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Abstract

NameSet is a system that translates a set of geographic coordinates into a textual
name based on the geographic regions where the coordinates occur. One possible
application of NameSet is to concisely present the geographical scope of a set of
geo-referenced observations to a human user. Another application is to generate
text to depict a set of coordinates that appear on a web site — text that could later
be used for information retrieval applications. NameSet’s computation is based on
a simple algorithm, using off-the-shelf and web-based data sources. The system was
proven effective in an application that automatically organizes and names sets of
geo-referenced digital photographs.
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1 Introduction

In many situations, it is necessary to describe a set of geographic coordi-
nates using textual place names that are familiar to humans. For example, a
certain web page may contain a list of geo-referenced observations, or a set
of geo-referenced digital photographs. Representing this set using a textual
human-readable name is useful for many applications including making the
set available for text-based retrieval, as well as display and navigation of the
coordinate set. ! In the web context, research had tried to infer the geographic
scope of web pages (Amitay, Har’El, Sivan, & Soffer, 2004; Ding, Gravano, &
Shivakumar, 2000; Silva, Martins, Chaves, & Cardoso, 2004) — see Related
Work Section. These techniques rely, among other parameters, on geographic

I Expressing geographical information in voice for the visually impaired is also a
favorable outcome of this representation.
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names that appear in the text, and are not useful when only a list of coordi-
nates is available. We focus and report here on the problem of textual display
and navigation of coordinate sets. However, the techniques can be applied
towards text-based retrieval as well.

The problem can be simply stated as follows: Given a set of diverse geographic
coordinates, find a tertual name that describes them best. The use of ’diverse’
proposes that the coordinate set may not be trivial (e.g., not all the coordinates
occur within a single city). However, it is assumed that the set is somewhat
coherent — it is not the case that some coordinates are in Switzerland while
other coordinates in the same set are in New Zealand. A name for a coordinate
set may include names of features such as cities or parks inside which coordi-
nates in the set occur. The name may also include names of nearby features.
A sample such name is “Long Beach (56kms S of Los Angeles)”.

While it is clear how naming a set of coordinates is beneficial for text-based
retrieval, it may not be clear why naming is required for presentation to users,
and for collection navigation, as using a map to display the set of coordinates
might be sufficient. However, maps are inefficient in their use of screen real
estate. For example, the map-based overview of two sets of coordinates, one
from the San Francisco area and one from Paris, would occupy much of the
screen with (visual) geographic information that is not pertinent to the data.
Moreover, when a new set is added that is very close to Paris, the scale of the
screen, which must include San Francisco, will not allow differentiation of the
two Paris area sets.

Research of map-based interfaces to digital libraries and geo-referenced mate-
rial (Cavens, Sheppard, & Meitner, 2001; Leclerc, Reddy, Iverson, & Eriksen,
2001; Smith, 1996; Zhu et al., 1999) has focused on browsers for the desktop en-
vironment. Yet the map problems intensify when the user operates on a small-
screen device as maps are not well suited for this environment. While work has
been done on summarizing maps for screen constraints (Sarkar, Snibbe, Tver-
sky, & Reiss, 1993), most applications of maps on small screen devices, like
(Robbins, Cutrell, Sarin, & Horvitz, 2004), focus on navigating a restricted
area and context (e.g., driving directions).

In contrast to map-based interfaces, textual browsers may be more capable of
screen estate parsimony, offering more efficient presentation for global, unre-
stricted collections. In a textual browser, it only takes two short lines of text
to represent the San Francisco and Paris sets mentioned above.

Maps also pose a problem when handling devices with limited input mecha-
nisms (such as cell phone inputs or voice activation, for example). Such mech-
anisms are not be well suited to map-based manipulations. Finally, a number
of people are uncomfortable with maps and prefer other types of browsing.



The NameSet system described in this paper can provide an alternative to a
map-based representation of sets of coordinates. In fact, the system was im-
plemented and tested successfully using a sample application — representing
sets of geo-referenced digital photographs.

In the next section we briefly mention some related work. In Section 3 we
describe a sample application of the NameSet system. Section 4 describes
the algorithms and implementation details of NameSet. An evaluation of the
system is found in Section 5.

2 Related Work

The related work described in this section includes efforts to determine the
geographic scope of web pages; on-line gazetteers and geographic information
sources; work on matching and naming geographic regions; and work in the
GIS community on browsing location coordinates in digital libraries using
maps. In addition, we mention some relevant research on collections of photos
and photo labeling.

A number of research efforts have been trying to utilize and enhance the web
using geographic concepts. The Web-a-Where system (Amitay et al., 2004)
disambiguates geographic terms that appear on a web page, and tries to de-
termine the geographic focus of that page. Other projects (Ding et al., 2000;
Silva et al., 2004) try to use the textual content as well as the geographic
distribution of hyperlinks to a web resource to asses the resource’s geographic
scope.

Several online databases are available that provide valuable sources of geo-
graphic data. In our work, we used an off-the-shelf geographic dataset as a
source of named location entities, but other sources of relevant information
are available. The Alexandria Project is a distributed digital library for ma-
terials that are referenced in geographic terms (“gazetteer”) (Hill, Frew, &
Zheng, 1999; Smith, 1996). The Alexandria database provides a rich resource
for named geographic entities. Other publicly available gazetteers include the
Geographic Names Information System, the Columbia Gazetteer of the World,
and the US Gazetteer operated by the US census bureau.? In addition, Mi-
crosoft’s MapPoint Web Service® provides a programmable interface that sup-
ports geographic queries for businesses and other points of interests.

The Geo-SPIRIT project (Jones et al., 2002) is looking at ways to use the

2 http://geonames.usgs.gov/, http://www.columbiagazetteer.org/,
http://www.census.gov/cgi-bin/gazetteer/
3 http://mappoint.msn.com/



web to describe imprecise regions (such as “Northern California” or “The
Midwest”) that could prove useful in naming a set of coordinates (Arampatzis
et al., 2004). In (Larson & Frontiera, 2004), Larson and Frontiera proposed and
evaluated area-matching algorithms. Such work could provide the matching
needed between areas defined by our sets of coordinates to precise or imprecise
geographic regions that overlap the coordinate sets. It may be possible to use
these techniques to better inform our system about the suitability of generated
names.

A number of systems have been developed that deal with presenting geo-
referenced data, especially within the Geographic Information Systems (GIS)
community (Cavens et al., 2001; Leclerc et al., 2001; Smith, 1996; Zhu et
al., 1999), but nearly all of them rely solely on a map based interface to
represent the location data. In (Cavens et al., 2001) the application displays
geo-referenced photos as points on a zoomable map interface, but the user is
unable to see any of the actual photos until a specific point is selected. For
examples of work on summarizing maps and displaying maps on small-screen
devices, as mentioned above, see (Robbins et al., 2004; Sarkar et al., 1993).

The main application domain we report on in this paper is geo-referenced
digital photographs. Associating GPS coordinates with digital photographs
is a fairly recent development. To the best of our knowledge, ours is the
first attempt to automatically name sets of photographs utilizing their ge-
ographic location. However, there have been many other projects which at-
tempt to exploit the geographic information of digital photographs for differ-
ent purposes. Most notably, Toyama et al built a database that indexes pho-
tographs using time and location coordinates (Toyama, Logan, & Roseway,
2003). The Toyama work explored methods for acquiring GPS coordinates
for photographs, and exploiting the metadata in a graphical user interface for
browsing. The mappr.com project is another well-known effort to utilize a map
for browsing global collections of geo-referenced photos.

In (Naaman, Paepcke, & Garcia-Molina, 2003) we explored a different version
of the problem defined in this paper. In that earlier work we built on an ex-
isting set of coordinates, each already associated with some free-text caption.
Given that set and its captions, our system (called LOCALE) proposes a good
geographically-meaningful name for the set. More interestingly, LOCALE can
propose a name for a new un-labeled coordinate (or coordinate set) that oc-
curred in the same geographic area, based on the original set’s coordinates and
captions. Sarvas et al studied a similar problem in (Sarvas, Herrarte, Wilhelm,
& Davis, 2004).

While our work focuses on providing useful textual names for collections of
photographs, Liberman and Liu have done work that attempts the reverse.
In (Lieberman & Liu, 2002), they use natural language parsing techniques



to suggest relevant photos as a user types a story to describe a series of
photographs. Of course, other work that attempts to automatically produce
metadata for digital photographs has been based on image analysis techniques.
Many research projects attempt to utilize image analysis to propose annota-
tions for photographs, like (Kuchinsky et al., 1999; Duygulu, Barnard, Freitas,
& Forsyth, 2002). See (Veltkamp & Tanase, 2002) for an updated summary of
content-based image retrieval techniques.

3 Sample Application

In (Naaman, Song, Paepcke, & Garcia-Molina, 2004) we used location in-
formation to automatically organize collections of geo-referenced digital pho-
tographs. Our system, PhotoCompas, automatically groups the photos into
sets that represent different events and locations where photos were taken.
The grouping is executed using the time and location metadata associated
with each photo. Once this step is completed, PhotoCompas needs a way to
present the results in a user interface, without the benefit of a map. The
second processing step is therefore to assign textual names to the nodes in
the location and event hierarchies. The names for the nodes are generated by
NameSet, based on the coordinates of the photos belonging to these nodes.

Figure 1 shows a subset of a sample location and event grouping created by
the PhotoCompas algorithm. The location hierarchy is shown at the top of the
figure. At the highest level, PhotoCompas simply groups the coordinates by
country. The second level of the hierarchy is generated based on the specifics
of the collection. Again, PhotoCompas generates this hierarchy based on the
coordinate values only, independently from the information about containing
features. In this sample case, we can see in Figure 1 that PhotoCompas created
sets that correspond to the Yosemite area, Seattle area and the San Francisco
area. The San Francisco node is split into more detailed nodes, because Photo-
Compas decided that this set of coordinates is large enough to be split again.
In reality, the decision is more nuanced but exceeds the scope of this paper;
for details refer to (Naaman, Song, et al., 2004).

When the hierarchy is ready, the NameSet module kicks in to assign names
to nodes (i.e., coordinate sets) in this hierarchy. NameSet considers the set of
coordinates in each node, but also considers the position of the node in the
hierarchy: leaf nodes (e.g. “Seattle”, “Berkeley” in Figure 1) will be named in
a slightly different manner than inner nodes (e.g., “Around: San Francisco...”),
as we show in Section 4.

At the bottom of Figure 1, we show a sample of a different dimension of
grouping coordinates in the collection. This grouping is based on “events” —
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Fig. 1. Sample PhotoCompas structure. Parts of the location hierarchy (top) and the
time/event hierarchy (bottom) for an actual collection of photos, including names
as generated by our algorithm.

roughly speaking, sets of coordinates that represent photos taken at the same
place and time. As events represent coherent locations, we can use NameSet
to name them as well.

To summarize, our system creates three different types of coordinate sets that
are guaranteed to be relatively coherent (and thus relevant to the problem
we address in this paper): leaf location nodes, inner location nodes, and event
nodes. NameSet’s goal is to have the textual representation of those sets “make
sense.”

4 The NameSet System

The naming process in the NameSet system is composed of three distinct
processing modules, indicated by the rectangles in Figure 2 (the data in the
figure is represented by ellipses). In the first processing step, the system finds
the containing features (such as cities, parks, or states) for each coordinate in
the set to be named. In parallel, the system looks for good reference points
such as nearby big cities, even if none of the coordinates in the set appear to be
inside these cities. Finally, NameSet decides which of the containing features
or nearby reference points to use when picking the final name for the given
coordinate set. The name can include more than one feature of each type:
“Sonoma, Boyes Hot Springs (98kms N of San Francisco)” is one example of
a name created by NameSet. Another such name may simply be “Stanford”.
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Fig. 2. Processing diagram of the NameSet system

For concreteness we refer in the description of NameSet to our sample ap-
plication, geo-referenced digital photographs. We use the terms ‘photos’ and
‘coordinates’ interchangeably. Similarly, we use ‘node’ as a synonym for ‘co-
ordinate set’.

4.1  Generating a Containment Table

This initial step of generating a containment table involves finding the con-
taining features for each coordinate. For each latitude/longitude pair, we find
the country, state, city and/or park that contain it. This is done using an
off-the-shelf geographic dataset of administrative regions (from Environmen-
tal Systems Research Institute (ESRI), 1995). For example, a particular co-
ordinate may be inside the United States (country), California (state), San
Francisco (city), and Golden Gate Park. Another coordinate may be in Wash-
ington (state) and Seattle (city), but not in any park. Regretfully, below the
country level, our dataset included only US administrative areas. Thus, we
have only tested our naming procedure on US coordinates.

The dataset we use is based on accurate polygon-based representations for
the different administrative features (country, state, city etc.). The data is
slightly dated (some of the data goes back to the mid-1990s), but still largely
relevant.* In addition, the polygon representations can never be perfectly
accurate. Based on informal observations, we estimate the error of the repre-
sentations in our particular dataset to be around a few dozens to hundreds of
meters, certainly within reason for this application.

The coverage of some administrative features in our dataset is exhaustive and
exclusive. For example, inside the US, each coordinate is contained by exactly
one state and one county. Naturally, some features do not exhaustively cover
the entire map. For instance, unfortunately, parks do not cover the entire space
of the US. Similarly, a coordinate is not guaranteed to fall inside a city. The
park/city data is not exclusive: a certain location can be contained in both a
city and a park.

If no polygon (or administrative feature) of a certain type matches the queried

4 Up-to-date datasets are available if needed, of course, for a price.
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Fig. 3. Sample set of photos (circle markers, possibly overlapping) and a subset of
the containing features of type “cities” and “parks.”

coordinate pair, we allow the system to look for relaxed matches by artificially
expanding the borders of the polygons of that type. For example, if our dataset
suggests that the (latitude, longitude) pair does not fall inside any park, but
is 200m away from Yosemite National Park, the algorithm would mark the
coordinate as contained in Yosemite park. While the error allowed is relatively
strict (limited to less than 1km) when looking for a containing park, county
or city, we relax the distance requirement significantly when trying to find
containing countries, making sure we capture coordinates that are a quite a
few kilometers off shore.

At the end of the coordinate resolution process we have the containing features
for every coordinate in the set. The system then computes the frequency at
which each administrative area name occurs in the set of coordinates, building
a term-frequency table.

For example, we may have a set of 700 photos, 400 of which were taken in
the city (and county, as they are the same) of San Francisco. Out of the San
Francisco photos, 50 were taken in Golden Gate Park. The other 300 photos
in the set were taken in various locations in Marin county. Figure 3 shows an
example for such a coordinate set. Table 1 shows a possible term-frequency
count for the coordinate set depicted in Figure 3. The figure demonstrates
cases where relaxation is required in a city query: there are two coordinates
in the set, seen just off the northern-most tip of San Francisco, that seem to
fall just outside the city limits (in fact, they are on the Golden Gate bridge).
NameSet will treat these coordinates as if they are contained in San Francisco.

Not all types of administrative areas are equally recognizable to users. For
example, national parks may be more famous than county parks; similarly,
city names are more likely to be recognized than names of national forests.
For this reason, the system weighs each type of administrative area differently,



Table 1
Possible term-frequency table for a sample set of coordinates.

Area Name Type Count
San Francisco City 400
Marin County 300
Golden Gate NRA Nat’l Rec. Area 120
Muir Woods Nat’l Park 80

Golden Gate Park County Park 50

with national parks weighed more heavily than cities, and cities weighed more
heavily than other parks such as state parks or national forests. The different
weights are listed in Table 2 and allow us to give more importance to names
that are more likely to be recognizable to users. The weights were assigned
empirically, and we show in Section 5 that they perform well. Notice that
for some of the administrative types the assigned weight is 0, implying that
features of this type are ignored. Indeed, we found that counties and national
forests are rarely recognizable by name to users, unless the users live in that
specific county.

In the future we would like to be able to more adaptively select weights based
on learning and user feedback. Alternatively, instead of assigning weights to
types of locations, the system could rate each individual named place sepa-
rately: San Francisco will be rated differently than Palo Alto, although they
are both cities. The rating could be done by using a measure of “importance”,
such as population density, or a Google count (the number of hits returned
by Google when searching for the location name). We use the latter method
when looking for nearby reference points, as described below.

NameSet applies the weights (of Table 2) to the relevant counts (e.g., Table 1).
For example, the adjusted score/count for Muir Woods National Park is 80 x

5 = 400, while Golden Gate National Recreation Area scores 120 x 2 = 240,
now ranking lower than Muir Woods.

At the end of this processing step, we have a containment table with terms
and their associated score.

4.2 Generating a Nearby-Cities Table

In parallel to finding containing features, as shown in Figure 2, we look for
cities that neighbor the set of coordinates to be named. These nearby cities
can serve as reference for the given coordinate set, in case the containment



Table 2

Types of administrative areas and the weights assigned by the system to instances

of each.
Area Type Weight
Cities 4
County 0 (ignored)
National Parks 5

National Monuments 3
State Parks 3
Other Parks 2

National Forests 0 (ignored)
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Fig. 4. A set of coordinates and two nearby cities that may serve as reference points
for the set.

features of coordinates in the set are not sufficient to represent the set well.
This problem can emerge, for example, if coordinates in the set do not fall
within any city or park boundaries, or occur sparsely in some area, without
any critical mass of coordinates inside any of the named locations. See for
example Figure 4, where a small set of coordinates appears sparsely scattered
within a number of cities around Stanford University. By locating cities that
are close to the coordinates in this set and computing the distance from the
center of the set to the city, the system is able to produce textual names for
such nodes, such as “40kms south of San Francisco”.

To compute the center of a coordinate set, we considered two methods. The
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first is simply to compute and use the weighted average of the coordinates
in the set. This method is satisfactory only if the set of photos is relatively
coherent; e.g., represents a single cluster of points (perhaps like the one repre-
sented in Figure 4). However, in many cases the set of coordinates represents
a number of different, yet proximate, locations. For example, Figure 3 shows
a set of photos that occur around a few key locations in the San Francisco
area. A weighted average of the coordinates will result in a center location
that does not represent well any of the locations included in the set.

A different algorithm was therefore used to generate the “biased center” of a
coordinate set: the coordinate in the set that is most representative of the set.
The heuristic algorithm is described in Algorithm 1. In essence, the algorithm
attempts to iteratively refine the mean center of the set, by retaining at every
step only 50% of the coordinates that are closest to the mean, and recomputing
the mean for the reduced set.

After computing the center of a coordinate set, the system finds nearby cities
that can serve as reference points. For a city to serve as a good reference point
for a given set of coordinates, it must fulfill two requirements:

e Relevance to the set of coordinates. The reference city needs to be nearby,
or within reasonable distance to the set.
e Relevance to the user. The reference city needs to be recognizable to a user.

We again use our dataset of administrative regions to find nearby, large enough
cities. The NameSet system tries to locate cities that are within 100kms from
the center of the coordinate set, and whose population is over 250,000. This
search will fail in some cases, for example, when the coordinate set is in a
remote area. In such case, we gradually expand the radius (by 25% at each
step) and reduce the minimum population requirement (by 40% at each step),
until at least one city is found. The rationale behind this method is that in
sparse areas even smaller cities or distant large cities are good reference points.

If the search for nearby cities results in more than one city, the system tries
rank them. The ranking attempts to strike a balance between a city being
relevant and known to the user, and relevant (in terms of distance) to the set
of coordinates. To do that, we use the notion of “gravity”: a combination of

Algorithm 1 Computing the “biased center” of coordinate set S
while |S| > 2 do
¢ < mean center of coordinates in S
Sort S by ascending distance from ¢
S < The first % coordinates in S
end while
: Return ¢

AN -
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population size, the city’s “Google count”, and (inversely) the square root of
the city’s distance from the center of the set. The “Google count” of a city
is the number of results that are returned by Google® when the name of the
city (together with the state) is used as a search term. We use this heuristic
as a measure of how well known a city is, and thus how useful it would be as
a reference point.

To give an example of the application of gravity in our system, refer to the set
of coordinates near the Stanford campus, as depicted in Figure 4. The center
of the set is computed as described above to be somewhere around Stanford
campus. A query to our dataset reveals two major nearby cities: San Jose and
San Francisco. The nearby reference points can be either “40kms South of San
Francisco”, or “30kms North of San Jose”. The population of these cities is
comparable: 945,000 residents in San Jose, vs. 800,000 in San Francisco. The
distance of both cities from the set of coordinates is also comparable. However,
the Google count for San Francisco (search for ‘San Francisco, California’
results in 44,800,000 hits) is much higher than San Jose’s (search for ‘San
Jose, California’ results in 13,300,000 hits). San Francisco therefore is ranked

higher despite being further away: Score(San Francisco) = % = 5666 >
_ 945%13.3

Score(San Jose) = #7222 = 2204,

We experimented with various ways to combine the different metrics into a
single score. Specifically, assigning more weight to the distance (i.e., giving
the distance a linear weight, or even a quadratic weight) resulted in inferior
results in our tests, overestimating the importance of nearby cities.

The computation described in this section, as shown in Figure 2, creates a
nearby-cities table, again with terms and their scores.

The final step, as depicted in Figure 2, involves picking 1-3 terms from the
nearby-cities and containment tables to appear in the final name of each set
of coordinates. For example, a possible name can include the two top terms
from the containment table, and the top nearby city: “Stanford, Butano State
Park, 40kms South of San Francisco, CA”. Our method of picking the terms
that compose the final name varies according to the semantics of the set of
coordinates we are trying to name, as we explain in Section 4.4. Before we do
that, we report on our attempts at utilizing a web-based gazetteer to generate
more candidate names for a coordinate set.

® http://www.google.com
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4.8 Using Bounding-Box Gazetteers

We have experimented with using existing web-based gazetteers as a source of
additional name candidates for a coordinate set. These gazetteers offer com-
prehensive lists of named geographical features of various kinds, as opposed
to our dataset that offers only features of certain administrative types. On
the other hand, the area representation used by web-based gazetteers is often
simplified, and is not as accurate as the polygon-based representation of our
dataset.

While it seems like web-based gazetteers would have been useful for this task,
we could not overcome some inherent limitations in using them for our pur-
poses.

Specifically, we chose to work with the Alexandria Digital Library’s gazetteer
(Hill et al., 1999; Smith, 1996), possibly the most encompassing and well-
known among web-based gazetteers.

We saw two possible ways to utilize Alexandria for our problem. Firstly, we
could use it to map from coordinates to a containing feature, corresponding
to our first step described in Section 4.1. However, Alexandria represents geo-
graphic features by a rectangular bounding box, which is not accurate enough
for our needs. For example, querying with a coordinate in San Francisco re-
turns Canada as one of the containing areas. Our aforementioned dataset is
less encompassing but uses much more accurate polygon representations of
geographic features.

Secondly, we could use Alexandria to map from an area (bounding rectangle
representing a set of coordinates we wish to name) to a list of contained
features like cities, parks and even rivers, waterfalls and mountains. Then we
could use this list to find prominent features that could be candidate names
for the given set of coordinates. Unfortunately, we found it hard to formulate a
query that will supply us with a good enough list of contained features — the
list was either too noisy, containing highly specialized features, or too sparse.
When too noisy, we did not find a good way to distinguish features in the
returned set that would possibly be useful names to the system’s users.

We did try to use the Google count metric to distinguish more well-known
features from others, but results were not satisfactory in this case. In particu-
lar, when the features are not cities, it is not clear which search query should
be used to estimate the popularity of a certain feature, as similar names often
appear in many different contexts. For example, “The Presidio”: should the
search be performed on query term as listed (The Presidio is a name of a
park and residential area in San Francisco among other references), or should
“San Francisco” or even “California” be appended to the query term? This

13



ambiguity prevented us from using the full power of the Alexandria gazetteer
to generate an extensive list of related features.

We could limit the retrieval from Alexandria to a set of well-defined adminis-
trative regions, as we did with our own dataset. However, it was preferable to
use our dataset, since it offered a more accurate representation of the features
than a bounding box.

Despite these difficulties, we are still hoping to find a way to use the vast
information space of the Alexandria gazetteer, or other online gazetteers, in
future work.

4.4 Approaches for Assigning Final Names

Picking the final terms for the textual description of the coordinate set from
the containment and nearby-cities tables, is done in different ways depending
on the semantics and purpose of the name. Recall that in our sample applica-
tion, NameSet aims to augment the automatically generated organization of
photo collections. In this context, we have three different ways to pick a final
name, depending on whether we are naming an event from the event hierarchy;,
a leaf node in the location hierarchy, or an inner node in the location hierar-
chy (sample event names are shown at the bottom of Figure 1, and samples
of the latter two are shown at the top of Figure 1). The discussion in the rest
of this section, therefore, is geared towards the semantics of our application.
Other applications of NameSet could have different approaches for assigning
the final name for a coordinate set.

Due to the semantics of the final name and what it represents in the given
application of our PhotoCompas photo browser, the final names must follow
two sometimes conflicting guidelines:

e The final name must represent well the different locations and areas covered
by the coordinates set.

e The final name must not be too long; users should be able to scan it quickly
to get an impression of the area and locations it represents.

Other considerations may also be relevant. For example, the names assigned
to different nodes should not be too similar, both in the sense of containing
references to the same locations (which can occur in some data, depending on
the way location nodes are computed), and in the sense of containing similar-
looking words that do not represent the same location but might hinder the
user’s visual scan capabilities.

Naming a leaf node in the location hierarchy is the hardest and most impor-
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tant of the three different node types in our PhotoCompas system. For the
PhotoCompas application, these leaf node names must be assigned the most
accurate description since there is no lower level of the hierarchy where more
location details are exposed. On the other hand, the leaf location nodes may
still represent a heterogenous set of photos that were shot in a diverse set of
administrative regions.

The rules we use for naming a leaf node are:

(1) Use the top term from the containment table, if one exists.

(2) Concatenate the second term from the containment table only if it has a
significant score in this set (e.g., if this term appeared only twice, we do
not want to use it).

(3) If the number of coordinates in this set is low (suggesting that the user
is not very familiar with this area), or if the scores for the top two terms
are low (suggesting no one of them will serve as a good reference for the
user), concatenate the top term from the nearby cities table to the name.

At the end of this process, we may have anything from 1 to 3 terms that are
combined into a textual geographic description for this node.

Next let us consider the inner nodes in the location hierarchy. The top nodes
represent a country, and are easy to caption. For the other inner nodes, such
as the “Around San Francisco” node in Figure 1, we pick the single top-scoring
term from the containment table of each of the node’s descendants, and take
the top three terms in this list. For example, a set of photos taken in the
San Francisco bay area may be named “San Francisco, Berkeley, Sonoma”
as the corresponding node has 5 descendants, and these three chosen names
are ranked highest out of the 5 candidates. The hope is that the three names
represent the general area of the coordinate set represented by this node;
for a more accurate description of the area, one can turn to the lower level
nodes. However, if this node is the only one in this specific state, and does not
occur predominately in one city or park, it will be assigned the state’s name
(“California”).

Finally, when assigning a textual geographic caption to an event (a set of
photos taken at the same place, on a single occasion), we assume that the user
has visited relatively few places over the duration of the event. Furthermore,
we assume the user will get some orientation, and more geographical context
and browsing power, from the location hierarchy. For event names, then, we
pick only the top term in the containment table. If one does not exist, we
choose the top term from the nearby cities table. In any case, we augment the
name with the date and time span of the event, e.g. “Boston, Dec 31%° 2003
(3 Hours)”.

Note that strategies listed in this section are geared towards a naming a node
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Table 3
Details of the collections used in our experiments

Collection  Number of Photos Location Nodes

A 2580 16
B 1192 9
c 1823 17

in a personal collection of photos. In other words, the assumptions is that the
person for whom the labels are generated in somewhat knowledgeable about
the locations of the coordinates in the set. A different strategy may be applied
when naming a globally-accessed set of coordinates, where the familiarity of
people with the locations in the set is not guaranteed. For example, it may
be appropriate to bias more heavily towards well-known features, rather than
features that contain more of the coordinates.

5 Evaluation

Since the context of the NameSet application was collections of geo-referenced
digital photographs, we evaluated the results using three real-life collections
of photos. The number of collections is low due to the current scarcity of large
geo-referenced consumer photo collections. We expect more collections to be
available in the future, but as of now, we were only able to find three subjects
with a large enough collection of such photos (each spanning thousands of
photos, and at least one year of photo-taking). Our results are then, by neces-
sity, case studies rather than a statistically significant analysis. However, these
collections supplied dozens of distinct sets of coordinates for the algorithm to
name; in this sense, the evaluation was quite broad. In addition, Section 5.1
reports on an additional, indirect evaluation of NameSet.

Some key properties of the test collections are listed in Table 3, including the
number of photos in each, and the number of location nodes (or coordinate
sets) that NameSet was executed and tested on.

For illustrative purposes, Figure 5 shows the names created by NameSet for
all the nodes in the location hierarchy of the C' collection. Notice that, as
described in Section 4.4, the number of features mentioned in a single node’s
name ranges from one to three. Some of the names include a nearby additional
reference point (e.g., “6 kms NW of San Jose” for the Mountain View node),
while others do not (e.g., the Stanford node, as NameSet decided that Stanford
alone was sufficient). Some of the reference points are further away than others;
for example the “Colorado” node where the coordinate set represents a remote
area in the Rocky Mountains.
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-San Francisco, Berkeley, Sonoma, CA === 876
,,,,,,,, *Berkeley; Oakland === | 188
*Glen Ellen; Eldridge (97 kms N of San Francisco) 22
,,,,,,,, Petaluma (91 kms NW of San Francisco) | 3
,,,,,,,, *San Francisco; Golden GateN.RA | 637
eSonoma; Boyes Hot Springs (83 kms N of San Francisco) | 26
-Stanford, Mountain View, Monterey, CA 284
eMonterey (93 kms S of San Jose) 12
,,,,,,,,, *Mountain View (6 kms N\W of SanJose) | 29
sStanford 243
-Colorado (350 kms W of Denver) 180
-Long Beach (56 kms S of Los Angeles, CA) 90
-Philadelphia, PA 8
-Seattle, WA 39
-Sequoia N.P. (244 kms E of Fresno, CA) 133
-South lake Tahoe; Bear Valley, CA 96
-Yosemite N.P.; Yosemite Valley, CA 116

Fig. 5. The nodes in the location hierarchy of Test Collection C' (1822 photos),
names assigned to the nodes by NameSet, and the number of photos in each node.

We evaluated NameSet’s performance through interviews with the owners of
the test collections. We concentrated on names for the nodes in the location
hierarchy and did not study the success rate of the geographic names produced
for events. Our evaluation goals were to verify that the produced textual names
are:

e Useful to the subjects, in that a) the name includes terms that are familiar
to the subjects and help them understand which geographic area is covered
by the node, b) the subjects are able to tell the node apart from other
nodes, based on the name and ¢) the subjects can tell which pictures in the
collection belong a specific node based on its name.

e Similar to the names that the subjects themselves would have suggested for
these nodes.

For each collection, and each node, we performed several tests. In the first test,
we showed the subjects a candidate terms set for each node. The candidate
terms set is the union of terms that appeared in the containment table and
nearby cities table as defined in Section 4. For example, if a certain node
contains photos from Redwood National Park, the city of Eugene (Oregon)
and Crescent City (California), then our list included all those city, park and
state names, plus the appropriate counties and other nearby big cities. The
average length of the candidate terms sets for the different nodes was 19 place
names; it was generally shorter for leaf nodes as they contain fewer coordinates.
Figure 6 shows a set of candidate location terms generated for the “Yosemite”
leaf nodes in collection C.

For each node, we asked the owner of the collection to pick up to three place
names from the candidate set, that represent this node best (in fact, they only
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Fig. 6. Candidate term set with all possible location names for the Yosemite node.

picked 1.84 place names on average; NameSet used an average of 2.3 place
names for each node). As an aid, we showed the subjects maps displaying
the coordinates of photos in each node, similar to the map in Figure 3, but
without the outline of the containing features that appears in the figure. We
also offered to show them the actual photos contained in each node — this
latter aid proved unnecessary as subjects usually had a very good idea what
those pictures were.

For 79% of the nodes, NameSet and the subjects picked at least one place
name in common. In other words, for 79% of the coordinate sets there is a
good chance that the name chosen by the system will be not only recognizable,
but also intuitive to the user as a representation for the given set. Furthermore,
our next test shows that even for most of the other coordinate sets, where the
user and the system did not pick a name in common, the subjects still found
the given name useful.

In the second test, we asked the subjects to comment on the usefulness of each
node’s name. We also asked them to comment on how accurate the system
name is in describing the contents of the coordinate set represented by the
node. We found that the majority of the automatically-produced names were
useful (as defined above). Out of the total of 42 nodes, subjects were contented
with all but three node names. In one of the unsuccessful cases, our algorithm
grouped together all photos from three different US East Coast cities; but the
name only represented one of them. In another case, the user felt the node’s
name was not encompassing enough for the area it represented. Finally, one
node name was simply unknown to the user. The node in question represented
a relatively small coordinate set (i.e., the user did not take many photos in
the area, and thus was relatively unfamiliar with it). There were a few more

18



instances where the names were not accurate, yet still useful. For example, a
set of coordinates from an area the user thought of as “Mount Whitney” were
named “Sequoia Nat’l Park”, a fact that the user found somewhat bewildering
yet acceptable (the park is adjacent to the national forest that contains Mt.
Whitney).

Other comments from users were: a) Three of the node names included one
park or city name that was unknown to the subject; b) The name of one of
the nodes was not representative enough of a small subset of its photos. In
general, all subjects expressed strong satisfaction with the usefulness of the
names.

Finally, we noted that in some cases the users entered names that are currently
hard to derive from traditional location-based datasets. For example, names
like “The San Francisco Bay Area” or “Northern England” are well under-
stood by humans, yet hard to represent or define in a computer-based system.
Systems like (Arampatzis et al., 2004), or our LOCALE system (Naaman et
al., 2003) may be able to help with the generation of such names in the future.

5.1 Incidental Experiment

In a separate experiment (Naaman, Harada, Wang, & Paepcke, 2004), we
evaluated the PhotoCompas photo browsing system using photo collections
that were manually associated with location coordinates: for the experiment,
13 participating subjects drag-and-dropped their photos onto a digital map to
indicate to the system where each photo was taken. In effect, the users were
retrospectively geo-referencing their collection. However, the “referencing” was
not always as accurate as originally geo-referenced photos: subjects did not
always remember exactly were each photo was taken, dragging them instead
to an approximate location. In addition, the subjects often dragged a group
of photos from the same area together, onto one location, losing some detail
in the process.

As a result, it did not seem appropriate to evaluate NameSet directly on these
test collections. We therefore did not go through the procedure described above
of comparing user-selected terms with our system’s suggestions.

Instead, our evaluation of NameSet performance for these collections is derived
from the collection owners’ interaction with the PhotoCompas system, since
the system was utilizing the names automatically generated by NameSet. In
other words, we measured and observed how users navigated a collection orga-
nized by PhotoCompas, with names assigned to nodes by NameSet. Because
NameSet is critical for navigation, the fact that users performed navigation
tasks well suggests that NameSet was effective.
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Indeed, the names generated by NameSet were found by the collection owners
to be relevant and useful for browsing. As we report in (Naaman, Harada,
et al., 2004), the subjects’ performance using PhotoCompas to browse their
photos was comparable to that of a map-based photo browsing system. The
browsing hierarchy created by PhotoCompas, annotated with names generated
by NameSet, allowed an equivalent level of interaction as a powerful map-
based system in terms of browse/search time, number of mouse clicks, and
user satisfaction.

6 Conclusions

We have shown that our system, NameSet, can automatically generate mean-
ingful and useful textual names for sets of coordinates in the context of
a geo-referenced personal photo collection. NameSet could also “translate”
other types of coordinates into textual names, like, for example, a list of geo-
referenced observations that appear on a web site. In the future we plan to
expand this work to other domains, using different semantics.

In our work, we investigated how useful NameSet is for browsing and naviga-
tion tasks: the created names are used in the context of a user interface. We
also suggested that the names can be used in the settings of an information
retrieval system, where a page can be indexed by the textual names instead
of the meaningless (in this context) latitude/longitude values.

Whatever the setting in which our system is used, one important underlying
assumption is that the set of coordinates to annotate is biased. In other words,
the set is meaningful to a person, or a group of people, and is not just a
collection of random points. Also, the set is assumed not to be created by
some arbitrary grouping of coordinates based on proximity, but is semantically
coherent in some way or another.

In particular, systems like WWMX (Toyama et al., 2003) and Mappr.com (for
example) may want to consider how to apply our system to replace their map-
based representation of geo-referenced material. As their collections are global
and public, a meaningful grouping of photos based on geographic areas is not
easy to generate. For example, if the system coverage of the San Francisco
Bay Area is heavy, and photos are spread throughout the region, where does
the system draw the line between the San Francisco area photos and the Palo
Alto photos? A system like the ones mentioned may be better off using a
simple location hierarchy to textually browse geo-referenced items (e.g., the
containing country — state — city/park for the US), making the naming
task trivial for most coordinates. However, as the city /park coverage is never
exhaustive, it is possible that in this scheme some coordinates could only

20



be identified by the containing state — a serious hurdle for finding these
coordinates by browsing the menu or by search for a place name. In such a
case, some of our techniques can be utilized, like finding the best reference
point for the “orphaned” coordinates.
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