH) /SIZE (see Section 3.1), average the values and
report it in the row for that group. The fact that all
values in the first column are 100% simply confirms that
COPS is working properly.

The numbers in the second column are computed as
follows. For each document d in a group, we compute

Group Self Related Unrelated

(Affinity) (Noise)

A 100% 71.9% 0.6%

B 100% N/A 0.9%

C 100% 38.6% 0.9%

D 100% 42.9% 0.3%

E 100% 38.4% 0.2%

F 100% 63.0% 0.8%

G 100% 66.0% 0.4%

H 100% 38.4% 0.4%

I 100% 93.3% 1.3%

TotalAvg | 100% | 52.9%425.16% | 0.6%+£2.1%

Table 2: Average number of matching sentences.

100x COUNT(r, MATCH)/SIZE for all other documents r
in the group, and average the results. We refer to values
in the second column as “affinity” values since they rep-
resent how close documents are. For the third column,
we compare each d in a group against all r in others
groups. We refer to number in this column as “noise”
since they represent undesired matches. The numbers
reported at the bottom of Table 2 are the averages over
all document comparisons performed for that column.
We also report the standard deviation between individ-
ual tests to illustrate the spread of values.

Ideally, one wants affinity values that are as high as
possible, and noise values that are as low as possible.
This makes it possible for a threshold value that is be-
tween the affinity and noise levels to distinguish between
related and unrelated documents. Table 2 reports that
related documents have on average 53% matching sen-
tences, while unrelated ones have 0.6%. The reason why
affinity is relatively low is that the notion of “Related”
documents we have used here is very broad. For exam-
ple, often the journal version and the conference version
of the same work are quite different.

The noise level of 0.6%, equivalent to 2 or 3 sentences,
is larger than what we expected. The discrepancy is
caused by several things. A few sentences, such as, “This
work partially supported by the NSF” are quite com-
mon in journal articles, so that even unrelated docu-
ments might both contain it. Other sentences may also
be exact replicas by coincidence. Hash collisions may
be another factor, especially when there are large num-
bers of registered documents, but are not an issue in
our experiments. Also note the relatively large variance
reported in the table. In particular, some unrelated doc-
uments had on the order of 20 matching sentences.

The process by which a document is translated to
ASCIT also has some effect on the noise level. For ex-
ample, the translation we use to convert TEX documents
produces somewhat less noise than does our translation
from DVI. This is caused by differences in the inclusion
of references. Many unrelated documents cite the same
references, possibly generating matching sentences. Our
TEX filter does not include references in its output (they
are in separate “bib” files), so noise is reduced. The
differences in noise generated by ASCII translation be-
come less significant when the enhancements discussed

later are added to our system.

The larger the noise level, the harder it is to detect
plagiarism of small passages (e.g., a paragraph or two).
If we set the threshold ¢ at say 5/SIZE sentences, the
OOT would have a high Beta error rate (too many unre-
lated documents flagged as Plagiarism violations), while
if we set it higher, say 10/SIZE, we would miss actual
violations (high Alpha error). Thus, it is important to
reduce the noise level as much as possible.

5.4 Enhancements

However, we need to decrease the noise without sacrific-
ing affinity. If affinity is too low, it makes it hard to ap-
proximate the Related target test (again leading to high
Alpha or Beta errors). With this goal in mind, we have
considered a series of enhancements to the basic COPS
algorithms. The results are summarized in Table 3. The
first line represent the base case; each additional line of
the table represents an independent enhancement. The
reported values are averages over all document groups
(i.e., equivalent to the last row of Table 2).

Self Related Unrelated
(Affinity) (Noise)
Simple Method 100% 53.0% 0.61% +2.08
No Common Chunks | 100% 53.4% 0.06% +0.30
Drop Numbers 100% 54.1% 0.47% +1.34
No Short Sentences 100% 51.8% 0.04% +0.21
No Short Words 100% 54.4% 0.36% £0.90
All Enhancements 100% 53.6% 0.03% +0.20

Table 3: COPS Enhancements.

In the “no common chunks” enhancement, chunks oc-
curring in our hash table more than ten times are elimi-
nated by the LOOKUP function (see Figure 1). This keeps
legitimate common phrases and passages from causing
a document violation. For example, the sentence “This
work supported by the NSF,” which is present in many
documents, will not be reported as a match. The last
three enhancements remove the indicated occurrence
from the input stream. For “drop numbers,” any word
with a numeric digit 1s dropped; “short sentences” are
arbitrarily defined to have three or fewer words; “short
words” are defined to have three or fewer characters.
These enhancements were motivated by our discovery
that numbers, short sentences, and short words were
sometimes involved in incorrect matches. (Recall the
problem with abbreviations like “U.S.” described in Sec-
tion 5.2.)

The last row of Table 3 shows the effect of using all
enhancements at once. One can see that the combined
enhancements are quite effective at reducing the noise
while keeping the affinity at roughly the same levels.
We note that the parameter values we used for the en-
hancements (e.g., the number of occurrences that makes
a chunk “common”) worked well for our collection, but
probably have to be adjusted for larger collections.

In Figure 3 we study the effect of increasing the num-
ber of overlapping sentences per chunk (without any of

the enhancements of Table 3). The solid line shows the
average noise as a function of the number of overlapping
sentences in a chunk. As we see, the noise decreases dra-
matically as the number of overlapping sentences grows.
This is beneficial since it decreases the minimum amount
of plagiarism detectable. Figure 3 shows an “effective
noise” curve that is the average noise plus three stan-
dard deviations. If we assume that noise 1s a normally
distributed variable, we can interpret the effective noise
curve as a lower bound for the threshold in order to elimi-
nate 99% of the false positives due to noise. For example,
if we use three sentence chunks and set our threshold at
¢ = 0.01, then the Beta error will be less than 1%.

However, as described in Section 4.2, the Alpha error
will increase as we combine sentences in chunks. This
mean that, for instance, we will be unable to detect pla-
giarism of multiple, non-contiguous sentences. Also, the
security of the system is reduced (Section 4.2): it takes
fewer changes to a document to make 1t pass as a new
one.

The effect of chunk size on document noise

F T T T

6 1\ Average noise o— —

5 N Effective noise —+- _|

\\

4+ \\\ -

3 \\ -

2 - \ —

1+ e -

0 N T ————— - =35
1 2 3 4 5

Number of sentences per chunk

Figure 3: Noise as a function of number of overlapping
sentences.

5.5 Effect of Converters

A final issue we investigate is the impact of different
input converters. For example, say a Latex document
is initially registered in COPS. Later, the DVI version
of the same document (produced by running the origi-
nal through the Latex processor) is submitted for test-
ing. We would like to find that (a) the DVI copy clearly
matches the registered Latex original, and (b) the DVI
copy has a similar number of matches with other docu-
ments as the original would have had.

Table 4 explores this issue. The first row is for the
basic COPS algorithm; the second row is for the ver-
sion that includes all the enhancements of Table 3. The
first, third, and fifth columns are as before and are only
included for reference. The “Altered Self” column re-
ports the average precent of matching sentences when
a DVI document is compared against its Latex original.
The “Altered Related” column gives the average percent
matching sentences when a DVI document is compared
to all of the related Latex documents. Although the re-

sults are far from perfect, there seem to remain enough
matches so that the DVI can be flagged as related to its
original and to documents its original was related to.

We believe that the results presented in this section,
although not definitive, provide some insight into the
selection of a good threshold value for COPS, at least
for the Related target test. A threshold value of say ¢ =
0.05 (25 out of 500 sentences) seems to identify the vast
majority of related documents, while not triggering false
violations due to noise. We also conclude that detecting
plagiarism of about 10 or less sentences (roughly 2% of
documents) will be quite hard, without either high Alpha
or Beta errors.

6 Approximating OOTs

In this section we address the efficiency and scalability of
OQOTs. For copy detection to scale well, we require that
it can operate with very large collections of registered
documents, as well as the ability to quickly test many
new documents. One effective way to achieve scalability
is to use sampling.

To illustrate, say we have an OOT with a DECIDE
function that tests whether more than 15 percent of the
chunks of a document d match. Instead of checking all
chunks in d, we could simply take say 20 random chunks
and check whether more than 3 of them matched (15% of
the 20 samples). We would expect that this new OOT
based on sampling approximates the original OOT. If
the average test document contains 1000 chunks, we will
have reduced our evaluation time by a factor of 50. The
cost, of course, 1s in the lost accuracy and that is ana-
lyzed in Section 6.1.

Another sampling option is to sample registered docu-
ments. The idea here is to only insert in our hash table a
random sample of chunks for each registered document.
For example, say that only 10% of the chunks are hashed.
Next, suppose that we are checking all 100 chunks of
a new document and find 2 matches with a registered
document. Since the registered document was sampled,
these 2 matches should be equivalent to 20 under the
original OOT. Since 20/100 exceed the 15% threshold,
the document would be flagged as a violation. In this
case, the savings would be storage space: the hash table
will have only 10% of the registered chunks. A smaller
hash table also makes it possible to distribute it to other
sites, so that copy detection can be done in a distributed
fashion. Again, the cost is a loss of accuracy.

A third option 1s to combine the two of these tech-
niques without sacrificing accuracy (any more than ei-
ther one alone) by sampling based on the hash numbers
of the chunks [10]. For example, if in our test document,
we sample exactly those chunks whose hash number is 0
mod 10, then there i1s no need to store the hash values
of any registered documents’ chunks whose hash value is
not 0 mod 10 since there could never be a collision oth-
erwise. However, this scheme has the drawback that one
must always sample a fixed fraction of the documents’
chunks rather than, say, a fixed number of them.

Due to space limitations, in this paper we only con-

sider the first option, sampling for testing. However,
note that the analysis for the sampling at registration
time and at both 1s very similar to what we will present
here, and the results are analogous.

We start by giving a more precise definition of the sam-
pling at testing strategy. We are given an OOT o; with
any chunking functions INS-CHUNKS1 = EVAL-CHUNKS1,
and the match_ratio DECIDE1 function with threshold ¢
(Section 3.1). We define a second OOT, oq, intended
to approximate o1. Its chunking function for evaluation,
EVAL-CHUNKS?2 is simply

EVAL-CHUNKS2(r)
C = EVAL-CHUNKS1(r)
return RANDOM-SELECT(N, C)

where RANDOM-SELECT picks N chunks at random. *
The chunking function for insertions is not changed, i.e.,
INS-CHUNKS2 = INS-CHUNKS1.

The DECIDE1 function of o; selects documents r where
the number of matching chunks COUNT(r, MATCH) is
greater than ¢SIZE. For oy, only N chunks are tested
(not SIZE), so the threshold number of chunks is ¢N.
Thus, DECIDE2 selects documents r where the number of
matching chunks COUNT (r, MATCH) is greater than ¢N.

6.1 Accuracy of Randomized OOTs

Now we wish to determine how different o5 1s from o;.
As in Section 3.2, let D be our distribution of input doc-
uments and let R be the distribution of registered docu-
ments. Let X be a random document that follows 1D and
Y be a random document that follows R. Let m(X,Y)
be the proportion of chunks (according to 01’s chunking
function) in X which match chunks in Y. Then let W(x)
be the probability density function that m(X,Y) = #,
ie, Plzy < m(X,Y) < 2q) = f;f W(z)dz. Using
this we can compute Alpha(o1,02), Beta(o1,02), and
Error(o1,0q). The details of the computation are in
Appendix A; the results are as follows:

2 W (2)Q(x)da
Alpha(o1,05) = gt
el) f¢ W(z)dx
[
Beta(or, o) = 12 W(ﬂ;)(l—Q(x))dx
Ji W(a)de

Error(oy,02) =

¢
T / W) (1 - Q(x))de

[#N] N . '
where Q(z) = Z (j)x](l - l‘)N_]
7=0

*This is not the most efficient way to sample. The code is
just for explanation purposes.

| Match Self | Altered Self | Related Group | Altered Rel. | Unrelated |

Simple
Enhanced

100% ‘

60.9%
100%

76.5%

52.9% ‘

36.0%
53.6%

0.50%
46.2%

0.03%

Table 4: Results for mechanically altered documents.

Pa =080, =01p, =020, =0.3 pp =0.8

6 T T T T
5 Wi(x) — 4
4 -
3 - -
- -
1 -
0 | 1 |

0 0.2 0.4 0.6 0.8 1

z
Figure 4: An Exaggerated W
6.2 Results

Before we can evaluate our expressions, we need to know
the W(x) distribution. Recall that T () tells us how
likely it 1s to have a proportion of # matches between a
test and a registered document. One option would be to
measure W(z) for a given body of documents, but then
our results would be specific to that particular body. In-
stead, we use a parametrized function that lets us con-
sider a variety of scenarios.

Using the observations of Section 5, we arrive at the
following W (x) function. With a very high probability
Pa, the test document will be unrelated to the registered
one. In this case, there can still be noise matches, which
we model as normally distributed with mean 0 and stan-
dard deviation o, (which will probably be very small).
With probability p, = 1 — p, the test document is unre-
lated to the registered one. In this case we assume that
the number of matching chunks is normally distributed
with mean p, and standard deviation o,. We would
expect oy to be large since, as we have seen, related doc-
uments tend to have widely varying numbers of matches.
Thus, our W () function is the weighted sum of two nor-
mal (truncated at 0 and 1) distributions, normalized to
make fol Wi(x)=1.

Figure 4 shows a sample W (z) function with exagger-
ated parameters to make its form more apparent. The
area under the curve in the range 0 < z < 0.2 represents
the likelihood of noise matches, while the rest of the
range represents mainly matches of related documents.
In practice, of course, we would expect p, to be much
closer to 1 (most comparisons will be between unrelated
documents) and ¢, to be much smaller.

Given a parametrized W (z), we can present results
that show how good an approximation o5 is to 0. An
important first issue to study is the number of sam-
ples N required for accurate results. Figure 5 shows the

Pa=0.950, =0.02 pp, = 0.05 55 = 0.3 yip = 0.8 ¢ = 0.4

0.12

]]]]
RS
01 o Alpha &
Beta —+
0.08 o o © o> O Error O
0.06 o ©

Figure 5: The Effect of the Number of Sample Points on
Accuracy

Pa=095p,=0.050,=03 pp =08¢=04N =20
0.1 T T T T 1
0.09
0.08
0.07 -
0.06
0.05
0.04 -
0.03
0.02 -
0.01 |~

0 T R T R B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Tq

Figure 6: The Effect of ¢, on Error.

Alpha(o1,02), Beta(o1,02), and Error(o1,02) values as
a function of N, for ¢ = 0.4. Recall that the ¢ value of 0.4
means that oy is looking for registered documents whose
chunks that match 40% of the chunks of the test docu-
ment. This value may have been picked, say, because we
are interested in a Subset target test. The parameters
for W (x) are given in the figure.

Note that the values in Figure 5 are not simply mono-
tonically decreasing. For example, the Alpha and Error
values increase as N goes from 9 to 10. Rounding error
is the cause for this. For example, for N = 9, 0y selects
documents with COUNT (the number of matching chunks)
greater than 3.6 (=¢N), i.e., with 4 or more matches. For
N = 10, documents with COUNT greater than 4 (i.e., 5 or
more) are selected. Consider now a test document that
matches with say 40% to 50% of the chunks of a reg-
istered document (hence is selected by o1). Tt is more
likely that oy with N = 9 will select it since it only has
to get 4 hits. With N = 10, oy is less likely to select it

because with only one extra sample, it has to get 5 hits.
This effect leads to the higher Alpha error for N = 10.

In spite of the non-monotonicity, it is important to
note how overall the Error decreases very rapidly as N
increases. For N > 10, the Error stays well below 0.01.
This shows that o, can approximate o; well with a rela-
tively small number of sampled chunks.

Note, however, that the Alpha error does not decrease
as rapidly, but this is not as serious. The Alpha error
for N beyond say 20 is mainly caused by test documents
whose match ratio is slightly higher than ¢ = 0.4. (The
area under the W(x) curve in the vicinity to the right
of 0.4 gives the probability of getting one of these doc-
uments.) In these cases, the sampling OOT may not
muster enough hits to trigger a detection. However, in
this case the original OOT 07 may not very good at ap-
proximating the violation test of interest either. In other
words, in the percent of matches is close to 40%, it may
not be clear if the documents are related on not. Thus,
the fact that o; detects a violation but o5 does not is not
as serious, we believe.

Our results are sensitive to the W (x) parameters used.
For example, in Figure 6 we demonstrate the effect of o,.
We can see from Figure 6 that the Error stays very low
as long as o, 1s not near ¢ = 0.4. If o, is close to ¢, we
get more documents in the region where oy has trouble
identifying documents selected by oy. Similarly, we find
that error keeps very low in the high p, range, which is
where we expect 1t to be in practice.

In summary, using sampling in OOTs seems to work
very well under good conditions (when ¢ is far from the
bulk of the match ratios). There is a large gain in ef-
ficiency with only a small loss of accuracy. As stated
earlier; the sample at registration OOT can be analyzed
almost identically to what we have done here, and can
be shown to substantially reduce the storage costs.

7 Conclusions

In this paper we have proposed a copy detection ser-
vice that can identify partial or complete overlap of doc-
uments. We described a prototype implementation of
this service, COPS, and presented experimental results
that suggest the service can indeed detect violations of
interest. We also analyzed several important variations,
including ones for breaking up a document into chunks,
and for sampling chunks for detecting overlap.

It 1s important to note that while we have described
copy detection as a centralized function, there are many
ways to distribute it. For example, copies of the regis-
tered document hash table can be distributed to permit
checking for duplicates at remote sites. If the table con-
tains only samples (Section 6) it can be relatively small
and distributable more easily. Also, document registra-
tion can also be performed at a set of distributed reg-
istration services. These services could periodically ex-
change information on new registered documents they
have seen.

Perhaps the most important question regarding copy
detection is whether authors can be convinced to regis-

ter their documents: Without a substantial body of doc-
uments, the service will not be very useful. We believe
they can, especially if one starts with the documents of a
particular community (e.g., netnews users, or SIGMOD
authors). But regardless of the success of COPS and
copy detection, we believe 1t is essential to explore and
understand solutions for safeguarding intellectual prop-
erty in digital libraries. Their success hinges on finding
at least one approach that works.

References

[1] C. Anderson. Robocops: Stewart and Feder’s mech-
anized misconduct search. Nature, 350(6318):454-455,
April 1991.

[2] J. Brassil, S. Low, N. Maxemchuk, and L.O’Gorman.
Document marking and identification using both
line and word shifting. Technical report, AT&T
Bell Labratories, 1994. May be obtained from
ftp:/ /ftp.research.att.com/dist/brassil /docmark2.ps.

[3] J. Brassil, S. Low, N. Maxemchuk, and L.O’Gorman.
FElectronic marking and identification techniques to dis-
courage document copying. Technical report, AT&T
Bell Labratories, 1994.

[4] A. Choudhury, N. Maxemchuk,
S. Paul, and H. Schulzrinne. Copyright protection for
electronic publishing over computer networks. Techni-
cal report, AT&T Bell Labratories, 1994. Submitted to
[EEE Network Magazine June 1994.

[5] J. R. Garrett and J. S. Alen. Toward a copyright man-
agement system for digital libraries. Technical report,
Copyright Clearance Center, 1991.

[6] G. N. Griswold. A method for protecting copyright on
networks. In Joint Harvard MIT Workshop on Technol-
ogy Strategies for Protecting Intellectual Property in the
Networked Multimedia Fnvironment, April 1993.

[7] M. B. Jensen. Making copyright work in electronic pub-
lishing models. Serials Review, 18(1-2):62-66, 1992.

[8] R. E. Kahn. Deposit, registration and recordation in
an electronic copyright management system. Technical
report, Corporation for National Research Initiatives,
Reston, Virginia, August 1992.

[9] P. A. Lyons. Knowledge-based systems and copyright.
Serials Review, 18(1-2):88-91, 1992.

[10] U. Manber. Finding similar files in a large file system. In
USENIX, pages 1-10, San Francisco, CA, January 1994.

[11] A. Parker and J. O. Hamblen. Computer algorithms for
plagiarism detection. [FEF Trasnactions on Education,
32(2):94-99, May 1989.

[12] G.J. Popek and C.S. Kline. Encryption and secure com-
puter networks. ACM Computing Surveys, 11(4):331-
356, December 1979.

[13] D. Wheeler. Computer networks are said to offer new
opportunities for plagarists. The Chronicle of Higher
FEducation, pages 17, 19, June 1993.

