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Abstract

Web crawlers generate signi�cant loads on Web servers, and are diÆcult to operate. Instead

of running crawlers at many \client" sites, we propose a central crawler and Web repository that

then multicasts appropriate subsets of the central repository to clients. Loads at Web servers

are reduced because a single crawler visits the servers, as opposed to all the client crawlers. In

this paper we model and evaluate such a central Web multicast facility. We develop multicast

algorithms for the facility, comparing them with ones for \broadcasts disks." We also evaluate

performance as several factors, such as object granularity and client batching, are varied.

1 Introduction

A crawler (or spider) is a program that visits Web pages, using links on seen pages to identify more

pages. The crawled pages are typically used to build indexes for search engines such as AltaVista

and Google. However, crawlers are also used to gather pages for data mining, or to produce Web

caches than can be more conveniently accessed by users. For example, there are products on the

market today that do \personalized crawling" so a user can download in advance pages he may

want to browse later.

As crawlers proliferate, more and more crawlers visit each Web server on the net, repeatedly

requesting the same pages over and over. Popular servers are often visited by hundreds of crawlers

in a week [10]. The extra load is especially problematic to small companies that pay their ISPs by

page accessed: A large fraction of their networking budget goes to pay for pages fetched by crawlers

and not by paying customers.

At the other end, writing and running large scale crawlers is also problematic. It is tricky to

write crawler code that follows robots.txt conventions and does not overload Web sites. (The �le

robots.txt at each Web site indicates what parts of a Web site may be visited.) A bug in the

crawler code can cause it to visit a Web site too frequently, triggering a so-called \denial-of-service
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attack" and potential lawsuits. Even if the crawler operates correctly, it can overload the network

at the crawler end, drawing the ire of network administrators. To detect and correct operational

problems, an expert sta� person is typically on call whenever the crawler runs. As such, the

complications and attendance required in running a Web crawler may discourage users who could

bene�t from having a local copy of Web data. For example, an analyst may be interested in tracking

the Web sites of competitors, and Web sites o�ering product and service reviews. Another user

might be a frequent traveller who wishes to prefetch information on destinations, for o�ine access

during trips. Also, a software developer may wish to track Web-based FAQs and documentation,

perhaps to collect statistics on bug reports and software usage. These users may not have the

expertise, and certainly not the resources, to craft and manage a well-behaved Web crawler.

In this paper we propose an alternative to multiple crawlers: A single \central" crawler builds

a database of Web pages, and provides a multicast service for \clients" that need a subset of this

Web image. The clients in this case are all the sites that were originally running crawlers. Instead

of writing and running their own crawlers, these clients subscribe to the pages they need. For

example, a client may be interested in a set of Web sites, or perhaps on all .edu sites. This way,

the Web sites supplying Web pages are only visited by one crawler representing a number of clients.

Furthermore, the network is used more eÆciently, since it is better to multicast a single copy of a

page P , rather than having all clients get a copy of P individually.

Of course, we would expect more than one such Web crawler, repository, and multicast facility

in the world. With multiple servers, clients can resubmit their unsatis�ed requests to a di�erent

server should one become unavailable, and clients could choose a \nearby" server for improved

service.

We are in the process of building such a Web repository and multicast facility. Our second-

generation crawler is currently used to build a cache we call WebBase. WebBase currently holds

over 40 million pages, distributed over several computers. WebBase provides an API through which

local programs can request streams of pages [8]. The programs, developed by various students in

our group, data mine the Web data, analyzing for example the link structure or the way words are

used. Our goal is to extend the WebBase interface to support requests from remote clients, and to

eÆciently combine and multicast the requested data.

As we design and build WebBase, a number of interesting and challenging questions have

arisen, some of which we address in this paper:

� How does our multicast problem di�er from other multicast scenarios such as broadcast

disks [1]? There are a lot of similarities with broadcast disks, but there is at least one key

di�erence: in our case, a client request is not ful�lled until all requested Web pages are
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delivered. In traditional scenarios, on the other hand, each page would be an independent

request. We will show that multicast schedules that are best for traditional scenarios may

not be the best in our case. (Related work is more fully surveyed in Section 7.)

� What is the best way to schedule client requests? That is, how does WebBase decide what

page to multicast next? We will study various heuristics, and in particular, we present a new

heuristic (which we call R/Q) that performs signi�cantly better than other basic heuristics

in our environment.

� Is it worthwhile to batch client requests? That is, is it a good idea to require clients to

wait until a predetermined time or until enough other requests arrive, in order to avoid

multicasting pages repeatedly? We will present experimental results quantifying potential

bandwidth savings as client delays increase.

� At a practical level, what are the \units" clients should subscribe to? Should they request

individual pages? Should clients request pages be by URL or by content (e.g., a query gives

keywords that must appear on the page)? Or should a client request full sites? Or classes of

sites (e.g., .gov). What are the performance implications of having larger or smaller units?

Should we try to group together \popular" pages into a small number of multicast units, in

order to improve performance? We will not answer these questions decisively, but we will

provide some guidelines that illustrate the impact of unit size or unit popularity on overall

performance.

� What are the expected savings from our multicast facility, as compared to a scenario where

all clients crawl on their own? Are the savings signi�cant enough to merit the expense of a

central WebBase repository? Again, we will present results that shed light on this question.

� How are incremental updates handled? The WebBase crawler periodically revisits Web pages

to get more up-to-date versions. This fresher data can also be multicast to clients, if they

request it. Due to space limitations, we do not address these questions in this paper.

� What are the legal implications of re-broadcasting Web pages? Some lawyers claim that it is

illegal to redistribute Web pages, but several Web sites (e.g., Google) do this today with no

apparent problem. Chances are that as long as the redistribution does not a�ect the revenue

of Web sites (e.g., if Web pages are only used for indexing or data mining), then multicasting

would be acceptable. In this paper we do not address these legal issues further.

In summary, this paper makes the following contributions:
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1. We de�ne the Web multicast problem, and present a model and metrics for studying it

(Section 2). Although our model may be applicable in other instances (e.g., distributing

software), our focus here is on Web pages.

2. We de�ne and evaluate several heuristics for scheduling transmissions (Section 3).

3. We address some of the questions outlined above (Sections 5 and 6), illustrating the tradeo�s

among unit size, unit popularity, client delay, number of clients, and so on.

2 Metrics

In a Web multicast delivery system, the trade-o� is between the network throughput the server

consumes to transmit its data, and the time clients must wait for their data. Let us call the measure

of the former network cost and the measure of the latter client delay, which we de�ne formally next.

For a multicast server with n data items D = fd1; d2; d3; : : : ; dng, and k clients C = fc1, c2; : : :,

ckg, each client ci is characterized by the data items it requests, Ri � D;Ri 6= ;, and by the time

at which the client makes its request, ti.

We de�ne a server schedule S to be a sequence of elements S = hs1; s2; s3; : : :i where 81 � i �

n; si 2 D or si =null. Intuitively, each si is either the data item sent in slot i, or is null, to indicate

that the server sends nothing at all.

To simplify our model, in this paper we assume that all data items di are of equal size. Our

model can be extended to variable-size items in a straightforward way, but keeping size �xed lets us

focus on the more critical parameters. Furthermore, the �xed-size assumption is not unreasonable

in many cases. For instance, crawlers commonly limit the number of pages that they fetch from a

single Web site, to avoid overloading the site. Thus, regardless of the size of the site, roughly the

same amount of data is retrieved. In such a case, if clients subscribe to whole Web sites, then items

will be roughly of the same size. Because we expect Web sites to be a common and convenient

unit to subscribe to, we will think of data items as Web sites in this paper, and use the terms

interchangeably.

Since the data items (crawled sites) are the same size, it takes the same time to transmit

each item. This means that the multicast for slot i ends at time iST , where ST is the time to

transmit one site. (For simplicity, we assume that network idle periods are also a multiple of ST .)

A particular client ci 2 C will have its request for Web site r 2 Ri satis�ed the �rst time after ti

that r is transmitted. That is, the request will be satis�ed at time

tir = ST �minft 2 ZjSTt > ti ^ st = rg

4



We can now de�ne two metrics for Web multicast:

� The average client delay time or delay is the (arithmetic) mean of the time clients wait for

their last requested Web site to be satis�ed. That is,

TD =
1

k

kX

i=1

(max ftirjr 2 Rig � ti)

� The amortized network cost or network cost is the amount of data transmitted for the full

server schedule, divided by the number of clients (whose requests are completely satis�ed by

the full schedule). The schedule goes from slot 1 to slot

S =
max ftirjci 2 C ^ r 2 Rig

ST
:

We need to subtract from these S slots, the slots that were unused, and then multiply the

number of resulting utilized slots by the size of each slot, SD. Thus,

N =
1

k
SD[S � jft 2 Zj1� t � S ^ st = null gj]

In the literature on broadcast disks and other multicast systems, clients request one data item

(for us, one Web site) at a time. The assumption is that clients can start \working on" received

items as soon as they arrive. Hence, the average client response time or response time is typically

computed as:

TR =
1

k

kX

i=1

X

r2Ri

(tir � ti)

Such a metric is not appropriate for a Web multicast scenario, because typically clients do not

start their work until all requested items are delivered. For example, most text indexes are built

in batch mode, by giving a directory that contains all documents to index. (Incremental indexing

is possible, but not used much in practice.) In our case, we would want the images of all the Web

sites we are interested in before building an index for the collection of pages. Furthermore, some

indexing functions such as PageRank used by Google [5] are hard to do incrementally. So, again, it

is better to wait for all data items (Web sites) to arrive, before starting to compute global statistics

such as PageRank or citation counts. Thus, we believe it is more appropriate for us to use the

client delay metric de�ned earlier, as opposed to the client response time of broadcast disks.

Although we do not use client response time, it is instructive to compare the two metrics.

Interestingly, the two notions of client delay and response time are not equivalent, as the following

example demonstrates.
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Example. Let clients A, B, and C all request Web sites fa, bg. Let clients D and E both

request site fcg, and let client F request site fdg. Let all six clients make their requests at the

same time, and assume that ST = 1 time unit.

In this scenario, a schedule that minimizes the response time metric will fail to minimize the

delay metric, and vice versa. Since the number of clients is �xed, we can compare the total, rather

than average, delay and response time over the six clients for simplicity. The optimum schedules

for response time, ha; b; c; di and hb; a; c; di, are illustrated in the table below. Each row represents

one client, and the bullets show when a client's item is serviced. (Recall that in this example the

clients make their requests at the same time.) Note that both minimal response time schedules

happen to be described as the same table.

a b c d Delay for
or b a c d each client

A � � 2
B � � 2
C � � 2
D � 3
E � 3
F � 4

Total response
time for each

data item 3 6 6 4

The minimum total response time is, from the table, 3+6+6+4 = 19. The total delay, similarly,

is 2+2+2+3+3+4 = 16. Although we do not show it here, no other schedules produce a better

response time.

The schedules to minimize client delay are hc; a; b; di, or hc; b; a; di. Again, the two schedules

correspond to the same table:

c a b d Delay for
or c b a d each client

A � � 3
B � � 3
C � � 3
D � 1
E � 1
F � 4

Response time: 2 6 9 4

The total response time, from the table: 2+6+9+4 = 21. Similarly, the minimum total delay:

3+3+3+1+1+4 = 15. No other schedules have lower delay. 2

Intuitively, one can say that the di�erence between the response time metric and the delay

metric is that the response time metric, when extended to clients making requests of more than one

6



data item, rewards the early distribution of partial requests. By contrast, the client delay metric

cares only when the last item of a request is transmitted, and is not a�ected by when intermediate

items are sent. In the rest of this paper, we only focus on the delay and network cost metrics.

3 Basic Scheduling Heuristics

The server scheduling heuristic determines what data item (in our case, Web site crawl) to broadcast

to the multicast clients, given information about the currently listening clients and their requests.

While one can easily make up a simple heuristic that will do the job, a more careful choice can

signi�cantly reduce average client delay.

In this section, we will describe four basic heuristics for server scheduling, two simple, one culled

from existing broadcast disk work, and one we invent, tailored to our goals. We then describe the

simulation in which we compare them, and note how tailoring the scheduling heuristic provides a

signi�cant win.

3.1 Popularity

Perhaps the �rst heuristic that comes to mind for multicast scheduling is to have the server, at

each slot, send a data item that the largest number of clients are requesting at the time. One might

reason that sending the data item that is most requested satis�es the most requests for any item.

Unfortunately, this heuristic has cases in which it performs poorly, as shown in the next example.

Example. Let client A request Web site fag; clients B and C request sites fb, c, dg; and

all three clients appear at the same time. Again assume that ST = 1. The popularity heuristic

would generate a server schedule similar to hb; c; d; ai, where the more popular data items b, c, and

d necessarily precede a. This schedule incurs an average client delay of (4 + 3 + 3)=3 = 3:3 units.

It turns out, however, that placing the three more popular items �rst is precisely the wrong

thing to do: The server schedule ha; b; c; di has a lower average client delay of (1 + 4 + 4)=3 = 3.

Clearly, we can make the penalty for doing the wrong thing arbitrarily large; adding more Web

sites for clients B and C to request increases the di�erence in client delay between the popularity

heuristic and the optimum schedule. 2

What is happening is clear: In a situation where a large number of clients request a lot of

data, clients making very small requests are e�ectively forced to queue after the large requests,

even though they could \jump the queue" without causing great pain for everyone else. In the

schedule where the short request comes �rst, the client is quickly satis�ed, contributing a low client

delay rather than a high one to the overall average. In the schedule where the short request is
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forced to queue because it is not popular enough, the same client accumulates a very large delay

instead, which brings up the overall average needlessly.

3.2 Shortest Time to Completion

The above example suggests a scheduling approach borrowed from operating systems task schedul-

ing: have the server service �rst the clients that have the shortest time to completion. This heuristic

is described in Figure 1.

Input: A set of clients and their still-pendingrequests
Output: The data item to transmit

MinRequestSize  in�nity;
MinRequestClient  null;
foreach client c

if size of remaining request of c < MinRequestSize
MinRequestSize  size of remaining request of c;
MinRequestClient  c;

choose a data item requestedby MinRequestClient.

Figure 1: Shortest Completion Time Heuristic

In the last step, this heuristic can choose any item requested by the client with the minimum

amount of data to transmit (MinRequestClient) and achieve its goal. (In practice, one may choose

the most popular of the items requested by MinRequestClient, in hopes this may reduce more

clients' remaining request size. This is exactly how we implement this heuristic.)

It turns out this heuristic, no matter how its last step is implemented, does not guarantee a

minimal client delay either.

Example. Let client A request Web sites fag; clients B, C, and D request sites fb, cg; all

clients appear at the same time; and ST = 1. The shortest-time-to-completion heuristic would

generate a schedule such as ha; b; ci, in which data item a comes �rst. This yields an average client

delay of (1 + 3 + 3 + 3)=4 = 2:5.

Such a schedule is exactly the wrong thing to do; putting the more popular data items �rst

(such as a schedule hb; c; ai) in this case yields the smaller average client delay (3+2+2+2)=4 = 2:25.

Again, we can make the penalty for doing the wrong thing arbitrarily large; this time, we simply

add more clients making the request fb, cg. 2

In this example, we see the inverse of the problem that plagued the popularity heuristic: There

are times when transmitting more popular items is a better approach, because doing so satis�es

a larger number of clients sooner. Even though the simple approaches are subject to pathological

behavior, they will be retained for comparison in later simulated runs.
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3.3 RxW

The RxW heuristic is shown in Figure 2. The heuristic is designed for the scenario in which every

client requests a single data item (a single Web site). It seeks to favor more popular items (sites)

and avoid the starvation of any clients. The name comes from the score it assigns to each item

(Web site), the product of R, the number of clients requesting the item, andW , the longest amount

of time any client has been listening (waiting) for the item.

Input: A set of clients and their still-pending requests; Current time t
Output: The data item to transmit

ChunkToSend null;
MaxRW  �1;
foreach data item i

Ri  0;
Wi  0;
foreach client c

if c requests i
Ri  Ri + 1;
if t - (time c began requesting i) > Wi

Wi  t� (time c began requesting i);
RWi  Ri �Wi;
if RWi > MaxRW

ChunkToSend i;
MaxRW  RWi;

return ChunkToSend.

Figure 2: RxW Heuristic

3.4 R/Q

It appears from observing the popularity and shortest-time-to-completion heuristics that balancing

the two heuristics may yield better results than either of the two alone; while either heuristic can

make very poor suggestions, a combination of the two seems less likely to do the same, since the

two heuristics make poor suggestions under di�erent circumstances.

We invent one possible way to combine the wisdom of the two heuristics, which we call the

R/Q heuristic, shown in Figure 3. In this heuristic R counts how many clients request a data item,

and Q holds the MinRequestSize for that item (from the shortest-time-to-completion heuristic).
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Input: A set of clients and their still-pending requests; Current time t
Output: The data item to transmit

ChunkToSend null;
MaxRQ �1;
foreach data item i

Ri  0;
Qi  0;
foreach client c

if c requests i
Ri  Ri + 1;
Q number of items c still has pending;
if Q < Qi

Qi  Q;
RQi  Ri=Qi;
if RQi > MaxRQ

ChunkToSend i;
MaxRQ RQi;

return ChunkToSend.

Figure 3: R/Q Heuristic

Variable Description Base value

N Total number of data items (Web sites) 10000
h Fraction of data (Web sites) deemed hot 0.20
p Fraction of requests that are of hot sites (approximate) 0.80
T Average time between clients 30 minutes
R Average size of client requests (Web sites) 20

SD Size of each item (Web site) (kilobytes) 7800
ST Time to transmit one item (Web site) 1 minute

Table 1: Simulation Parameters and their Base Values

4 Simulating the Heuristics

To compare the heuristics in our Web multicast model, we use a simulation to determine the client

delay and network cost each heuristic would incur under a variety of conditions. We �rst describe

the parameters of the simulation, then examine how the heuristics fare relative to each other and

to unicast distribution.

4.1 Description

In our simulation, a server is presumed to have all itsN uniform-size data items (representing crawls

of Web sites), ready to distribute. Clients appear at exponentially-distributed random intervals, so

10



that on average a new client appears every T units of time.1 Each client, when it appears, listens

to a (unique) multicast tree with root at the server, and remains listening until it has received

every data item it requested. After its requests are satis�ed, the client leaves the multicast tree

and requires no further service. The server is presumed to have a client's site requests at the time

the client appears; that is, a client takes zero time to issue its requests to the server. The costs of

setting up the mutlicast tree, and of issuing data requests, are dismissed because they are small

relative to the data transfer costs.

To re�ne the model further, each data item has the property of being either \hot" or \cold,"

indicating how much it is requested relative to other items. A fraction 0 � h � 1 of the items are

designated hot, the remainder cold. A fraction p � 0:5 of all requests, made by any client on any

item, are of hot items. The remainder of all requests 1�p are made on cold items. The clients make

requests of an exponentially-distributed random number of items, with R sites as the arithmetic

mean.

Table 1 summarizes the simulation parameters, and shows the base values we use initially. The

base values in the �rst �ve lines of the table were chosen simply to have a reasonable scenario that

di�erentiated the performance of the heuristics. (If the system is either too loaded or too unloaded,

all the heuristics will end up having similar performance results.) For example, we invoke the

commonly observed 80-20 rule in di�erentiating hot and cold Web sites. To estimate the average

size of client requests, we consider some of the example scenarios introducted in Section 1. We guess

that analysts may track on the order of twenty competitor and review sites, and similarly, that a

developer may collect information from about twenty sites, so we chose twenty as the initial value

for R. For N , the total number of Web sites crawled, we chose 10000. This is the largest number

our simulation could handle without making run times huge. While one can envision crawlers that

visit more than 10000 sites, a crawler that only visits 10000 \important" sites is also feasible. Such

a more focused crawler would be able to revisit its sites more frequently, maintaining its cached

images more up-to-date, and hence provide a higher-quality service to its clients.

The values in the last two lines of the table are chosen to approximate expected transmission

costs. As mentioned earlier, many crawlers limit the number of pages retrieved from a single site to

a few thousand. In particular, our own WebBase crawler fetches 3000 pages, so we use this number.

The average size of a Web page in our WebBase is 2.6 kilobytes compressed (gzip), so a Web site

would be about 7800 kilobytes. We assume that clients request full Web sites, so we set the data

item size SD to this value. The unit of time (ST ), one minute, comes from an assumption that we

1Given our simplifying assumption of �xed data item size, we model time as �xed-size slots. Thus, clients may

appear only at the begining of a slot. This simpli�cation does not have signi�cant e�ect on our results.
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have at least 1 megabit/sec at our disposal (a reasonable value if 10BaseT Ethernet is the limiting

factor for multicast throughput). If so, then 7800 kilobytes takes about 61 seconds to transmit.

There are of course many other \reasonable" settings, and we do study changes to the base

values later on. In particular, in Section 4.2 we study the impact of varying N , and show that the

relative performance of the heuristics is una�ected by this scale.

4.2 Initial Results
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First, let us compare the scheduling heuristics for a multicast facility. In our plots for this

paper, \MinTime" refers to the shortest-time-to-completion heuristic; \Pop" refers to the popu-

larity heuristic; \RxW" and \R/Q" refer to the heuristics of the same name as described earlier.

\Unicast" refers to the corresponding network cost for unicast distribution, and is represented as a

constant cost of one client getting all its data; in client delay, that is RST . All simulations are run

at least until the 95% con�dence interval for average client delay is smaller than 10% of the value

itself.

A typical network cost plot appears in Figure 4. In this plot, we consider the network cost of

multicast distribution as a function of the average client interarrival time (T ). The network cost

of multicast distribution is plotted on the vertical axis, as a fraction of the network cost unicast

distribution would incur providing the service. For example, at T = 20 (clients arriving on average

twenty minutes apart), we see that multicast using RxW and R/Q incurs just under 94% of the

network cost unicast would have incurred in sending each client request separately. Similarly, Pop
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and MinTime incur about 96% of the unicast cost at the same load. Because multicast sends only

requested data, it cannot send requested data more than once per client; therefore, it is impossible

for multicast network cost to exceed unicast network cost. (Note that in Figure 4 the results for

Pop end at lighter load. This is because the Pop results did not stabilize even in long runs.)

As we move left in the �gure, we see that the multicast scheme is a win in network cost over

unicast distribution, especially as multicast gains more clients listening at the same time from higher

load. For the scenarios plotted, multicast distribution saves up to some 10% of the network cost of

unicast. Since the scenario assumes an average of 20 Web sites per client (yielding 15600 kilobytes

of data), this is a savings of over one megabyte per client. As load increases, this network savings

increases as shown by the drop in relative multicast network cost at the left of the graph. Of course,

as the reader recalls, these graph omits the cost of the crawl that creates the server's copies of its

Web sites, but that is a �xed cost that is divided over the number of clients served by the data (or in

this simulation, how long the server runs). The multicast curves, then, would translate up the graph

slightly, but as the server gets more use, this translation quickly becomes negligible. Meanwhile,

the Web servers whose data is available through the multicast facility accumulate network cost

savings from not being repeatedly crawled. With our base parameter values, for example, in which

clients appear every half hour at our multicast facility instead of crawling the Web servers directly,

these Web servers would save 607345 kilobytes of network transmission costs every week.

The graph also assumes a paying-by-the-bit perspective, in which multicasting one data item

incurs the same cost as unicasting it. On the other hand, one might consider a more \global" view

of network consumption in which a multicast data item consumes more network resources in the

world than a unicast one, because a multicast item traverses more network links to more clients;

in this case, one would have to adjust the curves. Even in this case, though, multicast is a win

over unicast distribution, if the multicast facility multicasts data only to the clients that request it.

This idea can be implemented by adding a low-traÆc \control" multicast tree through which the

multicast facility indicates its upcoming data transmission. By monitoring the control tree, clients

can subscribe to the main \data" dissemination multicast tree only when the data items they wish

to receive are being sent. As a result, the data tree always has exactly the clients that want the

data being distributed, and no more. With such a design, multicasting one data item would only

incur the negligible additional network cost of the \control" tree, and whenever multiple clients are

listening to the \data" tree, multicast is saving the network cost of duplicating the data for each

client.

From Figure 4 we also see that the network cost of the multicast schemes does not vary much

by scheduling heuristic; the gap between good and poor heuristics is under 4% of the unicast cost.
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So, it is the client delay that will di�erentiate the schedulers.

Figure 5 is the average client delay graph that corresponds to the same simulations plotted in

Figure 4; again, the results in this plot are typical. The average client delay is plotted as a function

of varying average client interarrival time (T ). For example, if clients arrive on average every

thirty minutes, they su�er an average client delay of 36 minutes on a multicast scheme using R/Q,

around 58 minutes on a multicast scheme using RxW or the shortest-time-to-completion (MinTime)

heuristic, and nearly 122 minutes on a multicast scheme using the popularity (Pop) heuristic. (In

Figure 5, Pop's delay (4075 minutes) at 20 minutes inter-arrival time is not shown becasue it would

compress the vertical axis.) As we can see in the �gure, the average client delay grows rapidly as the

average time between client arrivals falls; this is natural, as falling interarrival time indicates more

clients (and their di�erent data item requests) competing for the server's constant transmission

capacity.

We see most notably in this �gure RxW and MinTime's signi�cant gains over Pop, and then an

even lower average client delay from our tailored-to-the-task heuristic R/Q. This suggests that there

is a pure bene�t to careful choice or design of the multicast scheduler. This bene�t arises because of

the di�erence between our multicast scenario and the typical broadcast disk or broadcast delivery

scheme, in the way clients request data and the way we measure how long clients wait for their data.

For the values shown in the �gure, this bene�t from R/Q is an average client delay of less than

80%, and as low as 54%, of the average client delay incurred by the next-lowest-delay heuristic.

Compared to the poor-performing Pop, we see that R/Q incurs up to an order of magnitude smaller

client delay.

Lastly, we point out that these results apply to scenarios of widely varying scale in the same

way. For instance, in Figure 6, we plot the average client delay of our heuristics as a function of

the number of data items the server maintains (N). The request skew|the number of hot data

items|is scaled with N , meaning that h is �xed and hot and cold items remain a �xed fraction of

the total number of server items. Other parameters are set to their base values. Notice that the

delay begins to taper o� for the range we have plotted. The average client delay tapers o� as we

move to the right of the �gure because the falling probability of overlapping requests (induced by

a rising N) marches towards multicast's worst case: client requests having no overlap at all. As

we approach the worst case asymptotically, client delay approaches its worst-case value. Notice,

also, that the system is stable, no matter what the scale. That is, every client that appears will be

satis�ed, within a period of time no longer than the time it takes the multicast server to multicast

all its data.

We see in this �gure that the heuristics perform the same way relative to each other even with
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larger scale

widely varying N . For example, for N = 1000 data items, a multicast scheme with R/Q still incurs

less than 80% (about 77%) of the client delay of the next-lowest-delay heuristic, and incurs about

a third of the client delay of a multicast scheme using Pop, numbers not far from what we saw for

the next order of magnitude (N = 10000, our base value).

In Figure 7, we see that the same is true if we took a small case and then increased the scale

of all the factors relating the number of data items (total number of items N , number of hot items

hN , and average client request size R) concurrently. Again, we plot average client delay for our

heuristics as we vary N , the total number of data items, over a large range. For this latter case,

unlike Figure 6, we had clients request a signi�cant fraction (R = 0:2N) of the entire repository,

so that clients would request an average of at least 20 Web sites even in the smallest case shown.

Otherwise, the paramters in each simulation remain proportional to our base parameter values for

the N = 10000 case. We notice that in Figure 7, unlike Figure 6, delay continues to increase. This

is because the number of Web sites requested by each client continues to grow as we move to the

right in the �gure.

Here in Figure 7, too, we see that the proportion between client delays between di�erently-

performing heuristics stays fairly constant for a wide range of values. For example, we can see in

Figure 7 that Pop accumulates about twice as much client delay as RxW and MinTime, which in

turn accumulate about one and a half times as much delay as R/Q, for the range of values shown.

To con�rm the relative client delay performance of our heuristics that we are seeing in these

�gures, we also ran and examined a large number of smaller, faster running simulations (N = 100
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items (Web sites)). In these experiments, we found again that R/Q typically incurs between

60% and 85% of the client delay that RxW, the next lowest-delay heuristic, incurs over the same

parameters. There are a few notable exceptions, in which R/Q incurs nearly as much delay as

RxW (nearly enough for the di�erence in delay incurred by the two heuristics to be statistically

insigni�cant), but these exceptions are fairly easy to describe. For example, R/Q incurs nearly as

much delay as RxW when

� the average client request size is very small (R is near 1). In this case, the times to completion

for almost all clients are very small (and comparable). Because all clients will �nish in about

the same time, the shortest-time-to-completion heuristic contributes less information.

� the average time between new clients is very large (T � 50, meaning in this case that T �

N=2). This indicates a very lightly loaded case, in which clients are so infrequent that very few

clients are listening to the multicast stream at any one time. In this case, the server simply

provides service to the few clients that are present, and less room remains for improving the

average client delay. (As T grows, multicast and unicast converge into the same form of data

delivery.)

With the growth in client delay, it is likely that the limits on a multicast facility's scale depend

on the time clients are able to wait for their data. For Figure 6, for example, we see that when

clients request about 20 Web sites from a (R/Q) multicast facility's repository of over 5000 such

data items, the client can expect to wait on average 35 minutes (a little over half an hour) for

its 156 megabytes of data. Half an hour is probably tolerable to the analyst going to lunch, or

the traveller packing suitcases, during the download. In fact, one would be hard-pressed to do

better with a well-behaved personal crawler. If we say, for example, that we have a bulk-processing

applications with a delay limit of one day, then from Figure 7, we see the multicast facility has an

e�ective limit of around 6000 Web sites even with R/Q, if clients request on average around 20%,

or 1200, of them at a time. This suggests that in very large scale applications, it may be helpful to

relegate very cold Web sites to unicast distribution, where they will not incur client delay to most

clients, and use the multicast facility to distribute the most popular sites (the most popular 6000

of them) for signi�cant network cost savings.

Still, it is worth pointing out that the limits of a multicast server's scale also depends on the

popularity skew of the data. In Figures 8 and 9, we see how the skew in access requests a�ects the

multicast system's performance. Along the horizontal axis, we vary the number of hot data items,

so that very few items get most of the requests at the left side of each �gure, and every item has the

same chance of access at the right edge of each �gure. We plot the network cost per satis�ed client
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and the average client delay of a multicast facility using R/Q on the vertical axes. For example,

we see that if h falls from our base value of 0.20 to 0.05 (500 hot items), average client delay falls

5% and network cost per client falls 2%. The gains are more signi�cant as h falls further|that is,

as clients make more similar requests (fewer items account for more of the requests). It appears,

therefore, that having multiple multicast servers not only bene�ts clients by allowing them to reach

a closer server, but more signi�cantly, it allows servers and clients to self-select into pools of similar

interests for improved multicast performance|reduced network consumption and lower client delay.

5 Batching Clients

Another decision to consider in the design of a multicast facility is whether to delay clients until the

next start of a periodic interval, thereby batching them to enhance the overlap in their requests.

If we batch clients into �xed intervals this way, then we may be able to broadcast a server's Web

site data less often, saving network cost by incurring client delay. In the meanwhile, the client may

be released to do other things before the next interval begins. To consider the e�ects of batching

clients, the simulation runs in this section assume that a given number of clients start at the same

time; to get total client delay, we then add the expected time a client will wait for the next interval

to the client delay incurred in the simulation.

First, let us note that the decision of grouping clients into batches is orthogonal to the choice

of server scheduler. That is, the relative ordering of the heuristics is roughly the same, regardless
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of whether clients arrive at once, or arrive as scheduling decisions are made. Figures 10 and 11

compare the heuristics when clients arrive at once. The scenario graphed starts with our base

parameters, except the client average interarrival time, which does not apply. Instead, we have ten

clients start at once, requesting a random number of Web sites, whose average we varied along the

horizontal axis. (The number of clients starting at once was chosen small to emphasize the graph's

shape; curves grow higher and details become harder to see as the parameters grow large.)

Here, with clients batched, the \W" in RxW (which represented the longest time any client

has waited for a particular data item) is identical for every data item at every point in time. As a

result, the W does not provide any information to the heuristic, and the RxW scheduler becomes

equivalent to Pop. Also, because all the clients begin listening at the same time, we �nd that as

they listen to more data, multicast becomes more eÆcient relative to unicast distribution. For

example, when clients request forty items (Web sites), the multicast schemes send only 93% of the

data that a unicast scheme would. In the limit, clients request all the multicast server's data, in

which case client delay is exactly the same for multicast or unicast, but the data is transmitted only

once in the multicast case. Last, we observe that as before, R/Q shows that a tailored heuristic

can substantially improve the performance of the multicast facility. For instance, with forty items

requested, R/Q cuts delay by a factor of three from Pop and RxW, and nearly a factor of two from

MinTime. As a result, from here we will now simply assume that the multicast system uses R/Q

as its scheduler.

Now, we turn to consider how we might be able to batch clients into intervals. In Figures 12
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and 13 are the network cost and client delay of a batched multicast facility. The simulation scenario

again uses our base parameter values. On the bottom axis is the time between intervals at which

clients begin receiving service. A client that misses the start of an interval waits until the beginning

of the next interval for service.

Notice that the minimal interval spacing on the horizontal axis is 10000 minutes; this is because

clients at most request all the server's data items (Web sites). Therefore, to ensure all clients can

be serviced within their interval, the interval spacing I must be chosen so that I � NST . Notice

that this argument applies even if we bound the number of data items a client can request; this is

because clients individually need not request all a server's data, but it is easy to see how several

clients with little overlap in their requests can collectively request all of a server's data. Further,

because a client waits for the start of the next interval, it will, on average, be delayed by extra time

I=2 waiting for the next interval. This I=2 delay is plotted in Figure 13 as \interval delay" (the

dotted line).

Also, notice the dramatic fall in network cost as the interval spacing I grows. This is because

with clients appearing on average every T time, we expect the server to accumulate I=T clients at

the start of each interval. Even if the server must multicast all its data during an interval, this

means the server is incurring only NSD=(I=T ) = NSDT=I units of network cost per client, an

upper bound that falls rapidly as I grows. In contrast, if we did not batch clients in our multicast

service, the upper-bound network cost per client is a larger SDT � NSDT=I. (Intuitively, this

value comes from assigning the network cost incurred by the multicast server to a client during the
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time that client has appeared onto the multicast tree, but the next client to appear has not.)

As we can see in the �gures, the substantial component of client delay in a batched environment

comes not from the additional delay during the multicast dissemination, in which the server copes

with a higher load; instead, it comes from the expected delay for clients waiting for the next interval

to begin. On the other hand, we see that this delay brings a substantial reduction in network cost

even for the minimal interval spacing. (Seventy megabytes of network cost is less than half the

unicast network cost for distributing twenty Web site images, which is over 152 megabytes.)

For situations in which clients are relatively impatient, as might be the case for end users

requesting Web sites or software components for o�ine use, the over-�ve-fold increase in client

delay might become too painful to bear. In scenarios where clients are not as sensitive to delay,

however, such as periodic multicast to specialized search engines building new Web indexes, this

tradeo� is easier to make. We can �nd the longest acceptable delay, then use it to estimate the

longest acceptable time between client batches and keep the network cost savings. For instance,

for WebBase we expect that a week-long average delay is acceptable to clients, so batching clients

every week and a half is a good choice. (Using Figure 13, the average total client delay is 10080

minutes, or a week, is achieved when the time between client batches is a little over a week and a

half; recall that on average, clients will not wait the entire interval length.) Alternatively, we may

have a budget for network costs from which we derive a minimum time between client batches, and

use it estimate the average client delay our clients would su�er.

As an alternative method of batching clients, a server might decide to allow smaller interval

spacings than NST . To do so, however, the server must track the size of the union of all its clients'

requested data, to ensure that the size can still be transmitted within an interval. This means

that the server must be willing to start a new interval prematurely once the server can no longer

accommodate any new items in its union of requested data, or that the server can arbitrarily delay

clients beyond the next scheduled interval if their requests would grow the union of requested data

too much. Also, should a client request more data than an interval allows, the server must still

adjust its interval period at least once to accommodate it. In any case, this means that the server

will have diÆculty reliably predicting a client's start time, the time when the client must be present

to receive the multicast data. In contrast, the batching scheme described in this section allows a

client to make a request, learn when the next �xed-size interval begins, and go do other things

until then. Whether a server should consider variable intervals, then, may depend on whether its

clients value a known, prescheduled start time, and how much this information ameliorates the

longer interval delay.
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6 How Big a Data Item?

One last decision in the design of a multicast dissemination system that we will consider is the

unit of transfer of data. For example, one might propose that one server data item should be one

Web resource|one Web page. This provides fairly high granularity, but creates its accompanying

problems of scale. On the other hand, one might propose that a data item should be one Web site,

as we have assumed so far, or even a set of sites.

Let us assume that clients continue to request data items (e.g., Web sites), but that the server

has grouped the items (sites) into larger chunks of the Web. In particular, let us de�ne a parameter

u � 1 that represents the number of items in a server chunk. With this parameter, a server now

manages fewer (N=u) large chunks, rather than more (N) items.

As chunks get larger (u grows), it becomes increasingly likely that a client receives excessive

amounts of data to get the items it seeks. That is, a client wants a particular item, but must

request a large server chunk (of lots of items) in order to get it. This leads to increased client delay

and possibly, higher network cost, as the multicast server sends more data than its clients strictly

need.
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In Figure 14, we see how client delay is a�ected by varying u on the horizontal axis. We begin

with a server having our base parameter values (10000 items, clients appearing randomly, thirty

minutes apart on average). With this scenario as the base case, we increase u so that the server
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has fewer (N=u) chunks to manage, but clients still require data in terms of items. Therefore, they

request as many server chunks as they need to acquire all the items they seek. Because we cannot

take for granted that the server will group hot items together into chunks (the server may not know

how, if it must de�ne its chunks in advance of request statistics), we consider the possibilities in

which hot items are grouped into chunks and in which hot items are uniformly scattered across

chunks. They are called \hot items packed" and \hot items scattered," respectively, in the �gure.

We can see the resulting impact on client delay in our �gure. As the chunk size grows, and

encompass more items, we see that client delay grows rapidly. In this resulting plot, the client

delay becomes approximately inversely proportional to the number of chunks remaining.

With chunks consisting of more data items, not only are clients forced to request more data

than they need, increasing their delay because of the extra time they consume receiving the (more)

data they requested, but also because other clients are doing the same, the system su�ers the e�ect

of higher load until their requests overlap more and the rising load tapers o�. In the extreme case,

only one chunk remains, consisting of all data items, and so the server simply cycles through all its

data and client delay approaches NST .

In summary, our results show that it is critical to match the clients information needs (items)

to what the server provides (chunks). If chunks are too large, performance degrades quickly, and if

chunks are smaller than items, the management overhead is high. For WebBase, we expect clients

to be interested in full sites (to index them or mine them), so we clearly need to use a site as the

server chunk.

7 Related Work

Using specialized intermediaries to disseminate data to large numbers of clients is not new. One

technique is for the intermediaries to acts as \caches," reducing access latency. For example, in

[4], the authors argue that Web page access follows a Zip�an distribution, which is modeled in this

paper as hot and cold data items. Then, to get reduced network consumption and server load, they

propose service proxies to hold popular Web data, but do not attempt to use multicast distribution

to relay it to clients. As such, their design requires careful placement of proxies on the network to

reduce the number of hops data must travel, and would not alleviate the need for client crawlers

to fetch large bodies of data.

In [11], the authors do consider multicast distribution (for example, using a satellite over a

transatlantic link) together with caching. Unlike our work, however, which allows for noticeable

client delay to reduce network consumption, the authors focus on low-latency online Web browsing.
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Multicast distribution becomes a secondary means of �lling Web caching proxies, complementing

organized hierarchical caching.

In contrast to caching work is the work related to \broadcast disks," in which the intermediary

disseminating data is more prominent than a cache, and is instead the primary source of data.

In [1] and [6], \broadcast disks" are described as a shared-distribution-channel data dissemination

technique driven entirely by a server (repository), without input from client requests. This means

that a broadcast disk server must know or guess in advance the access patterns of its clients, so

that it can correctly schedule more popular data for broadcast more frequently.

To this end, [15] determines scheduling algorithms for broadcast disks that minimize average

\access time" (average response time) for a given data-access probability distribution. [3] develops

a scheduling heuristic (RxW, described brie
y in Section 2) to minimize a similar \average wait"

measure by using speci�c client-request information, as opposed to overall access distributions.

(Notice it is diÆcult to use RxW, and our R/Q as well, without speci�c request information. In

e�ect, we, too, assume that speci�c client-request information is available to our multicast facility.)

The paper further describes how RxW performs nearly as well as a longest-wait-�rst heuristic

(omitted from this paper, represented instead by RxW) and can have its results and performance

approximated when run-time for the scheduler is limited.

Still, in this scheduling work a lingering assumption remains: clients request a single piece

of data at a time. This is true in much scheduling work for broadcast delivery in general, such

as in [13] and even when the authors are considering less conventional measures of client waiting,

such as [2] (\stretch" as client response time divided by the size of the data item the client is

requesting) and [16] (which supposes client requests to have deadlines that may or may not be

met). We remove this single-data-item-request assumption, and as a result our scheduling work

extends existing scheduling work in broadcast delivery.

Outside the context of data dissemination, our work on scheduling data for multicast may

remind readers of process scheduling in operating systems ([14], [12]), and of job scheduling in

operations research ([7], [9]). Neither process nor job scheduling, however, have the key property of

our multicast facility: data being scheduled for multicast can bene�t multiple clients simultaneously.

A process on a CPU, for example, bene�ts only that process, and the general job-scheduling problem

[7] does not allow one machine doing one operation to bene�t multiple jobs requiring it.

Lastly, work on Video on Demand (VoD), which attempts to distribute videos to viewers over

a broadcast network (such as television cable), appears related but only on the surface, because

VoD work is able to exploit properties of video that do not apply to Web data in general. For

example, VoD can merge multiple requests for the same video issued at di�erent times by slightly
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speeding up and slowing down video streams until they synchronize.

8 Conclusion

As the Web gains importance, we believe that gathering, analyzing, and indexing large amounts

of Web information will be critical. Having clients independently gather (crawl) their information

is inherently expensive. Web mulitcast, as proposed here, is a promising technology that can

dramatically reduce loads at source web sites, and can signi�cantly cut network traÆc, without

introducing inordinate client delays. In this paper we have modeled such a multicast facility, which

unlike existing schemes, allows clients to request multiple items from the repository at a time, and

does not deem them satis�ed until all their requests are next multicast. The new data-scheduling

heuristic we have introduced here, R/Q, is able to substantially outperform existing heuristics. We

have also studied various Web multicast isues, such as granule size and batching delay. The results

provide insights that are guiding the design of our own WebBase multicast facility.
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