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Abstract

To support first-class views in a database system, we must not only allow users to query and browse

the database through views, but also allow database updates through views: the well-known view update

problem. Although the view update problem has been studied extensively, we take a fresh approach based

on data lineage to provide improved results for translating deletions against virtual or materialized views

into deletions against the underlying database. Our fully automatic algorithm finds a translation that is

guaranteed to be exact (side-effect free) whenever an exact translation exists, using only the view definition

at compile-time and the base data at view-update time.

1 Introduction

Data management through user-defined views is an important feature for shared databases. To support first-

class views, we must not only allow users to query and browse the database through views, but also allow

database updates through views. A number of problems arise when updating a database through views,

yielding the well-known and well-studied view update problem [BS81, Cle78, DB82, KU84, LS91, Mas84,

Shu96, Sto75, Tom94]. The typical steps involved in a view update are:

(1) The user requests an update UV to a view.

(2) Some process, referred to as view update translation, takes UV and produces an update UD to the

underlying base data.

(3) UD is applied to the base database. If the view is materialized (as opposed to virtual), then the view is

modified to reflect the base data update UD.

In this paper, we consider the specific problem of translating deletions against view tuples (referred to as view

deletions) into deletions against base tables (referred to as base deletions).

Many previous approaches, e.g., [Cle78, Kel86, LS91, RS79], require participation from the view definer

and/or the view updater in specifying view update translations. In this paper, we use techniques based on data

lineage [CWW00] to devise a fully automatic algorithm that translates view deletions using only the view

definition at compile-time and the base data at view-update time.

Referring back to the steps outlined above for view update, when the base data update UD is applied in

step (3) the view is modified, either logically or physically, as a result. Let U ′V denote the view modifications

induced by database update UD. U ′V should certainly contain the user’s requested view update UV from
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step (1), in which case UD is called a correct view update translation. Even better, U ′V should be identical

to UV , in which case UD is called an exact view update translation. Surprisingly, most previous work on the

view update problem does not consider exactness, e.g., [Mas84, LS91], or guarantees exactness only for a

restricted class of select-project-join (SPJ) views, e.g., [DB82, Kel85]. Unlike these algorithms, our run-time

translation algorithm finds a translation for any view deletion against any SPJ view that is guaranteed to be

exact whenever an exact translation exists, and data lineage helps us achieve this result.

There may be more than one translation for a view update—even more than one exact translation—leading

to an inherent ambiguity in the view update translation process that has been the focus of much previous work,

e.g., [BS81, Kel86, LS91]. We do not explore the ambiguity issue in this paper. Instead, our goal is to find,

as fast as possible and without view definer or user intervention, an exact translation that updates a small

number of base tuples. Also we do not consider constraints on the base tables in our work: we assume

that all deletions on base tables are valid. Some discussion on how base table constraints can affect the

view update translation process can be found in [DB82, Kel85]. Finally, we do not consider insertions or

modifications to views. This paper focuses specifically on how data lineage can be used to improve the view

update translation process. After some exploratory work it is our belief that the current state of the art in

data lineage, e.g., [CWW00], is applicable only to view deletions, and by extension to a portion of the view

modification problem (complemented by a solution to the insertion “half” of the problem). For a complete

view update translation package, our deletion algorithm could be combined with any previous algorithm

for translating view insertions, e.g., [DB82], although as noted earlier these algorithms do not guarantee

exactness.

In summary, this paper focuses on the automation and exactness aspects of the view update translation

process. We present a fully automatic run-time algorithm for translating deletions against SPJ views into

deletions against the underlying database. Our algorithm is based on data lineage techniques, and it yields

translations that are guaranteed to be exact whenever an exact translation exists.

1.1 Paper Outline

The remainder of the paper proceeds as follows. In the rest of this section we survey related work and then

present a running example to illustrate the view update problem and our solutions. In Section 2 we formalize

the view update problem for deletions, and in Section 3 we provide necessary background on data lineage.

Section 4 formalizes the relationship between data lineage and view deletions, which is used as the basis

for our translation algorithm for single-tuple deletions presented in Section 5. Sections 6 and 7 extend our

algorithm to handle sets of deletions and deletions specified by a selection condition. Empirical results from

our implementation are presented in Section 8, and Section 9 concludes the paper.

1.2 Related Work

One of the biggest differences between our approach to the view update problem and most previous ap-

proaches is that we determine view update translations at view-update time instead of at view-definition time.
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UserGroup

user group

john sale

lisa mkt

lisa eng1

lisa eng6

joe eng1

joe eng2

mary eng2

mary eng4

ted eng4

ted eng5
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group file

sale f1

mkt f2

eng1 f3

eng1 f4

eng2 f3

eng2 f4

eng4 f5

eng5 f5

eng5 f6

eng6 f3

Figure 1: Base tables

V

user file

lisa f3

lisa f4

joe f3

joe f4

mary f3

mary f4

mary f5

ted f5

ted f6

Figure 2: View contents

Consequently, other approaches may miss exact view update translations when they exist, because those ap-

proaches cannot take all data-dependent information into account.

Some previous approaches ask the view definer to specify, as part of a view definition, the set of permitted

view update operations together with their translations, e.g., [Cle78, RS79]. A somewhat more automated

approach is for the system to enumerate different view update translations at view definition time and let

the view definer choose the preferable ones, e.g., [Kel86]. Another approach, proposed in [LS91], translates

view updates using user-provided information at view-definition time as well as at view-update time. All of

these approaches require input from the view definer or view updater, unlike our approach which can be fully

automatic, allowing exact view update translations without any additional effort at view definition or update

time.

A fully automatic approach is suggested in [Mas84], which provides ten general rules for translating view

deletions and insertions on select, project, and join views. The concept of view complements is introduced

in [BS81] to supply extra semantic information for selecting a view update translation. Neither of these

approaches guarantees translation exactness.

An algorithm proposed in [DB82] guarantees exact translations in restricted cases by requiring certain

functional dependencies on the base data. A concept of source-tuple is defined in [DB82], similar in spirit but

with a different definition than data lineage. [Kel85] also proposed an algorithm that guarantees exact transla-

tions for a very restricted classes of SPJ views: to be updatable a view must include all key and join attributes

of the base tables, and the base tables must join on the key attributes and satisfy foreign key constraints. Our

approach makes no restrictions on the SPJ views we consider.

1.3 Running Example

We will use the following example throughout the paper to illustrate the view update problem and our solu-

tions. Consider a simple user access control database with two base tables: UserGroup(user, group) and

GroupAccess(group, file). The UserGroup table contains the groups that each user belongs to, and the

GroupAccess table lists the files accessible by each group. Figure 1 shows a small example database.
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Example # View deletions Translation

1 delete 〈ted, f5〉 from V delete 〈ted, eng4〉 from UserGroup

delete 〈eng5, f5〉 from GroupAccess

2 delete 〈lisa, f3〉 from V delete 〈lisa, eng6〉 from UserGroup

delete 〈eng1, f3〉 from GroupAccess

3 delete 〈joe, f3〉 from V delete 〈joe, eng2〉 from UserGroup

delete 〈eng1, f3〉 from GroupAccess

4 delete 〈joe, f4〉 from V delete 〈joe, eng1〉, 〈joe, eng2〉 from UserGroup

5 delete 〈lisa, f4〉, 〈joe, f4〉 from V delete 〈eng1, f4〉 from GroupAccess

6 delete from V where user = ′ted′ delete 〈ted, eng4〉, 〈ted, eng5〉 from UserGroup

delete 〈eng5, f5〉, 〈eng5, f6〉 from GroupAccess

Table 1: Example view deletions and translations

We consider an SPJ view V defined in relational algebra as follows:

V = πuser,file(σgroup=′eng%′(UserGroup ./ GroupAccess))

V contains information about all files accessible by users in the “eng” (engineering) groups; its contents over

our sample base data are shown in Figure 2. We consider six example view deletions, listed in Table 1. All

translations shown in the table are exact except for Example 4, which has no exact translation. The remainder

of this paper will show how we can use data lineage techniques to find the translations shown in this example,

and more generally to translate any deletions against any SPJ view.

2 The View Update Problem for Deletions

We now formally define the view update translation problem for deletions. In this paper we consider only

select-project-join (SPJ) views, so every view V we consider can be written as

V = πA(σC(R1 × · · · ×Rn))

where R1, . . . , Rn are base tables, C is a boolean condition (containing both join and local selection predi-

cates), and A is a list of projected attributes. We represent deletions on a base table R as ∇R and deletions

on a database D = R1, . . . , Rn as ∇D = ∇R1, . . . ,∇Rn. We assume set semantics (no duplicates) and no

base table constraints throughout the paper. Base table constraints are discussed in Section 1 and duplicates

in Section 9.

Given a view V , we use −t to denote a request to delete a single view tuple t ∈ V . (In Section 6 we

generalize to view update requests that are sets of deleted tuples, as in Example 5 of Table 1, and in Section

7 we handle view update requests specified by a selection condition, as in Example 6 of Table 1.) Note that

we use “V ” generically throughout the paper to represent the name of a view, its definition, and sometimes its

(virtual or actual) contents. We now formalize the concept of a view deletion translation.
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Definition 2.1 (View Deletion Translation) Given a view V and a deletion request −t where t ∈ V , we

say that database deletion ∇D is a translation for −t if ∇D causes the deletion of t from V when applied

to database D. More formally, let V ′ be the new view based on the updated database D − ∇D, and let

∇V = V − V ′ be the actual deleted view tuples, which we call the view deletions induced by ∇D. We say

that ∇D is a translation for −t if {t} ⊆ ∇V .
�

Let ∇D be a translation for deletion −t on view V and let ∇V be the view deletions induced by ∇D as

specified in Definition 2.1. If ∇V = {t} then ∇D is an exact translation for −t. Otherwise, ∇D is inexact

and causes side-effect (or extra deletions) E = ∇V − {t}. Concrete examples will be seen in Section 4.

For SPJ views, when we perform a deletion ∇D on the base data, the changes to the view induced by

∇D are always deletions, never insertions or modifications. However, when we translate a deletion request

−t into updates on the base data, it is not necessary to produce only deletions. For example, in translating −t

we might choose to delete some existing base tuples, then insert some new ones to compensate for view side-

effects caused by the deletions. In this paper, we do not consider the compensation approach, focusing only

on the pure deletions-to-deletions translation problem. In considering the more general problem we found

that cases where view deletions benefit from translations encompassing all types of base data updates are very

rare, although to be fair such cases do exist. If these cases turn out to be more prevalent than we think, we

will consider the more general translation algorithm as future work.

3 Data Lineage

The concept of data lineage was introduced primarily to enable users to trace derived data items back to

their sources, especially in a transformational or data warehousing setting [CWW00, CW01]. Data lineage is

closely related to the view update problem, specifically to the translation of view deletions. As we will see,

using data lineage as a basis for translating view deletions introduces a fresh approach with improved results.

We briefly review the definition of data lineage and introduce a new concept of exclusive lineage. The ac-

tual computation of lineage and exclusive lineage will be presented in Section 5. In this paper we only present

the aspects of data lineage that are relevant to the view update problem addressed. For further motivation,

details, and full treatment of relational data lineage see [CWW00, CW00].

Given a view V over base database D = R1, . . . , Rn and a tuple t ∈ V , informally t’s lineage in D is

〈R∗1, . . . , R
∗

n〉, where R∗i ⊆ Ri (i = 1..n) contains exactly those tuples in Ri that are used to derive t. We call

R∗i the ith branch of t’s lineage. Although we have studied data lineage for general relational views including

aggregation and set operators in [CWW00], in this paper we are focusing on SPJ views. The following formal

definition of data lineage is equivalent to the lineage definition in [CWW00] when specialized to SPJ views.

Definition 3.1 Consider an SPJ view V = πA(σC(R1 × · · · ×Rn)) and a view tuple t ∈ V . A tuple ti ∈ Ri

belongs to t’s lineage branch R∗i if and only if:

{t} ⊆ πA(σC(R1 × · · · ×Ri−1 × {ti} ×Ri+1 × · · · ×Rn))

We denote t’s entire lineage in D as lineage(t, V,D) = 〈R∗1, . . . , R
∗

n〉.
�
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Example 3.2 Recall view V from Section 1.3, containing user file access control information. Given tuple

t = 〈ted, f5〉 in V , based on Definition 3.1 t’s lineage is:

lineage(t, V,D) = 〈UserGroup∗ = {〈ted, eng4〉, 〈ted, eng5〉},

GroupAccess∗ = {〈eng4, f5〉, 〈eng5, f5〉}〉
�

The exclusive lineage of a view tuple t is the set of base tuples that contribute to t and only to t. Formally:

Definition 3.3 Consider an SPJ view V = πA(σC(R1 × · · · ×Rn)) and a view tuple t ∈ V . A tuple ti ∈ Ri

belongs to t’s exclusive lineage branch R∗∗i if and only if:

{t} = πA(σC(R1 × · · · ×Ri−1 × {ti} ×Ri+1 × · · · ×Rn))

(The difference from Definition 3.1 is simply = instead of ⊆.) We denote t’s entire exclusive lineage in D as

elineage(t, V,D) = 〈R∗∗1 , . . . , R
∗∗
n 〉. Note that R∗∗i ⊆ R

∗

i , i = 1..n.
�

Example 3.4 Again, consider view V from Section 1.3 and tuple t = 〈ted, f5〉 in V . Based on Definition

3.3, t’s exclusive lineage is:

elineage(t, V,D) = 〈UserGroup∗∗ = {〈ted, eng4〉}, GroupAccess∗∗ = {〈eng5, f5〉}〉

Tuples 〈ted, eng5〉 and 〈eng4, f5〉 from t’s lineage (Example 3.2) are not in t’s exclusive lineage, because

〈ted, eng5〉 also is in the lineage of view tuple 〈ted, f6〉, and 〈eng4, f5〉 also is in the lineage of view tuple

〈bob, f5〉.
�

4 Relationship Between Data Lineage and View Deletions

As mentioned earlier, data lineage is closely related to the view update problem, specifically to translating

view deletions. In this section, we formalize the relationship between data lineage and view deletions, to lay

the groundwork for our deletion translation algorithm to be specified in Section 5. We continue to focus on

single-tuple deletions. Recall that we extend our results to deletions of a view tuple set and deletions specified

by a selection condition in Sections 6 and 7, respectively.

Consider an SPJ view V = πA(σC(R1 × · · · × Rn)) over database D and the deletion −t of a tuple

t ∈ V . Ideally, deleting t’s exclusive lineage (Definition 3.3) from D induces the deletion of t from V , as in

the following example.

Example 4.1 Consider Example 1 from Table 1, which deletes tuple t = 〈ted, f5〉 from V . Example 3.4

showed that t’s exclusive lineage is:

elineage(t, V,D) = 〈UserGroup∗∗ = {〈ted, eng4〉}, GroupAccess∗∗ = {〈eng5, f5〉}〉

If we delete these tuples from the base tables, t will be deleted from V . Therefore, ∇elineage(t, V,D) is a

translation for −t.
�
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An important property of a translation that deletes the exclusive lineage of the deleted view tuple, as in

Example 4.1, is that the translation is guaranteed to be exact. By Definition 3.3 of exclusive lineage, none of

the tuples inR∗∗1 , . . . , R
∗∗
n contribute to any view tuples other than t, so translation∇D∗∗ = ∇R∗∗1 , . . . ,∇R

∗∗
n

can induce only the deletion of t. Unfortunately, ∇D∗∗ is not always a translation, even if −t has an exact

translation, as shown by the following example.

Example 4.2 Consider Example 2 from Table 1, which deletes tuple t = 〈lisa, f3〉 from V . Based on

Definition 3.3, t’s exclusive lineage is:

elineage(t, V,D) = 〈UserGroup∗∗ = {〈lisa, eng6〉}, GroupAccess∗∗ = ∅〉

Deleting elineage(t, V,D) does not induce the deletion of t. Thus, ∇elineage(t, V,D) is not a translation

for −t. However, −t does have an exact translation that deletes tuple 〈lisa, eng6〉 from UserGroup and

〈eng1, f3〉 from GroupAccess.
�

When the exclusive lineage does not provide us with a translation, we can instead consider deleting one

branch R∗i of t’s lineage. (We also could consider deleting all branches, but each branch individually always

is sufficient to induce the deletion of t.) Unlike ∇D∗∗, any ∇R∗i is a translation, but it may not be exact even

when there is an exact translation, as shown by the following example.

Example 4.3 Consider again Example 1 from Table 1, which deletes tuple t = 〈ted, f5〉 from view V .

Example 3.2 showed that t’s lineage is:

lineage(t, V,D) = 〈UserGroup∗ = {〈ted, eng4〉, 〈ted, eng5〉},

GroupAccess∗ = {〈eng4, f5〉, 〈eng5, f5〉}〉

Deleting either lineage branch is a translation for −t, but neither translation is exact: ∇UserGroup∗ also

induces the deletion of view tuple 〈ted, f6〉, while ∇GroupAccess∗ also induces the deletion of view tuple

〈mary, f5〉. Example 4.1 illustrated an exact translation for −t.
�

So far we have seen that ∇D∗∗ may provide an exact translation or may not be a translation at all, and

∇R∗i (for any i ∈ 1..n) provides a translation but it may not be exact. In neither case are we guaranteed to

be provided with an exact translation even if one exists, and nor is it the case that when ∇D∗∗ fails ∇R∗i
succeeds, or vice-versa. Thus, if neither ∇D∗∗ nor ∇R∗i (i = 1..n) provides an exact translation, the brute-

force approach is to enumerate all possible subsets of all base relations, checking if deleting those subsets is

an exact translation. Fortunately we can reduce the search space considerably using the following theorem,

which tells us that if there is an exact translation for −t, then there is an exact translation that is contained

in t’s lineage. We will further reduce the search space with pruning techniques in our algorithm presented in

Section 5.
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Theorem 4.4 Consider an SPJ view V over database D and a tuple t ∈ V . If deletion −t has an exact trans-

lation, then −t has an exact translation ∇D such that ∇D ⊆ lineage(t, V,D).1

Proof: See Appendix A.1.
�

5 View Tuple Deletion Algorithm

Based on our observations in Section 4, we specify an algorithm DELETE(t, V,D) in Figure 3 that translates

deletion −t on view V into deletions ∇D on base database D. The algorithm performs the deletions ∇D

on the base database. We assume that if V is materialized (or if there are other materialized views over D),

then a view maintenance algorithm will detect the deletions and modify any materialized views accordingly.

Our algorithm can be modified easily to return ∇D and/or ∇V (the deletions on V induced by ∇D; note

∇V = {t} in the case of an exact translation) if desired. DELETE finds an exact translation for −t whenever

one exists. In cases when−t has no exact translation, DELETE uses an inexact translation, with some attempt

to minimize the side-effect. The algorithm proceeds as follows.

In line 1 of Figure 3, we compute t’s lineage using the tracing query from [CWW00]. In the trac-

ing query, A = t is shorthand for equating all attributes in list A to their values in tuple t, and operator

SplitR1,...,Rn(R) = 〈πR1(R), . . . , πRn(R)〉 projects table R on the schema of Ri for i = 1..n. We then

compute t’s exclusive lineage D∗∗ based on Definition 3.3 (lines 2–5), and delete it from D (line 6). Com-

puting the exclusive lineage requires one n-way join for each tuple in t’s lineage, but lineage is typically

very small, and each join is expected to be cheap since one branch of the join is simply the lineage tu-

ple {ti}. If deleting t’s exclusive lineage induces the deletion of t from V (line 7), then we are done, as

in Example 4.1. We know that t has not been deleted if it is still derivable from its remaining lineage:

t ∈ πA(σC((R
∗

1 −R
∗∗

1 )× · · · × (R
∗
n −R

∗∗
n ))).

If deleting the exclusive lineage did not successfully delete t, then we try the next step discussed in

Section 4, which is to consider deleting the remainder of some lineage branch R∗i . Before exploring this

option, we recompute t’s lineage in our smaller D, i.e., in the D that remains after deleting D∗∗ (line 8). Any

tuple ti that is eliminated from R∗i in the recomputed lineage no longer contributes to t: the tuples it formerly

joined with to produce t must have been deleted as part of the exclusive lineage.

In lines 9–14 we consider each remaining lineage branch R∗i in turn. If ∇R∗i is an exact translation, then

we are done. During the iteration, we keep track of the lineage branch with smallest side-effect, in case we

eventually fail to find an exact translation at all. To determine the side-effect of ∇R∗i , we first compute all

potential extra deletions E using the query πA(σC(R1 × · · · × R∗i × · · · × Rn)) − {t} (line 11). We then

remove from E tuples that are still derivable after deleting R∗i (line 12). The remaining E is the actual side-

effect induced by ∇R∗i . In terms of efficiency, line 11 performs a join where one branch (R∗i ) is expected to

be very small. Line 12 appears to be expensive—nearly a recomputation of the entire view—however a good

1Note that we abuse the subset symbol “⊆” to operate on lists of tables: ∇D ⊆ lineage(t, V,D) is shorthand for ∇R1 ⊆

R∗1 , . . . ,∇Rn ⊆ R
∗

n
.
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procedure DELETE(t, V = πA(σC(R1 × · · · ×Rn)), D)
// Compute t’s lineage:
(1)D∗ = 〈R∗

1
, . . . , R∗n〉 ← SplitR1,...,Rn(σC∧A=t(R1 × · · · ×Rn));

// Compute and delete t’s exclusive lineage:
(2)D∗∗ = 〈R∗∗

1
, . . . , R∗∗n 〉 ← 〈∅, . . . ,∅〉;

(3) for i = 1..n do
(4) for each ti ∈ R∗i do
(5) if πA(σC(R1 × · · · × {ti} × · · · ×Rn)) = {t} then R∗∗i ← R

∗∗

i ∪ {ti};
(6)D ← D −D∗∗;

// Check if t is deleted:
(7) if t 6∈ πA(σC((R∗1 −R

∗∗

1
)× · · · × (R∗n −R

∗∗

n ))) then return;

// Recompute t’s lineage in smaller D:
(8)D∗ = 〈R∗

1
, . . . , R∗n〉 ← SplitR1,...,Rn(σC∧A=t(R1 × · · · ×Rn));

// Find a lineage branch with zero or smallest side-effect:
(9)minE ←∞;
(10) for i = 1..n do
(11) E ← πA(σC(R1 × · · · ×R

∗

i × · · · ×Rn))− {t};
(12) E ← E − πA(σC(R1 × · · · × (Ri −R

∗

i )× · · · ×Rn))

(13) if E = ∅ then Ri ← Ri −R∗i ; return;
(14) if |E| < minE thenm← i;minE ← |E|;

// Enumerate subsets of t’s lineage with limited size:
(15) k ← |σC(R∗1 × · · · ×R

∗

n)|;
(16) S ← all subsets ofD∗ that contain at most k tuples;
(17) for eachD′ = 〈R′

1
, . . . , R′n〉 ∈ S do

(18) if t ∈ πA(σC((R∗1 −R
′

1
)× · · · × (R∗n − R

′

n)))

(19) then prune all subsets ofD′ from S;
(20) else E ←

⋃
i=1..nπA(σC(R1 × · · · ×R

′

i × · · · ×Rn))− {t};
(21) E ← E − πA(σC((R1 −R

′

1
)× · · · × (Rn −R

′

n)));
(22) if E = ∅ thenD ← D −D′; return;
(23) else prune all supersets ofD′ from S;

// Delete the lineage branch R∗m with smallest side-effect:
(24) Rm ← Rm −R∗m; return;

Figure 3: Translating the deletion of a view tuple t

optimizer can effectively introduce a semijoin with E into the right-hand operand of the difference to keep

the join small. If we find a translation with no side-effect, i.e., E = ∅, then we are done (line 13). Otherwise,

line 14 determines if we are seeing the smallest side-effect so far and, if so, records the side-effect size and

current branch in minE and m, respectively.
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Example 5.1 Consider Example 2 from Table 1, which deletes tuple t = 〈lisa, f3〉 from V . In procedure

DELETE, we compute t’s lineage and exclusive lineage, and obtain:

lineage(t, V,D) = 〈UserGroup∗ = {〈lisa, eng1〉, 〈lisa, eng6〉},

GroupAccess∗ = {〈eng1, f3〉, 〈eng6, f3〉}〉

elineage(t, V,D) = 〈UserGroup∗∗ = {〈lisa, eng6〉}, GroupAccess∗∗ = ∅〉

We first delete t’s exclusive lineage from the base database D (lines 1–6), which does not induce the deletion

of t (line 7). We then recompute t’s lineage in the updated D (line 8) and obtain:

lineage(t, V,D) = 〈UserGroup∗ = {〈lisa, eng1〉}, GroupAccess∗ = {〈eng1, f3〉}〉

Deleting the lineage branch UserGroup∗ has the side-effect of deleting 〈lisa, f4〉 as well as 〈lisa, f3〉.

However, deleting the lineage branch GroupAccess∗ has no side-effect, so we further delete GroupAccess∗.

The entire exact translation is to delete tuple 〈lisa, eng6〉 from UserGroup and 〈eng1, f3〉 from GroupAccess.
�

If t does not have a lineage branch whose deletion is side-effect free, we next look for a combination of

tuples from different lineage branches whose deletion forms an exact translation for −t (lines 15–23). We

look for an exact translation by enumerating subsets of t’s lineage, based on Theorem 4.4. Letting x =

|R∗1|+ |R
∗

2|+ . . . + |R
∗

n|, we must enumerate and check up to 2x possible translations. Although x tends to

be relatively small, in some cases we can further bound the size of the search space based on the number of

derivations of tuple t, as shown by the following theorem.

Theorem 5.2 Consider an SPJ view V = πA(σC(R1 × · · · × Rn)) over database D and a tuple t ∈ V . Let

lineage(t, V,D) = 〈R∗1, . . . , R
∗

n〉, and let k = |σC(R∗1 × · · · × R
∗

n)|. k is the number of different ways of

deriving tuple t. If −t has an exact translation, then it has an exact translation ∇D ′ = ∇R′1, . . . ,∇R
′

n such

that R′i ⊆ R
∗

i for i = 1..n, and |R′1|+ · · ·+ |R
′
n| ≤ k.

Proof: A formal proof is given in Appendix A.2. Informally, to delete t we need only delete one tuple

from each of t’s k derivations. If we have an exact translation for t, it must delete at least one tuple from each

of t’s derivations. We can eliminate from the exact translation all but one tuple from each derivation, and we

still have an exact translation.2
�

Lines 15–17 compute the bound k from Theorem 5.2 and initiate the subset enumeration. For each

candidate translation ∇D′, line 18 checks if ∇D′ is indeed a translation, by checking if t is still derivable

after deleting D′. If so, then∇D′ is not a translation, but it does give us information that we can use to further

prune the search space: If deleting D ′ does not delete t, then nor can deleting any subset ofD ′ (line 19). (This

2This proof might lead us to consider an alternate approach: Instead of considering all lineage subsets up to size k, we compute the

derivations of t and then consider all combinations of one tuple from each derivation. It turns out that this enumeration can actually

be more expensive than the one we are using, because without expensive bookkeeping it might end up considering the same subset

multiple times.
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pruning technique seems to suggest we should enumerate larger subsets first, but in the other branch of the if

statement we introduce a pruning technique that eliminates supersets.)

Lines 20–22 check if the candidate translation ∇D ′ is an exact translation, by checking if it has any

side-effect. The procedure is similar but not identical to lines 11–13. We first compute all potential extra

deletions E by joining each R′i to the remaining relations (line 20). We then remove from E tuples that are

still derivable after deleting D′ (line 21). The remaining E is the actual side-effect induced by ∇D ′.3 If E is

empty, then we have found an exact translation, so we perform the deletion and are done (line 22). Otherwise,

line 23 performs additional pruning: If deleting D ′ introduces a side-effect, then so will deleting any superset

of D′.

Example 5.3 Consider Example 3 from Table 1, which deletes tuple t = 〈joe, f3〉 from V . In DELETE, we

compute:

lineage(t, V,D) = 〈UserGroup∗ = {〈joe, eng1〉, 〈joe, eng2〉},

GroupAccess∗ = {〈eng1, f3〉, 〈eng2, f3〉}〉

elineage(t, V,D) = 〈UserGroup∗∗ = ∅, GroupAccess∗∗ = ∅〉

We first delete t’s exclusive lineage, which does not induce the deletion of t, and then we recompute t’s

lineage. (Obviously we can add an if statement in the algorithm to skip these deletion and recomputation

steps when the exclusive lineage is empty, as in this example.) Deleting either remaining lineage branch of

t will cause a side-effect, so we proceed to enumerate subsets of t’s lineage. The number of t’s derivations

is k = |σgroup=′eng%′(UserGroup
∗ ./ GroupAccess∗)| = 2, so we only need to consider lineage subsets

containing one or two tuples. Enumerating these subsets, we find an exact translation ∇D ′ for −t where

D′ = 〈UserGroup′ = {〈joe, eng2〉}, GroupAccess′ = {〈eng1, f3〉}〉.
�

Let us consider the complexity of lines 15–23. The number of iterations in the for loop is bounded by

|D∗|k, where k is number of t’s derivations. In general, both |D∗| and k are small, and we use pruning

techniques to further reduce the number of iterations. Within each iteration, the complexity of line 18 is

similar to that of line 7, the complexity of line 20 is n times the complexity of line 11 (recall our view is an

n-way join), and the complexity of line 21 is similar to line 12. Empirical results are reported in Section 8.

As the final step of the algorithm (line 24), if we cannot find a lineage subset D ′ whose deletion causes

exactly the deletion of t, then by Theorem 4.4 −t has no exact translation. In this case, we delete the lineage

branch R∗m with the smallest side-effect of all lineage branches, which we saved in line 14.

Example 5.4 Consider Example 4 from Table 1, which deletes tuple t = 〈joe, f4〉 from V . In DELETE, we

compute:

lineage(t, V,D) = 〈UserGroup∗ = {〈joe, eng1〉, 〈joe, eng2〉},

GroupAccess∗ = {〈eng1, f4〉, 〈eng2, f4〉}〉

3Note that this computation is similar to incremental view maintenance, which determines the effect on a view of base table

modifications [BDD+98, GM95].
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elineage(t, V,D) = 〈UserGroup∗∗ = ∅, GroupAccess∗∗ = ∅〉

Through lines 1–23 in the DELETE algorithm, we discover that −t has no exact translation: The number

of t’s derivations is k = 2, and deleting any subset of t’s lineage with no more than two tuples either does

not cause the deletion of t or causes deletions in addition to t. Thus, we delete UserGroup∗, which has the

smaller side-effect of the two lineage branches.
�

To our knowledge, all previous view update algorithms either do not guarantee exact translations for

deletions even when they exist, e.g., [Mas84, LS91], or they guarantee exactness for a restricted class of

views satisfying certain functional dependencies or foreign key constraints, e.g., [DB82, Kel86]. Algorithm

DELETE is the first to guarantee exact deletion translations whenever they exist for general SPJ views.

6 Deleting Sets of View Tuples

So far we have considered translating the deletion of a single tuple t from view V . In general, users may want

to request the deletion of a set of tuples T ⊆ V , specified either by value or by a selection condition. In this

section we extend our algorithm to translate a view deletion request −T , while in the next section we consider

condition-based deletions.

We might be tempted to translate view deletion −T (T ⊆ V ) by translating deletion −t for each t ∈ T

using algorithm DELETE from Section 5. In addition to being inefficient, this approach is too conservative:

it is possible that there is an exact translation for −T even when there is no exact translation for some tuples

t ∈ T . This case occurs when extra deletions from an inexact translation for −t, t ∈ T , are not actually a

side-effect, because the extra deletions are contained in T . Thus, we must translate −T as a unit.

First let us generalize Definition 2.1 of a view deletion translation:

Definition 6.1 (View Deletion Translation for −T ) Consider a view V , a deletion request −T where T ⊆

V , and a database deletion ∇D. Let V ′ be the new view based on the updated database D − ∇D, and let

∇V = V − V ′ be the actual deleted view tuples. We say that ∇D is a translation for −T if T ⊆ ∇V . If

T = ∇V then ∇D is an exact translation, otherwise ∇D causes side-effect E = ∇V − T .
�

We also must extend our definitions for lineage and exclusive lineage to apply to sets of tuples. The lin-

eage of a view tuple set T ⊆ V combines the lineage of each tuple t ∈ T :

lineage(T, V,D) =
⋃

t∈T

lineage(t, V,D)

We can compute T ’s lineage according to this definition with one query [CWW00]: SplitR1,...,Rn(σC(R1 ×

· · · × Rn) n T ). (Recall that the operator SplitR1,...,Rn(R) = 〈πR1(R), . . . , πRn(R)〉 projects table R on

the schema of Ri for i = 1..n.) A tuple ti ∈ Ri belongs to T ’s exclusive lineage R∗∗i if and only if:

πA(σC(R1 × · · · ×Ri−1 × {ti} ×Ri+1 × · · · ×Rn)) ⊆ T

12



Based on the above definitions, the observations we made on the relationship between data lineage and

single-tuple deletions in Section 4 all carry over directly to the deletion of a view tuple set. Furthermore,

Theorem 5.2 in Section 5 can be extended to cover −T as follows.

Theorem 6.2 Consider an SPJ view V = πA(σC(R1 × · · · × Rn)) over database D and a tuple set T ⊆ V .

Let lineage(T, V,D) = 〈R∗1, . . . , R
∗

n〉. If −T has an exact translation, then it has an exact translation that

deletes at most k tuples in T ’s lineage, where k = |σC(R∗1×· · ·×R
∗
n)nT | is the total number of derivations

of all tuples t ∈ T .

Proof: A formal proof is given in Appendix A.3. The proof is very similar to the proof of Theorem 5.2,

with the only notable difference being the computation of k. Here, we reduce the size of k after joining all

lineage branches by performing a semijoin with T , because joining lineage tuples that result from two differ-

ent view tuples t1 and t2 in T may result in view tuples t3 outside of T . We do not want to accidentally count

derivations of t3 in our bound k.
�

Thus, we need only small modifications to our DELETE algorithm from Section 5 to translate the deletion

of a view subset T . Figure 4 shows the modified algorithm DELETE-SET with all changes underlined.

DELETE-SET finds a translation for −T that is guaranteed to be exact whenever an exact translation exists.

Example 6.3 Consider Example 5 from Table 1, which deletes a tuple set T = {〈joe, f4〉, 〈lisa, f4〉} from

V . In DELETE-SET, we compute T ’s lineage and exclusive lineage as:

lineage(T, V,D) = 〈UserGroup∗ = {〈joe, eng1〉, 〈lisa, eng1〉},

GroupAccess∗ = {〈eng1, f4〉}〉

elineage(T, V,D) = 〈UserGroup∗∗ = ∅, GroupAccess∗∗ = {〈eng1, eng4〉}〉

Deleting T ’s exclusive lineage induces the deletion of T . Thus, we find an exact translation∇elineage(T, V,D)

for −T .

Now consider what would have happened had we translated the deletion of the two tuples 〈joe, f4〉 and

〈lisa, f4〉 separately, using our original algorithm DELETE. Suppose we translate deletion t = 〈joe, f4〉

first. In Example 5.4 we showed that deleting 〈joe, f4〉 has no exact translation, so the algorithm chooses to

delete lineage branch UserGroup∗ = {〈joe, eng1〉, 〈joe, eng2〉}. The side-effect E = {〈joe, f3〉} of this

translation is not contained in the original view request T = {〈joe, f4〉, 〈lisa, f4〉}, so regardless of the

translation chosen for tuple deletion t = 〈lisa, f4〉, the final translation for −T will be inexact.
�

7 Deleting View Tuples Specified By Selection Conditions

Consider as usual our SPJ view V = πA(σC(R1 × · · · × Rn)). Suppose that instead of specifying an

actual view tuple or set of tuples to be deleted, the user performs a condition-based deletion as in SQL:

“DELETE FROM V WHERE C ′” where C ′ can be any selection condition, similar to the conditions C used in

view definitions. A naive approach is to first compute the tuple set T = σC′(V ), then translate −T using

13



procedure DELETE-SET( T , V = πA(σC(R1× · · · ×Rn)), D)
// Compute T ’s lineage:
(1)D∗ = 〈R∗

1
, . . . , R∗n〉 ← SplitR1,...,Rn(σC(R1 × · · · ×Rn) n T );

// Compute and delete T ’s exclusive lineage:
(2)D∗∗ = 〈R∗∗

1
, . . . , R∗∗n 〉 ← 〈∅, . . . ,∅〉;

(3) for i = 1..n do
(4) for each ti ∈ R∗i do
(5) if πA(σC(R1 × · · · × {ti} × · · · ×Rn)) ⊆ T then R∗∗i ← R

∗∗

i ∪ {ti};

(6)D ← D −D∗∗;

// Check if T is deleted:
(7) if T ∩ πA(σC((R∗1 −R

∗∗

1
)× · · · × (R∗n −R

∗∗

n ))) = ∅ then return;

// Recompute T ’s lineage in smaller D:
(8)D∗ = 〈R∗

1
, . . . , R∗n〉 ← SplitR1,...,Rn(σC(R1 × · · · ×Rn) n T );

// Find a lineage branch with zero or smallest side-effect:
(9)minE ←∞;
(10) for i = 1..n do
(11) E ← πA(σC(R1 × · · · ×R

∗

i × · · · ×Rn)) − T ;

(12) E ← E − πA(σC(R1 × · · · × (Ri −R
∗

i )× · · · ×Rn))

(13) if E = ∅ then Ri ← Ri −R∗i ; return;
(14) if |E| < minE thenm← i;minE ← |E|;

// Enumerate subsets of T ’s lineage with limited size:
(15) k ← |σC(R∗1 × · · · ×R

∗

n) n T |;

(16) S ← all subsets ofD∗ that contain at most k tuples;
(17) for eachD′ = 〈R′

1
, . . . , R′n〉 ∈ S do

(18) if T ∩ πA(σC((R∗1 −R
′

1
)× · · · × (R∗n −R

′

n))) 6= ∅

(19) then prune all subsets ofD′ from S;
(20) else E ←

⋃
i=1..nπA(σC(R1 × · · · ×R

′

i × · · · ×Rn)) − T ;

(21) E ← E − πA(σC((R1 −R
′

1
)× · · · × (Rn −R

′

n)));
(22) if E = ∅ thenD ← D −D′; return;
(23) else prune all supersets ofD′ from S;

// Delete the lineage branch R∗m with smallest side-effect:
(24) Rm ← Rm −R∗m; return;

Figure 4: Translating the deletion of a view subset T

algorithm DELETE-SET from Section 6. However, the computation of T = σC′(V ) can be expensive,

particularly if V is a virtual view. Fortunately, instead of computing T , we can incorporate the selection

condition C ′ into our translation algorithm. The new algorithm DELETE-COND is specified in Figure 5,

with the changes from DELETE-SET underlined.

In lines 1 and 8, to compute the lineage of T = σC′(V ) according to V , we use query

SplitR1,...,Rn(σC∧C′(R1 × · · · × Rn)), instead of performing a semijoin with T as in DELETE-SET. In

line 5, we test whether a tuple ti ∈ R∗i belongs to the exclusive lineage of T = σC′(V ) by testing whether

πA(σC∧¬C′(R1 × · · · × {ti} × · · · × Rn)) = ∅, because this condition is satisfied if and only if ti does
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procedure DELETE-COND(C ′, V = πA(σC(R1× · · · ×Rn)), D)
// Compute T = σC′(V )’s lineage:

(1)D∗ = 〈R∗
1
. . . R∗n〉 ← SplitR1,...,Rn(σC∧C′(R1 × · · · ×Rn));

// Compute and delete T ’s exclusive lineage:
(2)D∗∗ = 〈R∗∗

1
, . . . , R∗∗n 〉 ← 〈∅, . . . ,∅〉;

(3) for i = 1..n do
(4) for each ti ∈ R∗i do
(5) if πA(σC∧¬C′(R1 × · · · × {ti} × · · · ×Rn)) = ∅ then R∗∗i ← R

∗∗

i ∪ {ti};

(6)D ← D −D∗∗;

// Check if T is deleted:
(7) if πA(σC∧C′((R∗1 −R

∗∗

1
)× · · · × (R∗n −R

∗∗

n ))) = ∅ then return;

// Recompute T ’s lineage in smaller D:
(8)D∗ = 〈R∗

1
. . . R∗n〉 ← SplitR1,...,Rn(σC∧C′(R1 × · · · ×Rn));

// Find a lineage branch with zero or smallest side-effect:
(9)minE ←∞;
(10) for i = 1..n do
(11) E ← πA(σC∧¬C′(R1 × · · · ×R

∗

i × · · · ×Rn));

(12) E ← E − πA(σC(R1 × · · · × (Ri −R
∗

i )× · · · ×Rn))

(13) if E = ∅ then Ri ← Ri −R∗i ; return;
(14) if |E| < minE thenm← i;minE ← |E|;

// Enumerate subsets of T ’s lineage with limited size:
(15) k ← |σC∧C′(R∗1 × · · · ×R

∗

n)|;

(16) S ← all subsets ofD∗ that contain at most k tuples;
(17) for eachD′ = 〈R′

1
, . . . , R′n〉 ∈ S do

(18) if πA(σC∧C′((R∗1 −R
′

1
)× · · · × (R∗n −R

′

n))) 6= ∅

(19) then prune all subsets ofD′ from S;
(20) else E ←

⋃
i=1..nπA(σC∧¬C′(R1 × · · · ×R

′

i × · · · ×Rn));

(21) E ← E − πA(σC((R1 −R
′

1
)× · · · × (Rn −R

′

n)));
(22) if E = ∅ thenD ← D −D′; return;
(23) else prune all supersets ofD′ from S;

// Delete the lineage branch R∗m with smallest side-effect:
(24) Rm ← Rm −R∗m; return;

Figure 5: Translating view deletions based on a selection condition C ′

not contribute to any view tuple that fails condition C ′. We can similarly compute the potential side-effect

of a base deletion ∇R∗i using πA(σC∧¬C′(R1 × · · · × R∗i × · · · × Rn)) in lines 11 and 20. Finally, in

lines 7 and 18, we test whether deleting base tuples D ′ = 〈R′1, . . . , R
′
n〉 is a translation by testing whether

πA(σC∧C′((R
∗

1 −R
′

1)× · · · × (R
∗
n −R

′
n))) = ∅.

Example 7.1 Consider Example 6 from Table 1, which deletes all tuples with user = ′ted′ from view V .

Let U and G denote the schemas of base tables UserGroup and GroupAccess, respectively. In DELETE-

COND, we compute the lineage of T = σuser=′ted′(V ) as follows:
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UserGroup∗

user group

ted eng4

ted eng5

GroupAccess∗

group file

eng4 f5

eng5 f5

eng5 f6

UserGroup∗∗

user group

ted eng4

ted eng5

GroupAccess∗∗

group file

eng5 f5

eng5 f6

Figure 6: T = σuser=′ted′(V ), its lineage and exclusive lineage

〈UserGroup∗, GroupAccess∗〉 = SplitU,G(σgroup=′eng%′∧user=′ted′(UserGroup ./ GroupAccess))

The result is shown in Figure 6. We then compute T ’s exclusive lineage and obtain D∗∗ = 〈UserGroup∗∗,

GroupAccess∗∗〉 in Figure 6. ∇D∗∗ is a translation, and therefore is an exact translation for the condition-

based view deletion.
�

8 Empirical Results

We have implemented our view deletion translation algorithm using stored procedures in a standard com-

mercial relational DBMS. In this section, we present some preliminary performance results that explore the

following two questions:

1. Roughly how often is there an exact translation for a view deletion −t that deletes the exclusive lineage

of t? That deletes a lineage branch of t? That deletes a subset of t’s lineage? How often is there no

exact translation at all?

2. How does our algorithm perform as we scale up the size of the base data?

We use synthetic data for the experiments based on the user access control database in our example from

Section 1.3. Recall that the two base tables are UserGroup(user, group) and GroupAccess(group, file).

The view we consider is V = πuser,file(UserGroup ./ GroupAccess). (We omit the selection condition

from our original example view.) Contents of the base tables are generated using the parameters listed in

Table 2. There are #groups groups. The users in each group and the files that each group has access to are

picked randomly from a fixed set of users and files with sizes #users and #files, respectively. The base data

size depends on #groups, as well as parameters users-per-group (UG for short) and files-per-group (FG for

short). The actual number of users for a given group is selected from a Gaussian distribution centered at UG

with a standard deviation of UG/2, and similarly for the number of files each group has access to. For our

experiments we always set UG= FG, and we refer to this parameter as density. When this number is low, the

join is very selective, while when it is high, the join is heavily intertwined.

Our experiments focus on the single-tuple deletion case, i.e., each request is to delete a single view tuple.

All experiments were conducted on a dedicated Windows NT machine with a Pentium II processor.
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Parameter Description

#groups total number of groups

#users maximum number of users

#files maximum number of files

users-per-group (UG) average number of users that belong to each group

files-per-group (FG) average number of files that each group has access to

Table 2: Data generation parameters

8.1 Four Cases of Translations

Given a view deletion request −t, there are four possible outcomes for the translation according to algorithm

DELETE:

1. −t has an exact translation ∇D∗∗ that deletes t’s exclusive lineage D∗∗. In this case, our algorithm

finds the exact translation ∇D∗∗ and returns at line 7 of Figure 3.

2. Case (1) fails, but −t has an exact translation ∇R∗i that deletes a lineage branch R∗i of −t. In this case,

our algorithm finds an exact translation ∇R∗i and returns at line 13. The number of iterations of lines

10–14 will vary from deletion to deletion.

3. Cases (1) and (2) both fail, but −t has an exact translation. In this case, our algorithm finds an exact

translation ∇D by deleting a subset of t’s lineage. It returns at line 22, and the number of iterations of

lines 17–23 will vary from deletion to deletion.

4. −t has no exact translations, so the algorithm returns at line 24.

In our experiment, we study how often each of the above four cases occurs under different base data

scenarios. Specifically, when generating the base data, we fix #groups, #users, and #files at 50, and we

increase the density (UG and FG) from 1 to 30. For each base data scenario, we issue a deletion request −t

for each tuple t ∈ V , and count the number of translations that belong to each of the four cases. Figure 7

presents the percentage of each case among all four cases.

The result shows that for very sparse base data, case (1) happens frequently: most deletions −t have an

exact translation that deletes t’s exclusive lineage. At the extreme, when the density is 1, each group g has

exactly one user u and one file f , so all lineage tuples of any view tuple t = 〈u, f〉 are exclusive. Therefore

deleting the entire exclusive lineage is always an exact translation. As the density increases, case (4) occurs

more often. The intuition is that as more tuples are joined with each other, deleting any lineage tuple of t

is likely to affect other view tuples, so −t often does not have an exact translation. However, as the density

further increases, cases (2) and (3) start to occur more frequently. Now, because each view tuple often has

several derivations, although deleting a branch or subset of t’s lineage may affect some derivations of another

view tuple t′, t′ often can be derived in another way, so −t still has an exact translation. Finally, when the

base data is very dense, case (2) completely takes over.
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8.2 Algorithm Scalability

In this experiment, we study the scalability of our algorithm to the size of the base data. Specifically, we fix

the density at 8 and increase #groups from 10 to 100,000. (We also set #users = #files = #groups, but these

values do not affect the base data size.) We continue to consider the four translation cases from Section 8.1

separately, and we delete view tuples one at a time until we have several representative instances of each case.

Figure 8 shows the average time for the translation in each case (in seconds) as the total size of the base data

increases. From the results plotted on log-scale x and y axes, we see that the translation time for each case

grows at worst approximately linearly in the size of the base data.

9 Conclusions and Future Work

We developed a fully automatic algorithm for translating deletions against any select-project-join view into

deletions against the underlying database. Deletions can be specified as a single tuple, a set of tuples, or as a

selection condition over the view. Our algorithm can be parameterized by the view definition at compile-time,

and by the view update request (and base data) at run-time. By taking data-dependent information into account

at run-time and using techniques based on data lineage, our algorithm finds translations that are guaranteed to

be free of side-effects (exact) whenever such translations exist. No previous algorithms we know of can make

the same claim. Empirical results show that our algorithm often finds exact translations very quickly, and that

it scales at worst linearly in the database size.

There are numerous avenues for extending our work:

• This paper considers select-project-join (SPJ) views only. More general relational views (including,

e.g., aggregation, set union, difference) pose additional challenges to the view update problem. Our

work on data lineage does cover a very general class of relational views [CWW00], and we hope to

use it as a basis for more general view update translation algorithms. Going one step further, we also

addressed the data lineage problem for “views” defined by general transformation graphs [CW01],

which appears to pose an even more challenging view update problem.
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• We considered set semantics in this paper. In [CWW00] we developed a theory and algorithms for data

lineage in the presence of duplicates (multisets), in both the base tables and the views. Our approach to

duplicates in [CWW00] can, we believe, lead to an effective treatment of duplicates in our view deletion

translation algorithm.

• We have addressed the deletion-to-deletion translation problem only. Even extending to consider base

insertions or modifications when translating view deletions (the “compensation” idea discussed in Sec-

tion 1) is a significant step, particularly if we wish to retain our exactness guarantee. We also might

extend our algorithm to provide translations for view insertions or modifications, although as discussed

in Section 1 it appears that data lineage techniques may not be applicable in these cases.

• Our algorithm does not attempt to produce any kind of minimal translation, e.g., one that deletes the

fewest base tuples. Using cardinality as a minimality metric, modifying our algorithm is not difficult,

but keeping it efficient is a challenge. We also do not take constraints on base data (or on base data

updates) into account—again the challenge may be one primarily of efficiency. Finally, our current

approach considers each view in isolation. When there are multiple views, an update translation could

induce side-effects on views other than the view being updated, and it might be interesting to take such

“side-side-effects” into account.
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A Proofs

A.1 Proof for Theorem 4.4

Theorem 4.4 Consider an SPJ view V = πA(σC(R1 × · · · × Rn)) over database D and a tuple t ∈ V . If

deletion −t has an exact translation, then −t has an exact translation ∇D such that ∇D ⊆ lineage(t, V,D).
�

Proof: The proof relies on the following two facts, which are obvious enough that we omit detailed justifica-

tion:

• Let 〈R∗1, . . . , R
∗

n〉 = lineage(t, V,D). R
∗

i 6= ∅ for i = 1..n.

• There exist tuples t1 ∈ R1, . . . , tn ∈ Rn such that πA(σC({t1} × · · · × {tn})) = {t}.

Suppose −t has an exact translation ∇D = ∇R1, . . . ,∇Rn where ∇Ri ⊆ Ri, i = 1..n. We prove that

∇D′ = ∇R′1, . . . ,∇R
′
n where ∇R′i = ∇Ri ∩ R

∗

i , i = 1..n, also is an exact translation. First, we prove

that ∇D′ is a translation, i.e., t 6∈ V ′ where V ′ is the new view based on the updated database D − ∇D ′.

Suppose for the sake of a contradiction that t ∈ V ′. Then, we know there exist ti ∈ Ri −∇R′i for i = 1..n

such that πA(σC({t1} × · · · × {tn})) = {t}. Based on Definition 3.1 of lineage, ti ∈ R∗i , i = 1..n. Since

ti ∈ Ri − ∇R
′

i, we know that ti 6∈ ∇R′i = ∇Ri ∩ R
∗

i . Therefore since ti ∈ R∗i , ti 6∈ ∇Ri, and thus

ti ∈ Ri −∇Ri. Therefore t ∈ πA(σC((R1 −∇R1) × · · · × (Rn −∇Rn))), which contradicts the fact that

∇D is a translation for −t. Thus, t 6∈ V ′ and ∇D′ is a translation for −t. Because ∇D is an exact translation

and ∇D′ ⊆ ∇D, by the definition of an exact translation ∇D ′ also is exact.

A.2 Proof for Theorem 5.2

Theorem 5.2 Consider an SPJ view V = πA(σC(R1 × · · · × Rn)) over database D and a tuple t ∈ V . Let

lineage(t, V,D) = 〈R∗1, . . . , R
∗
n〉, and let k = |σC(R∗1 × · · · × R

∗
n)|. If −t has an exact translation, then it

has an exact translation ∇D′ = ∇R′1, . . . ,∇R
′
n such that R′i ⊆ R

∗

i for i = 1..n, and |R′1|+ · · · + |R
′
n| ≤ k.

�

Proof: The proof relies on the following fact, which is obvious enough that we omit detailed justification:

• For any t1 ∈ R∗1, . . . , tn ∈ R
∗

n, πA(σC({t1}× · · · × {tn})) = {t} or πA(σC({t1}× · · · × {tn})) = ∅.

The number of distinct combinations such that πA(σC({t1} × · · · × {tn})) = {t} is k.

Let the following list enumerate the k distinct combinations of t1 ∈ R∗1, . . . , tn ∈ R
∗

n such that πA(σC({t1}×

· · · × {tn})) = {t}.

(1) t11, t
1
2, . . . , t

1
n

(2) t21, t
2
2, . . . , t

2
n

...
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(k) tk1, t
k
2 , . . . , t

k
n

We know −t has an exact translation ∇D ′′ = ∇R′′1 , . . . ,∇R
′′
n, and without loss of generality (by Theorem

4.4), assume R′′i ⊆ R
∗

i , i = 1..n. We need to prove that there is an exact translation ∇D ′ = ∇R′1, . . . ,∇R
′
n

such that |R′1| + · · · + |R
′

n| ≤ k. For each combination j = 1..k in the list above, there exists at least one

tji , i ∈ 1..n, such that tji ∈ ∇R
′′

i , because otherwise t would remain in the view after deleting D ′′. Let

D′ =
⋃
j=1..k{t

j
i} which is of size k. ∇D′ is a translation, because it deletes one tuple from each of the k

combinations that produce t. Furthermore, it is an exact translation because it is a subset of ∇D ′′, which is

an exact translation.

A.3 Proof for Theorem 6.2

Theorem 6.2 Consider an SPJ view V = πA(σC(R1 × · · · × Rn)) over database D and a tuple set T ⊆ V .

Let lineage(T, V,D) = 〈R∗1, . . . , R
∗
n〉. If −T has an exact translation, then it has an exact translation that

deletes at most k tuples in T ’s lineage, where k = |σC(R∗1×· · ·×R
∗
n)nT | is the total number of derivations

of all tuples t ∈ T .
�

Proof: The proof relies on the following fact, which is obvious enough that we omit detailed justification:

• Consider all combinations t1 ∈ R∗1, . . . , tn ∈ R
∗

n. The number of distinct combinations such that

πA(σC({t1} × · · · × {tn})) = {t} and t ∈ T is k.

Let the following list enumerate the k distinct combinations of t1 ∈ R∗1, . . . , tn ∈ R
∗

n such that πA(σC({t1}×

· · · × {tn})) = {t} and t ∈ T :

(1) t11, t
1
2, . . . , t

1
n

(2) t21, t
2
2, . . . , t

2
n

...

(k) tk1, t
k
2 , . . . , t

k
n

We know T has an exact translation ∇D ′′ = ∇R′′1 , . . . ,∇R
′′

n, and without loss of generality (by the obvious

set generalization of Theorem 4.4), assume R′′i ⊆ R
∗

i , i = 1..n. We need to prove that there is an exact

translation ∇D′ = ∇R′1, . . . ,∇R
′
n such that |R′1| + · · · + |R

′
n| ≤ k. For each combination j = 1..k in the

list above, there exists at least one tji , i ∈ 1..n, such that tji ∈ ∇R
′′

i , because otherwise some t ∈ T would

remain in the view after deleting D′′. Let D′ =
⋃
j=1..k{t

j
i} which is of size k. ∇D′ is a translation, because

it deletes one tuple from each of the k combinations that produce all of the t’s in T . Furthermore, it is an exact

translation because it is a subset of ∇D ′′, which is an exact translation.
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