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Abstract

We present a peer-level protocol for forming adaptive, self-
organizing topologies for data-sharing P2P networks. Thisproto-
col is based on the idea that a peer should directly connect tothose
peers from which it is most likely to download satisfactory content.
We show that the resulting topologies are more efficient thanstan-
dard Gnutella topologies. Furthermore, we show that these adap-
tive topologies have the added benefits of increased resistance to
certain types of attacks, intrinsic rewards for active peers and pun-
ishments for malicious peers and freeriders.

1 Introduction

While peer-to-peer networks have great potential for large-scale,
robust, distributed information sharing, current P2P systems such
as Gnutella are not highly efficient or scalable because peers are
connected randomly to other peers in the network. Alternative P2P
organization protocols that place content at nodes based onhash
functions have been proposed, [12], [13]. Such schemes are ef-
ficient for queries where the exact search key is known, but be-
have poorly for approximate queries. Furthermore, neitherof these
schemes addresses the issues of malicious peers or freeriders as in-
herent parts of the topology design.

A useful concept for designing scalable, efficient, and robust
overlay topologies is that ofinteraction topologies. The interaction
topology for a P2P file-sharing network is a graph whose nodesare
the peers in the network, and whose arcs are defined by downloads.
For example, one may place an arc between nodesi andj if nodei
has downloaded content from nodej more than 3 times.

We propose a peer-level protocol for forming self-organizing
topologies based on the idea that efficiency and robustness can be
achieved by designing an overlay topology to match the interaction
topology. We call the resulting topologies Adaptive P2P Topologies
and we call the protocol the APT protocol.

More specifically, the APT protocol is based on two fundamen-
tal notions. First, peers should directly connect to those peers from
which they are likely to download satisfactory files. Second, peers
may use past history to determine the peers from which they are
likely to download satisfactory files. (For simplicity, we refer to
retrieved content as “files” even though in general it could be any
type of query results.) At a basic level, the practical implementa-
tion of these ideas involves each peer keeping a score of how many
good files it has downloaded from each other peer in the network.
Peers connect to those peers that have high scores, and disconnect
from peers with low scores. After describing our network model
in Section 2, we present a self-organizing, distributed protocol for
forming such topologies in Section 3.

We will show several natural characteristics of a topology de-
rived from peers connecting to download sources based on past
history. One such property isefficiency; peers are more likely to
receive responses to their queries with less query forwarding over-
head. This is discussed in further detail in Section 4.5. Another
property issecurity; malicious peers are moved to the fringe of the
network, thereby increasing the network’s resistance to inauthentic
file attacks. This is the subject of Section 4.2. The third isincen-
tives; freeriders are moved to the fringe of the network, whereas
peers that actively share files are moved to the center of the net-
work. Peers that lie on the fringe of the network receive a limited
number of responses to their queries. On the other hand, active
peers have a wider view of the network and consequently receive
a higher quality of service, even if they limit the number of con-
nections they make. The intrinsic rewards and punishments are
discussed in Sections 4.3 and 4.4.

2 Network Model

2.1 Network Topology

The P2P network is represented as an undirected graphG =
(P, E), whereP is the set of nodes, andE is the set of edges
(i, j) describing the connections between nodesi, j ∈ P . The
connections in the P2P network are symmetric and describe a
peer’s neighbor set. That is, peeri’s neighbor set is defined as
N(i) = {j | (i, j) ∈ E}. The network is initialized to contain
some number of peers whose connections form a power-law topol-
ogy, as described in [3].

2.2 Joining the network

A peer joins the P2P network by contacting a designated pong
server to obtain some number of live IP addresses [9]. Before
adding a node to its neighbors set, the peer must be permittedto
make a direct connection. A connection request messageR(i, j) is
initiated by peeri requesting a direct connection to peerj. The re-
quest is sent directly to peerj which then decides whether to accept
the connection. If peerj accepts the connection then both peers add
one another to their neighbor sets. System bootstrap proceeds by
having each peer attempt an initial number of connectionsγ that
does not exceed some system wide maximum number of connec-
tionsτ .

Bootstrapping and node discovery are still open issues in P2P
systems. Schemes that distribute the IP addresses maintained by the
pong servers to nodes in the network are evaluated in [10]. Such
schemes can easily be incorporated into our model, since theAPT
protocol is independent of the method for establishing connections.
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Figure 1: Query Propagation.

2.3 Query Propagation

Query messages are propagated via flooding-based broadcast. A
search query can be initiated by any node in the network by first
broadcasting to all peers in its neighbor set. Each node, upon re-
ceiving a propagated search query, will examine its local file system
for a match. Any matches are returned directly to the query initia-
tor. The peer may then propagate the query to all its neighbors
except for the node from which it received the query. Each query
maintains a time-to-live (TTL) field to limit the scope of thequery
flooding. At query time, the issuing peer will set the TTL fieldto
some default value, which is then decremented by one at each prop-
agation. A node receiving a query withTTL = 0 will not forward
the query.

Figure 1 illustrates how a query propagates through the P2P
network. In the example, peerk initiates the search query, with
TTL = 1, by broadcasting to all of its neighbors, in this case
peerj. Peerj decides not to respond to the query and forwards the
query to its neighbors, except to peerk. Upon receiving the query,
peeri directly responds to peerk with a match. The query flooding
terminates at peeri since the TTL is now 0.

3 Adaptive P2P Topologies

3.1 Local Trust Scores

Adaptive P2P Topologies are based on two notions:

1. A peer should directly connect to those peers from which itis
likely to download files in the future.

2. A peer may use its past history to estimate the likelihood of a
future successful download.

In the APT protocol, a peer encodes its past history with a set
of local trust values[1]. Peeri stores a local trust value for each
peer it has interacted with. Ifsat(i, j) is the number of satisfactory
transactions peeri has had with peerj, andunsat(i, j) is the num-
ber of unsatisfactory transactions peeri has had with peerj, then
we define the local trust value as

sij = sat(i, j) − unsat(i, j).

Peeri may deem a transaction unsatisfactory if, for example, the
file downloaded is inauthentic or tampered with, or if the download
is either slow or interrupted. Thelocal trust vector~si associated

with peeri contains allsij values wherej varies over all peers in
the network. In our implementation, each peer maintains a hash ta-
ble containing the local trust values of all its acquaintances. An ac-
quaintance is then defined as an entry in the hash table. If peer i has
never interacted with peerj then there will be no entry in peeri’s
table for peerj, and thussij = 0.

3.2 Protocol

We define thetrustworthinessof a network to be:

Q =

v∑

i=1

v∑

j=1

connection(i, j) × si,j

wherev is the number of nodes inP andconnection(i, j) = 1 if
(i, j) ∈ E, otherwiseconnection(i, j) = 0. Intuitively, a network
where peers are connected to peers that they trust will have ahigh
Q value.

Generally, in any P2P System, there will be some connection
barriers; for example, peers may wish to set a limitτ on the num-
ber of peers to which they connect in order to conserve bandwidth.
Connection barriers are common in real world P2P Systems and
support fair sharing of resources [9]. We may therefore formulate
the problem of creating a trustworthy network as: maximize Qsub-
ject to the constraint that each peeri has at mostτ connections.

The APT Protocol (Algorithm 1) is a peer-level greedy algo-
rithm for maximizingQ and it proceeds as follows. Peeri joins the
network by attemptingγ random connections as described in Sec-
tion 2.2. The join process is repeated until at least 1 connection is
made. After downloading an authentic file from peerj /∈ N(i),
peer i with ni < τ connections sends the connection request
R(i, j) to peerj. If ni = τ then peeri sends a connection re-
quest if one of the following holds:

1. Peerj /∈ N(i) achieves a higher local trust value than one of
peeri’s neighbors (messageR(i, j) is sent).

2. Peerj ∈ N(i) is assigned a lower local trust value than some
acquaintancek /∈ N(i) of peeri (messageR(i, k) is sent).

The first scenario describes an authentic download from peerj,
while the second occurs after an inauthentic download from peerj.
In both cases, if peeri’s connection request is granted then it will
disconnect from its neighbor with the lowest local trust value. A
special case occurs if a neighbor of peeri is assigned a negative
local trust score and peeri is not able to connect to an acquaintance.
In this situation peeri immediately disconnects from that neighbor
and attempts a connection to a random peer.

Peerj will only accept peeri’s connection request if peerj’s lo-
cal trust valuesji of peeri is non-negative and one of the following
conditions is true:

1. Peerj has fewer thanτ connections.

2. Peerj’s local trust valuesji of peeri is greater than the local
trust value of at least one neighbor.

In the second case peerj will replace its lowest trust valued
neighbor with peeri. The careful reader will notice that peerj
would have previously made a connection request to peeri because
of peeri’s desirablesji value. It is assumed that peeri had denied
the connection requestR(j, i) but then later sent the connection
requestR(i, j).
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function JoinNetwork(){
while | N(i) |< 1 do

connectToRandomPeers();
end
}

function connectToRandomPeers(){
R = some set of random IP addresses from pong server;
foreach j ∈ R do

if j /∈ N(i) && sij ≥ 0 then
if connectj(i) = true && | N(i) |≥ γ then

return from function;
end

end
end
}

function download(peerj) {
if download satisfactorythen

sij = sij + 1;
if | N(i) |< τ then

connectj (i);
end
else

find k ∈ neighbors with lowestsik;
if sij > sik && connectj = true then

disconnectk(i);
end

end
end
if download unsatisfactorythen

sij = sij − 1;
if j ∈ N(i) then

A = {k | k /∈ N(i) && sij < sik && sik ≥ 0};
while A 6= ∅ do

find peerx ∈ A with maxsix;
if connectx(i) = true then

disconnectj (i);
return from function;

end
end
if sij < 0 then

disconnectj (i);
connectToRandomPeers();

end
end

end
}

function connect(peerj) {
if | N(i) |< τ && sij ≥ 0 then

return true // accept connection from peerj;
end
else

find neighbork with min sik;
if sik < sij then

disconnectk(i);
return true // accept connection from peerj;

end
end
return false // connection denied;
}

function disconnect(peerj) {
N(i) = N(i) \ j;
if | N(i) |< γ then

connectToRandomPeers();
end
}

Algorithm 1: Basic APT Protocol

Figure 2: Hidden Malicious Attack.

3.3 Practical Issues

Hidden malicious peers and local maxima are two practical issues
not addressed by the basic algorithm presented here.

Hidden Malicious Peers. A malicious peer may disseminate
corrupt or inauthentic files by connecting to a peer to which it does
not directly upload files. To illustrate with Figure 2, let analtruistic
peer be defined as a peer that shares files but does not download
files. Suppose that peeri is a malicious peer and peerj is an altru-
istic peer. Since peerj does not download any files, its local trust
vector will be an all-zero vector. According to Algorithm 1,peerj
will never disconnect from any other peer. Furthermore, other peers
will connect to peerj because it provides authentic files. Therefore,
the altruistic peerj unwittingly serves as a conduit through which
malicious peeri receives queries used to disseminate inauthentic
files. In effect, malicious peeri is ”hiding” behind altruistic peerj.

We addresses this issue by defining the notion ofconnection
trust. While the local trust valueskj quantifies the number of au-
thentic files that peerk downloads from peerj, the connection trust
valuerkj quantifies the number of authentic files that peerk dis-
coversthrough peerj. For example, suppose that in Figure 2 peerj
forwards peerk’s query to peeri which then responds with a match.
If peerk downloads a file from peeri and the file is authentic, then
the local trustski and the connection trustrkj are incremented by
1. If the file is inauthentic, then both values are decremented by 1.

Algorithm 2 extends Algorithm 1 by including connection trust
in the overall value of an acquaintance. We are then able to com-
bat the hidden malicious peer problem by having peers disconnect
from neighbors with low connection trust values. By dropping con-
nections to peers that serve as malicious conduits, hidden malicious
peers lose their ability to upload malicious content. To recover from
the connection loss, the altruistic peer will break all of its connec-
tions and attempt new connections.

In order to keep track of the peer through which a file is dis-
covered, the standard query-response protocol needs to be slightly
modified. Peeri issuing a query must tag the query with an en-
crypted identifier of the neighbor to which it initially sends the
query. Any query responder must append the same encrypted iden-
tifier to its query response. Response messages that do not con-
tain an encrypted identifier to some outstanding query are dropped.
This allows peeri to know the peer through which it discovers each
of the files it downloads.

Local Maxima. A peer may find itself in a part of the net-
work where it receives few responses to its queries. We definethe
notion of a void download to be the situation in which a peer re-
ceives no response to a query. The basic principle behind adaptive
P2P topologies is that the peer should be able to bootstrap its way
to a better-suited part of the network by establishing and breaking
connections. However, if after a long period of time, a peer is still
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function connectToRandomPeers(){
R = some set of random IP addresses from pong server;
foreach j ∈ R do

if j /∈ N(i) && sij ≥ 0 && rij ≥ 0 then
if connectj(i) = true && | N(i) |≥ γ then

return from function;
end

end
end
}

function download(peerj) {
if download satisfactorythen

sij = sij + 1;
ric = ric + 1;
// Rest same as Algorithm 1;

end
if download unsatisfactorythen

sij = sij − 1;
ric = ric − 1;
A = {k | k /∈ N(i) && rik > ric && rik ≥ 0};
while A 6= ∅ do

find peerx with maxrix ∈ A;
if connectx(i) = true then

disconnectc(i);
return from function;

end
else

A = A \ x;
end

end
if ric < 0 then

disconnectc(i);
connectToRandomPeers();
return from function;

end
// Rest same as Algorithm 1;

end
}

function connect(peerj) {
if | N(i) |< τ then

if sij ≥ 0 && rij ≥ 0 then
return true // accept connection to peerj;

end
end
else

find neighbork with min sik;
if sik < sij && rij ≥ 0 then

disconnectk(i);
return true // accept connection to peerj;

end
end
return false // connection denied;
}

function disconnect(peerj) {
N(i) = N(i) \ j;
if numLostConnections(i) > threshold then

drop all current connections;
connectToRandomPeers();
reset numLostConnections(i);

end
else

drop neighbork with lowestrik;
connectToRandomPeers();
increment numLostConnections(i);

end
}

Algorithm 2: APT Protocol Connection Trust Extension

local trust peer score based on download transaction.
connection trust neighbor score based on the outcome of a

query forwarded by the neighbor.
void downloads number of queries with no response.

Table 1: Connection Variables

seeing many void downloads, it may be stuck in a local maxima.
We handle this issue using random restarts. That is, if a peer

has a consistently low number of responses per query over a long
period of time, then it may choose to do the following:

1. Exchange connections that exhibit low performance1 with
new connections to random peers.

2. Break all connections and re-enter elsewhere in the network.

The first option avoids dropping current connections that may
still provide future use. The second is used when all connections
fail to provide responses to a large number of queries. Algorithm 2
incorporates these options, which are loosely analogous tosimu-
lated annealing techniques in traditional optimization [15].

4 Empirical Results

In this section, we assess the performance of the proposed scheme,
and compare it to a P2P network with a standard power-law topol-
ogy. The performance analysis is given for standard conditions as
well as a variety of threat models. The success of the APT protocol
is dependent on the variables a peer uses to determine its connec-
tions to other peers. Equipped with the variables listed in Table 1, a
peer is able to avert malicious attacks and choose, from its acquain-
tances, peers that share similar interests.

4.1 Simulation

Our findings are based on simulations of a P2P network model de-
scribed in [3]. The network model is described in Section 3, while
the peer and content models are briefly explained here.

Node model. The network consists of good nodes (normal
nodes, participating in the network to download and upload files)
and malicious nodes (adversarial nodes, participating in the net-
work to undermine its performance). We also consider cases that
include freeriders, nodes that only download files and do notshare
any files of their own [5]. We analyze different behaviors of ama-
licious peer in the network using threat models. These models will
be described in more detail later on.

Content distribution model. Interactions between peers i.e.
which queries are issued and which queries are answered by given
peers, are modeled using a probabilistic content distribution. The
detailed model is presented in [3]. Peers are assumed to be inter-
ested in a subset of the total available content in the network, such
that each peer initially picks a number of content categories and
shares files only in these categories. It is shown in [2] that files
shared in a P2P network are often clustered by content categories.
When the simulator generates a query, it does not generate a search
string. Instead, it generates the category and rank (or popularity) of
the file that will satisfy the query. The category and rank arebased
on Zipf distributions. Each peer that receives the query checks if
it supports the file category and if so, whether it shares the file.
Files are assigned probabilistically to peers at initialization based
on file popularity and the content categories the peer is interested

1The performance of a connection can be measured by the numberof responses
received through the connection.

4



Figure 3: Average Characteristic Path (Cycle 0).

in. This implies that peers are likely to share popular files,even if
they have few files. Distributions used in the model are takenfrom
measurements in real-world P2P networks [4].

Simulation execution. The simulation of a network proceeds
in query cycles. In each query cycle, peeri in the network may be
actively issuing a query, be inactive, or even down and not respond-
ing to queries passing by. Upon issuing a query, a peer waits for
incoming responses, selects a download source among the nodes
that responded and starts downloading the file. The latter two steps
are repeated until a peer has properly received a good copy ofthe
file or runs out of responses.

The base settings that apply for most of the experiments are
summarized in Table 2. The settings represent a fairly smallnet-
work to make our simulations tractable. However, we have experi-
mented with larger networks and our conclusions continue tohold.
That is, schemes that do well in a small setting, proportionately do
as well even when the network is scaled up.

Metrics. We are interested in measuring the efficiency, secu-
rity, and incentives of adaptive P2P topologies. We use the follow-
ing two metrics to measure the efficiency of the network: the num-
ber of messages passed and the number of authentic responsesper
query. We define the total number of messages to be the total num-
ber of queries, responses and file downloads in the network. We
define the number of authentic responses as those query responses
that would lead to the download of an authentic file. The number of
inauthentic responses per query and the average characteristic path
length to malicious peers are used to evaluate the security of our
protocol. The number of inauthentic responses per query is defined
as the total number of query responses that would lead to the down-
load of an inauthentic file. The characteristic path length to a peer
is the average hop-count to the peer from all other peers in the net-
work. We use the average characteristic path length to active peers
and freeriders to measure the incentives that our protocol gives for
participation.

A peer’s search query adds 1 to the number of messages passed
at each propagation point. Each response to a search query incre-
ments the number of messages passed by 1. The number of inau-
thentic responses per query represents the total number of query
responses originating from a malicious peer. All other response
messages increase the number of authentic responses by 1. A peer’s
characteristic path length is the average hop-count to the peer from
all other peers in the network.

Figure 4: Average Characteristic Path (Cycle 95).

4.2 Malicious peers move to fringe

4.2.1 Principle

One common attack on P2P networks today is the inauthentic file
attack, where malicious peers upload corrupt, inauthentic, or mis-
named content onto the network. Since the APT protocol discon-
nects from peers that upload unsatisfactory files, malicious peers
eventually move to the fringe of the network. Moving malicious
peers to the fringe of the network has been shown to be a very ef-
fective strategy in combatting certain types of attacks [8].

4.2.2 Experiments

We use thecharacteristic path lengthto illustrate how the malicious
peers move to the fringe of the network using the APT protocol.
We define the average characteristic path length to a peeri as the
average of the shortest path lengths between all other peersin the
network and peeri.

cpli =
1

|P\i|

∑

j∈P\i

shortestPath(i, j)

whereP\i is the set of all peers in the network except peeri.
In Figure 3, the x-axis represents the peer id and the y-axis is

the characteristic path length to that peer. The data was extracted
from the Query Cycle Simulator [3] at Cycle 0 which describes
a power-law topology. The x-axis is segmented into two regions
each reflecting a type of peer. The gray region represents peers
in the network that are considered good and the black corresponds
to malicious peers. The average characteristic path lengthto any
peer is about 2.5 hops. During network bootstrap, maliciouspeers
were encoded to aggressively connect to good peers, and thusthe
average characteristic path length for malicious peers is 2.3 hops.

Figure 4 shows the characteristic path length after 95 simulated
cycles. The overall average characteristic path length is 4.94 hops.
Notice that the average characteristic path to a malicious peer (9.84
hops) is much higher than that to a good peer (4.02 hops). The
separation in characteristic path length shows that as goodpeers
drop connections based on inauthentic downloads, malicious peers
are pushed into the fringe of the network.

Figure 5 plots the evolution of the average characteristic path
length for good peers and malicious peers. Beyond the initial 100
cycles, no path exists from a good peer to a malicious peer. The
divergence in the characteristic path lengths of good and malicious
peers indicates that these two peer types become distinct over time.
A good peer can take advantage of this result by limiting the scope
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Network # of good peers 100
# of malicious peers 10
# of initial neighbors of good peersγ 3
# of initial neighbors of malicious peersγ 5
# Maximum number of allowed connectionsτ 20
# Time-to-live for query messages 3

Content Distribution # of distinct files at good peeri file distribution in [4]
set of content categories supported by good peeri Zipf distribution over 20 content categories
# of distinct files at good peeri in categoryj uniform random distribution over peeri’s

total number of distinct files
top % of queries for most popular categories and20%
files malicious peers respond to
% of time peeri is up and processing queries uniform random distribution over [0%, 100%]
% of up-time good peeri issues queries uniform random distribution over [0%, 50%]

Peer Behavior % of download requests in which good peeri 5%
returns inauthentic file
% of download requests in which malicious peeri 100%
returns inauthentic file
% of queries malicious peeri responds to 20%
download source selection algorithm random

Simulation # of simulation cycles in one experiment 100-200
# of experiments over which results are averaged5

Table 2: Simulation settings
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Figure 5: Characteristic Path Length (Cycle 0-100).

of its search query so that a malicious peer never receives its query.
Section 4.5 describes a strategy to avoid malicious query responses
by reducing the TTL for a peer’s search query.

4.3 Freeriders move to fringe

4.3.1 Principle

When peeri finds a peer that it is likely to download from, it con-
nects to that peer and disconnects from its neighbor with thelow-
est local trust score. Since a freerider has a local trust score of 0,
freeriders move to the fringe of the network as well.

4.3.2 Experiments

As shown in Figure 4, certain good peers have higher than average
characteristic path lengths. These peers are freeriders, and their
path length reflects the fact that it is not advantageous to connect
to peers that do not share any files. Notice also that the path length
to any freerider is still shorter than the path length to any malicious
peer. Since freeriders are not actively uploading inauthentic files,
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Figure 6: Characteristic Path Length based on file uploads.

other peers remain connected to them until they find a more desir-
able peer.

Figure 6 is an equidistant histogram of the characteristic path
length for all good peers after a 100 cycle simulation. The x-axis
lists four buckets representing the number of uploads a peerhas
provided. Peers with no uploads (freeriders) fall into the bucket
labeled 0, while a peer that has uploadedN authentic files falls
into bucketB = d N

50
e × 50. For example, peeri with N = 60

uploaded files is counted in bucketB = 100. The figure shows
that freeriders take an average of 3.4 hops to reach while peers with
uploads take around 2 hops. Therefore, the peers that do not share
files are given a narrow view of the network.

4.4 Active peers are rewarded

4.4.1 Principle

Active peers have more opportunities to connect to other active
peers, since their local trust scores will be high. For example, an
active peeri with τ = 3, may have connections with local trust val-
ues of 10, 6, and 4. An inactive peer will not have the opportunity
to connect to peeri, while an active peer that has provided more
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Figure 7: Connections vs. Shared Data Volume.
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Figure 8: Connections vs. Authentic Uploads.

than 4 authentic files to that peer will. Thus, the reward for being
an active peer is the opportunity to connect directly to other active
peers.

4.4.2 Experiments

The number of connections a peer has relative to the number of
files that the peer shares is plotted in Figure 7. To make the results
more apparent, the network was set up to limit the max number
of connectionsτ to 11 (in this experiment only). Notice the trend
that as the number of shared files increases so does the number
of connections. This shows that peers that share many files are
rewarded with a wider view of the network.

A peer is rewarded for sharing high quality files. In Figure 7
there are peers that share large amounts of data but receive only
few connections in return. These peers were set to share many
unpopular files. Since connections are derived from downloads,
peers are not rewarded for sharing vast amounts of unpopulardata.

One indication of a peer that shares popular files is in the num-
ber of executed uploads. Figure 8 plots the number of connections
a peer has relative to the number of authentic uploads it has per-
formed. The graph clearly shows that peers that actively upload
files are rewarded with a wide view of the network.

Figure 9 shows the fraction of authentic responses receivedby
a peer compared to the total number of authentic files it uploads.
For example, on average 43% of all query responses returned to a
peer that executed 50 uploads originated from a good peer. Notice
that peers with more than 65 authentic file uploads receive only
authentic responses. This shows that an active peer is further re-
warded with connections to peers with high fidelity. Section4.5
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Figure 9: Authentic Response Ratio.
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Figure 10: Network Traffic.

describes clusters or neighborhoods that contain peers with similar
interests and quality of service. These clusters become unreachable
to a malicious peer residing on the fringe of the network.

4.5 Efficient Topology

4.5.1 Principle

In the APT protocol, connections are made based on download his-
tory, so peers connect to peers that share their interests. Eventually,
clusters of like-minded peers form and are connected to other clus-
ters by hub peers which are active and have many interests. These
characteristics describe asmall-world network[14]. Such a net-
work is sparsely connected, but has a short average characteristic
path length and a high cluster coefficient. A small-world network
thus allows a wide view of the network with low communication
overhead.

4.5.2 Experiments

The data shown in Figures 10, 11, and 12 is extracted from the same
simulated session. In this experiment, peers follow the APTproto-
col and messages are set with a 3 hop TTL. Furthermore, malicious
peers were encoded to aggressively flood the network with their
query responses by responding to all queries they receive. Through-
out the experiment, the average overall characteristic path length to
a peer was around 2.9 hops and the network diameter was between
7 and 9 hops.

The total number of query and response messages transferred
during a given cycle is plotted in Figure 10. The decline in network
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Figure 11: Authentic Responses.
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Figure 12: Authentic Response Ratio.

traffic can be attributed to good peers dropping connectionsto ma-
licious peers, since malicious peers are unable to respond to queries
as they lose their grasp on the network. Figure 11 shows that the
number of authentic responses returned to a peer increases over
time. The result supports the fact that peers connect to other good
peers that share similar content, and consequently more queries are
being answered. At 70 cycles, the average number of messages
transferred per cycle is about 100,000, which is 1/3 of the num-
ber of messages transferred during the first cycle. Furthermore,
Figure 12 shows that 97% of all responses after 70 cycles are au-
thentic.

A small TTL setting takes advantage of the fact that malicious
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Figure 13: Malicious query responses based on TTL.
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Figure 14: Cluster Coefficient.
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Figure 15: Link Ratio based on Local Trust.

peers move to the fringe of the network. The number of malicious
responses to a query during a given cycle under three separate TTL
settings,MAX TTL = 4, MED TTL = 3, andMIN TTL = 2 is given in
Figure 13. Since a malicious peer is on average 3 hops furtheraway
than a good peer, there is a significant decline in malicious query
responses when usingMED TTL or MIN TTL. Therefore, setting
the TTL to be less than the overall average characteristic path can
be effective in reducing the number of malicious query responses.

In the previous figures we have shown that even as the number
of messages passed decreases, peers still receive good quality of
service. One reason is that malicious peers are moved to the fringe
of the network, thereby decreasing the unnecessary messageover-
head caused by malicious responses. Another reason is that peers
are organized into clusters of peers that share similar interests, so
the files that are of interest to a peer are likely located nearby.

We use the average cluster coefficient to quantify the clustering
effect of the APT protocol. The local cluster coefficientCi for
peeri ∈ P with ki neighbors is defined as follows:

Ci =
2Ei

ki(ki − 1)

whereEi is the actual number of edges that exist between theki

neighbors. Using this definition, if peeri and all peers inN(i)
form a clique thenCi = 1. The average cluster coefficient is then
defined asCi averaged over all peers inP .

Figure 14 measures the average cluster coefficient for all peers
in the network. The increase in cluster coefficient from the initial
power-law topology at cycle 0 shows that clusters form usingthe
APT protocol. These clusters consist of peers that have had many
positive interactions and thus share similar content interests.
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Figure 16: Link Ratio based on Content Similarity.

Figures 15 and 16 demonstrate this clustering effect by mea-
suring the link ratio. The link ratio is defined as the percentage of
peers assigned a particular value that are also neighbors. Figure 15
measures the link ratio with respect to local trust values. For ex-
ample, edge(i, j) exists in 29% of all cases where peeri has a
local trust value of 25 for peerj. Notice the low ratio for local
trust scores below 5 and the high ratio for scores above 25. Since
local trust scores define successful transaction, the plot shows that
a peer’s connections are determined by its transactions with other
peers.

In Figure 16, the link ratio with respect to the similarity ofthe
peers’ content is plotted. The content similarity of peeri and peerj
is defined as,

S(i, j) =
1 − (

∑n

t=1
|cit − cjt|)

2

wheren is the total number of content categories andcit the num-
ber of files peeri shares in content categoryt normalized by the to-
tal number of files shared by peeri. Using this definition, the value
S(i, j) = 1 means that peeri and peerj have the same content dis-
tribution vectorsc. That is,cit = cjt for each content categoryt.
The graph shows that clusters form out of peers having the majority
of their content similar.

Clustering based on content similarity increases the probability
that a query is answered within a few hops. Moreover, responses
to queries from closer peers can be trusted more than responses
from further away. By lowering its query horizon, a peer can take
advantage of the clustering that occurs under the APT protocol, and
thereby increase the overall network efficiency.

5 Threat Scenarios

In previous sections it was assumed that malicious peers simply
flood the network with inauthentic files in an attempt to subvert
the system. We now evaluate the performance of our protocol in
preventing malicious connections (connections leading toa mali-
cious peer) and inauthentic file downloads under a variety ofthreat
scenarios.

5.1 Threat Model A

In this model, malicious peers respond to all queries exceptthose
issued by a neighbor. If a malicious peer is chosen as a download
source, it will upload an inauthentic file.

Node Model. Let G ⊂ P be a set of good peers andm be
a malicious peer directly connected to all peers inG. The peers

Figure 17: Node Model for Threat Models A and B.
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Figure 18: Threat Model A Malicious Connections.

in G also hold connections to peers inP \ {G ∪ m} as shown in
Figure 17.

Query Model. All queries received by peerm are handled by
the following two cases.

1. If the query originated by some peer inG the peerm does not
respond.

2. If the query originated by some peer inP \ {G ∪ m} then
peerm responds according to the default settings listed in
Table 2.

After receiving and potentially responding, peerm drops the query.
Peerm does not generate search queries of its own.

Given this query model, peerm only uploads inauthentic files
to peers inP \{G ∪ m}. Consequently, peerm avoids an inauthen-
tic file detection by a neighboring peer inG. That is, peeri ∈ G
will have a zero value local trust score for peerm. The goal of the
malicious peer is to prevent connection drops due to negative local
trust scores.

Threat Model A is naturally combatted by the APT protocol. At
some point peeri ∈ G begins to notice numerous peers disconnect-
ing from it, and so assumes it is relaying queries to a malicious peer.
The connection loss triggers peeri to replace a low trust value con-
nection with some random connection, as outlined in Algorithm 2.
The question now is whether peeri makes the right decision by
dropping the connection to peerm.

To answer this observe that a malicious peer behaves as a
freerider, which makes it a less than desirable connection.Ac-
cording to Algorithm 2, after a connection loss, a peer dropsits
connections to peers with low local trust scores and reconnects to
random peers. Since malicious peerm will have a local trust score
of 0, it is more likely to be dropped.
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Figure 19: Threat Model B Malicious Connections.

Figure 18 shows the progression of malicious connections for a
simulated session set up for Threat Model A. The early drop inthe
number of malicious connections is the result of swapping out low
value connections to malicious peers. The short life of a malicious
connection evenly distributes the inauthentic content placed in the
network by a malicious peer. This even distribution works against
the malicious peer, since more peers are made aware of its intent.
As the simulation moves forward, malicious peers encounterresis-
tance in making new connections. After cycle 190, all connection
requests made by malicious peers are denied by good peers. Thus
Threat Model A is handled well by the APT protocol.

5.2 Threat Model B

In Threat Model B the malicious peer entices its neighbors with a
few authentic files in order to gain some local trust and evadecon-
nection loss. The malicious peer will likely want to minimize the
number of authentic file uploads due to the counterproductive cost.
That is, the purpose of a malicious peer is to disrupt the sharing of
authentic files, not support it.

Node Model. Let G ⊂ P be a set of good peers andm be a
malicious peer directly connected to all peers inG. Peers inG are
then connected to peers inP \ {G ∪ m} as shown in Figure 17.

Query Model. Peerm responds to queries as specified by the
default settings listed in Table 2 subject to the constraintthat no
more than 10% of all uploads are to peers inG. Instead of prop-
agating the query, peerm drops it. Peerm does not generate a
search query of its own.

Under Threat Model B, peerm will service authentic files to
peers inG and upload inauthentic files to peers inP \ {G ∪ m}.
By servicing peers inG with authentic files, peerm increases its
chances of maintaining its connection toP \ {G ∪ m}, via G.

Threat Model B is thwarted by the connection trust extension
described in Section 3.3. According to Algorithm 2 the peersin G
will eventually lose their connections with peers inP \ {G ∪ m}
due to poor connection trust scores caused by relaying messages
to peerm. The loss of the connections toP \ {G ∪ m} lessens
the value of peers inG to peerm. Peerm will likely try to form
connections with peers inP \ {G ∪ m}. However, reconnecting
becomes increasingly difficult since peerm will have built up neg-
ative local trust scores with peers inP \ {G ∪ m}. Assuming that
the majority of uploads by peerm are inauthentic (as in any pro-
ductive malicious attack), peerm will eventually lose the ability to
connect to good peers inP .

Figure 19 plots the succession of malicious connections in a
simulated session under Threat Model B. The graph starts outsim-
ilar to that shown in Figure 18. However, in later cycles the num-

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

Cycle

In
au

th
en

tic
 D

ow
nl

oa
ds

Figure 20: Threat Model B Inauthentic Downloads .

Figure 21: Node Model for Threat Model C.

ber of malicious connections remains around 5, while in Figure 18
all malicious peers are completely disconnected. Nevertheless, at
this point, most queries never reach the malicious peers since the
average path length to them is 4 hops more than to a good peer.
Consequently, as shown in Figure 20, the number of inauthentic
downloads is negligible.

A considerable amount of noise is present in Figures 19 and 20,
which can be attributed to the volatile nature of connections to ma-
licious peers and the authentic files uploaded by malicious peers.
The noise attrition in both figures is caused by the increasedresis-
tance toward malicious connections.

Peers that remain connected to malicious peers do so because
they are serviced authentic files. These peers are tagged as bad con-
nections because of poor connection trust scores. Droppingpeers
with low connection trust scores closes the conduit to the malicious
peers. The malicious peers may then seek other, more fruitful con-
nections. However, poor local trust scores make it difficultfor ma-
licious peers to form new connections, and thus they are trapped in
their current connections. If malicious peers are not able to con-
tinually satisfy queries, then by Algorithm 2, the connections will
be severed due to void downloads. Although not as effective as in
Threat Model A, the APT protocol is able to prevent most inau-
thentic downloads and keep malicious peers at bay.

5.3 Threat Model C

In Threat Model C, a set of malicious peers that upload inauthentic
files are connected to another set of malicious peers that provide
authentic files. The malicious peers serving authentic filesmaintain
the connection to the rest of the network while the others flood the
network with inauthentic files.
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Figure 22: Threat Model C Malicious Connections.

Node Model. Figure 21 illustrates the node model for Threat
Model C. LetM ⊂ P be the set of all malicious peers inP . We
partitionM into two disjoint setsMa andMi. Peers inMi are con-
nected to all peers inMa and malicious peers inMa also maintain
connections to peers inP \ {Ma ∪ Mi}.

Query Model. Both sets of malicious peers will respond to
queries as specified in Table 2. The search queries received by
peers inMa are only forwarded to peers inMi, while peers inMi

do not propagate the queries they receive. Neither of the malicious
sets will generate a search query of their own.

After being chosen as a download source, peers inMa upload
authentic files, while those inMi upload inauthentic files. The
motivation behind Threat Model C is two-fold:

1. Malicious peers no longer depend on servicing a large number
of requests made by a single good peer.

2. The connection trust is inherently weaker than local trust
at preventing malicious connection. This threat model ex-
ploits that weakness by using malicious peers as conduits that
purely upload authentic files to the rest of the network.

The main advantage of this threat model over the previous is that
peers inMa are never assigned a negative local trust score. There-
fore, good peers rely entirely on negative connection trustscores to
stave off malicious connections from peers inMa.

Figure 22 shows three simulated sessions using different par-
titions of malicious peers inMi (hidden peers) andMa, where
| Mi | + | Ma |= 10. As expected, the malicious attacks con-
taining more hidden peers have a shorter connection life to peers in
P \{Ma ∪ Mi}. Notice that in all cases malicious peers are eventu-
ally discovered and disconnected from the network. Therefore, the
connection trust is sufficient in eliminating malicious peers from
the network.

6 Related Work

Related topologies have been proposed in [7], [6], and [11].In [7],
a peer connects to peers initially at random, and disconnects when
it becomes overloaded. The peers that are disconnected willthen
connect to other peers. The connections in [7] can be search links
(through which search information is sent) or index links (through
which indexing links are sent). Lv et al. present a similar scheme
in [11]; the differences here are that there is only one type of link
and that each peer tracks its neighbors capacities and suggests a re-
placement peer after it breaks a connection. The SLIC mechanism
proposed in [6] does not add or break connections, but ratherallows

each peer to rate its neighbors, and use these ratings to control how
many queries from each neighbor to process and forward.

7 Conclusion

We have shown a simple protocol for the formation of adaptiveP2P
topologies. The resulting topologies are highly efficient,robust to
malicious attacks, and provide built-in incentives and punishments
that are consistent with positive peer contribution. As each peer
chooses its neighbors, clusters of peers with similar interests and
quality of service form. The creation of communities containing
congenial peers have deep implications towards the personalization
of P2P networks.
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