
Integrating Diverse Information Management Systems: A Brief
Survey

Sriram Raghavan Hector Garcia-Molina
Computer Science Department

Stanford University
Stanford, CA 94305, USA

{rsram, hector}@cs.stanford.edu

Abstract

Most current information management systems can be classified into text retrieval systems, relational/object
database systems, or semistructured/XML database systems. However, in practice, many applications
data sets involve a combination of free text, structured data, and semistructured data. Hence, integration
of different types of information management systems has been, and continues to be, an active research
topic. In this paper, we present a short survey of prior work on integrating and inter-operating between
text, structured, and semistructured database systems. We classify existing literature based on the kinds
of systems being integrated and the approach to integration. Based on this classification, we identify the
challenges and the key themes underlying existing work in this area.

1 Introduction

Most information management systems (IMS) can usually be classified into one of three categories depending
on the kind of data that they are primarily designed to handle.1 Text retrieval systems are concerned with
the management and query-based retrieval of collections of unstructured text documents [52, 64]. Relational
or object-oriented database systems are concerned with the management of structured or strictly-typed data,
i.e., data that conforms to a well-defined scheme [59, 34]. Finally, semistructured databases are designed to
efficiently manage data that only partially conforms to a schema, or whose schema can evolve rapidly [1]. Each
of these systems employ different physical and logical data models, query languages, and query processing
techniques appropriate to the type of data being managed. Table 1 presents a brief summary of the models and
languages employed by these systems2.

There is a substantial body of work that deals with the design of each of these classes of information man-
agement systems [64, 34, 2]. In addition, there has been significant interest in combining, integrating, and inter-
operating between information management systems that belong to different classes. There are two primary
motivations for most of the work in this area. First, many applications require processing of data that belongs to
more than one type. For instance, a medical information system at a hospital must process doctor reports (free
text documents) as well as patient records (structured relational data). Similarly, an order processing applica-
tion might need to handle inventory information in a relational database as well as purchase orders received as

1For the purposes of this paper, we will be ignoring non-text (audio, images, and video) information management systems as well as
systems that are designed for specialized data types (e.g., geographical information systems).

2Note that the entries in this table represent only the most common cases. Individual systems might use some variations or extensions
of these models and languages.

1



Text Retrieval Systems Relational/Object DBMS Semistructured (XML) DBMS

Data Models
Set of unstructured text

documents possibly with
structured fields

Relational Model, Object
Definition Language (ODL)

Directed edge-labeled graphs

Query Models
Extended Boolean, Vector

space, Probabilistic Relational model
Relational model extended
with graph operations and

recursion

Query operators
Boolean operators, Proximity
operators, Pattern matching

operators
Relational operators

Relational operators +
(Extended) Path expressions +

Restructuring operators

Example Query
Languages

Boolean, Natural Language [6] SQL, OQL [59] Lorel[3], UnQL [10]

Table 1: Comparing different information management systems based on data and query models

(semistructured) XML documents. Second, there are significant advantages in leveraging the facilities provided
by one type of information management system to implement another. For instance, a text retrieval system that
is built on top of a relational or object database system [9, 38] can benefit from the sophisticated concurrency
control and recovery facilities of the latter, without having to implement these features from scratch.

However, fundamental differences in the data and query models of these systems, pose significant challenges
to such integration efforts. Depending on the target application scenario, there are several ways of addressing
these challenges. For instance, some integration approaches are based onextendingone type of system, either
natively or through the use of plugin modules [18, 17], to support operators, features, or data types normally
found in another (e.g., support for keyword searches in a semistructured database system [36]). Other approaches
employ a separatemiddlewarelayer that provides a uniform and common query interface to a collection of
diverse information management systems (e.g., the Garlic system [25] at IBM Almaden).

In this paper, we present a short survey of some of the techniques for integrating different classes of informa-
tion management systems. We also present a classification system that enables us to group related work, based
on the types of systems being integrated and the integration architecture. We emphasize that our survey is by
no means comprehensive, nor is our classification the only way to organize the literature. Our aim is to use the
classification to identify fundamental integration challenges and the common ideas behind some of the proposed
solutions.

The rest of the paper is organized as follows. In Section 2, we describe our classification system. In Sec-
tions 3, 4, and 5, for each of the three possible pairs of information management systems, we identify the key
issues in integration and briefly discuss some representative work from the literature. We conclude in Section 6.

2 Classification System

We classify existing integration literature along two axes, as shown in Table 2. The horizontal axis of Table 2
enumerates all possible pairs from among the three classes of information management systems (IMS) described
earlier. The vertical axis lists the three most commonly employed architectures for tying such systems together.
The cells of the table are populated with biliographic references that indicate how each of the referenced works
fit into our classification system.

The schematics in Figure 1 illustrate the differences between the three integration architectures. In systems
with a layeredarchitecture, an IMS of one type is implemented as an application that operates over an IMS
of another type. The main advantage of this approach is that the top-level IMS can leverage the facilities of
the underlying IMS (e.g. concurrency control, recovery, caching, index structures, etc.), without significant

2



Figure 1: Common integration architectures

Layering

[8][15][41][46]
[9][47][20][38]

[39][57][19]
[42]

[23][56][60][12]
[29][54][27]

Loose Coupling (or)
Middleware Integration

[40][62][25][26][16] [4] [45][13]

Extension

[44][31][33][18]
[17][35][20][22]
[58][51][21][65]

[53][61][37]

[35][32][30][24]
[5][36]

[28][14][55][43][11]

Text Retrieval
Relational/OO

Text Retrieval
Semistructured

Relational/OO
Semistructured

Table 2: Classification of literature on integrating different types of information management systems

additional development time and effort. However, the challenge lies in mapping the data types and operators
used by the top-level IMS in terms of the types and operators supported by the underlying IMS, so as to maximize
query performance.

Loosely coupledarchitectures isolate the integration logic in a separate integration (or mediation) layer
(Figure 1(b)). This layer provides a unified access interface to the integrated system using its own data and query
languages. The fundamental challenge in this architecture is to design efficient mechanisms to translate queries
expressed in the unified model in terms of the query capabilities of the individual IMSs. The advantage is that
unlike the other two architectures, modifications to the individual IMSs are minimal or completely unnecessary.

Finally, extensionarchitectures (Figure 1(c)) enhance the capabilities of a particular type of IMS by using
an extension module that provides support for new data types, operators, or query languages usually available
only in IMSs of another type. When extension interfaces are available in the original IMS (as is the case with
most commercial relational systems [18, 17]), the extension module can be implemented using these interfaces.
Otherwise, the original IMS is modified to natively support the new features.

Note that even though we have explicitly distinguished between these three architectures to help navigate the
literature, actual implementations sometimes have flavors of more than one architecture. For instance, reference
[20] proposesextensionsto a relational DBMS to facilitate efficient implementations of inverted indexes and

3



then layersa text retrieval system atop the enhanced RDBMS. Similarly, for efficiency reasons, some systems
push the integration layer of theloosely coupledarchitecture into one of the individual information management
systems. As an example, the WSQ system [37]extendsa relational DBMS to support specialized virtual tables
and a new technique for asynchronous query execution. This extended DBMS is thenloosely coupledwith Web
search engines to enable Web-supported database queries.

3 Text Retrieval and Relational/Object Database Systems

The integration of information retrieval (IR) and traditional database systems has long been recognized as a
challenging and difficult task. Fundamental differences in the query and retrieval models (precisely defined
declarative queries and exact answers in databases versus imprecise queries and approximate retrieval in IR sys-
tems) have resulted in vastly different query languages, index structures, storage formats, and query processing
techniques. Both the IR and DB communities have attempted to address this problem, but with different goals,
and by adopting different architectures. The database community has favored theextensionarchitecture with
the aim of efficiently providing IR features within the DBMS framework (lower left cell of Table 2). In con-
trast, the IR community has shown a preference for thelayeredarchitecture, with the aim of exploiting DBMS
features (concurrency control, recovery, security, transaction semantics, robustness, etc.) to build more scalable
and robust text retrieval systems (top left cell of Table 2).

3.1 Extensions to Database Systems

The extension-based approach of the DB community has led to work on extended relational models and algebras,
extensions to database query languages, new index structures [44] and data types [58], and query execution
strategies for optimizing IR-style text operations.

Extensions to the relational model fall into two categories - nested (non-first normal form orNF 2) relational
models [21, 53, 51, 65] to capture hierarchical document structure and probabilistic models [31, 33] to incorpo-
rate uncertainty and imprecision into the DBMS framework. Such probabilistic extensions, though promising,
require substantial changes to the core query processing algorithms of database systems and as a result, are not
yet a part of actual implementations.

Reference [20] proposes the technique of cooperative indexing, a framework for scalable integration of IR
and database systems. In this approach, the IR extension components define how documents are processed, how
index terms are extracted and stemmed, and the kinds of information that are associated with each index entry.
The database is responsible for index storage and for providing efficient access to the index.

References [37] and [22] address performance issues in implementing database extensions - specifically,
extensions to integrate with external (i.e., outside the database system) text retrieval systems. In [22], Deßloch
and Mattos discuss a query rewrite scheme based on table functions that is used to efficiently pass query results
from standalone external text search systems into the database engine. In [37], Goldman and Widom propose a
technique calledasynchronous iterationthat enables high concurrency between database query processing and
high-latency calls to Web search engines. The SQL/MM Full-Text [58] standard attempts to standardize the
integration of text retrieval with SQL database systems by providing definitions for text-related abstract data
types.

In [35], Goldman et. al. propose an extension to relational and object databases by introducing a proximity
operator, called the NEAR operator. They adapt the notion of textual proximity from text retrieval systems and
apply it to proximity between nodes in a graph.3

3Note that OO models are inherently graph-based and that a relational schema with foreign-key constraints can be easily translated
into a graph.

4



3.2 Layering IR systems atop Database Systems

Some of the earliest attempts at integrating IR and DB systems treated a text retrieval system as a database
application that was implemented on top of a standard relational DBMS [8, 15, 41, 46, 39, 38]. The inverted
index, the lexicon, and other term frequency statistics were stored in standard database tables. IR queries were
translated into SQL queries over these tables and executed by the database. In addition, several prototype text
retrieval systems have also been built using object database systems [9, 19, 57]. Since the object data model
natively supports nesting, in addition to collection types and sets, we expect that systems for content-based
retrieval of structured documents could be effectively implemented on top of OODB systems.

More recently, Melnik et. al. [47] demonstrate the use of an embedded database system (such as Berkeley
DB [50]) to store and manage inverted indexes. The performance results in [47] indicate that for application
scenarios when a full-fledged heavyweight client server database is not necessary, an embedded DBMS can act
as an efficient storage manager for inverted indexes.

3.3 Loosely-coupled IR-DB Systems

Even though layering and extension seem to be the favored architectures for integration of IR and Database
systems, there has been some work in building loosely coupled IR-DB systems. For example, in [16], Croft et.
al. describe their design for loosely coupling the INQUERY IR system and IRIS, a prototype object DBMS. The
IRIS and INQUERY systems are coupled externally using a “control module” that corresponds to the integration
layer shown in Figure 1(b).

One of the key challenges in building loosely coupled IR-DB systems is the design of efficient algorithms
to merge ranked results (from the IR system) with the unranked result sets returned by a the database system. In
[26], Fagin proposes the use of fuzzy sets as a unified model for representing merged result sets and describes
efficient algorithms to perform the merge operation.

4 Text Retrieval and Semistructured Database Systems

XML has emerged as the de facto standard for representing semistructured information and for exchanging
structured data between applications. Since XML shares the same graph-based data model as several other
semistructured database query languages [3, 10], to date, most of the work on querying, indexing, and searching
XML corpora has its origins in the database community (see Section 5). In [32], Fuhr and Grossjohann refer to
this approach as thedata-centricview of XML.

However, the alternativedocument-centric[32] view has only recently received the attention of the research
community. This approach treats an XML corpus as a collection of logically structured text documents. By
extending IR models and indexes to encode the structure and semantics of XML documents, it becomes pos-
sible to apply well-known IR techniques and support keyword searches, similarity-based retrieval, automatic
classification, and clustering, of XML corpora.

In [30], the authors describe an approach for integrating keyword searches with XML query processing.
They extend the XML-QL query language by introducing a new “contains” predicate for keyword-based search
operations. They define the precise semantics of the extended query language and describe how to efficiently
execute queries that involve keyword search as well as non-text operations. In the same vein, reference [32]
describes XIRQL, an extension to the XQL query language to support IR-related features such as weighting,
ranking, relevance-oriented search, and vague predicates. In [5], the authors describe the query processing
architecture of their Xyleme XML warehousing system, which includes support for text search and pattern
matching.

As is evident from the descriptions in the previous paragraph, much of the work in XML-IR integration is
based on theextensionapproach (Figure 1(c)), adding IR-style features to XML databases and query languages.

5



As an example of alayeredsystem, in [42], Hayashi et. al. describe their implementation of a relevance ranking
based XML search engine on top of a standard text retrieval system. Finally, in [4], Adar describes a personal
information management system that is implemented by loosely coupling the Lore semistructured database
system with the Haystack personal information retrieval system.

In addition to the systems level integration work referenced in Table 2 and described so far in this section,
there are distinct similarities between semistructured query models and models for structured text retrieval [7].
In particular, Ricardo Baeza-Yates and Gonzalo Navarro [7, 49, 48] demonstrate that theproximal nodesmodel
for structured text retrieval addresses all of the complex operations of the XQL query language and can provide
useful techniques for efficiently executing XQL queries.

5 Relational/Object and Semistructured Database Systems

With the advent of XML as the dominant standard for information interchange, the integration of XML with
relational and object database systems is an extremely active research area [63]. Techniques for mapping the
XML (semistructured) data model to the relational or object data model, for exporting relational data as XML
documents, for providing XML views of relational data, and for extending relational query engines to process
queries over XML data, are topics currently being investigated by the research community.

In the commercial arena, most major relational database vendors already provide support for an XML data
type to natively store and manage XML documents, as well as some primitive programming APIs for importing
and exporting XML documents to and from database tables [14].

In the interest of space, for the rest of the section, we shall discuss only extension and layered approaches
to integrating relational/object and semistructured database systems. However, there has been some work in
loosely coupling such systems [45, 13], motivated mainly by the use of XML as the middleware integration
language.

5.1 Extensions to Relational/Object Database Systems

Since XML is intended as a language for inter-enterprise information interchange, it is natural that techniques
for publishing relational data as XML documents are in great demand. Several commercial tools already provide
this functionality, but with some limitations. For instance, Oracle’s XSQL [14] tool generates a fixed canonical
mapping of the relational data into XML documents, by mapping each relation and attribute to an XML element,
and nesting tuple elements within table elements. However, it is incapable of mapping to arbitrary XML DTDs.
IBM’s DB2 XML Extender supports a language for composing relational data into arbitrary XML as well as to
decompose XML documents into relations.

In general, there are two parts to designing a system for publishing relations as XML documents. The first
is the need for a language to specify the conversion/mapping from relations to XML documents. The second
is an efficient implementation strategy to actually carry out the conversion. The SilkRoute system described
in [28] was one of the earliest research prototypes that supported automatic XML generation from relational
tables. SilkRoute used a language called RXL, based on a combination of SQL and XML query languages, for
specifying mappings of relational tables to arbitrary XML DTDs. Using this language, it is possible to define
XML views of the relational data. SilkRoute efficiently executes queries over these XML views by materializing
only the portion of the XML that is required to answer the query. In [55], Shanmugasundaram et. al. propose
a simple language based on SQL with minor extensions for specifying the mappings. They compare different
implementation alternatives and report significant performance gains from constructing XML documents as
much as possible inside the relational engine.

In [43], the authors describe Ozone, an extension of an object database system to handle both structured
and semistructured data. The authors extend the standard ODMG object model and the OQL query language, to

6



handle semistructured data based on the OEM data model and Lorel query language [3].

5.2 Layered systems

To design a database-backed XML repository, one must precisely define (i) a mapping from XML documents to
tables or objects, (ii) algorithm for translating queries over XML documents into SQL or OQL queries over the
underlying database, and (iii) a mechanism for translating the result of database query executiong into XML.
There are several proposals for implementing XML repositories on top of relational [23, 29, 54, 56] and object
[60, 12, 27] database systems, differing in their choices for (i),(ii), and (iii).

There are three basic alternatives for mapping XML documents into relational tables. The simplest, and
least useful mapping, is to store an entire XML document as asingle database attribute. Another possibility
is to interpret XML documents asgraph structuresand supply a relational schema that can store such graphs
[29, 54]. A third approach is to map thestructureof the XML documents, (for e.g., expressed as a DTD) into
a corresponding relational schema and to store the documents based on these mappings [56, 23]. Only the
last approach allows the repository to fully exploit the query processing and optimization capabilities of the
underlying database system.

The STORED system described in [23] uses data mining to separate XML documents into structured and
semistructured components. The structured component is stored in a relational database and the semistructured
component is stored in a separate overflow semistructured database. In contrast, Shanmugasundaram et. al. [56]
store the repository entirely within the relational database. They assume that the input XML has an associated
DTD and also impose restrictions on the set of DTDs that they can handle.

Techniques for mapping XML documents into object databases tend to be considerably simpler, because
the object model naturally supports a hierarchical structure, collection types, and structured types such as sets
and lists. Usually, a straightforward analysis of the DTD can be used to generate object type definitions (for
example, in ODL) and IDREFs and IDs in the XML document can be mapped to object references and object
IDs in the database system [60, 12]. However, there are two key challenges that need to be addressed. First
is the fact that OODB systems are generally strongly typed whereas XML, being semistructured, is not. As a
result, most often, the object model of the database must be extended, before it can be used for implementing
the XML repository. Second, many OODB systems support only simple path expressions whereas most XML
query languages include regular path expressions. References [60, 12] and [27] describe potential solutions to
these challenges.

6 Conclusions

The design of integrated information management systems that can seamlessly handle unstructured, structured,
and semistructured data, is a topic with significant research and commercial interest. In this paper, we presented
a short survey of prior work on designing such integrated systems.

A visual inspection of Table 2 allows us to draw some conclusions about major research themes and focus
areas. For instance, it is clear that so far, a significant portion of work on integrated information systems has
involved layering other systems atop relational/object databases and on extending the capabilities of the latter
(four corner cells of Table 2). However, we expect that with recent interest in middleware integration, loosely
coupled systems will receive a lot of research attention in the future. Also, as mentioned in Section 4, integration
of semistructured data in general, and XML in particular, with the relational/object database world has received a
lot more attention than corresponding integration with text retrieval systems (comparing two rightmost columns
of Table 2). We believe that this will change, once efforts to incorporate IR-style operators and structured text
retrieval models into XML query languages, bear fruit.

In this paper, we have concentrated mainly on integration of pairs of systems. However, the Web provides us

7



with a large and interesting data set that shares characteristics with all three types of data that we have dealt with
in this paper. For instance, a repository of Web pages could be treated as a large collection of text documents.
It could also be treated as a huge graph database since Web pages link to each other through hypertext links.
Finally, each page in a Web repository can be associated with simple attributes (e.g., URL, page length, domain
name, crawl date, etc.) that are easily managed in a relational database. Hence, complex queries over such
repositories are likely to involve search terms connected by Boolean operators, navigational operators to refer to
pages based on their interconnections, as well as predicates on page attributes. We believe that a query processing
architecture that can efficiently execute such queries over huge Web repositories is an exciting research topic
with applications in Web search and mining.

References

[1] S. Abiteboul. Querying semi-structured data. InProceedings of the 6th Intl. Conferene on Database Theory, pages
1–18, January 1997.

[2] S. Abiteboul, P. Buneman, and D. Suciu.Data on the Web: From Relations to Semistructured Data and XML. Morgan
Kauffman Publishing, San Francisco, 1st edition, 1999.

[3] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query language for semistructured data.
Intl. Journal on Digital Libraries, 1(1):68–88, April 1997.

[4] E. Adar. Hybrid-search and storage of semi-structured information. Master’s thesis, MIT, May 1998.

[5] V. Aguilera, S. Cluet, P. Veltri, D. Vodislav, and F. Wattez. Querying XML documents in Xyleme. InProceedings of
the ACM SIGIR 2000 Workshop on XML and Information Retrieval, July 2000.

[6] R. Baeza-Yates and B. Riberio-Neto.Modern Information Retrieval. Addison-Wesley, New York, 1 edition, 1999.

[7] R. A. Baeza-Yates and G. Navarro. Integrating contents and structure in text retrieval.SIGMOD Record, 25(1):67–79,
1996.

[8] D. C. Blair. An extended relational document retrieval model.Information Processing and Management, 24(3):349–
371, 1988.

[9] E. W. Brown, J. P. Callan, W. B. Croft, and J. E. B. Moss. Supporting full-text information retrieval with a persistent
object store. In4th Intl. Conf. on Extending Database Technology, pages 365–378, March 1994.

[10] P. Buneman, S. B. Davidson, G. G. Hillebrand, and D. Suciu. A query language and optimization techniques for
unstructured data. InProceedings of the ACM SIGMOD Intl. Conf. on Management of Data, pages 505–516, June
1996.

[11] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subramanian. XPERANTO: Middleware for
publishing object-relational data as XML documents. InProceedings of 26th Intl. Conf. on Very Large Data Bases,
pages 646–648, September 2000.

[12] V. Christophides, S. Abiteboul, S. Cluet, and M. Scholl. From structured documents to novel query facilities. In
Proceedings of the ACM SIGMOD Intl. Conf. on Management of Data, pages 313–324, May 1994.

[13] V. Christophides, S. Cluet, and J. Sim`eon. On wrapping query languages and efficient XML integration. InProceed-
ings of the 2000 ACM SIGMOD Intl. Conf. on Management of Data, pages 141–152, May 2000.

[14] O. Corporation. XML support in Oracle 8 and beyond. http://www.oracle.com/xml/.

[15] W. B. Croft and T. J. Parenty. A comparison of a network structure and a database system used for information
retrieval. Information Systems, 10(4):377–390, 1985.

[16] W. B. Croft, L. A. Smith, and H. R. Turtle. A loosely-coupled integration of a text retrieval system and an object-
oriented database system. InProceedings of the 15th Annual Intl. ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 223–232, June 1992.

[17] IBM Informix DataBlade. http://www-4.ibm.com/software/data/informix/blades/, 2000.

8



[18] DB2 Universal Database Extenders. http://www-4.ibm.com/software/data/db2/extenders/, 2000.

[19] A. P. de Vries and A. N. Wilschut. On the integration of IR and databases. InProceedings of the 8th IFIP 2.6 Working
Conferene on Database Semantics, January 1999.

[20] S. DeFazio, A. M. Daoud, L. A. Smith, J. Srinivasan, W. B. Croft, and J. P. Callan. Integrating IR and RDBMS using
cooperative indexing. InProceedings of the 18th Annual Intl. ACM SIGIR Conf. on Research and Development in
Information Retrieval, pages 84–92, July 1995.

[21] B. Desai, P. Goyal, and F. Sadri. Non first normal form universal relations: an application to information retrieval
systems.Information Systems, 12(1):49–55, 1987.

[22] S. Deßloch and N. M. Mattos. Integrating SQL databases with content-specific search engines. InProceedings of
23rd Intl. Conf. on Very Large Data Bases, pages 528–537, August 1997.

[23] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with STORED. InProceedings of ACM
SIGMOD Intl. Conf. on Management of Data, pages 431–442, June 1999.

[24] D. Egnor and R. Lord. Structured information retrieval using xml. InProceedings of the ACM SIGIR 2000 Workshop
on XML and Information Retrieval, July 2000.

[25] M. J. C. et. al. Towards heterogeneous multimedia information systems: The Garlic approach. InProceedings of
the 5th Intl. Workshop on Research Issues in Data Engineering - Distributed Object Management, pages 124–131,
March 1995.

[26] R. Fagin. Fuzzy queries in multimedia database systems. InProceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 1–10, June 1998.

[27] L. Fegaras and R. Elmasri. Query engines for Web-accessible XML data. InProceedings of the 27th Intl. Conf. on
Very Large Data Bases, pages 251–260, September 2001.

[28] M. Fernandez, W.-C. Tan, and D. Suciu. SilkRoute: Trading between relations and XML. InProceedings of the 9th
Intl. World Wide Web Conf., pages 723–745, May 2000.

[29] D. Florescu and D. Kossman. Storing and querying XML data using a RDBMS.Bulletin of the Technical Committee
on Data Engineering, 22(3), 1999.

[30] D. Florescu, I. Manolescu, and D. Kossmann. Integrating keyword search into XML query processing. InProceedings
of the 9th Intl. World Wide Web Conf., pages 119–136, May 2000.

[31] N. Fuhr. A probabilistic framework for vague queries and imprecise information in databases. InProceedings of the
16th Intl. Conf. on Very Large Data Bases, pages 696–707, August 1990.

[32] N. Fuhr and K. Grossjohann. XIRQL: A query language for information retrieval in XML documents. InProceedings
of the 24th ACM SIGIR Conf. on Research and Development in Information Retrieval, pages 172–180, September
2001.

[33] N. Fuhr and T. Rolleke. A probabilistic relational algebra for the integration of information retrieval and database
systems.ACM Transactions on Information Systems, 15(1):32–66, 1997.

[34] H. Garcia-Molina, J. Ullman, and J. Widom.Database System Implementation. Prentice-Hall, New Jersey, 1st
edition, 2000.

[35] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and H. Garcia-Molina. Proximity search in databases. In
Proceedings of 24th Intl. Conf. on Very Large Data Bases, pages 26–37, August 1998.

[36] R. Goldman and J. Widom. Interactive query and search in semistructured databases. InProceedings of the First Intl.
Workshop on the Web and Databases (WebDB), pages 42–48, March 1998.

[37] R. Goldman and J. Widom. WSQ/DSQ: A practical approach for combined querying of databases and the web. In
Proceedings of the 2000 ACM SIGMOD Intl. Conf. on Management of Data, pages 285–296, May 2000.

[38] D. A. Grossman and J. R. Driscoll. Structuring text within a relation system. InProc. of the 3rd Intl. Conf. on
Database and Expert System Applications, pages 72–77, September 1992.

9



[39] D. A. Grossman, O. Frieder, D. O. Holmes, and D. C. Roberts. Integrating structured data and text: A relational
approach.Journal of the American Society for Information Sciences, 48(2):122–132, 1997.

[40] J. Gu, U. Thiel, and J. Zhao. Efficient retrieval of complex objects: Query processing in a hybrid db and ir system.
In Proceedings of the 1st German National Conf. on Information Retrieval, 1993.

[41] D. J. Harper and A. D. M. Walker. ECLAIR: An extensible class library for information retrieval.Computer Journal,
35(3):256–267, 1992.

[42] Y. Hayashi, J. Tomita, and G. Kikui. Searching text-rich XML documents with relevance ranking. InProceedings of
the ACM SIGIR 2000 Workshop on XML and Information Retrieval, July 2000.

[43] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrating structured and semistructured data. InResearch Issues in
Structured and Semistructured Database Programming, 7th Intl. Workshop on Database Programming Languages,
September 2000.

[44] C. A. Lynch and M. Stonebraker. Extended user-defined indexing with application to textual databases. InProceed-
ings of the Fourteenth Intl. Conf. on Very Large Data Bases, pages 306–317, August 1988.

[45] I. Manolescu, D. Florescu, and D. Kossman. Answering XML queries on heterogeneous data sources. InProceedings
of the 27th Intl. Conf. on Very Large Data Bases, pages 241–250, September 2001.

[46] I. A. McLeod and R. G. Crawford. Document retrieval as a database application.Information Technology: Research
and Development, 2:43–60, 1983.

[47] S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a distributed full-text index for the web. In
Proceedings of the 10th Intl. World Wide Web Conf. (WWW10), pages 396–406, May 2001.

[48] G. Navarro and R. Baeza-Yates. Proximal nodes: A model to query document databases by content and structure.
ACM Transactions on Information Systems, 15(4):400–435, 1997.

[49] G. Navarro and R. A. Baeza-Yates. A language for queries on structure and contents of textual databases. InPro-
ceedings of the 18th Annual Intl. ACM SIGIR Conf. on Research and Development in Information Retrieval, pages
93–101, July 1995.

[50] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. InProc. of the 1999 Summer Usenix Technical Conf., June 1999.

[51] R. Sacks-Davis, A. J. Kent, K. Ramamohanarao, J. A. Thom, and J. Zobel. Atlas: A nested relational database system
for text applications.Transactions on Knowledge and Data Engineering, 7(3):454–470, 1995.

[52] G. Salton.Information Retrieval: Data Structures and Algorithms. Addison-Wesley, Reading, Massachussetts, 1989.

[53] H.-J. Schek and P. Pistor. Data structures for an integrated data base management and information retrieval system.
In Proceedings of the 8th Intl. Conf. on Very Large Data Bases, pages 197–207, September 1982.

[54] A. Schmidt, M. L. Kersten, M. Windhouwer, and F. Waas. Efficient relational storage and retrieval of XML docu-
ments. InWebDB (Informal Proceedings), pages 47–52, 2000.

[55] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently
publishing relational data as XML documents. InProceedings of 26th Intl. Conf. on Very Large Data Bases, pages
65–76, September 2000.

[56] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton. Relational databases for querying
XML documents: Limitations and opportunities. InProceedings of 25th Intl. Conf. on Very Large Data Bases, pages
302–314, September 1999.

[57] G. Sonnenberger. Exploiting the functionality of object-oriented database management systems for information
retrieval.Bulletin of the Technical Committee on Data Engineering, 19(1):14–23, 1996.

[58] SQL mul-
timedia and application packages: Part2 (full-text) - ISO/IEC 13249. http://www.wiscorp.com/sql/sqlfulltext.zip,
2000.

[59] J. Ullman and J. Widom.A First Course in Database Systems. Prentice-Hall, New Jersey, 1st edition, 1997.

10



[60] R. van Zwol, P. M. G. Apers, and A. N. Wilschut. Modeling and querying semistructured data with MOA. In
Proceedings of the Workshop on Semistructured Data and Non-Standard Data Types, 1999.

[61] S. R. Vasanthkumar, J. P. Callan, and W. B. Croft. Integrating INQUERY with an RDBMS to support text retrieval.
Bulletin of the Technical Committee on Data Engineering, 19(1):24–33, 1996.

[62] M. Volz, K. Aberer, and K. Bohm. An OODBMS-IR coupling for structured documents.Bulletin of the Technical
Committee on Data Engineering, 19(1):34–42, 1996.

[63] J. Widom. Data management for XML: Research directions.IEEE Data Engineering Bulletin, 22(3):44–52, 1999.

[64] I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes: Compressing and Indexing Documents and Images.
Morgan Kauffman Publishing, San Francisco, 2nd edition, 1999.

[65] J. Zobel, J. A. Thom, and R. Sacks-Davis. Efficiency of nested relational document database systems. InProceedings
of the 17th Intl. Conf. on Very Large Data Bases, pages 91–102, September 1991.

11


