Adaptive Peer-To-Peer Topologies

Tyson E. Condie, Sepandar D. Kamvar, Hector Garcia-Molina
Stanford University, Stanford, CA 94306

{tcondie, sdkamvar, hectp@cs.stanford.edu

Abstract

We present a peer-level protocol for forming adaptive, -self
organizing topologies for data-sharing P2P networks. Pphigo-
col is based on the idea that a peer should directly connebbte
peers from which it is most likely to download satisfactooptent.
We show that the resulting topologies are more efficient gtan-
dard Gnutella topologies. Furthermore, we show that thdap-a
tive topologies have the added benefits of increased resest@
certain types of attacks, intrinsic rewards for active peard pun-
ishments for malicious peers and freeriders.

1 Introduction

While peer-to-peer networks have great potential for lacede,
robust, distributed information sharing, current P2P esyst such
as Gnutella are not highly efficient or scalable becausespeer
connected randomly to other peers in the network. Alteved®@i2P
organization protocols that place content at nodes basdthsihn
functions have been proposed, [12], [13]. Such schemesfare e
ficient for queries where the exact search key is known, but be
have poorly for approximate queries. Furthermore, neitfiénese
schemes addresses the issues of malicious peers or freaaidie-
herent parts of the topology design.

A useful concept for designing scalable, efficient, and sbbu
overlay topologies is that afiteraction topologiesThe interaction
topology for a P2P file-sharing network is a graph whose nades
the peers in the network, and whose arcs are defined by dosimloa
For example, one may place an arc between nodesl;j if node+
has downloaded content from noglenore than 3 times.

We propose a peer-level protocol for forming self-orgargzi
topologies based on the idea that efficiency and robustreesbe
achieved by designing an overlay topology to match the &atésn
topology. We call the resulting topologies Adaptive P2Pdlogies
and we call the protocol the APT protocol.

More specifically, the APT protocol is based on two fundamen-
tal notions. First, peers should directly connect to thasrgfrom
which they are likely to download satisfactory files. Secqrekers
may use past history to determine the peers from which they ar
likely to download satisfactory files. (For simplicity, wefer to
retrieved content as “files” even though in general it cowdcahy
type of query results.) At a basic level, the practical impdata-
tion of these ideas involves each peer keeping a score of faowy m
good files it has downloaded from each other peer in the n&twor
Peers connect to those peers that have high scores, andristo
from peers with low scores. After describing our network elod
in Section 2, we present a self-organizing, distributedqual for
forming such topologies in Section 3.

We will show several natural characteristics of a topology d
rived from peers connecting to download sources based dn pas
history. One such property &fficiency peers are more likely to
receive responses to their queries with less query forwgraver-
head. This is discussed in further detail in Section 4.5. tAaio
property issecurity malicious peers are moved to the fringe of the
network, thereby increasing the network’s resistancedatimentic
file attacks. This is the subject of Section 4.2. The thirthéen-
tives freeriders are moved to the fringe of the network, whereas
peers that actively share files are moved to the center oféhe n
work. Peers that lie on the fringe of the network receive atéch
number of responses to their queries. On the other handieacti
peers have a wider view of the network and consequentlyvecei
a higher quality of service, even if they limit the number ohe
nections they make. The intrinsic rewards and punishmemts a
discussed in Sections 4.3 and 4.4.

2 Network Model

2.1 Network Topology

The P2P network is represented as an undirected géaph-
(P,E), whereP is the set of nodes, anfl' is the set of edges
(,4) describing the connections between nodes € P. The
connections in the P2P network are symmetric and describe a
peer’s neighbor set. That is, pe&s neighbor set is defined as
N@#) = {j | (4,5) € E}. The network is initialized to contain
some number of peers whose connections form a power-lav-topo
ogy, as described in [3].

2.2 Joining the network

A peer joins the P2P network by contacting a designated pong
server to obtain some number of live IP addresses [9]. Before
adding a node to its neighbors set, the peer must be pernitted
make a direct connection. A connection request mess4ge) is
initiated by peet requesting a direct connection to pgeiThe re-
quest is sent directly to pegmwhich then decides whether to accept
the connection. If peeraccepts the connection then both peers add
one another to their neighbor sets. System bootstrap piedse
having each peer attempt an initial number of connectipitisat
does not exceed some system wide maximum number of connec-
tionst.

Bootstrapping and node discovery are still open issues ih P2
systems. Schemes that distribute the IP addresses maithtajrihe
pong servers to nodes in the network are evaluated in [10¢h Su
schemes can easily be incorporated into our model, sincARfe
protocol is independent of the method for establishing ectians.
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Figure 1: Query Propagation.

2.3 Query Propagation

Query messages are propagated via flooding-based broadtast
search query can be initiated by any node in the network by firs
broadcasting to all peers in its neighbor set. Each noden upo
ceiving a propagated search query, will examine its locakfjlstem

for a match. Any matches are returned directly to the quétiain
tor. The peer may then propagate the query to all its neighbor
except for the node from which it received the query. Eachryque
maintains a time-to-live (TTL) field to limit the scope of thaery
flooding. At query time, the issuing peer will set the TTL fietd
some default value, which is then decremented by one at eaph p
agation. A node receiving a query wiftil’ L = 0 will not forward

the query.

with peer: contains alls;; values wherg varies over all peers in
the network. In our implementation, each peer maintainssh ke
ble containing the local trust values of all its acquain&man ac-
quaintance is then defined as an entry in the hash table.rlf pes
never interacted with pegrthen there will be no entry in peéls
table for peerj, and thuss;; = 0.

3.2 Protocol

We define theérustworthinesof a network to be:

v v
Q= Z Z connection(i, j) X $i;

i=1 j=1

wherev is the number of nodes iR andconnection(i, j) = 1 if
(,7) € E, otherwiseconnection(i, j) = 0. Intuitively, a network
where peers are connected to peers that they trust will haigha
Q value.

Generally, in any P2P System, there will be some connection
barriers; for example, peers may wish to set a lim@n the num-
ber of peers to which they connect in order to conserve batttiwi
Connection barriers are common in real world P2P Systems and
support fair sharing of resources [9]. We may therefore foate
the problem of creating a trustworthy network as: maximizau@Q-
ject to the constraint that each pedras at most connections.

The APT Protocol (Algorithm 1) is a peer-level greedy algo-
rithm for maximizingQ@ and it proceeds as follows. Pegpins the
network by attemptings random connections as described in Sec-
tion 2.2. The join process is repeated until at least 1 cdiorecs
made. After downloading an authentic file from pge#¢ N (7),
peeri with n; < 7 connections sends the connection request
R(i,j) to peerj. If n; = 7 then peer sends a connection re-
quest if one of the following holds:

Figure 1 illustrates how a query propagates through the P2P 1 peerj ¢ N(i) achieves a higher local trust value than one of

network. In the example, peér initiates the search query, with
TTL = 1, by broadcasting to all of its neighbors, in this case

peerj. Peerj decides not to respond to the query and forwards the

query to its neighbors, except to pgerUpon receiving the query,
peer: directly responds to peérwith a match. The query flooding
terminates at peersince the TTL is now 0.

3 Adaptive P2P Topologies
3.1 Local Trust Scores
Adaptive P2P Topologies are based on two notions:

1. A peer should directly connect to those peers from whigh it
likely to download files in the future.

2. A peer may use its past history to estimate the likelihdoal o
future successful download.

In the APT protocol, a peer encodes its past history with a set

of local trust valueq1]. Peer: stores a local trust value for each
peer it has interacted with. $at(i, j) is the number of satisfactory
transactions peerhas had with peef, andunsat(i, ) is the num-
ber of unsatisfactory transactions pedras had with peey, then
we define the local trust value as

si; = sat(i,j) — unsat(i, 7).

Peeri may deem a transaction unsatisfactory if, for example, the
file downloaded is inauthentic or tampered with, or if the dwad
is either slow or interrupted. THecal trust vectors; associated

peeri’s neighbors (messag®(i, j) is sent).

2. Peerj € N(z) is assigned a lower local trust value than some
acquaintancé ¢ N (i) of peeri (messageR(i, k) is sent).

The first scenario describes an authentic download from peer
while the second occurs after an inauthentic download freerp
In both cases, if peers connection request is granted then it will
disconnect from its neighbor with the lowest local trustueal A
special case occurs if a neighbor of pgds assigned a negative
local trust score and peéis not able to connect to an acquaintance.
In this situation peei immediately disconnects from that neighbor
and attempts a connection to a random peer.

Peer;j will only accept peet’s connection request if pegis lo-
cal trust values;; of peer: is non-negative and one of the following
conditions is true:

1. Peerj has fewer tham connections.

2. Peerj’s local trust values;; of peeri is greater than the local
trust value of at least one neighbor.

In the second case pegmwill replace its lowest trust valued
neighbor with peer. The careful reader will notice that pegr
would have previously made a connection request to pleecause
of peeri’s desirables;; value. It is assumed that peehad denied
the connection requegt(j,4) but then later sent the connection
requestR(i, j).



function JoinNetwork(){

while | N(z) |[< 1do
connectToRandomPeers();

end

}

function connectToRandomPeers()
R = some set of random IP addresses from pong server;
foreach j € R do
if j ¢ N(i) & s;; > 0then
if connect;(i) = true && | N(i) |> ~then
return from function;

end
end
end

}

function download(peey) {
if download satisfactorthen
Sij = 8i5 + 1
if | N(2) |< 7 then
conneck (7);
end
else
find k € neighbors with lowests;;
if s;j > s;1, && connect; = true then
disconnegt (7);

end
end
end
if download unsatisfactorthen
sij = Si5 — 1,

if 7 € N(4) then
while A # 0 do
find peerz € A with maxs;,;
if connecty (i) = true then
disconnect(q);
return from function;

end

end

if Sij < 0 then
disconnect(i);
connectToRandomPeers();

end

end
end

}

function connect(peey) {
if | N(Z) |< T && Sij > 0then
return true // accept connection from pger
end
else
find neighbork with min s ;
if s, < Sij then
disconnegt (¢);
return true // accept connection from pger

end
end

return false // connection denied;

}

function disconnect(peey) {

N(i) = N(@)\ j;

if | N(2) |< v then
connectToRandomPeers();

end

}

Algorithm 1: Basic APT Protocol
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Figure 2: Hidden Malicious Attack.

3.3 Practical Issues

Hidden malicious peers and local maxima are two practicaids
not addressed by the basic algorithm presented here.

Hidden Malicious Peers. A malicious peer may disseminate
corrupt or inauthentic files by connecting to a peer to whictoes
not directly upload files. To illustrate with Figure 2, letaltruistic
peer be defined as a peer that shares files but does not download
files. Suppose that peérs a malicious peer and pegis an altru-
istic peer. Since peerdoes not download any files, its local trust
vector will be an all-zero vector. According to Algorithmgdger;
will never disconnect from any other peer. Furthermoregiogieers
will connect to peey because it provides authentic files. Therefore,
the altruistic peey unwittingly serves as a conduit through which
malicious peer receives queries used to disseminate inauthentic
files. In effect, malicious peeris "hiding” behind altruistic peey.

We addresses this issue by defining the notiorarfnection
trust While the local trust valusy; quantifies the number of au-
thentic files that peet downloads from peef, the connection trust
valuery; quantifies the number of authentic files that pketis-
coversthrough peeyj. For example, suppose that in Figure 2 pger
forwards peek’s query to peet which then responds with a match.
If peerk downloads a file from peerand the file is authentic, then
the local trusts,; and the connection trust.; are incremented by
1. If the file is inauthentic, then both values are decrentehtel.

Algorithm 2 extends Algorithm 1 by including connectiongtu
in the overall value of an acquaintance. We are then ablere co
bat the hidden malicious peer problem by having peers disstin
from neighbors with low connection trust values. By drogpion-
nections to peers that serve as malicious conduits, hidddicious
peers lose their ability to upload malicious content. Taower from
the connection loss, the altruistic peer will break all sfdbnnec-
tions and attempt new connections.

In order to keep track of the peer through which a file is dis-
covered, the standard query-response protocol needs tigbtys
modified. Peel issuing a query must tag the query with an en-
crypted identifier of the neighbor to which it initially sendhe
query. Any query responder must append the same encryped id
tifier to its query response. Response messages that do mot co
tain an encrypted identifier to some outstanding query arpqird.
This allows peet to know the peer through which it discovers each
of the files it downloads.

Local Maxima. A peer may find itself in a part of the net-
work where it receives few responses to its queries. We d#fme
notion of a void download to be the situation in which a peer re
ceives no response to a query. The basic principle behingtigda
P2P topologies is that the peer should be able to bootssaypay
to a better-suited part of the network by establishing amdking
connections. However, if after a long period of time, a psestill



function connectToRandomPeers()

R = some set of random IP addresses from pong server;

foreachj € Rdo
if connect;(i) = true && | N(i) |> ~then
return from function;
end
end
end

}

function download(peey) {
if download satisfactorthen
sij = sij + 1,
Tic = Tic + 1;
/I Rest same as Algorithm 1;
end
if download unsatisfactorthen
sij = sij — 1
Tic = Tic — 1;
A={k|k¢ N(i)&& ik, > ric && 35, > 0};
while A # @ do
find peerz with maxr;, € A;
if connecty (i) = true then
disconnect();
return from function;

end
else
A= A\z;
end
end
if 7;c < 0then

disconnect(i);
connectToRandomPeers();
return from function;
end
/I Rest same as Algorithm 1;
end

}

function connect(peey) {
if | N(3) |< 7 then
if Sij >08&& Tij > 0then
return true // accept connection to pger

end
end

else
find neighbork with min s;;
if s < Sij && Tij > 0 then
disconnegt (¢);
return true // accept connection to pger

end
end

return false // connection denied;

}

function disconnect(peey) {

N(i) = N(i) \ j:

if numLostConnections(i) > threshold then
drop all current connections;
connectToRandomPeers();
reset numLostConnectiori¥(

end

else
drop neighbotk with lowestr;;
connectToRandomPeers();
increment numLostConnectionj(

end

}

Algorithm 2: APT Protocol Connection Trust Extension

local trust peer score based on download transaction.
connection trust| neighbor score based on the outcome of a
query forwarded by the neighbor.

void downloads|| number of queries with no response.

Table 1: Connection Variables

seeing many void downloads, it may be stuck in a local maxima.

We handle this issue using random restarts. That is, if a peer
has a consistently low number of responses per query overe lo
period of time, then it may choose to do the following:

1. Exchange connections that exhibit low performahagith
new connections to random peers.

2. Break all connections and re-enter elsewhere in the mktwo

The first option avoids dropping current connections thay ma
still provide future use. The second is used when all conmest
fail to provide responses to a large number of queries. Atlyor2
incorporates these options, which are loosely analogossnta-
lated annealing techniques in traditional optimizatios][1

4 Empirical Results

In this section, we assess the performance of the propobedss
and compare it to a P2P network with a standard power-lawltopo
ogy. The performance analysis is given for standard canttas
well as a variety of threat models. The success of the APTopobt

is dependent on the variables a peer uses to determine itgcon
tions to other peers. Equipped with the variables listechipld 1, a
peer is able to avert malicious attacks and choose, fronadfsaan-
tances, peers that share similar interests.

4.1 Simulation

Our findings are based on simulations of a P2P network model de
scribed in [3]. The network model is described in Section Bilev
the peer and content models are briefly explained here.

Node model. The network consists of good nodes (normal
nodes, participating in the network to download and uplokg)i
and malicious nodes (adversarial nodes, participatindnénrtet-
work to undermine its performance). We also consider casss t
include freeriders, nodes that only download files and dshate
any files of their own [5]. We analyze different behaviors oha-
licious peer in the network using threat models. These nsoalil
be described in more detail later on.

Content distribution model. Interactions between peers i.e.
which queries are issued and which queries are answered/éy gi
peers, are modeled using a probabilistic content distabutThe
detailed model is presented in [3]. Peers are assumed tddre in
ested in a subset of the total available content in the nétveoich
that each peer initially picks a number of content categoaied
shares files only in these categories. It is shown in [2] tHas fi
shared in a P2P network are often clustered by content aié¢ego
When the simulator generates a query, it does not generateehs
string. Instead, it generates the category and rank (orlpop) of
the file that will satisfy the query. The category and ranklzsed
on Zipf distributions. Each peer that receives the querckhéf
it supports the file category and if so, whether it shares tbe fi
Files are assigned probabilistically to peers at inititiian based
on file popularity and the content categories the peer isésted

The performance of a connection can be measured by the nushbesponses
received through the connection.
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Figure 3: Average Characteristic Path (Cycle 0). Figure 4: Average Characteristic Path (Cycle 95).

in. This implies that peers are likely to share popular fieegn if 4.2 Malicious peers move to fringe
they have few files. Distributions used in the model are tdkam 421 Princiol
measurements in real-world P2P networks [4]. ‘e rincipie

_ Simulation execution. The simulation of a network proceeds  One common attack on P2P networks today is the inauthergic fil
in query cycles. In each query cycle, péén the network may be  attack, where malicious peers upload corrupt, inautheatienis-
actively issuing a query, be inactive, or even down and regiord- named content onto the network. Since the APT protocol disco
ing to queries passing by. Upon issuing a query, a peer waits f  nects from peers that upload unsatisfactory files, malicioeers
incoming responses, selects a download source among ttes nod eventually move to the fringe of the network. Moving maligso
that responded and starts downloading the file. The latesteps  peers to the fringe of the network has been shown to be a very ef

are repeated until a peer has properly received a good coyeof  fective strategy in combatting certain types of attacks [8]
file or runs out of responses.

The base settings that apply for most of the experiments are
summarized in Table 2. The settings represent a fairly sne

work to make our simulations tractable. However, we haveBxp  We use theharacteristic path lengtto illustrate how the malicious

4.2.2 Experiments

mented with larger networks and our conclusions continuretd. peers move to the fringe of the network using the APT protocol
That is, schemes that do well in a small setting, proporteigiaio We define the average characteristic path length to apaethe
as well even when the network is scaled up. average of the shortest path lengths between all other petre

Metrics. We are interested in measuring the efficiency, secu- network and peet.
rity, and incentives of adaptive P2P topologies. We usedhew-

ing two metrics to measure the efficiency of the network: then 1 .
ber of messages passed and the number of authentic respenses epli = | P\ Z shortestPatli, j)
query. We define the total number of messages to be the tatal nu JEP\L

ber of queries, responses and file downloads in the network. W
define the number of authentic responses as those quennsespo
that would lead to the download of an authentic file. The nurobe
inauthentic responses per query and the average chastictpeth
length to malicious peers are used to evaluate the securityro
protocol. The number of inauthentic responses per quersfisetl
as the total number of query responses that would lead taotlva-d
load of an inauthentic file. The characteristic path length peer
is the average hop-count to the peer from all other peersingtr
work. We use the average characteristic path length toeapters
and freeriders to measure the incentives that our protages dor
participation.

whereP\: is the set of all peers in the network except peer

In Figure 3, the x-axis represents the peer id and the y-axis i
the characteristic path length to that peer. The data waac=tl
from the Query Cycle Simulator [3] at Cycle 0 which describes
a power-law topology. The x-axis is segmented into two negjio
each reflecting a type of peer. The gray region represents pee
in the network that are considered good and the black carneisp
to malicious peers. The average characteristic path |etogémy
peer is about 2.5 hops. During network bootstrap, malicprers
were encoded to aggressively connect to good peers, andhiaus
average characteristic path length for malicious peers3is@ps.

A peer's search query adds 1 to the number of messages passed [ 19Ure 4 shows the characteristic path length after 95 sitad|
at each propagation point. Each response to a search quaeey in cycles. The overall average characteristic path lengttti Hops.

ments the number of messages passed by 1. The number of inaulNOtice that the average characteristic path to a maliciees (9.84
thentic responses per query represents the total numbareny g hops) IS quh higher ”.‘af‘ that to a good peer (4.02 hops). The
responses originating from a malicious peer. All other oese separation in characteristic path length shows that as geeds
messages increase the number of authentic responses byeer'a p drop connections based on inauthentic downloads, matigieers

characteristic path length is the average hop-count toeke foom are pushed into the fringe of the network. .
all other peers in the network. Figure 5 plots the evolution of the average characterisiit p

length for good peers and malicious peers. Beyond the lidifia
cycles, no path exists from a good peer to a malicious peee Th
divergence in the characteristic path lengths of good aritimas
peers indicates that these two peer types become distiactiowe.
A good peer can take advantage of this result by limiting tupe



Network

# of good peers

# of malicious peers

# of initial neighbors of good peers

# of initial neighbors of malicious peefs

# Maximum number of allowed connections
# Time-to-live for query messages

100
10
3

5
20
3

Content Distribution

# of distinct files at good peer
set of content categories supported by good pe
# of distinct files at good peérin category;

top % of queries for most popular categories ar
files malicious peers respond to

% of time peetri is up and processing queries
% of up-time good peerissues queries

file distribution in [4]

eZipf distribution over 20 content categories
uniform random distribution over peés
total number of distinct files

d20%

uniform random distribution over [0%, 1009
uniform random distribution over [0%, 50%]

Peer Behavior

% of download requests in which good péer
returns inauthentic file

% of download requests in which malicious peée
returns inauthentic file

5%

r100%

% of queries malicious peéresponds to 20%
download source selection algorithm random

Simulation # of simulation cycles in one experiment 100-200
# of experiments over which results are averaged

Table 2: Simulation settings

nf|

— Good Peer
== Malicious Peer

Characteristic Path Length

0 20 60 80 100

40
Cycle
Figure 5: Characteristic Path Length (Cycle 0-100).

of its search query so that a malicious peer never recesesiéry.
Section 4.5 describes a strategy to avoid malicious queporeses
by reducing the TTL for a peer’'s search query.

4.3 Freeriders move to fringe
4.3.1 Principle

When peeti finds a peer that it is likely to download from, it con-
nects to that peer and disconnects from its neighbor withaie
est local trust score. Since a freerider has a local trusesuio0,
freeriders move to the fringe of the network as well.

4.3.2 Experiments

As shown in Figure 4, certain good peers have higher tharageer
characteristic path lengths. These peers are freeridedstheir
path length reflects the fact that it is not advantageous noect
to peers that do not share any files. Notice also that the pagii
to any freerider is still shorter than the path length to amicious
peer. Since freeriders are not actively uploading inautbdites,

35

Characteristic Path Length

50 R 100
Authentic Uploads

Figure 6: Characteristic Path Length based on file uploads.

other peers remain connected to them until they find a morie-des
able peer.

Figure 6 is an equidistant histogram of the characterisditi p
length for all good peers after a 100 cycle simulation. Tlexis
lists four buckets representing the number of uploads a pagr
provided. Peers with no uploads (freeriders) fall into thieket
labeled 0, while a peer that has upload¥dauthentic files falls
into bucketB = [X] x 50. For example, peerwith N = 60
uploaded files is counted in buck& = 100. The figure shows
that freeriders take an average of 3.4 hops to reach whiles péth
uploads take around 2 hops. Therefore, the peers that dhar s
files are given a narrow view of the network.

4.4 Active peers are rewarded
4.4.1 Principle

Active peers have more opportunities to connect to otheveact
peers, since their local trust scores will be high. For eXaimgn
active peei with 7 = 3, may have connections with local trust val-
ues of 10, 6, and 4. An inactive peer will not have the oppdtyun
to connect to peet, while an active peer that has provided more
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than 4 authentic files to that peer will. Thus, the reward finb
an active peer is the opportunity to connect directly to otdutive
peers.

4.4.2 Experiments

The number of connections a peer has relative to the number of

files that the peer shares is plotted in Figure 7. To make thdtse

Authentic Response Ratio

0 50 100 150

Authentic Uploads
Figure 9: Authentic Response Ratio.
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Figure 10: Network Traffic.

describes clusters or neighborhoods that contain peensswitilar

interests and quality of service. These clusters beconeaghable
to a malicious peer residing on the fringe of the network.

4.5 Efficient Topology
4.5.1 Principle

more apparent, the network was set up to limit the max number In the APT protocol, connections are made based on downligad h

of connections to 11 (in this experiment only). Notice the trend

tory, so peers connect to peers that share their interegtsitially,

that as the number of shared files increases so does the numbeclusters of like-minded peers form and are connected ta oths-
of connections. This shows that peers that share many fites ar ters by hub peers which are active and have many intereseseTh

rewarded with a wider view of the network.
A peer is rewarded for sharing high quality files. In Figure 7
there are peers that share large amounts of data but readive o

characteristics describesmall-world networl{14]. Such a net-
work is sparsely connected, but has a short average chasticte
path length and a high cluster coefficient. A small-worldwark

few connections in return. These peers were set to share manythus allows a wide view of the network with low communication

unpopular files. Since connections are derived from dowddpa
peers are not rewarded for sharing vast amounts of unpogatar

One indication of a peer that shares popular files is in the-num
ber of executed uploads. Figure 8 plots the number of coiomect
a peer has relative to the number of authentic uploads it bas p
formed. The graph clearly shows that peers that activelpagpl
files are rewarded with a wide view of the network.

Figure 9 shows the fraction of authentic responses recdiyed
a peer compared to the total number of authentic files it wsdoa
For example, on average 43% of all query responses retuonad t
peer that executed 50 uploads originated from a good pegiceNo
that peers with more than 65 authentic file uploads receivg on
authentic responses. This shows that an active peer isfurth
warded with connections to peers with high fidelity. Sectoh

overhead.

4.5.2 Experiments

The data shown in Figures 10, 11, and 12 is extracted fronstine s
simulated session. In this experiment, peers follow the ARTo-
col and messages are set with a 3 hop TTL. Furthermore, miadici
peers were encoded to aggressively flood the network witin the
query responses by responding to all queries they receiveugh-
out the experiment, the average overall characteristitlpagth to
a peer was around 2.9 hops and the network diameter was betwee
7 and 9 hops.

The total number of query and response messages transferred
during a given cycle is plotted in Figure 10. The decline itwaek
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traffic can be attributed to good peers dropping connectiomsa-
licious peers, since malicious peers are unable to responaeries
as they lose their grasp on the network. Figure 11 shows lileat t
number of authentic responses returned to a peer increases o
time. The result supports the fact that peers connect ta gthed
peers that share similar content, and consequently moreegusee
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Figure 15: Link Ratio based on Local Trust.

peers move to the fringe of the network. The number of maliio
responses to a query during a given cycle under three sep&Fat
settingSMAX _TTL =4,MED_TTL = 3, andvIN _TTL = 2 is given in
Figure 13. Since a malicious peer is on average 3 hops fuatiney
than a good peer, there is a significant decline in maliciaeyg
responses when usingeD_TTL or MIN_TTL. Therefore, setting

being answered. At 70 cycles, the average number of messageshe TTL to be less than the overall average characteristit gan

transferred per cycle is about 100,000, which is 1/3 of the-nu
ber of messages transferred during the first cycle. Furtherm
Figure 12 shows that 97% of all responses after 70 cyclesware a
thentic.

A small TTL setting takes advantage of the fact that malisiou
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Figure 13: Malicious query responses based on TTL.

be effective in reducing the number of malicious query resps.

In the previous figures we have shown that even as the number
of messages passed decreases, peers still receive godtg qbial
service. One reason is that malicious peers are moved toitige f
of the network, thereby decreasing the unnecessary message
head caused by malicious responses. Another reason isgbet p
are organized into clusters of peers that share similardsts, so
the files that are of interest to a peer are likely locatedmear

We use the average cluster coefficient to quantify the alungte
effect of the APT protocol. The local cluster coefficigdis for
peeri € P with k; neighbors is defined as follows:

2F;
a*mw—n
where E; is the actual number of edges that exist betweenkthe
neighbors. Using this definition, if peérand all peers inV (i)
form a clique therC; = 1. The average cluster coefficient is then
defined ag”; averaged over all peers i.

Figure 14 measures the average cluster coefficient for alispe
in the network. The increase in cluster coefficient from thigal
power-law topology at cycle 0 shows that clusters form ushey
APT protocol. These clusters consist of peers that have sty m
positive interactions and thus share similar content @ss:
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Figures 15 and 16 demonstrate this clustering effect by mea-
suring the link ratio. The link ratio is defined as the peragetof
peers assigned a particular value that are also neighbigngeFL5
measures the link ratio with respect to local trust values: dx-
ample, edg€i, j) exists in 29% of all cases where peehas a
local trust value of 25 for peef. Notice the low ratio for local
trust scores below 5 and the high ratio for scores above 2%&eSi
local trust scores define successful transaction, the pts that
a peer’s connections are determined by its transactiors atliter
peers.

In Figure 16, the link ratio with respect to the similarity tbe
peers’ content is plotted. The content similarity of peand peey
is defined as,

1= (O e —cjel)
2

S(i,5) =

wheren is the total number of content categories apdthe num-
ber of files peei shares in content categaryormalized by the to-
tal number of files shared by peerUsing this definition, the value
S(i,7) = 1 means that pegrand peey have the same content dis-
tribution vectorsc. That is,c;y = c;; for each content categoty
The graph shows that clusters form out of peers having thenaj
of their content similar.

Clustering based on content similarity increases the nitiha
that a query is answered within a few hops. Moreover, reg®ns
to queries from closer peers can be trusted more than respons
from further away. By lowering its query horizon, a peer calket
advantage of the clustering that occurs under the APT pogtand
thereby increase the overall network efficiency.

5 Threat Scenarios

In previous sections it was assumed that malicious peerglygim
flood the network with inauthentic files in an attempt to subve
the system. We now evaluate the performance of our protocol i
preventing malicious connections (connections leading moali-
cious peer) and inauthentic file downloads under a variethirefat
scenarios.

5.1 Threat Model A

In this model, malicious peers respond to all queries exteyste
issued by a neighbor. If a malicious peer is chosen as a dagnlo
source, it will upload an inauthentic file.

Node Model. Let G C P be a set of good peers amd be
a malicious peer directly connected to all peergsin The peers

peer m

Figure 17: Node Model for Threat Models A and B.
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Figure 18: Threat Model A Malicious Connections.

in G also hold connections to peersfh\ {G Um} as shown in
Figure 17.

Query Model. All queries received by peern. are handled by
the following two cases.

1. Ifthe query originated by some peerGhthe peern does not
respond.

2. If the query originated by some peerih\ {G U m} then
peerm responds according to the default settings listed in
Table 2.

After receiving and potentially responding, peeidrops the query.
Peerm does not generate search queries of its own.

Given this query model, peer only uploads inauthentic files
to peers inP\{G U m}. Consequently, peen avoids an inauthen-
tic file detection by a neighboring peer @ That is, peet € G
will have a zero value local trust score for peer The goal of the
malicious peer is to prevent connection drops due to negjical
trust scores.

Threat Model A is naturally combatted by the APT protocol. At
some point peer € G begins to notice numerous peers disconnect-
ing from it, and so assumes it is relaying queries to a malgjeer.
The connection loss triggers pedo replace a low trust value con-
nection with some random connection, as outlined in Algonit2.
The question now is whether peemakes the right decision by
dropping the connection to peet.

To answer this observe that a malicious peer behaves as a
freerider, which makes it a less than desirable connectin:
cording to Algorithm 2, after a connection loss, a peer dritps
connections to peers with low local trust scores and reatsrie
random peers. Since malicious peewill have a local trust score
of 0, it is more likely to be dropped.
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Figure 18 shows the progression of malicious connectiona fo
simulated session set up for Threat Model A. The early drapén
number of malicious connections is the result of swappirgau
value connections to malicious peers. The short life of daivals
connection evenly distributes the inauthentic contentgaan the
network by a malicious peer. This even distribution workaiast
the malicious peer, since more peers are made aware ofétst.int
As the simulation moves forward, malicious peers encouetss-
tance in making new connections. After cycle 190, all cotinac
requests made by malicious peers are denied by good pears. Th
Threat Model A is handled well by the APT protocol.

5.2 Threat Model B

In Threat Model B the malicious peer entices its neighboith ai
few authentic files in order to gain some local trust and eaute
nection loss. The malicious peer will likely want to minireithe
number of authentic file uploads due to the counterprodeicidst.
That is, the purpose of a malicious peer is to disrupt theispaf
authentic files, not support it.

Node Model. Let G C P be a set of good peers and be a
malicious peer directly connected to all peerginPeers inG are
then connected to peersinh\ {G Um} as shown in Figure 17.

Query Model. Peerm responds to queries as specified by the
default settings listed in Table 2 subject to the constrdiat no
more than 10% of all uploads are to peergin Instead of prop-
agating the query, peen drops it. Peern does not generate a
search query of its own.

Under Threat Model B, peen will service authentic files to
peers inG and upload inauthentic files to peersin\ {G U m}.

By servicing peers 7 with authentic files, peem increases its
chances of maintaining its connection®o\ {G U m}, viaG.

Threat Model B is thwarted by the connection trust extension
described in Section 3.3. According to Algorithm 2 the peer§
will eventually lose their connections with peersim\ {G U m}
due to poor connection trust scores caused by relaying messa
to peerm. The loss of the connections 8\ {G U m} lessens
the value of peers 67 to peerm. Peerm will likely try to form
connections with peers it \ {G U m}. However, reconnecting
becomes increasingly difficult since peerwill have built up neg-
ative local trust scores with peersih\ {G U m}. Assuming that
the majority of uploads by peer are inauthentic (as in any pro-
ductive malicious attack), peet will eventually lose the ability to
connect to good peers iR.

Figure 19 plots the succession of malicious connections in a
simulated session under Threat Model B. The graph startsiiout
ilar to that shown in Figure 18. However, in later cycles thienn
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Figure 21: Node Model for Threat Model C.

ber of malicious connections remains around 5, while in Fédi8

all malicious peers are completely disconnected. Nevietbeat

this point, most queries never reach the malicious peece she
average path length to them is 4 hops more than to a good peer.
Consequently, as shown in Figure 20, the number of inaduthent
downloads is negligible.

A considerable amount of noise is present in Figures 19 and 20
which can be attributed to the volatile nature of conneatimma-
licious peers and the authentic files uploaded by maliciaesp
The noise attrition in both figures is caused by the increassig-
tance toward malicious connections.

Peers that remain connected to malicious peers do so because
they are serviced authentic files. These peers are tagged asb-
nections because of poor connection trust scores. DroggEegs
with low connection trust scores closes the conduit to thicinas
peers. The malicious peers may then seek other, more frodfu
nections. However, poor local trust scores make it diffitaitma-
licious peers to form new connections, and thus they ar@é@m
their current connections. If malicious peers are not ableon-
tinually satisfy queries, then by Algorithm 2, the conness will
be severed due to void downloads. Although not as effectva a
Threat Model A, the APT protocol is able to prevent most inau-
thentic downloads and keep malicious peers at bay.

5.3 Threat Model C

In Threat Model C, a set of malicious peers that upload irentth
files are connected to another set of malicious peers thatdero
authentic files. The malicious peers serving authenticilagtain
the connection to the rest of the network while the otherdfftbe
network with inauthentic files.
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Node Model. Figure 21 illustrates the node model for Threat
Model C. LetM C P be the set of all malicious peers in. We
partition M into two disjoint sets\/, andM;. Peers inV/; are con-
nected to all peers in/, and malicious peers i/, also maintain
connections to peers iR \ {M, U M;}.

Query Model. Both sets of malicious peers will respond to
queries as specified in Table 2. The search queries received b
peers inM, are only forwarded to peers if;, while peers in\/;
do not propagate the queries they receive. Neither of thicimas
sets will generate a search query of their own.

After being chosen as a download source, peet®inupload
authentic files, while those id/; upload inauthentic files. The
motivation behind Threat Model C is two-fold:

1. Malicious peers no longer depend on servicing a large eamb
of requests made by a single good peer.

The connection trust is inherently weaker than localttrus
at preventing malicious connection. This threat model ex-
ploits that weakness by using malicious peers as conduaits th
purely upload authentic files to the rest of the network.

The main advantage of this threat model over the previousais t

peers inM,, are never assigned a negative local trust score. There-

fore, good peers rely entirely on negative connection sostes to
stave off malicious connections from peers\ify .

Figure 22 shows three simulated sessions using different pa
titions of malicious peers inV/; (hidden peers) and/,, where
| M;| 4+ | M. |= 10. As expected, the malicious attacks con-
taining more hidden peers have a shorter connection lifeéogin
P\{M, U M;}. Notice that in all cases malicious peers are eventu-
ally discovered and disconnected from the network. Theeetbe
connection trust is sufficient in eliminating malicious peé&om
the network.

6 Related Work

Related topologies have been proposed in [7], [6], and [Ihl][7],

a peer connects to peers initially at random, and discoamveoen
it becomes overloaded. The peers that are disconnectetheil
connect to other peers. The connections in [7] can be seach |
(through which search information is sent) or index linkegugh
which indexing links are sent). Lv et al. present a simildresne
in [11]; the differences here are that there is only one tyfdank
and that each peer tracks its neighbors capacities and sisggee-
placement peer after it breaks a connection. The SLIC mésinan
proposed in [6] does not add or break connections, but rattosvs

11

each peer to rate its neighbors, and use these ratings tolooty
many queries from each neighbor to process and forward.

7 Conclusion

We have shown a simple protocol for the formation of adaf®2e
topologies. The resulting topologies are highly efficienhust to
malicious attacks, and provide built-in incentives andigluments
that are consistent with positive peer contribution. Ashepeer
chooses its neighbors, clusters of peers with similar ésttsrand
quality of service form. The creation of communities conitag

congenial peers have deep implications towards the pdizatian

of P2P networks.
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