
ALGORITHMS AND ARCHITECTURES FOR DATA PRIVACY

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dilys Thomas

June 2007

c© Copyright by Dilys Thomas 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Rajeev Motwani) Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Dan Boneh)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(John Mitchell)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

The explosive progress in networking, storage, and processor technologies has resulted

in an unprecedented volume of digital data. With this increase in digital data, con-

cerns about privacy of personal information have emerged. The ease with which data

can be collected, stored in databases and queried efficiently over the internet has

worsened the privacy situation, and has raised numerous ethical and legal concerns.

Privacy enforcement today is being handled primarily through legislation. We aim to

provide technological solutions to achieve a tradeoff between data privacy and data

utility. We focus on three problems in the area of database privacy in this thesis.

The first problem is that of data sanitization before publication. Publishing health

and financial information for research purposes requires the data be anonymized so

that the privacy of individuals in the database is protected. This anonymized in-

formation can be (1) used as is or (2) can be combined with another (anonymized)

dataset that shares columns or rows with the original anonymized dataset. We ex-

plore both these sub-problems in this thesis. Another reason for sanitization is to

give the data to an outsourced software developer for testing software applications

without the outsourced developer learning information about its client. We briefly

explain such a tool in this thesis.

The second part of the thesis studies auditing query logs for privacy. Given certain

forbidden views of a database that must be kept confidential, a batch of SQL queries

that were posed over this database, and a definition of suspiciousness, we study the

problem to determine whether the batch of queries is suspicious with respect to the

forbidden views.

The third part of the thesis deals with distributed architectures for data privacy.

v

The advent of databases as an outsourced service has resulted in privacy concerns

on the part of the client storing data with third party database service providers.

Previous approaches to enabling such a service have been based on data encryption,

causing a large overhead in query processing. In this thesis we provide a distributed

architecture for secure database services. We develop algorithms for distributing data

and executing queries over this distributed data.

vi

Acknowledgments

First and foremost I would like to thank my advisor Rajeev Motwani for running one

of the most wonderful research groups. His suggestion for papers and ideas during

our group lunches and research meetings have fueled a lot of good research in our

group. His insightful comments from experience have been helpful from time to time.

His group has been the source of a lot of academic and some social activities to keep

us lively all the time. They say that a great teacher inspires. Rajeev’s enthusiasm to

solve relevant and varied research problems have inspired me and all other members

of his group to good research.

I would like to express my gratitude to other professors at Stanford. Hector Garcia-

Molina for being a active participant of privacy research and for his feedback on

presentation style and other practical issues. Jennifer Widom for running the Stream

group and for her insights into research at the database group lunches. Dan Boneh for

his mathematical puzzles, which provided me with good stimulating thinking many

an afternoon.

I would like to thank my reading committee members: Rajeev Motwani, Dan

Boneh, and John Mitchell and other members on my orals committee: Hector Garcia-

Molina and Ashish Goel.

I would like to thank the various research groups I was a part of: STREAM run

by Jennifer Widom and Rajeev Motwani, RAIN run by Rajeev Motwani, Ashish

Goel and Amin Saberi, PORTIA-PRIVACY run by Rajeev Motwani, Hector Garcia-

Molina, Dan Boneh and John Mitchell and TRUST run by John Mitchell, Dan Boneh,

Rajeev Motwani and Hector Garcia-Molina.

I would like to thank my internship mentors and managers – I learnt a lot about

vii

different styles of research from them. I would like to especially thank Ramakrishnan

Srikant, Rakesh Agrawal, Surajit Chaudhuri, Nicolas Bruno, Phillip Gibbons, Sachin

Lodha, Anand Rajaraman and Srinivasan Sheshadri.

I would like to thank my professors at the Indian Institute of Technology, Bombay,

esp. S. Sudarshan for providing me an excellent undergraduate education and getting

me initiated into research. I would also like to thank my batchmates and friends from

there.

I thank other students working with Rajeev: Krishnaram Kenthapadi, Gurmeet

Manku, Gagan Aggarwal, Rina Panigrahy, Shubha Nabar, Ying Xu, Sergei Vassil-

vitskii, An Zhu, David Arthur, Aleksandra Korolova, Mayur Datar, Brian Babcock,

Liadan Boyen and Aristides Gionis who have provided a wonderful environment to

work.

I would like to thank Gaurav Bamania, Anuranjan Jha, Mayur Naik, Joseph Alex,

Rajat Raina, Utkarsh Srivastava, Rajiv Agrawal, Omkar Deshpande, Pradeep Kumar,

Rob, Jim Cybluski and Blake Blailey for being kind and considerate roommates.

It was a pleasure spending time with people in the Theory and Database and

OR groups at Stanford: Zoltan Gyongyi, Prasanna Ganesan, Mayank Bawa, Qi Su,

Mukund Sundararajan, Adam Barth, Aaron Bradley, Damon Mosk-Aoyama, Sri-

ram Sankaranarayanan, Anupam Datta, Bobji Mungamuru, Shivnath Babu, Hamid

Nazarzadeh, Arvind Arasu, David Menestrina and Arnab Roy are just a few to name.

I would like to thank my coauthors not mentioned above Renato Carmo, Prasen-

jit Das, A A Diwan, Tomas Feder, Vignesh Ganapathy, Keith Ito, Samir Khuller,

Yoshiharu Kohayakawa, Eduardo Sany Laber, Nina Mishra, Itaru Nishizawa, Nikhil

Patwardhan, Sharada Sundaram and Rohit Varma.

I would like to thank Kathi DiTommaso, Lynda Harris, Maggie Mcloughin, Wendy

Cardamone, Claire Stager, Verna Wong, Indira Chaudhury, Meredith Hutchin, Jam

Kiattinant and Peche Turner for taking care of all the important administrative mat-

ters during the PhD. I would like to thank Lilian Lao, Andy Kacsmar and Miles Davis

for taking care of the machines.

I would like to thank the various outing clubs and groups at Stanford, the Catholic

community here, SIA, Rains groups, IVGrad, DB movie and social committee for

viii

ensuring life outside work was something to look forward to. I would like to thank

Joshua Easow and family and Jojy Michael and family for memorable times with

them.

Above all, I thank my grandparents, parents, sister Dina, my cousins and friends

for a wonderful childhood with memories of catching butterflies from fields, small fish

from streams, spending time on the hills, studying and playing.

ix

To God

x

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Sanitizing data for Privacy . 1

1.1.1 Privacy Preserving OLAP . 2

1.1.2 Clustering for Anonymity . 2

1.1.3 Probabilistic Anonymity . 3

1.1.4 A Tool for Data Privacy: Masketeer 4

1.2 Auditing . 5

1.3 Distributed Architectures for Privacy 5

I Sanitizing Data for Privacy 7

2 Privacy Preserving OLAP 9

2.1 Introduction . 9

2.2 Related Work . 11

2.3 Data Perturbation . 12

2.4 Reconstruction . 14

2.4.1 Reconstructing Single Column Aggregates 14

2.4.2 Reconstructing Multiple Column Aggregates 17

xi

2.5 Guarantees against privacy

breaches . 23

2.5.1 Review of (ρ1, ρ2) Privacy Breach 24

2.5.2 (s, ρ1, ρ2) Privacy Breach . 24

2.5.3 Single Column Perturbation 26

2.5.4 Multiple Independently Perturbed Columns 27

2.6 Extensions . 29

2.6.1 Categorical Data . 29

2.6.2 Alternative Retention Replacement Schemes 29

2.6.3 Application to Classification 31

2.7 Experiments . 32

2.7.1 Randomization and Reconstruction 33

2.7.2 Scalability . 34

2.7.3 Privacy Breach Guarantees . 36

2.8 Conclusions . 37

3 Clustering for Anonymity 44

3.1 Introduction . 44

3.2 r-GATHER CLUSTERING . 50

3.2.1 Lower Bound . 51

3.2.2 Upper Bound . 52

3.2.3 (r, ǫ)-Gather Clustering . 53

3.2.4 Combining r-Gather with k-Center 55

3.3 Cellular Clustering . 55

3.3.1 r-Cellular Clustering . 60

3.4 Conclusions . 64

4 Probabilistic Anonymity 65

4.1 Introduction . 65

4.1.1 Organization and Contributions 67

4.2 Automatic Detection of Quasi-identifiers 68

4.2.1 Distinct Values and Quasi-Identifiers 74

xii

4.3 Probabilistic Anonymity . 75

4.3.1 Privacy vs Utility . 78

4.3.2 The Curse of Dimensionality 80

4.3.3 Distinct Values and Anonymity 81

4.4 1-dimensional Anonymity . 81

4.4.1 Numerical Attributes . 82

4.4.2 Categorical Attributes . 85

4.5 Experiments . 86

4.5.1 Quasi-Identifiers . 86

4.5.2 Anonymity Algorithms . 89

4.6 Related Work . 92

4.7 Conclusions . 94

4.8 De-identification required for HIPAA 95

5 Masketeer 96

5.1 Introduction . 96

5.2 Data Masking . 97

5.2.1 Approaches . 97

5.3 Constraints . 101

5.4 MASKETEERTM . 101

5.4.1 Key Features . 101

II Auditing Query Logs for Privacy Compliance 105

6 Query Auditing 107

6.1 Introduction . 107

6.2 Related Work . 109

6.3 Semantic Auditing for a Batch of SQL Queries 114

6.4 Syntactic Auditing for a Batch of SQL Queries 117

6.4.1 Strong Syntactic Suspiciousness 117

6.4.2 Weak Syntactic Suspiciousness 119

xiii

6.5 Auditing and Access Control . 122

6.6 Conclusions . 127

III Distributed Architecture for Privacy 129

7 Distributed Privacy 131

7.1 Introduction . 131

7.2 General Architecture . 134

7.2.1 Relation Decomposition . 135

7.3 Defining the Privacy Requirements and Achieving It 139

7.3.1 Obtaining Privacy via Decompositions 141

7.4 Query Reformulation, Optimization and Execution 143

7.4.1 Query Reformulation . 144

7.4.2 Query Optimization . 144

7.4.3 Query Execution and Data Privacy 147

7.4.4 Discussion . 147

7.5 Identifying the Optimal Decomposition 149

7.5.1 Solving the Optimization Problem 150

7.5.2 Discussion . 154

7.6 Related Work . 155

7.7 Conclusions . 156

7.8 Addendum: Extract from California SB 1386 157

7.9 Addendum: Computing the Affinity Matrix 158

7.9.1 The Effects of Fragmentation 159

7.9.2 The Effects of Encoding . 160

8 Conclusions 161

Bibliography 163

xiv

List of Figures

2.1 Privacy preserving computation of multidimensional count aggregates. . . . 10

2.2 Answering query count(P1 ∧ P2) . 17

2.3 Decision Tree Example . 31

2.4 Reconstruction errors for conjunction of 2 predicates for Adult data. . . . 38

2.5 Reconstruction errors for conjunction of 3 predicates for Adult data. . . . 38

2.6 Condition number of the transition matrix 39

2.7 Reconstruction errors for the Adult dataset for varying retention probabili-

ties, p, by the iterative algorithm. 40

2.8 Reconstruction errors for the Adult dataset for varying retention probabili-

ties, p, by the inversion algorithm. 40

2.9 Reconstruction error by iterative method on Zipfian dataset with 105 rows

varying number of columns . 41

2.10 Reconstruction error by iterative method on Zipfian dataset varying number

of rows for 8 columns. 41

2.11 Absolute Error for the Zipfian dataset for p=0.2 for varying interval sizes. 42

2.12 Relative Error for the Zipfian dataset for p=0.2 for varying interval sizes. 42

2.13 Privacy for two columns for Adult data. 43

2.14 Privacy for three columns for Adult data. 43

3.1 Original table and three different ways of achieving anonymity 44

3.2 Publishing anonymized data . 46

3.3 A sample table where there is no common attribute among all entries. . . . 49

3.4 Structures of open and leftover clusters 62

xv

4.1 Quasi-Identifier Test . 72

4.2 A Categorical Attribute . 85

4.3 Quasi-Identifiers on the Adult Dataset 87

4.4 Time taken for varying number of rows. 90

4.5 Time taken for varying number of columns. 91

4.6 Time taken for varying number of buckets. 92

4.7 Tradeoff between privacy and utility. 93

5.1 Original Database table . 98

5.2 Masked Database table . 98

5.3 Techniques Overview . 100

7.1 The System Architecture . 134

7.2 Example of Query Reformulation and Optimization 143

xvi

Chapter 1

Introduction

Over the last twenty years, there has been a tremendous growth in the amount of

private data collected about individuals that can be collected and analyzed. This data

comes from a variety of sources including medical, financial, library, telephone, and

shopping records. With the rapid growth in database, networking, and computing

technologies, such data can be integrated and analyzed digitally. On the one hand,

this has led to the development of data mining tools that aim to infer useful trends

from this data. But, on the other hand, easy access to personal data poses a threat

to individual privacy. In this thesis, we provide models and algorithms for protecting

the privacy of individuals in such large data sets while still allowing users to mine

useful trends and statistics.

1.1 Sanitizing data for Privacy

The first problem is that of data sanitization before publication. There are two

main reasons for data sanitization before publication. Publishing health and financial

information for research purposes requires the data be anonymized so that the privacy

of individuals in the database is protected. This anonymized information can be used

as is or can be combined with another (anonymized) dataset for analysis. We explore

both these scenarios in this thesis. Another reason for sanitization is to give the

1

2 CHAPTER 1. INTRODUCTION

data to an out-sourced software developer for software development without the out-

sourced data handler learning information about its client. We briefly explain such a

tool in this thesis.

1.1.1 Privacy Preserving OLAP

Publishing health, financial, personal information requires the data be anonymized

so that the privacy of individuals in the database is protected. This information can

be combined with another (anonymized) dataset for analysis. We explore this under

Privacy Preserving OLAP in Chapter 2 in this Thesis. We present techniques for

privacy-preserving computation of multidimensional aggregates on data partitioned

across multiple clients. Data from different clients is perturbed (randomized) in

order to preserve privacy before it is integrated at the server. We develop formal

notions of privacy obtained from data perturbation and show that our perturbation

provides guarantees against privacy breaches.We develop and analyze algorithms for

reconstructing counts of subcubes over perturbed data. We also evaluate the tradeoff

between privacy guarantees and reconstruction accuracy and show the practicality of

our approach.

1.1.2 Clustering for Anonymity

Publishing data for analysis from a table containing personal records, while maintain-

ing individual privacy, is a problem of increasing importance today. The traditional

approach of de-identifying records is to remove identifying fields such as social secu-

rity number, name etc. However, recent research has shown that a large fraction of

the US population can be identified using non-key attributes (called quasi-identifiers)

such as date of birth, gender, and zip code [Swe00]. Sweeney [Swe02b] proposed the

k-anonymity model for privacy where non-key attributes that leak information are

suppressed or generalized so that, for every record in the modified table, there are

at least k − 1 other records having exactly the same values for quasi-identifiers. We

propose a new method for anonymizing data records, where quasi-identifiers of data

records are first clustered and then cluster centers are published. To ensure privacy

1.1. SANITIZING DATA FOR PRIVACY 3

of the data records, we impose the constraint that each cluster must contain no fewer

than a pre-specified number of data records. This technique is more general since we

have a much larger choice for cluster centers than k-Anonymity. In many cases, it

lets us release a lot more information without compromising privacy. We also provide

constant-factor approximation algorithms to come up with such a clustering. This

is the first set of algorithms for the anonymization problem where the performance

is independent of the anonymity parameter k. We further observe that a few outlier

points can significantly increase the cost of anonymization. Hence, we extend our

algorithms to allow an ǫ fraction of points to remain unclustered, i.e., deleted from

the anonymized publication. Thus, by not releasing a small fraction of the database

records, we can ensure that the data published for analysis has less distortion and

hence is more useful. Our approximation algorithms for new clustering objectives are

of independent interest and could be applicable in other clustering scenarios as well.

1.1.3 Probabilistic Anonymity

In this age of globalization, organizations need to publish their micro-data owing to le-

gal directives or share it with business associates in order to remain competitive. This

puts personal privacy at risk. To surmount this risk, attributes that clearly identify

individuals, such as Name, Social Security Number, Driving License Number, are

generally removed or replaced by random values. But this may not be enough because

such de-identified databases can sometimes be joined with other public databases on

attributes such as Gender, Date of Birth, and Zipcode to re-identify individuals

who were supposed to remain anonymous. In literature, such an identity-leaking at-

tribute combination is called as a quasi-identifier. It is always critical to be able to

recognize quasi-identifiers and to apply to them appropriate protective measures to

mitigate the identity disclosure risk posed by join attacks.

In Chapter 4, we start out by providing the first formal characterization and a

practical technique to identify quasi-identifiers. We show an interesting connection

between whether a set of columns forms a quasi-identifier and the number of distinct

values assumed by the combination of the columns. We then use this characterization

4 CHAPTER 1. INTRODUCTION

to come up with a probabilistic notion of anonymity. Again we show an interesting

connection between the number of distinct values taken by a combination of columns

and the anonymity it can offer. This allows us to find an ideal amount of general-

ization or suppression to apply to different columns in order to achieve probabilistic

anonymity. We work through many examples and show that our analysis can be

used to make a published database conform to privacy acts like HIPAA. In order

to achieve the probabilistic anonymity, we observe that one needs to solve multiple

1-dimensional k-anonymity problems. We propose many efficient and scalable algo-

rithms for achieving 1-dimensional anonymity. Our algorithms are optimal in a sense

that they minimally distort data and retain much of its utility.

1.1.4 A Tool for Data Privacy: Masketeer

Major countries like the U.S., Japan, Canada, Australia and EU have come up with

strict data distribution laws which demand their organizations to implement proper

data security measures that respect personal privacy and prohibit dissemination of

raw data outside the country.

Since companies are not able to provide real data, they often resort to completely

random data. It is obvious that such a data would offer complete privacy, but would

have very low utility. This has serious implications for IT services companies since

application development and testing environments rely on realistic test data to verify

that the applications provide the functionality and reliability they were designed to

deliver. It is always desirable that the test data is similar to, if not the same as, the

production data. Hence, deploying proven tools that make de-identifying production

data easy, meaningful and cost-effective is essential.

Data masking methods came into existence to permit the legitimate use of data

and avoid misuse. In Chapter 5, we consider various such techniques to be able to

come up with a comprehensive solution for data privacy requirements. We present the

data masking product MASKETEERTM (developed at TCS) which implements these

techniques for providing maximum privacy for data while maintaining good utility.

1.2. AUDITING 5

1.2 Auditing

The second part of the thesis deals with algorithms to audit query logs for privacy in

Chapter 6.

We study the problem of auditing a batch of SQL queries: Given certain forbid-

den views of a database that must be kept confidential, a batch of SQL queries that

were posed over this database, and a definition of suspiciousness, determine whether

the batch of queries is suspicious with respect to the forbidden views. In this paper,

we define two different notions of suspiciousness — semantic suspiciousness, corre-

sponding to the definition introduced in [ABF+04], where the problem was studied

for a single SQL query in isolation and (2) a database instance-independent notion

of syntactic suspiciousness. For a given database instance we provide a polynomial

time algorithm for detecting if a batch of select-project-join queries is semantically

suspicious. This algorithm requires actual execution of the queries against the data-

base. Since syntactic suspiciousness of a query batch is independent of the underlying

database instance, it may seem more desirable. However we show that it is in fact

NP-hard to achieve even when we restrict ourselves to the class of conjunctive queries.

We therefore weaken the notion of syntactic suspiciousness and present a polynomial

time algorithm for auditing a batch of conjunctive SQL queries under this weaker

definition. Finally, we provide a synthesis of recent research in the areas of query au-

diting and access control and illustrate the relationship between the notions of perfect

privacy studied in [MS04, MG06], semantic and syntactic suspiciousness introduced

here, as well as the notion of unconditional validity of a query introduced in database

access control literature [Mot89, RS00, RS01, RSD99, RMSR04].

1.3 Distributed Architectures for Privacy

The final part of the thesis deals with distributed architectures to store private infor-

mation at a database server. Data is distributed at multiple sites so that a hacker or

insider having access to a single site is unable to compromise the private information

stored in the database.

6 CHAPTER 1. INTRODUCTION

Recent trends towards database outsourcing, as well as concerns and laws gov-

erning data privacy, have led to great interest in enabling secure database services.

Previous approaches to enabling such a service have been based on data encryp-

tion, causing a large overhead in query processing. We propose a new, distributed

architecture that allows an organization to outsource its data management to two

untrusted servers while preserving data privacy. We show how the presence of two

servers enables efficient partitioning of data so that the contents at any one server

are guaranteed not to breach data privacy. We show how to optimize and execute

queries in this architecture, and discuss new challenges that emerge in designing the

database schema.

Part I

Sanitizing Data for Privacy

7

Chapter 2

Privacy Preserving OLAP

The results in this chapter appear in [AST05].

2.1 Introduction

On-line analytical processing (OLAP) is a key technology employed in business-

intelligence systems. The computation of multidimensional aggregates is the essence

of on-line analytical processing. We present techniques for computing multidimen-

sional count aggregates in a privacy-preserving way.

We consider a setting in which clients C1, C2, . . . Cn are connected to a server

S. The server has a table T (A1, A2, . . . , Am), where each column Ai comes from a

numeric domain. Each client Ci contributes a row ri(ai1, ai2 , . . . , aim) to T . The server

runs aggregate queries of the form

select count(*) from T

where Pj1 and Pj2 . . . and Pjk
.

Here Pji
is a range predicate of the form ali ≤ Aji

≤ ahi
, denoted as Aji

[ali, ahi
].

We use count(Pj1 ∧ Pj2 . . . ∧ Pjk
) to succinctly represent the above aggregate query.

We take the randomization approach to preserving privacy. The basic idea is that

every client Ci perturbs its row ri before sending it to the server S. The random-

ness used in perturbing the values ensures information-theoretic row-level privacy.

9

10 CHAPTER 2. PRIVACY PRESERVING OLAP

A1,A2,A3,....An Q1, Q2, Q3,...Qn

Translation
Module

Reconstruction
Module

Estimated answer

Queries on

 Aggregate query
on original table T on original table T

Answers on
perturbed table T1

Perturbed Table T
1

perturbed table T1

Figure 2.1: Privacy preserving computation of multidimensional count aggregates.

Figure 2.1 gives the schematic of our approach. S runs queries on the resultant per-

turbed table T ′. The query meant for the original table T is translated into a set

of queries on the perturbed table T
′

. The answers to these queries are then recon-

structed to obtain the result to the original query with bounded error. We show that

our techniques are safe against privacy breaches.

The perturbation algorithm is publicly known; the actual random numbers used

in the perturbation, however, are hidden. To allow clients to operate independently,

we use local perturbations so that the perturbed value of a data element depends only

on its initial value and not on those of the other data elements. Different columns

of a row are perturbed independently. We use retention replacement schemes where

an element is decided to be retained with probability p or replaced with an element

selected from a probability distribution function (p.d.f.) on the domain of elements.

The proposed techniques can also be used for database tables in which some of the

columns are categorical. They are also applicable in the settings in which the database

tables are partitioned horizontally or vertically. The organization of the rest of the

paper is as follows. We start off with a discussion of related work in Section 2.2. Sec-

tion 2.3 formally defines the retention replacement perturbation. Section 2.4 presents

the reconstruction algorithms. Section 2.5 presents the guarantees against privacy

breaches offered by our techniques. In Section 2.6, we discuss how our techniques

2.2. RELATED WORK 11

can be extended to categorical data. We also discuss some additional perturbation

techniques and describe how our techniques can be used in data mining by showing

how to build a decision tree classifier. Section 2.7 presents an empirical evaluation

of our techniques. We conclude with a summary and directions for future work in

Section 2.8.

2.2 Related Work

The techniques for preserving privacy while answering statistical queries developed

in the statistical database literature can be classified into query restriction, input

perturbation and output perturbation [AW89]. Both query restriction and output

perturbation are applicable when the entire original unperturbed data is available in

a single central repository, which is not true in our setting, where clients randomize

their data before providing it to the server. Our scenario fits in the framework of input

perturbation, where the goal is to create a version of the database that can be publicly

released (e.g. census data), yet the individual rows should not be recoverable. Local

perturbation for a single column has been studied in [War65]. However most previous

work (e.g., [Jr.]) assume that during perturbation the entire database is available at

a single site, while we require local perturbations at each client.

The use of local perturbation techniques to preserve privacy of individual rows

while allowing the computation of data mining models at the aggregate level was

proposed in [AS00]. They used an additive perturbation technique, in which a random

perturbation is added to the original value of the row, where the perturbation is picked

from another probability distribution function (e.g. Gaussian). They showed that it

was possible to build accurate decision tree classification models on the perturbed

data.

However, it is difficult to provide guarantees against privacy breaches when using

additive perturbation. For instance, if we add a Gaussian random variable with a

mean 0 and variance 20 to age, and for a specific row the randomized value happens

to be −60, one can estimate with high confidence that the original value of age was

(say) less than 20. Additive schemes are also restricted to numeric data. Finally, the

12 CHAPTER 2. PRIVACY PRESERVING OLAP

algorithms in [AS00] reconstruct each column independently. Since OLAP requires

queries over multiple columns, it is essential to be able to reconstruct them together.

The problem of privacy-preserving association-rule mining was studied in [EGS03,

ESAG02, RH02]. The randomization schemes used in these works are similar to the

retention replacement schemes we consider. However these studies are restricted to

boolean data.

Formal definitions of privacy breaches were proposed in [EGS03], and an alternate

approach to defining privacy guarantees was proposed in [CDM+05]. We adapt the

definitions from [EGS03] to allow more accurate reconstruction while still providing

strong privacy guarantees. As our notion of privacy encompasses multiple correlated

columns over vertically partitioned tables, it extends to privacy breaches (called dis-

closure risk) considering row linkage, studied in statistical disclosure control methods

and [FT03].

There has been recent work [WJW, WWJ04] to specify authorization and control

inferences for OLAP data cubes. However the model assumes that the data resides

at a single server, unlike our problem, where private data is integrated from multiple

clients.

Another related area is that of secure multiparty computation [GMW87, Yao86],

that allows any function, whose inputs are shared between multiple clients to be

evaluated, such that nothing other than the result is revealed. Since the general

protocols are expensive, efficient protocols have been proposed for specific database

and data mining operations, e.g. [AES03, CKL+03, FNP04, HFH99, LP00]. However,

these protocols are designed for a small number of clients.

2.3 Data Perturbation

A single record of the table is referred to as a row, while an attribute is referred to as

a column. A single column from a single row is the granularity of perturbation and

is referred to as a data element.

Definition 2.1 Perturbation Algorithm: A perturbation algorithm α is a ran-

domized algorithm that given a table T creates a table T
′

having the same number of

2.3. DATA PERTURBATION 13

rows and columns.

We will denote the unperturbed table as T and the perturbed table as T
′

. The

perturbation algorithm is public. However, the actual random numbers used by it

are hidden.

Let tij and t
′

ij denote the value of the element in the ith row of the jth column

in tables T and T
′

respectively. The perturbation algorithm is said to be local if t
′

ij

depends only on tij , while it is said to be global if t
′

ij depends on other elements in

the jth column of T .

Let Dj denote the domain of elements in the jth column of T . Dj is said to be

continuous for numeric columns, and discrete for categorical columns. For the class

of perturbation algorithms we study, for every column being perturbed, we require

the perturbation algorithm to select a fixed probability density function (p.d.f.) on

the column’s domain. For the jth column we call this p.d.f. the replacing p.d.f. on

Dj. Both Dj as well as the replacing p.d.f. on Dj are public.

Definition 2.2 Retention Replacement Perturbation: Retention replacement

perturbation is a perturbation algorithm, where each element in column j is retained

with probability pj, and with probability (1−pj) replaced with an element selected from

the replacing p.d.f. on Dj. That is,

t
′

ij =

{

tij with probability pj

element from replacing p.d.f. on Dj with probability (1-pj).

If column j of the table can be revealed without perturbation we set pj = 1.

Retention replacement perturbation, where the replacing p.d.f. is the uniform

p.d.f. is called uniform perturbation. We assume that each column of the table T
′

has

been perturbed independently using uniform perturbation. In Section 2.6.2, we show

that uniform perturbation provides better privacy guarantees for rare events. Other

alternatives and comparisons are also given in the same section.

14 CHAPTER 2. PRIVACY PRESERVING OLAP

2.4 Reconstruction

An aggregate function on the original table T , must be reconstructed by accessing

the perturbed table T
′

. The accuracy of the reconstruction algorithm is formalized

below by the notion of approximate probabilistic reconstructability.

Definition 2.3 Reconstructible Function: Given a perturbation α converting

table T to T
′

, a numeric function f on T is said to be (n, ǫ, δ) reconstructible by

a function f
′

, if f
′

can be evaluated on the perturbed table T
′

so that |f ′ − f | <

max(ǫ, ǫf) with probability greater than (1 − δ) whenever the table T has more than

n rows. The probability is over the random choices made by α.

For boolean functions, (n, δ) reconstructability needs f and f
′

to agree exactly

with probability greater than (1 − δ).

Referring to Figure 2.1, to answer the aggregate query count(P1∧P2∧ . . . Pk) on k

columns of the original table, T , a set of 2k queries, count(P1∧P2∧. . . Pk), count(¬P1∧
P2∧ . . . Pk), count(P1∧¬P2∧ . . . Pk), count(¬P1∧¬P2∧ . . . Pk) . . . count(¬P1∧¬P2∧
. . .¬Pk) are generated. These queries are evaluated on the perturbed table T

′

. The

answers on T
′

are reconstructed into estimated answers for the same queries on T ,

which include the answer to the original query.

Without loss of generality, assume that the predicates are only over perturbed

columns. We present reconstruction algorithms for numeric columns. These algo-

rithms can be extended to categorical columns too as shown in Section 2.6.

2.4.1 Reconstructing Single Column Aggregates

Consider the uniform retention replacement perturbation with retention probability p

applied on a database with n rows and a single column, C, with domain [min, max].

Consider the predicate P = C[low, high]. Given the perturbed table T
′

, we show

how to estimate an answer to the query count(P) on T .

Let tables T , T
′

each have n rows. Let nr = count(P) evaluated on table T
′

,

2.4. RECONSTRUCTION 15

while no = count(P) estimated for table T . Given nr we estimate no as

no =
1

p
(nr − n(1 − p)b) , where b =

high − low

max − min
.

The intuition is that out of the n rows in table T , the expected number of rows that

get perturbed is n(1 − p). For uniform perturbation, a b fraction of these rows, i.e.

n(1−p)b rows, will be expected to lie within the [low, high] range. The total number

of rows observed in range [low, high] in T
′

, nr, can be seen as the sum of those rows

that were decided to be perturbed into [low, high] (from outside, or perturbed and

retained within the interval) and those rows that were unperturbed in the original

interval. Subtracting the n(1 − p)b perturbed rows from nr, we get an estimate for

the number of unperturbed rows, with values in [low, high] in T . This is scaled up by

1/p to get the total number of original rows in T in [low, high], as only a p fraction

of rows were retained.

The fraction f of rows originally in [low, high] is therefore estimated as

f
′

=
no

n
=

nr

pn
− (1 − p)(high − low)

p(max − min)
.

Not only is the above estimator a Maximum Likelihood Estimator (MLE) as shown

in Section 2.4.2, it reconstructs an approximate answer with high probability.

Theorem 2.4.1 Let the fraction of rows in [low, high] in the original table f be

estimated by f
′

, then f
′

is a (n, ǫ, δ) estimator for f if n ≥ 4 log(2
δ
)(pǫ)−2.

Proof: Let Yi be the indicator variable for the event that the ith row (1 ≤ i ≤ n)

is perturbed and the perturbed value falls within [low, high]. Yi are i.i.d. with

Pr[Yi = 1] = (1− p)b = q (say), Pr[Yi = 0] = 1− q. Let Xi be the indicator variable

for the event that the ith row is not perturbed and it falls within [low, high]. Once

again Xi are i.i.d. with Pr[Xi = 1] = pf = r (say), Pr[Xi = 0] = 1 − r. Let Zi be

the indicator variable for the event that the ith randomized row falls in [low, high].

We have Zi = Xi + Yi, and Pr[Zi = 1] = q + r = t (say), and Pr[Zi = 0] = 1− t. Let

Z =
∑n

i=1 Zi = nr, the number of randomized values in range [low, high]. Since Zi’s

are independent Bernoulli random variables, 0 ≤ t ≤ 1 and n ≥ 4 log(2
δ
)(pǫ)−2 × t,

16 CHAPTER 2. PRIVACY PRESERVING OLAP

applying Chernoff bounds[Che52] we get

Pr[|Z − nt| > ntθ] < 2e
−ntθ2

4 ≤ δ for θ =
pǫ

t

Thus with probability > 1−δ, we have −npǫ < Z−nt = nr −n(pf +(1−p)b) < npǫ,

which implies

f − ǫ <
nr

pn
− (1 − p)(high − low)

p(max − min)
< f + ǫ

Hence |f − f
′| < ǫ with probability > 1 − δ.

2

We now formalize the above reconstruction procedure. This formalization provides

the basis for the reconstruction of multiple columns in Section 2.4.2.

Let vector y = [y0, y1] = [count(¬P), count(P)] be the answers on table T
′

, and

let vector x = [x0, x1] = [count(¬P), count(P)] denote the estimates for table T . Let

b be defined as before and a = 1 − b. As only table T
′

is available, x is estimated

using the constraint xA = y, which gives the estimator x = yA−1. Here A is the

following transition matrix

[

(1 − p)a + p (1 − p)b

(1 − p)a (1 − p)b + p

]

.

The element in the first row and first column of A, a00 = (1 − p)a + p is the prob-

ability that an element originally satisfying ¬P in T after perturbation satisfies ¬P

in T
′

. This probability was calculated as the sum of the probabilities of two disjoint

events. The first being that the element is retained, which occurs with probability

p. The second being that the element is perturbed and after perturbation satisfies

¬P , which together has probability (1− p)a. The element a01 is the probability that

an element satisfying ¬P in T after perturbation satisfies P in T
′

. The element a10

is the probability that an element satisfying P in T after perturbation satisfies ¬P

in T
′

. The element a11 is the probability that an element satisfying P in T after

perturbation satisfies P in T
′

. Their values were similarly derived.

If y = [n − nr, nr] and x = [n − no, no], the solution to the equation below gives

2.4. RECONSTRUCTION 17

Query Estimated on T Evaluated on T
′

count(¬P1 ∧ ¬P2) x0 y0

count(¬P1 ∧ P2) x1 y1

count(P1 ∧ ¬P2) x2 y2

count(P1 ∧ P2) x3 y3

Figure 2.2: Answering query count(P1 ∧ P2)

the same estimator as derived earlier:

[

n − no no

]

[

(1 − p)a + p (1 − p)b

(1 − p)a (1 − p)b + p

]

=
[

n − nr nr

]

.

2.4.2 Reconstructing Multiple Column Aggregates

Assume now that the uniform retention replacement perturbation, with retention

probability p, has been applied to each of k columns of a table, T . Consider the

aggregate query count(P1 ∧ P2 ∧ ...Pk) on table T . In practice k is small.

We create a k × 2 matrix, R, with k rows and 2 columns, having 1 row for each

query column. Ri,1 gives the probability that a number randomly selected from the

replacing p.d.f. for column i will satisfy predicate Pi, while Ri,0 is the probability

of the complementary event, that a number selected from the replacing p.d.f. will

satisfy ¬Pi.

Take for instance the query, Q=count(age[30-45] ∧ salary[50k-120k] ∧ house-

rent[700-1400]) with the domains for age, salary and house-rent being [0-100], [25k-

200k], [500-2500]. Then R will be [[0.85, 0.15], [0.6, 0.4], [0.65, 0.35]], since the first

column being age[30-45] implies R1,1 = (45 − 30)/(100 − 0) = 0.15, while R1,0 =

1 − 0.15 = 0.85, etc.

As stated earlier, to answer the query count(P1 ∧ P2 . . . Pk), we ask 2k aggregate

queries on the perturbed table, T
′

. The 2k answers on perturbed table T
′

are con-

verted into estimated answers to these 2k aggregate queries on the original table T,

which includes the estimated answer to the original query.

18 CHAPTER 2. PRIVACY PRESERVING OLAP

Let y be a row vector of size 2k that has the answers to the above queries on

perturbed table T
′

, and let x be a row vector of size 2k that has the reconstructed

estimated answers to the queries on original table T . We order the answers to the 2k

queries in vectors x, y using the bit representation of the vector index as shown in

Figure 2.2. Let Q(r, 1) denote the predicate(Pr) on the rth column of query Q, and

Q(r, 0) its negation (¬Pr). Let bit(i, r) denote the rth bit from the left in the binary

representation of the number i using k bits. Then,

xi = count(∧k
r=1Q(r, bit(i, r))) in T , for 0 ≤ i ≤ 2k − 1;

yi = count(∧k
r=1Q(r, bit(i, r))) in T

′

, for 0 ≤ i ≤ 2k − 1.

For example, for the query count(age[30-45] ∧ salary[50k-120k] ∧ house-rent[700-

1400]), y[610] = y[1102] = count(age[30-45] ∧ salary[50k-120k] ∧ ¬ house-rent[700 −
1400])

By a single scan through the perturbed table T
′

vector y can be calculated. Vector

x is reconstructed from vector y using the matrix inversion technique or the iterative

Bayesian technique described below. The data analyst may either be interested only

in the component x2k−1, which is the answer to the count(∧k
r=1Pr) query on T , or she

may be interested in the entire vector x.

Matrix Inversion technique

If pr is the retention probability for the rth column, we calculate vector x from vector

y as x = yA−1. The transition matrix, A, with 2k rows and 2k columns, can be

calculated as the tensor product [HK71] of matrices

A = A1 ⊗ A2 ⊗ A3.... ⊗ Ak

where the matrix Ar, for 1 ≤ r ≤ k is the transition matrix for column r (see

Section 2.4.1).

Ar =

[

(1 − pr)ar + pr (1 − pr)br

(1 − pr)ar (1 − pr)br + pr

]

where br = Rr,1 and ar = Rr,0 = 1 − Rr,1.

2.4. RECONSTRUCTION 19

The entries of the tensor product matrix, A, can be explicitly calculated to be

aij =
∏k

r=1((1 − pr) × Rr,bit(j,r) + pr × δ(bit(i,r),bit(j,r))), ∀0 ≤ i < 2k, 0 ≤ j < 2k

where δ(c,d) = 1 if c = d, and 0 if c 6= d, for c, d ∈ {0, 1}.

We split the space of possible evaluations of a row into 2k states, according to

which of the 2k mutually exclusive predicate combinations the row satisfies. We say

a row is said to belong to state i if it satisfies the predicate ∧k
r=1Q(r, bit(i, r)). For

example, from Figure 2.2, a row in state 0 satisfies ¬P1 ∧ ¬P2 while a row in state 1

satisfies ¬P1 ∧ P2 etc.

The entry aij of matrix A above represents the probability that a row belonging

to state i in T , after perturbation belongs to state j in T
′

. As each column was

independently perturbed the probability of transition from state i to state j is the

product of the probabilities for the transitions on all columns. The contribution

from the rth column to the transition probability is the sum of (1− pr)×Rr,bit(j,r), if

the element was decided to be perturbed, and pr × δ(bit(i,r),bit(j,r)), if the element was

decided to be retained. The term δ(bit(i,r),bit(j,r)) ensures that the retention probability

pr adds up only if the source and destination predicates on the rth column are the

same for states i and j. Thus the probability of transition from state i to state j

on the rth column is (1 − pr) × Rr,bit(j,r) + pr × δ(bit(i,r),bit(j,r)). The product of this

probability over all columns gives the probability of transition from state i to state

j, aij .

Theorem 2.4.2 The vector x calculated as A−1y is the maximum likelihood estimator

(MLE) of the relaxed a priori distribution (
∑

i xi = n and 0 ≤ xi ≤ n are the exact

constraints, the relaxed constraint only ensures
∑

i xi = n) on the states that generated

the perturbed table.

Proof: Let V = (v1, v2, v3,vn) be the observed state values for the n perturbed

rows in T
′

. Let t = 2k − 1. Note that vi ∈ {0, 1, 2,, t} for all i ∈ [1..n]. If L(x) is

the likelihood of the observations, V , given a probability distribution on the states,

x, in the original data, then L(x) = Pr(V |x) =
∏n

i=1 Pr(vi|x) =
∏n

i=1(
1
n

∑t
j=0 ajvixj)

=
∏t

i=0(
1
n

∑t
j=0 ajixj)

yi (reordering according to the values of vi.) Maximizing L(x)

20 CHAPTER 2. PRIVACY PRESERVING OLAP

is equivalent to maximizing log(L(x)).

max log(L(x)) =

t
∑

i=0

(yi × log(
1

n

t
∑

j=0

xjaji))

subject to the constraint
∑t

j=0 xj = n.

This is equivalent to

max
x

min
λ

l(x, λ) =

t
∑

i=0

(yi log(
1

n

t
∑

j=0

xjaji)) − λ(

t
∑

j=0

xj − n)

where λ is the Lagrangian multiplier.

If
∑t

j=0 xj − n > 0 then setting λ to arbitrarily large positive value, you can

minimize the term −λ(
∑t

j=0 xj−n) to an arbitrarily small negative number, similarly

when
∑t

j=0 xj − n < 0, as λ tends to −∞ the term becomes arbitrarily small. So the

optimum ensures that the constraint
∑t

j=0 xj = n is satisfied.

To maximize the expression, setting the partial derivatives to be zero we get,

∂l

∂xs

=
t

∑

i=0

yi
asi

∑t
j=0 xjaji

− λ = 0 ∀0 ≤ s ≤ t

and ∂l
∂λ

=
∑t

j=0 xj − n = 0.

Matrix A is stochastic, i.e.
∑t

i=0 asi = 1 ∀0 ≤ s ≤ t, as they are probabilities

of transition out of a state. Consider the row vector, x = yA−1 calculated by the

algorithm. For this vector x,
∑t

j=0 xjaji = yi. Hence substituting above, ∂l
∂xs

=
∑t

i=0 yi
asi

yi
− λ =

∑t
i=0 asi − λ = 1 − λ

Also
∑t

j=0 yj =
∑t

j=0

∑t
i=0 xiaij =

∑t
i=0

∑t
j=0 xiaij

=
∑t

i=0 xi

∑t
j=0 aij =

∑t
i=0 xi. As

∑t
j=0 yj = n we have

∑t
i=0 xi = n, satisfying

∂l
∂λ

= 0.

Thus at x, given by x = yA−1, and λ = 1 we get a local maximum of l(x, λ).

We show that the local maximum is the global maximum, by analyzing the Hessian

matrix, H , of l(x, λ) and showing xT Hx ≤ 0, for all x ∈ Rt. Elements of H are given

2.4. RECONSTRUCTION 21

by,

hsi =
∂l

∂xs∂xi
= −

m
∑

h=1

yh
aihash

(
∑t

j=0 xjajh)2
∀0 ≤ s, i ≤ m

.

xT Hx =

t
∑

i=0

t
∑

s=0

hsixsxi

=

t
∑

i=0

t
∑

s=0

−
t

∑

h=0

yh
aihash

(
∑t

j=0 xjajh)2
xsxi

= −
t

∑

i=0

t
∑

s=0

t
∑

h=0

φhaihashxixs

where

φh =
yh

(
∑t

j=0 xjajh)2
≥ 0

Thus

xT Hx = −
t

∑

h=0

φh

t
∑

i=0

t
∑

s=0

aihashxixs

= −
t

∑

h=0

φh

t
∑

i=0

aihxi(

t
∑

s=0

ashxs)

= −
t

∑

h=0

φh(
t

∑

s=0

ashxs)
t

∑

i=0

aihxi

= −
t

∑

h=0

φh(
t

∑

s=0

ashxs)(
t

∑

i=0

aihxi)

= −
t

∑

h=0

φh(

t
∑

i=0

aihxi)
2 ≤ 0

2

The multiple column aggregate is (n, ǫ, δ) reconstructible, is shown by applying

the Chernoff bound, to bound the error in y, and then bounding the error added

during inversion.

22 CHAPTER 2. PRIVACY PRESERVING OLAP

Iterative Bayesian technique

Let vectors x and y of size 2k be the a priori distribution on states of the original

rows, and posteriori distribution on states of perturbed rows, as introduced above.

Let the original states of rows in T selected from the a priori distribution be given by

random variables U1, U2,Un, while the states of the n perturbed rows in T
′

be given

by the random variables V1, V2, ...Vn. Then for 0 ≤ p, q ≤ t = (2k − 1) and 1 ≤ i ≤ n,

we have Pr(Vi = q) = yq/n, and Pr(Ui = p) = xp/n. Also Pr(Vi = q|Ui = p) = apq

is the transition probability from state p to q.

From Bayes rule, we get

Pr(Ui = p|Vi = q) =
P (Vi = q|Ui = p)P (Ui = p)

P (Vi = q)

=
P (Vi = q|Ui = p)P (Ui = p)

∑t
r=0 P (Vi = q|Ui = r)P (Ui = r)

=
apq

xp

n
∑t

r=0 arq
xr

n

=
apqxp

∑t
r=0 arqxr

.

We iteratively update x using the equation

Pr(Ui = p) =

t
∑

q=0

Pr(Vi = q)Pr(Ui = p|Vi = q).

This gives us the update rule,

xT+1
p =

t
∑

q=0

yq

apqx
T
p

∑t
r=0 arqxT

r

,

where vector xT denotes the iterate at step T , and vector xT+1 the iterate at step

T + 1.

We initialize the vector, x0 = y, and iterate until two consecutive x iterates do not

differ much. This fixed point is the estimated a priori distribution. This algorithm

is similar to the iterative procedure proposed in [AS00] for additive perturbation and

2.5. GUARANTEES AGAINST PRIVACY BREACHES 23

shown in [AA01] to be the Expectation Maximization (EM) algorithm converging to

the Maximum Likelihood Estimator (MLE).

Error in Reconstruction

We provide here a brief analysis of the error in the reconstruction procedures. A

quantitative analysis of the magnitude of error is easy for the inversion method, but

such an analysis is much harder for the iterative method. Due to the randomization

in the perturbation algorithm there are errors in the transition probabilities in matrix

A. This causes y, the posteriori distribution after perturbation calculated from T
′

,

to have errors. Hence the reconstructed x will have errors.

The error decreases as the number of rows, n, increases. Let a
′

ij denote the actual

fraction of original rows of state i that were converted to state j. Then as n increases,

aij will be a closer approximation to a
′

ij . The error decreases as n−0.5 as indicated

by Theorem 2.4.1, and verified empirically in Section 2.7.

The error in reconstruction increases as the number of reconstructed columns, k,

increases, and the probability of retention, p, decreases. The largest and smallest

eigenvalues of A can be shown to be 1 and pk respectively and the condition number

of the matrix A grows roughly as p−k (see Section 2.7). The condition number of a

matrix is a good indicator of the error introduced during inversion [GL].

2.5 Guarantees against privacy

breaches

Private data from multiple clients is perturbed before being integrated at the server.

In this section, we formalize the privacy obtained by this perturbation.

The notion of a (ρ1, ρ2) privacy breach was introduced in [EGS03]. We extend

this to introduce a new privacy metric, called the (s, ρ1, ρ2) privacy breach. Consider

a database of purchases made by individuals. It is quite likely that many people buy

bread, but not many buy the same prescription medicine. The new metric is more

concerned about whether an adversary can infer from the randomized row which

24 CHAPTER 2. PRIVACY PRESERVING OLAP

medicine a person bought, and is less concerned about the adversary determining

with high probability that the original row had bread, as most individuals buy bread

and it does not distinguish the individual from the rest of the crowd.

Assume that the adversary has access to the entire perturbed table T
′

at the

server, and the exact a priori distribution on the unperturbed data (which can be

reconstructed [AS00])1. Also assume that any external information is already incor-

porated into the database.

2.5.1 Review of (ρ1, ρ2) Privacy Breach

Consider a data element of domain VX perturbed by a perturbation algorithm into

another domain VY .

Definition 2.4 (ρ1, ρ2) Privacy Breach[EGS03]: Let Y denote the random variable

corresponding to the perturbed value and X that corresponding to the original value

obtained from the a priori distribution. We say that there is a (ρ1, ρ2) privacy breach

with respect to Q ⊆ VX if for some S ⊆ VY P [X ∈ Q] ≤ ρ1 and P [X ∈ Q|Y ∈ S] ≥ ρ2

where 0 < ρ1 < ρ2 < 1 and P [Y ∈ S] > 0.

Intuitively suppose the probability of an event, (age ≤ 10) (say), according to the

a priori probability is ≤ ρ1 = 0.1 (say). After observing the perturbed value, if the

posteriori probability of the same event increases to ≥ ρ2 = 0.95 (say), then there is

a (0.1,0.95) privacy breach with respect to the event (age ≤ 10).

2.5.2 (s, ρ1, ρ2) Privacy Breach

In retention replacement perturbations, which are of interest to us, the column is

perturbed back into the same domain, and hence VX = VY . Let S ⊆ VX , with

P [X ∈ S] = ps, for X ∈o VX where ∈o represents selecting an element from VX

according to the a priori distribution on VX . Let P [Y ∈ S] = ms, for Y ∈r VX , where

∈r represents selecting an element from VX according to the replacing distribution,

1From Section 2.4.1, the error in the reconstructed a priori distribution for very selective predi-
cates is large. This adds to the privacy of the perturbed rows.

2.5. GUARANTEES AGAINST PRIVACY BREACHES 25

which is different from the distribution of the perturbed table. The ratio ps/ms is

called the relative a priori probability of the set S.

The relative a priori probability is a dimensionless quantity that represents how

frequent a set is according to its a priori probability as compared to the replacing

p.d.f. (the uniform p.d.f.). In a database of purchases, medicines will have low relative

a priori probability since different people take different medicines, while bread will

have high relative a priori probability.

Definition 2.5 (s, ρ1, ρ2) Privacy Breach: Let Y denote the random variable cor-

responding to the perturbed value and X that corresponding to the original value ob-

tained from the a priori distribution.

Let S ⊆ VX, we say that there is a (s, ρ1, ρ2) privacy breach with respect to S if

the relative a priori probability of S, ps/ms < s, and if P [X ∈ S] = ps ≤ ρ1 and

P [X ∈ S|Y ∈ S] ≥ ρ2 where 0 < ρ1 < ρ2 < 1 and P [Y ∈ S] > 0.

The value of s in the privacy breach is addressed by the next result.

Theorem 2.5.1 The median value of relative a priori probability, over all subsets S,

S ⊆ VX , is 1.

Proof: Consider, any subset S ⊆ VX , and S = VX − S. Using notation as in

Definition 2.5 we have ps + ps = 1 and ms + ms = 1. Hence if ps/ms ≥ 1 , we

have ps/ms ≤ 1 and if ps/ms < 1 we have ps/ms > 1 Since this is true for any pair

of complementary subsets, among all subsets of VX , half the subsets have relative a

priori probability ≥ 1 and half ≤ 1. Hence the median value of s over all subsets of

VX will be 1, if the median is not constrained to be one of the values attained.

2

We define rare sets as those that have relative a priori probability smaller than 1.

We next show that privacy breaches do not happen for rare sets.

26 CHAPTER 2. PRIVACY PRESERVING OLAP

2.5.3 Single Column Perturbation

Theorem 2.5.2 Let p be the probability of retention, then uniform perturbation ap-

plied to a single column is secure against a (s, ρ1, ρ2) breach, if

s <
(ρ2 − ρ1)(1 − p)

(1 − ρ2)p
.

Proof: Let S ⊆ VX with P [S] = ps according to the a priori distribution and

P [S] = ms according to the replacing p.d.f. Let X and Y denote the random variables

for the original and perturbed value respectively. Let R denote the event that X was

replaced and Rc it being retained. For a (ρ1, ρ2) privacy breach with respect to S we

need P [X ∈ S] ≤ ρ1. Also P [(X ∈ S)|(Y ∈ S)]

=
P [(X ∈ S) ∩ (Y ∈ S) ∩ R] + P [(X ∈ S) ∩ (Y ∈ S) ∩ Rc]

P [Y ∈ S]

≤ ρ1(1 − p)ms + pps

(1 − p)ms + pps

This is because P [(X ∈ S)∩(Y ∈ S)∩R] = P [X ∈ S]P [Y ∈ S|R]P [R] ≤ ρ1(1−p)ms

and P [(X ∈ S) ∩ (Y ∈ S) ∩ Rc] = P [(X ∈ S) ∩ Rc] = pps. Thus if P [X ∈ S|Y ∈
S] ≥ ρ2,

ρ1(1 − p)ms + pps

(1 − p)ms + pps
≥ ρ2

Hence for a (ρ1, ρ2) privacy breach with respect to S, we need

ps

ms
≥ (ρ2 − ρ1)(1 − p)

(1 − ρ2)p

2

As a concrete example, for uniform perturbation, with p=0.2, there are no (68,

0.1, 0.95) breaches. This means for any set S, if ρ2 > 0.95 with uniform perturbation,

ρ1 will be large (> 0.1) when ps/ms < 68. In fact, for a rare set, with s < 1,

there will be no (0.937, 0.95) privacy breaches in the original (ρ1, ρ2) model for this

perturbation.

2.5. GUARANTEES AGAINST PRIVACY BREACHES 27

2.5.4 Multiple Independently Perturbed Columns

Let Di be the domain for column i in a k column table. Then the domain of the

table, D = D1 × D2 × . . .Dk. Each column of the table is perturbed independently

by a retention replacement perturbation scheme.

There is an a priori probability distribution of the rows in table T . Let Si ⊆ Di

be a subset of the domain of the ith column for 1 ≤ i ≤ k. Let S = S1 × S2 × . . . Sk,

then S ⊆ D. Let P [S] = pS1×S2×...Sk
= ps (say) be the a priori probability of S.

Let P [Yi ∈ Si] = mSi
, for Yi ∈αi

Di, where ∈αi
denotes selecting randomly from the

replacing p.d.f. on Di, for all 1 ≤ i ≤ k. Then P [Y ∈ S] = mS1
mS2

..mSk
= ms (say)

for Y = (Y1, Y2, . . . Yk) ∈α D, where ∈α denotes selecting randomly from the replacing

p.d.f. for each column independently. ps/ms, the relative a priori probability, is the

ratio of the a priori probability to the replacing probability, of the combination of

values for the columns together. Correlated columns with higher a priori probabilities

have larger values of ps/ms.

Theorem 2.5.3 There will not be a (ρ1, ρ2) privacy breach with respect to (S1×S2×
. . . Sk) = S ⊆ D, if

ps

ms

<
ρ2(1 − ρ1)(1 − p)k

(1 − ρ2)
∏k

i=1((1 − p)mSi
+ p)

.

Proof: Let X = (X1, X2, ..., Xk) be the random variable corresponding to the

original value of the k column row from the a priori distribution on table T , and

Y = (Y1, Y2,Yk) that corresponding to the perturbed row, where each column is

perturbed independently by a retention replacement perturbation. For Ai, Bi ⊆ Di

we have P [Yi ∈ Bi|Xi ∈ Ai] = (1 − p)mBi
+ p

pAi∩Bi

pAi

, for 1 ≤ i ≤ k. Thus

(1 − p)mBi
≤ P [Yi ∈ Bi|Xi ∈ Ai] ≤ (1 − p)mBi

+ p. Thus for A, B ⊆ D we

have LB (say) =
∏k

i=1(1 − p)mBi
≤ P [Y ∈ B|X ∈ A] ≤ ∏k

i=1((1 − p)mBi
+ p) = UB

(say). P [(X ∈ S)|(Y ∈ S)] =

P [(Y ∈ S)|(X ∈ S)]P [X ∈ S]

P [(Y ∈ S)|(X ∈ S)]P [X ∈ S] + P [(Y ∈ S)|¬(X ∈ S)]P [¬(X ∈ S)]

28 CHAPTER 2. PRIVACY PRESERVING OLAP

≤ USps

USps + LS(1 − ps)

Suppose there is a (ρ1, ρ2) privacy breach with respect to S, we need P [X ∈ S] ≤ ρ1,

and P [(X ∈ S)|(Y ∈ S)] ≥ ρ2 Thus

USps

USps + LS(1 − ps)
≥ ρ2

This implies
ps

LS(1 − ps)
≥ ρ2

US(1 − ρ2)

Substituting values of US, LS and noting that ps ≤ ρ1 hence 1 − ps ≥ 1 − ρ1, we get

ps
∏k

i=1 mSi

≥ ρ2(1 − ρ1)(1 − p)k

(1 − ρ2)
∏k

i=1((1 − p)mSi
+ p)

2

Si denotes the subset on column i within which the original value must be iden-

tified for the privacy breach. In the case, Si denotes a single value or a small range

within the domain of a continuous column, hence (1 − p)mSi
≪ p. We approximate

(1 − p)mSi
+ p by p to get

ρ2(1 − ρ1)(1 − p)k

(1 − ρ2)
∏k

i=1((1 − p)mSi
+ p)

≥ ρ2(1 − ρ1)(1 − p)k

(1 − ρ2)pk
(1 − ǫ)

for some small constant ǫ. Thus for some small constant ǫ, uniform perturbation

applied individually to k columns is secure against (s, ρ1, ρ2) breaches for

s <
ρ2(1 − ρ1)(1 − p)k

(1 − ρ2)pk
(1 − ǫ).

As an example, for uniform perturbation with p=0.2 applied independently to two

columns, there are no (273,0.1,0.95) breaches for joint events on the columns (when

mSi
are small).

2.6. EXTENSIONS 29

2.6 Extensions

2.6.1 Categorical Data

Consider a categorical column, C, having discrete domain D. Let S ⊆ D. A predicate

P , on column C, using S is defined as

P (x) =

{

true if x ∈ S

false otherwise.

Given the a priori and replacing p.d.f. on D, the reconstruction algorithms in

Section 2.4 and the privacy guarantees in Section 2.5 can be directly applied to the

categorical data by computing the probability of the predicate, P , being true.

2.6.2 Alternative Retention Replacement Schemes

Our analysis so far considered retention replacement perturbations where the replac-

ing p.d.f is the uniform distribution. We now discuss some other interesting retention

replacement schemes:

1 Identity perturbation: If the original data element is decided to be perturbed, the

data element is replaced by a random element selected uniformly among all data

elements [LCL85] (i.e. the replacing p.d.f. is the same as the a priori distribution).

2 Swapping: Swapping is closely related to identity perturbation. In swapping with

probability p we retain a data element, and with probability (1 − p) we decide to

replace it. Numbers decided to be replaced are then randomly permuted amongst

themselves.

Identity perturbation and swapping are different from uniform perturbation which

is a local perturbation. Identity perturbation can be local if there is knowledge of the

a priori distribution before perturbation. Swapping is not a local perturbation and

requires multiple rows at the client.

30 CHAPTER 2. PRIVACY PRESERVING OLAP

Reconstructing Aggregates

Identity perturbation and swapping do not affect the answers to single column aggre-

gate queries, i.e. answers to single column aggregate queries on the perturbed table,

T
′

, are returned directly as answers to those queries on the original table, T .

The difference in multi-column reconstruction for identity perturbation and swap-

ping as compared to uniform perturbation is in the evaluation of vector R in Sec-

tion 2.4.2. Recall that Ri,1 is the probability that an element selected from the

replacing p.d.f. on column i satisfies the predicate on the ith column, Pi. The re-

placing p.d.f. (which is the original p.d.f. for identity perturbation and swapping) is

required for reconstruction. This requires the server to have the original p.d.f. for

each column. This requirement is however obviated by the observation in the previous

paragraph, that the fraction of elements satisfying Pi in T is the same as the fraction

of elements satisfying Pi in T
′

. Hence Ri,1 can be calculated from T
′

. Ri,0 as before

is calculated as 1 − Ri,1.

The reconstruction error after identity perturbation and swapping will be smaller

than that compared to uniform perturbation for sets, S, with small relative a priori

probability. This is because in uniform perturbation the noise due to the perturbed

data elements that now belong to S, but did not before perturbation, exceeds sig-

nificantly the number of data elements that were in S originally and retained during

perturbation.

Guarantees against Privacy Breaches

The guarantees for identity perturbation and swapping can be obtained using mSi
=

pSi
in Theorems 2.5.2 and 2.5.3. As an example we restate Theorem 2.5.2 for identity

perturbation.

Lemma 2.6.1 For a single column, identity perturbation is secure against (s, ρ1, ρ2)

privacy breaches for

ρ1 <
ρ2 − p

1 − p
.

2.6. EXTENSIONS 31

Proof: For identity perturbation, ms = ps, hence ps/ms = 1 ∀S. Repeating the

argument in Theorem 2.5.2 we get (ρ2 − ρ1)(1 − p) > (1 − ρ2)p, which implies the

result. 2

The above (ρ1, ρ2) guarantee for identity perturbation is independent of the sub-

set S. Uniform perturbation gives better (ρ1, ρ2) guarantees for a set of rare data

elements, i.e. a set with ps/ms < 1 and worse for sets with ps/ms > 1. Identity

perturbation and swapping have a privacy breach in the presence of external knowl-

edge about rare values (eg. the largest or smallest value). Rare values need to be

suppressed (i.e. blanked out) [HT98] for privacy with these perturbations.

2.6.3 Application to Classification

age < 30

salary<100k

age < 21

+: High

+:High

−:Low

−:Low

Figure 2.3: Decision Tree Example

We show how aggregate queries on multiple columns can be used for privacy

preserving construction of decision trees [AS00]. Consider the tree in Figure 2.3

built on randomized table T
′

with schema (age, salary, house-rent, class-variable) to

predict the column class-variable. The column class-variable can take two values: +

and − representing high and low credit-risk (say). The private columns among age,

salary, house-rent and class-variable, are each independently perturbed by a retention

replacement perturbation. Let Q denote the predicate (class-variable = ‘+’) while

¬Q denote the predicate (class-variable=‘-’).

For the first split, say on (age < 30), the gini index is calculated using the es-

timated answers of the four queries: count(age[0-30] ∧ ¬ Q), count(¬ age[0,30] ∧
¬ Q), count(age[0-30]∧ Q) and count(¬ age[0,30]∧ Q) on T . Now consider the

32 CHAPTER 2. PRIVACY PRESERVING OLAP

left subtree of elements having (age < 30) using the predicate (salary < 100k). We

do not partition the randomized rows at any level in the decision tree. Previously

with additive perturbation, randomized rows were partitioned, and the columns were

reconstructed independently [AS00]. With multi-column reconstruction the queries

count(age[0-30] ∧ salary[25k-100k] ∧ ¬ Q), count(age[0,30] ∧ salary[100k-200k] ∧ ¬
Q), count(age[0-30] ∧ salary[25k-100k] ∧ Q) and count(age[0,30] ∧ salary[100k-200k]

∧ Q) are reconstructed for T , to calculate the gini index or another split criterion at

this level.

Now consider the third split, on age once again, but this time (age < 21), is

decided after the queries count(age[0-21] ∧ salary[25k-100k] ∧ ¬ Q), count(age[21-30]

∧ salary[25k-100k] ∧ ¬ Q) count(age[0-21] ∧ salary[25k-100k] ∧ Q) and count(age[21-

30] ∧ salary[25k-100k] ∧ Q) are reconstructed for T . The number of columns in the

count query did not increase at this split on age, which was already present among

the original set of queried columns.

2.7 Experiments

We next present an empirical evaluation of our algorithms on real as well as synthetic

data. For real data, we used the Adult dataset, from the UCI Machine Learning

Repository [BM98], which has census information. The Adult dataset contains about

32,000 rows with 4 numerical columns. The columns and their ranges are: age[17 -

90], fnlwgt[10000 - 1500000], hrsweek[1 - 100] and edunum[1 - 16].

For synthetic data, we used uncorrelated columns of data having Zipfian distrib-

ution with zipf parameter 0.5. We create three such tables with different number of

rows. The number of rows is varied in factors of 10 from 103 to 105. The frequencies

of occurrences are such that the least frequent element occurs 5 times. This results

in the number of distinct values to be approximately one tenth of the number of rows

in the table.

2.7. EXPERIMENTS 33

2.7.1 Randomization and Reconstruction

In this Section we assume that the vectors, x, y described in Section 2.4.2 have been

normalized, i.e. all elements have been divided by n, the number of rows, so that

the sum of the elements of each vector is 1. These vectors will also be referred to

as probability density function (p.d.f.) vectors. x is the reconstructed p.d.f. vector,

obtained by the inversion or iterative method in Section 2.4.2, while y is the p.d.f.

vector on the perturbed table before reconstruction. Let the exact original value of

the p.d.f. vector calculated directly on the unperturbed table, T , be x
′

. The l1 norm

of the difference between the estimated (x) and actual (x
′

) p.d.f. vectors is used as

the metric of error, and is referred to as the reconstruction error. The results of the

reconstruction algorithm are quite accurate when the reconstruction error is much

smaller than 1.

Reconstruction algorithms: We first study the reconstruction error while re-

constructing multiple columns of the Adult dataset for varying retention probabil-

ities. The predicates being reconstructed are age[25-45], fnlwgt[100000-1000000] and

hrsweek[30-60]. Figure 2.4 shows the errors on first two among the above predicates

while Figure 2.5 shows the errors on all three predicates. The retention probability,

p, plotted on the x-axis, is the same for all columns. The reconstruction error is

plotted on the y axis. There are three curves in each figure. The curve randomized,

shows the l1 norm of the difference between the perturbed p.d.f. vector y and the

original p.d.f. vector x
′

. It serves as a baseline to study the reduction in error after

reconstruction of y to x. The other two curves represent the reconstruction errors

after the iterative and the inversion algorithms.

The iterative procedure gives smaller errors than the inversion procedure, espe-

cially when a larger number of columns are reconstructed together, and the probability

of retention, p, is small. This is reconfirmed later by Figures 2.7 and 2.8, and similar

experiments on synthetic data (which we do not show for the lack of space). This may

seem unintuitive as the inversion algorithm was shown to give the MLE estimator for

x, satisfying
∑

i xi = 1 (after normalization). This can be explained by noting that

the iterative algorithm gives the MLE estimator in the constrained space, i.e. for the

subspace of
∑

i xi = 1 that satisfies 0 ≤ xi ≤ 1 ∀i. Since the number of rows are

34 CHAPTER 2. PRIVACY PRESERVING OLAP

always non-negative, this is the subspace that contains the exact original p.d.f. vector

x
′

. When the retention probability decreases, and the number of columns to be recon-

structed increases, the error during randomization and reconstruction increases, and

the inversion algorithm may return a point outside the constrained space. The recon-

struction error by the inversion method can grow arbitrarily. However, the iterative

algorithm being constrained, will have a reconstruction error of at most two.

Condition number: Figure 2.6 shows the condition number [GL] of the transition

matrix using a logarithmic scale on the y axis, and the number of columns recon-

structed on the x axis, for different retention probabilities (p= 0.2, 0.5 etc.). The

selectivity of each predicate is set to 0.5. The condition number (which is inde-

pendent of the dataset) increases as the retention probability decreases and increases

exponentially as the number of columns reconstructed increase. The condition num-

ber is a good indicator of the reconstruction error by the inversion algorithm [GL],

and by the iterative Bayesian algorithm at small error values. Unlike the continuous

exponential growth in error as the number of reconstructed columns increases for the

inversion algorithm, the error flattens out for the iterative algorithm, as it is bounded

above by two as discussed earlier.

2.7.2 Scalability

Next we study, how the reconstruction error varies as the number of columns re-

constructed, retention probability, number of rows, and selectivity of the predicates

vary.

Number of columns and retention probability: We study the reconstruction

errors for varying number of columns and retention probabilities on the Adult dataset

by the iterative and inversion algorithms. The predicates being reconstructed are age[

25 - 45], fnlwgt[100000 - 1000000], hrsweek[30 - 60] and edulevel[5 - 10]. For the i

(1 ≤ i ≤ 4) column experiment, the first i among the above predicates are selected

in the query. Figure 2.7 shows the reconstruction errors with the iterative algorithm,

while Figure 2.8 shows the reconstruction errors with the inversion algorithm. Both

iterative and inversion algorithms show an exponential increase in the error as the

2.7. EXPERIMENTS 35

number of columns increases and as the probability of retention decreases. For smaller

number of columns and higher retention probabilities both algorithms give compara-

ble reconstruction errors. However for larger number of columns and lower retention

probabilities the iterative algorithm gives smaller errors than the inversion algorithm.

As explained in Section 2.7.1, unlike the iterative method, the reconstruction error by

the inversion method can grow arbitrarily, whereas the error by the iterative method

flattens out after an initial exponential increase.

For all experiments on the Zipfian dataset, the predicate on each column has an

independent selectivity of 0.5. Figure 2.9 shows the reconstruction error after the

iterative algorithm is applied to the perturbed Zipfian dataset of size 105. The figure

shows the increase in the reconstruction error, plotted on the y axis, for increasing

number of columns, plotted on the x axis, for different retention probabilities. After

an initial exponential increase, the reconstruction error flattens out.

Number of rows in the table: Figure 2.10 shows how the reconstruction error

decreases as the number of perturbed rows available for reconstruction increase, for

the the iterative reconstruction algorithm. In Figure 2.10 the retention probabilities

are varied while the number of columns remains fixed at 8. For large values of n the

reconstruction error decreases as n−0.5 as suggested by Theorem 2.4.1. This is also

ratified by the factor 10 displacement between the reconstruction error lines for 103

and 105 rows in Figures 2.11 and 2.12. As the number of rows increases, it is possible

to reconstruct more columns together at smaller retention probabilities.

Selectivity of the predicates: Recall that e = x2k−1 is estimate for the aggregate

query and a = x
′

2k−1 is the actual answer for this query. |e − a| is the called the

absolute error while |e − a|/a is called the relative error. Since we are interested in

the variation of the error in the aggregate query with the selectivity of its predicate,

for this set of experiments, we use the absolute and relative errors, instead of the l1

norm of the difference of the p.d.f.vectors, as the error metric.

For the experiments a single Zipfian column is used with uniform perturbation

with retention probability p = 0.2. We vary the selectivity of the predicate of the

numeric column by varying the size of the interval in the range predicate. Figure 2.11

36 CHAPTER 2. PRIVACY PRESERVING OLAP

and Figure 2.12 study the variation in absolute and relative errors respectively, as

the size of the interval being queried changes. The fractional interval width, i.e. the

ratio of the size of the interval being queried to the entire domain of the column, is

plotted on the x axis while the error is plotted on the y axis. The absolute error in

Figure 2.11 does not vary much with the interval width. However the relative error in

Figure 2.12 increases as the interval width decreases. Both the absolute and relative

errors decrease as the number of rows available for reconstruction increases.

2.7.3 Privacy Breach Guarantees

We study privacy breaches possible after perturbation on the Adult dataset. Fig-

ure 2.13 and Figure 2.14 show the maximum retention probability that avoids breaches

for varying values of ρ1 for fixed ρ2 = 0.95, according to Theorem 2.5.3. To compute

the values of s for sample predicates (subsets) of this dataset, we divide each column

into 10 equiwidth intervals and consider predicates that are subsets formed by the

cross product of the intervals. Thus for two columns we consider 102 subsets and

for three columns we consider 103 subsets. The maximum values of s were observed

to be 15 and 30 for two and three columns respectively. The median value of s has

been shown to be one in Theorem 2.5.1. The two figures plot the maximum retention

probability, p, that would avoid a (s, ρ1, ρ2) breach, on the y axis against the a priori

probability, ρ1, on the x axis for different values of relative a priori probability, s. The

values of s used are the maximum value of s, the median value s = 1, and s = 0.1 for

a rare set. Both figures show that if it suffices to just hide rare properties (i.e., with

s ≤ 0.1), then for ρ1 > 0.5, the retention probability p can be as high as 0.8. If we

need to hide all the above properties, i.e. even for the largest s (the most common

property), then for ρ1 > 0.5 the retention probability can be selected to be as high

as p = 0.3. For p = 0.3 both Figure 2.4 and Figure 2.5 show low reconstruction

error. Thus reconstructability of 2 and 3 aggregates together, and privacy of data

elements, are both achieved by perturbation for the Adult dataset, with p = 0.3.

Thus our experiments indicate (s, ρ1, ρ2)-privacy as well as multi-column aggregate

reconstructability.

2.8. CONCLUSIONS 37

2.8 Conclusions

The contributions of this Chapter are:

• We introduce the problem of privacy preserving OLAP in a distributed environ-

ment.

• We introduce the formalism for reconstructible functions on a perturbed table,

and develop algorithms to reconstruct multiple columns together. We provide

privacy guarantees that take into account correlations between any combination

of categorical and numeric columns.

• We provide two reconstruction algorithms to work with retention replacement

perturbation: an iterative Bayesian algorithm, and a matrix inversion algorithm

that also yields the maximum likelihood estimator. These algorithms can recon-

struct count aggregates over subcubes without assuming independence between

columns.

• We evaluate proposed reconstruction algorithms both analytically and empiri-

cally. We study the privacy guarantees we get for different levels of reconstruction

accuracy and show the practicality of our techniques.

• We show the use of our techniques to related applications like classification.

Future work includes extending this work to other aggregates over subcubes.

38 CHAPTER 2. PRIVACY PRESERVING OLAP

0

0.2

0.4

0.6

0.8

1

0.10.20.30.40.50.60.70.80.91

l1
-n

or
m

 o
f e

rr
or

retention probability

Reconstruction Error

randomized
reconstructed (iterative)

reconstructed (inversion)

Figure 2.4: Reconstruction errors for conjunction of 2 predicates for Adult data.

0

0.2

0.4

0.6

0.8

1

0.10.20.30.40.50.60.70.80.91

l1
-n

or
m

 o
f e

rr
or

retention probability

Reconstruction Error

randomized
reconstructed (iterative)

reconstructed (inversion)

Figure 2.5: Reconstruction errors for conjunction of 3 predicates for Adult data.

2.8. CONCLUSIONS 39

1

10

100

1000

10000

100000

1e+06

1e+07

1 2 3 4 5 6 7 8

C
on

di
tio

n
nu

m
be

r

Number of columns

Matrix Condition Numbers

p=0.2
p=0.5
p=0.7
p=0.9

Figure 2.6: Condition number of the transition matrix

40 CHAPTER 2. PRIVACY PRESERVING OLAP

0

0.2

0.4

0.6

0.8

1

1 2 3 4

l1
-n

or
m

 o
f e

rr
or

Number of columns

Reconstruction Error

p=0.2
p=0.5
p=0.7
p=0.9

Figure 2.7: Reconstruction errors for the Adult dataset for varying retention probabilities,

p, by the iterative algorithm.

0

0.2

0.4

0.6

0.8

1

1 2 3 4

l1
-n

or
m

 o
f e

rr
or

Number of columns

Reconstruction Error

p=0.2
p=0.5
p=0.7
p=0.9

Figure 2.8: Reconstruction errors for the Adult dataset for varying retention probabilities,

p, by the inversion algorithm.

2.8. CONCLUSIONS 41

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8

l1
-n

or
m

 e
rr

or

Number of columns

Reconstruction Error

p=0.2
p=0.5
p=0.7
p=0.9

Figure 2.9: Reconstruction error by iterative method on Zipfian dataset with 105 rows

varying number of columns

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

103 104 105

l1
-n

or
m

 o
f e

rr
or

Number of rows

Reconstruction Error

p=0.2
p=0.5
p=0.7
p=0.9

Figure 2.10: Reconstruction error by iterative method on Zipfian dataset varying number

of rows for 8 columns.

42 CHAPTER 2. PRIVACY PRESERVING OLAP

0.001

0.01

0.1

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
bs

ol
ut

e
E

rr
or

Fractional interval width

Absolute Error

103 rows
104 rows
105 rows

Figure 2.11: Absolute Error for the Zipfian dataset for p=0.2 for varying interval sizes.

0.001

0.01

0.1

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e
E

rr
or

Fractional interval width

Relative Error

103 rows
104 rows
105 rows

Figure 2.12: Relative Error for the Zipfian dataset for p=0.2 for varying interval sizes.

2.8. CONCLUSIONS 43

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
ax

im
um

 r
et

en
tio

n
pr

ob
ab

ili
ty

 p

Apriori Probability

Privacy guarantees for posterior probability = 0.95

s=0.1
s=1

s=15

Figure 2.13: Privacy for two columns for Adult data.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

M
ax

im
um

 r
et

en
tio

n
pr

ob
ab

ili
ty

 p

Apriori Probability

Privacy guarantees for posterior probability = 0.95

s=0.1
s=1

s=30

Figure 2.14: Privacy for three columns for Adult data.

Chapter 3

Clustering for Anonymity

The results in this chapter appear in [AFK+06].

3.1 Introduction

With the rapid growth in database, networking, and computing technologies, a large

amount of personal data can be integrated and analyzed digitally, leading to an

increased use of data-mining tools to infer trends and patterns. This has raised

universal concerns about protecting the privacy of individuals [Tim97].

Age Location Disease
α β Flu

α + 2 β Flu
δ γ + 3 Hypertension
δ γ Flu
δ γ -3 Cold

(a) Original table

Age Location NumPoints Disease
α +1 β 2 Flu

Flu
Hypertension

δ γ 3 Flu
Cold

(c) 2-gather clustering, with maximum radius 3

Age Location Disease
* β Flu
* β Flu
δ * Hypertension
δ * Flu
δ * Cold

(b) 2-anonymized version

Age Location NumPoints Radius Disease
α +1 β 2 1 Flu

Flu
Hypertension

δ γ 3 3 Flu
Cold

(d) 2-cellular clustering, with total cost 11

Figure 3.1: Original table and three different ways of achieving anonymity

44

3.1. INTRODUCTION 45

Combining data tables from multiple data sources allows us to draw inferences

which are not possible from a single source. For example, combining patient data from

multiple hospitals is useful to predict the outbreak of an epidemic. The traditional

approach of releasing the data tables without breaching the privacy of individuals in

the table is to de-identify records by removing the identifying fields such as name,

address, and social security number. However, joining this de-identified table with a

publicly available database (like the voters database) on columns like race, age, and

zip code can be used to identify individuals. Recent research [Swe00] has shown that

for 87% of the population in the United States, the combination of non-key fields

like date of birth, gender, and zip code corresponds to a unique person. Such non-

key fields are called quasi-identifiers. In what follows we assume that the identifying

fields have been removed and that the table has two types of attributes: (1) the

quasi-identifying attributes explained above and (2) the sensitive attributes (such as

disease) that need to be protected.

In order to protect privacy, Sweeney [Swe02b] proposed the k-Anonymity model,

where some of the quasi-identifier fields are suppressed or generalized so that, for

each record in the modified table, there are at least k − 1 other records in the mod-

ified table that are identical to it along the quasi-identifying attributes. For the

table in Figure 3.1(a), Figure 3.1(b) shows a 2-anonymized table corresponding to

it. The columns corresponding to sensitive attributes, like disease in this exam-

ple, are retained without change. The aim is to provide a k-anonymized version of

the table with the minimum amount of suppression or generalization of the table

entries. There has been a lot of recent work on k-anonymizing a given database ta-

ble [BA05, LDR05a]. An O(k log k) approximation algorithm was first proposed for

the problem of k-Anonymity with suppressions only [MW04]. This was recently im-

proved to an O(k) approximation for the general version of the problem [AFK+05b].

In this paper, instead of generalization and suppression, we propose a new tech-

nique for anonymizing tables before their release. We first use the quasi-identifying

attributes to define a metric space (i.e., pairwise distances satisfying the triangle in-

equality) over the database records, which are then viewed as points in this space.

This is similar to the approach taken in [CDM+05], except that we do not restrict

46 CHAPTER 3. CLUSTERING FOR ANONYMITY

50 points

�
�
�
�

�
�
�
�

�
�
�
�

8 points

20 points

Maximum Cluster Radius = 10

�
�
�
�

�
�
�
�

�
�
�
�

8 points
radius 3

20 points
radius 550 points

radius 10

(a) Original points (b) r-gather clustering (c) r-cellular clustering

Figure 3.2: Publishing anonymized data

ourselves to points in Rd; instead, we allow our points to be in an arbitrary metric

space. We then cluster the points and publish only the final cluster centers along

with some cluster size and radius information. Our privacy requirement is similar

to the k-Anonymity framework – we require each cluster to have at least r points1.

Publishing the cluster centers instead of the individual records, where each cluster

represents at least r records, gives privacy to individual records, but at the same time

allows data-mining tools to infer macro trends from the database.

In the rest of the paper we will assume that a metric space has been defined over

the records, using the quasi-identifying attributes. For this, the quasi-identifying at-

tributes may need to be remapped. For example, zip codes could first be converted

to longitude and latitude coordinates to give a meaningful distance between loca-

tions. A categorical attribute, i.e., an attribute that takes n discrete values, can be

represented by n equidistant points in a metric space. Furthermore, since the values

of different quasi-identifying attributes may differ by orders of magnitude, we need

to weigh the attributes appropriately while defining the distance metric. For exam-

ple, the attribute location may have values that differ in orders of 10 miles with a

maximum of 1000 miles, while the attribute age may differ by a single year with a

maximum of 100 years. In this case we assume that the attribute location is divided

by 10 and the attribute age retained without change if both attributes are needed to

have the same relative importance in the distance metric. For the example we pro-

vide in Figure 3.1, we assume that the quasi-identifying attributes have already been

scaled. As we see above, it is quite complicated to algorithmically derive a metric

space over quasi-identifying attributes of records; we do not pursue it any further in

1We use r instead of k, as k is traditionally used in clustering to denote the number of clusters.

3.1. INTRODUCTION 47

this paper and leave it for future work.

To publish the clustered database, we publish three types of features for each

cluster: (1) the quasi-identifying attribute values for the cluster center (age and

location in our example), (2) the number of points within the cluster, and (3) a set of

values taken by the sensitive attributes (disease in our example). We’ll also publish a

measure of the quality of the clusters. This will give a bound on the error introduced

by the clustering.

In this paper we consider two cluster-quality measures. The first one is the max-

imum cluster radius. For this we define the r-Gather problem, which aims to min-

imize the maximum radius among the clusters, while ensuring that each cluster has

at least r members. As an example, r-Gather clustering with minimum cluster size

r = 2, applied to the table in Figure 3.1(a) gives the table in Figure 3.1(c). In this ex-

ample, the maximum radius over all clusters is 3. As another example, Figure 3.2(b)

gives the output of the r-Gather algorithm applied to the quasi-identifiers, shown as

points in a metric space in Figure 3.2(a). Our formulation of the r-Gather problem

is related to, but not to be confused with, the classic k-Center problem [HS85]. The

k-Center problem has the same objective of minimizing the maximum radius among

the clusters, however, the constraint is that we can have no more than k clusters in

total. The r-Gather problem is different from k-Center problem in that instead

of specifying an upper bound on the number of clusters, we specify a lower bound on

the number of points per cluster as part of the input. It’s also worth noting that the

constraint of at least r points per cluster implies that we can have no more than n/r

number of clusters, where n is the total number of points in our data set.

We also consider a second (more verbose) candidate for indicating cluster-quality,

whereby we publish the radius of each cluster, rather than just the maximum radius

among all clusters. For each point within a cluster, the radius of the cluster gives

an upper bound on the distortion error introduced. Minimizing this distortion error

over all points leads to the cellular clustering measurement that we introduce in this

paper. More formally, the cellular clustering measurement over a set of clusters, is

the sum, over all clusters, of the products of the number of points in the cluster and

the radius of the cluster. Using this as a measurement for anonymizing tables, we

48 CHAPTER 3. CLUSTERING FOR ANONYMITY

define the r-Cellular Clustering problem as follows: Given points in a metric

space, the goal is to partition the points into cells, a.k.a. clusters, each of size at

least r, and the cellular clustering measurement is minimized. Consider again the

data in Figure 3.1(a). Figure 3.1(d) shows a r-cellular cluster solution with minimum

cluster size r = 2. The total cost is 2 × 1 + 3 × 3 = 11. Also, Figure 3.2(c) gives the

output of the r-Cellular Clustering algorithm applied to the quasi-identifiers

shown as points in a metric space in Figure 3.2(a). The total cost of the solution in

Figure 3.2(c) is: 50× 10 + 20 × 5 + 8× 3 = 624. As this cellular clustering objective

could be relevant even in contexts other than anonymity, we study a slightly different

version of the problem: similar to the Facility Location problem [JV99], we add

an additional setup cost for each potential cluster center, associated with opening

a cluster centered at that point, but we don’t have the lower bound on number of

points per cluster. We call this the Cellular Clustering problem. In fact, we

will use the setup costs in the Cellular Clustering problem formulation to help

us devise an algorithm that solves r-Cellular Clustering.

Comparison with k-Anonymity. While k-Anonymity forces one to suppress

or generalize an attribute value even if all but one of the records in a cluster have

the same value, the above clustering-based anonymization technique allows us to

pick a cluster center whose value along this attribute dimension is the same as the

common value, thus enabling us to release more information without losing privacy.

For example, consider the table in Figure 3.3 with the Hamming distance metric on

the row vectors. If we wanted to achieve 5-Anonymity, we will have to hide all the

entries in the table, resulting in a total distortion of 20. On the other hand, a 5-

Cellular Clustering solution could use (1, 1, 1, 1) as the cluster center with a

cluster radius of 1. This will give a total distortion bound of 5 (the actual distortion

is only 4).

Just like k-Anonymity, r-Gather and r-Cellular Clustering is sensitive to

outlier points, with just a few outliers capable of increasing the cost of the clustering

significantly. To deal with this problem, we generalize the above algorithms to allow

an ǫ fraction of the points to be deleted before publication. By not releasing a small

fraction of the database records, we can ensure that the data published for analysis

3.1. INTRODUCTION 49

Attr1 Attr2 Attr3 Attr4
Record 0 1 1 1 1
Record 1 0 1 1 1
Record 2 1 0 1 1
Record 3 1 1 0 1
Record 4 1 1 1 0

Figure 3.3: A sample table where there is no common attribute among all entries.

has less distortion and hence is more useful. This can be done as long as our aim is

to infer macro trends from the published data. On the other hand, if the goal is to

find out anomalies, then we should not ignore the outlier points. There has been no

previous work for k-Anonymity with this generalization.

We note that, as in k-Anonymity, the objective function is oblivious to the sen-

sitive attribute labels. Extensions to the k-Anonymity model, like the notion of

l-diversity [MKGV06], can be applied independently to our clustering formulation.

We provide constant-factor approximation algorithms for both the r-Gather and

r-Cellular Clustering problems. In particular, we first show that the it is NP-

hard to approximate the r-Gather problem better than 2 and provide a match-

ing upper bound. We then provide extensions of both these algorithms to allow

for an ǫ fraction of unclustered points, which we call the (r, ǫ)-Gather and (r, ǫ)-

Cellular Clustering, respectively. These are the first constant-factor approx-

imation algorithms for publishing an anonymized database. The best known algo-

rithms [AFK+05b, MW04] for previous problem formulations had an approximation

ratio linear in the anonymity parameter r.

The rest of the paper is organized as follows. First, in Section 3.2, we present a

tight 2-approximation algorithm for the r-Gather problem and its extension to the

(r, ǫ)-Gather problem. In Section 3.3, motivated by the desire to reduce the sum

of the distortions experienced by the points, we introduce the problem of Cellular

Clustering. We present a primal-dual algorithm for the problem without any

cluster-size constraints that achieves an approximation ratio of 4. We then study

the additional constraint of having a minimum cluster size of r. Finally, we relax

50 CHAPTER 3. CLUSTERING FOR ANONYMITY

the problem by allowing the solution to leave at most an ǫ fraction of the points

unclustered. We conclude in Section 3.4.

3.2 r-GATHER CLUSTERING

To publish the clustered database, we publish three types of features for each cluster:

(1) the quasi-identifying attribute values for the cluster center, (2) the number of

points within the cluster, and (3) a set of values taken by the sensitive attributes.

The maximum cluster radius is also published to give a bound on the error introduced

by clustering. This is similar to the traditionally studied k-Center clustering. In

order to ensure r-Anonymity, we don’t restrict the total number of clusters, instead,

we pose the alternative restriction that each cluster should have at least r records

assigned to it. We call this problem r-Gather, which we formally define below.

Definition 3.1 The r-Gather problem is to cluster n points in a metric space into

a set of clusters, such that each cluster has at least r points. The objective is to

minimize the maximum radius among the clusters.

We note that the minimum cluster size constraint has been considered earlier in

the context of facility location [KM00].

We first show the reduction for NP-completeness and hardness proofs.

3.2. R-GATHER CLUSTERING 51

3.2.1 Lower Bound

We show that this problem is NP -complete by a reduction from the 3-Satisfiability

problem, where each literal belongs to at most 3 clauses [GJ79].

Suppose that we have a boolean formula F in 3-CNF form with m clauses and n

variables. Let F = C1 ∧ . . . ∧ Cm, be a formula composed of variables xi, i = 1 . . . n

and their complements xi.

From the boolean formula, we create a graph G = (V, E) with the following

property: There is a solution to the r-Gather problem with a cluster radius of 1,

with respect to the shortest distance metric on the graph G, if and only if F has a

satisfying assignment.

We create the graph as follows: For each variable xi, create two vertices vT
i and

vF
i , and create an edge (vT

i , vF
i) between the two vertices; in addition create a set Si

of (r − 2) nodes and add edges from each node in Si to both vT
i and vF

i . Picking

vT
i (vF

i) as a center corresponds to setting xi = T (F). (Note that we cannot choose

both vT
i and vF

i since there are not enough nodes in Si.) For each clause Cj, create a

new node uj that is adjacent to the nodes corresponding to the literals in the clause.

For example, if C1 = (x1 ∨ x2) then we add edges from u1 to vT
1 and vF

2 .

If the formula is indeed satisfiable, then there is a clustering by picking vT
i as

a center if xi = T and picking vF
i otherwise. Each clause is true, and must have a

neighbor chosen as a center. Moreover by assigning Si to the chosen center, we ensure

that each center has at least r nodes in its cluster.

Now suppose there is an r-gather clustering. If r > 6 then both vT
i and vF

i cannot

be chosen as centers. In addition, the clause nodes uj have degree at most 3 and

cannot be chosen as centers. If exactly one of vT
i or vF

i is chosen as a center, then we

can use this to find the satisfying assignment. The assignment is satisfying as each

clause node has some neighbor at distance 1 that is a chosen center, and makes the

clause true.

This completes the NP-completeness proof. Note that this reduction also gives us

a hardness of 2. We just showed that there is a solution to the r-Gather problem

with a cluster radius of 1 if and only if F had a satisfying assignment. The next

available cluster radius is 2 in the metric defined by the graph G.

52 CHAPTER 3. CLUSTERING FOR ANONYMITY

3.2.2 Upper Bound

We first use the threshold method used for k-Center clustering to guess R, the

optimal radius for r-Gather. The choices for R are defined as follows. We will try

all values 1
2
dij where dij is the distance between points i and j. Note that this defines

a set of O(n2) distance values. We find the smallest R for which the following two

conditions hold:

Condition (1) Each point p in the database should have at least r − 1 other points

within distance 2R of p.

Condition (2) Let all nodes be unmarked initially. Consider the following proce-

dure: Select an arbitrary unmarked point p as a center. Select all unmarked

points within distance 2R of p (including p) to form a cluster and mark these

points. Repeat this as long as possible, until all points are marked. Now we try

to reassign points to clusters to meet the requirement that each cluster has size

at least r. This is done as follows. Create a flow network as follows. Create a

source s and sink t. Let C be the set of centers that were chosen. Add edges

with capacity r from s to each node in C. Add an edge of unit capacity from a

node c ∈ C to a node v ∈ V if their distance is at most 2R. Add edges of unit

capacity from nodes in V to t and check to see if a flow of value r|C| can be

found (saturating all the edges out of s). If so, then we can obtain the clusters

by choosing the nodes to which r units of flow are sent by a node c ∈ C. All

remaining nodes of V can be assigned to any node of C that is within distance

2R. If no such flow exists, we exit with failure.

The following lemma guarantees that the smallest R that satisfies these conditions

is a lower bound on the value of the optimal solution for r-Gather. Suppose we have

an optimal clustering S1, . . . , Sℓ with ℓ clusters. Let the maximum diameter of any

of these clusters be d∗ (defined as the maximum distance between any pair of points

in the same cluster).

Lemma 3.2.1 When we try R = d∗

2
, then the above two conditions are met.

3.2. R-GATHER CLUSTERING 53

Proof: By the definition of r-Gather, every point has at least r − 1 other points

within the optimal diameter, and hence within distance 2R. Consider an optimal r-

Gather clustering. For each point i, all points belonging to the same optimal cluster

c as the point i are within a distance 2R of i. Thus, in the procedure of Condition

(2), as soon as any point in c is selected to open a new cluster, all remaining points

belonging to c get assigned to this new cluster. So at most one point from each

optimal cluster is chosen as a center and forms a new cluster. We would now like to

argue that the assignment phase works correctly as well. Let S be the set of chosen

centers. Now consider an optimal solution with clusters, each of size at least r. We

can assign each point of a cluster to the center that belongs to that cluster, if a center

was chosen in the cluster. Otherwise, since the point was marked by the algorithm,

some center was chosen that is within distance 2R. We can assign it to the center

that marked it covered. Each chosen center will have at least r points assigned to it

(including itself). 2

Since we find the smallest R, we will ensure that R ≤ d∗/2 ≤ R∗ where R∗ is the

radius of the optimal clustering. In addition, our solution has radius 2R. This gives

us a 2-approximation.

Theorem 3.2.2 There exists a polynomial time algorithm that produces a 2-

approximation to the r-Gather problem.

3.2.3 (r, ǫ)-Gather Clustering

A few outlier points can significantly increase the clustering cost under the minimum

cluster size constraint. We consider a relaxation whereby the clustering solution is

allowed to leave an ǫ fraction of the points unclustered, i.e., to delete an ǫ fraction

of points from the published k-anonymized table. Charikar et al. [CKMN01] stud-

ied various facility location problems with this relaxation and gave constant-factor

approximation algorithms for them.

For the (r, ǫ)-Gather problem, where each cluster is constrained to have at least

r points and an ǫ fraction of the points are allowed to remain unclustered, we modify

our r-Gather algorithm to achieve a 4-approximation. We redefine the condition to

54 CHAPTER 3. CLUSTERING FOR ANONYMITY

find R. We find the smallest R that satisfies the following condition: There should

be a subset S of points containing at least 1− ǫ fraction of the points, such that each

point in S has at least r − 1 neighbors within distance 2R in S.

This condition can be checked in O(n2) time by repeatedly removing any point

in S that has fewer than r − 1 other points in S within distance 2R of itself, with

S initially being the entire vertex set. It is clear that the smallest R we found is no

more than R∗, the optimal radius.

Let R be the value that we found. Let N(v) denote the set of points in G within

distance 2R of v, including v itself. We know then N(v) ≥ r. We then consider the

following procedure: Select an arbitrary point v from G. If there are at least r − 1

other points within distance 2R of p, then form a new cluster and assign p and all

points within distance 2R of p to this cluster. Remove all these points from further

consideration and repeat this process until all remaining points have fewer than r−1

other points within distance 2R of them. Let U be the set of points left unclustered

at the end of this process. For each u ∈ U , there exists a point p ∈ N(u) such that

p is assigned to some cluster c in the procedure of forming clusters. We can see this

as follows. Since u was left unassigned at the end of the procedure, there are fewer

than r unassigned points remaining in N(u). This implies that there is at least one

point p in N(u) which is already assigned to some cluster c. We assign u to c, which

already has at least r points.

Thus, we have assigned all points to clusters, such that each cluster has at least

r points. Note that the radius of each cluster is no more than 4R. This gives us the

following theorem.

Theorem 3.2.3 There exists a polynomial time algorithm that produces a 4-

approximation to the (r, ǫ)-Gather problem.

We note that in the problem formulation of (r, ǫ)-Gather, if we require the

cluster centers to be input points, instead of arbitrary points in the metric, then we

can improve the approximation factor to 3. We defer the details to the full version of

the paper.

3.3. CELLULAR CLUSTERING 55

3.2.4 Combining r-Gather with k-Center

We can combine the r-Gather problem with the k-Center problem and have the

two constraints present at the same time. That is, we minimize the maximum radius,

with the constraint that we have no more than k clusters, each must have at least r

members. We call this the (k, r)-Center problem.

It is worth mentioning that a similar problem has been studied before in the k-

Center literature. That is, instead of having a lower bound r on the cluster size as an

additional constraint to the original k-Center formulation, an upper bound on the

cluster size is specified. This is called the Capacitated k-Center problem [KS00].

Bar-Ilan, Kortsarz, and Peleg [JBIP93] gave the first constant approximation factor of

10 for this problem. The bound was improved subsequently to 5 by Khuller and Suss-

mann [KS00]. In this subsection though we only concentrate on the (k, r)-Center

problem defined above.

We note here that the algorithm developed for r-Gather in Subsection 3.2.2 can

be extended to provide a 2-approximation for the (k, r)-Center problem. We just

have to add to Condition (2) the extra criteria that if the number of centers chosen

exceeds k then exit with failure, i.e., try a different value for R. We can show that

Lemma 3.2.1 holds for the modified conditions, hence an approximation factor of 2.

We also consider the outlier version of this problem, namely, the (k, r, ǫ)-Center

problem. Combining the techniques presented in this paper and the techniques

for the (k, ǫ)-Center problem by Charikar et. al [CKMN01], one can devise a 4-

approximation algorithm. We defer the details to the full version of the paper.

3.3 Cellular Clustering

As mentioned in the introduction, a second approach is to publish the radius of

each cluster in addition to its center and the number of points within it. In this

case, for each point within a cluster, the radius of the cluster gives an upper bound

on the distortion error introduced. The Cellular Clustering problem aims to

minimize the overall distortion error, i.e., it partitions the points in a metric space

56 CHAPTER 3. CLUSTERING FOR ANONYMITY

into cells, each having a cell center, such that the sum, over all cells, of the products

of the number of points in the cell and the radius of the cell is minimized. We even

allow each potential cluster center to have a facility (setup) cost f(v) associated with

opening a cluster centered at it. This will later allow us to solve the problem in the

case when each cluster is required to have at least r points within it.

Definition 3.2 A cluster consists of a center along with a set of points assigned to

it. The radius of the cluster is the maximum distance between a point assigned to the

cluster and the cluster center. To open a cluster with cluster center v and radius r

incurs a facility cost f(v). In addition, each open cluster incurs a service cost equal

to the number of points in the cluster times the cluster radius. The sum of these two

costs is called the cellular cost of the cluster. The Cellular Clustering problem

is to partition n points in a metric space into clusters with the minimum total cellular

cost.

The Cellular Clustering problem is NP-complete via reduction from dom-

inating set. We present a primal-dual algorithm for the Cellular Clustering

problem that achieves an approximation factor of 4.

Let c = (vc, dc) denote a cluster c whose cluster center is the node vc and whose

radius is dc. By definition, the setup cost f(c) for a cluster c = (vc, dc) depends only

on its center vc; thus f(c) = f(vc). For each possible choice of cluster center and

radius c = (vc, dc), define a variable yc, a 0/1 indicator of whether or not the cluster

c is open. There are O(n2) such variables. For a cluster c = (vc, dc), any point pi

within a distance of dc of its center vc is said to be a potential member of the cluster

c. For all potential members pi of a cluster c, let xic be a 0/1 indicator of whether

or not point pi joins cluster c. Note that the pair (i, c) uniquely identifies an edge

between pi and the center of cluster c. We relax the integer program formulation to

get the following linear program:

3.3. CELLULAR CLUSTERING 57

Minimize:
∑

c(
∑

i xicdc + fcyc)

Subject to:
∑

c xic ≥ 1 ∀i

xic ≤ yc ∀i, c

0 ≤ xic ≤ 1 ∀i, c

0 ≤ yc ≤ 1 ∀c

And the dual program is:

Maximize:
∑

i αi

Subject to:
∑

i βic ≤ fc ∀c

αi − βic ≤ dc ∀i, c

αi ≥ 0 ∀i

βic ≥ 0 ∀i, c

The above formulation is similar to the primal-dual formulation of facility loca-

tion [JV99]. However, since the assignment of additional points to clusters increases

the service cost incurred by existing members of the cluster, we need a different

approach to assign points to clusters.

Procedure 1 describes the details of the growth of dual variables and the assign-

ment of points to clusters. We say an edge (i, c) is tight if αi ≥ dc. When an edge (i, c)

becomes tight, the corresponding cluster c becomes partially open and pi contributes

an amount of (αi − dc) to the fixed facility cost of f(c). At any step of the proce-

dure, a point is labeled unassigned, idle or dead. Initially, all points are unassigned.

As some cluster becomes tight, all unassigned or idle points having tight edges to it

become dead. In addition, some of the unassigned points become idle as described in

the procedure.

We now show that the primal solution constructed has a cost of at most 4 times

the value of the dual solution found using Procedure 1. For this, we note the following

properties:

(1) At any instant, the value of αi for all unassigned points i is the same. Moreover,

this value is no less than the value of αj for any dead or idle point j.

58 CHAPTER 3. CLUSTERING FOR ANONYMITY

Procedure 1 A Primal Dual Method
1: repeat
2: Grow the unfrozen dual variables αi uniformly.
3: if αi ≥ dc for some cluster c and its potential member pi, i.e., edge (i, c) is

tight, and c has not been shut down then
4: Open the cluster c partially, and grow the dual variable βic at the same rate

as αi.
5: end if
6: if

∑

i βic = fc for some cluster c then
7: Freeze all variables αi for which the edge (i, c) is tight.
8: All unassigned points with a tight edge to c are assigned to c. Call this set

V U
c .

9: Let V I
c be the set of all idle points that have a tight edge to c.

10: Permanently shut down any cluster c′ 6= c for which a point pi in V U
c ∪ V I

c

has a tight edge (i, c′). Assign to c all unassigned points pj with a tight edge
to c′. Call this newly-assigned set of points V IU

c .
11: All points in V IU

c are labeled idle and their dual variables are frozen.
12: All points in V U

c and V I
c are labeled dead.

13: end if
14: until All points become dead or idle.

(2) Once a point has a tight edge to a particular cluster c (i.e., a cluster is partially

open), all unassigned potential members of that cluster (i.e.points within a

distance dc of the cluster center vc) have tight edges to it.

(3) When a cluster opens, all its unassigned potential members are assigned to it

and become dead.

(4) When a point pi becomes dead, all but one facility partially supported by pi is

shut down.

(5) When a cluster shuts down, all its unassigned potential members are assigned to

some open cluster and become idle.

Property (1) follows from the definition of our procedure. Property (2) follows

from property (1) and the fact that the edge (i, c) becomes tight when the dual

variable αi equals dc. Property (3) then follows from (2). Property (4) again follows

from the definition of the the procedure. Property (5) can be seen as follows: we shut

3.3. CELLULAR CLUSTERING 59

down a cluster c only when one of its unassigned or idle members has a tight edge

to the cluster c′ currently being opened, and also has a tight edge to c. By property

(2), all unassigned members of c have tight edges to c. Hence in Steps 10 and 11 of

the procedure, these members will be assigned to c′ and become idle.

Lemma 3.3.1 The service cost for each point,
∑

c xicdc, is no more than 3αi.

Proof: Consider the cluster c to which point i is assigned. When cluster c opens,

points in V U
c and V IU

c are assigned to c. We need to bound the radius of the cluster

consisting of V U
c ∪V IU

c . By property (1), all points in V U
c and V IU

c have the same dual

variable value, say α. Let p be the cluster center of c. Clearly, for a point q ∈ V U
c ,

d(q, p) ≤ dc ≤ α. For a point r ∈ V IU
c , let c′ be its cluster that was shut down (in

Step 10) when r was assigned to c. Let p′ be the cluster center of c′, and let q′ ∈ V U
c

be the point that was partially supporting c′. Clearly, α ≥ dc′ since q′ is partially

supporting c′. Combined with the fact that r and q′ are potential members of c′, we

get that d(r, p) ≤ d(r, p′)+d(p′, q′)+d(q′, p) ≤ 2dc′ +dc ≤ 3α. Thus, the cluster made

of V U
c and V IU

c has overall radius no more than 3α = 3αi. 2

Lemma 3.3.2 The cost of opening the clusters,
∑

c ycfc, is no more than
∑

i αi.

Proof: A cluster c is opened when
∑

i βic equals fc. Thus, for each open cluster c,

we need to find Vc ⊆ V , s.t.
∑

i βic can be charged to
∑

i∈Vc
αi. To avoid charging

any point i more than once, we need to make sure that the Vc’s are disjoint. We

begin by noting that when a cluster c opens, only points i with a tight edge to c can

contribute to
∑

i βic. When a point is labeled dead, by Property 4, all the clusters to

which it has a tight edge are shut down and are not opened in future. This implies

that clusters which are opened do not have tight edges to dead points. Thus, when

a cluster c is opened, V U
c and V I

c are the only points which have tight edges to c. If

we let Vc = V U
c ∪ V I

c , then
∑

i∈Vc
αi ≥

∑

i βic. Also, since the points in V U
c ∪ V I

c are

labeled dead in this iteration, they will not appear in V U
c′ ∪ V I

c′ for any other cluster

c′. 2

We thus obtain the following theorem.

60 CHAPTER 3. CLUSTERING FOR ANONYMITY

Theorem 3.3.3 The primal-dual method in Procedure 1 produces a 4-approximation

solution to the Cellular Clustering problem.

3.3.1 r-Cellular Clustering

We now extend the above primal-dual algorithm to get an approximation algorithm

for the r-Cellular Clustering problem which has the additional constraint that

each cluster is required to have at least r members. The notation (r, C) is used to

denote a solution having a total cost of C, and having at least r members in each

cluster.

Comparison with prior clustering work. Since our algorithm can be viewed

as an extension of facility location, we briefly discuss related results. The facility

location (and k-median) problems have been studied with the minimum cluster size

constraint [KM00], as well as in the context of leaving an ǫ fraction of the points

unclustered [CKMN01]. Let OPTr be the optimal facility location cost with minimum

cluster size r. If as stated before (r, C) denotes a solution with minimum cluster size

r and solution cost C, bi-criteria approximation for the facility location problem of

(r/2, 5.184OPTr) was achieved independently by Guha, Meyerson and Munagala and

by Karger and Minkoff [GMM00, KM00]. It is not known whether it is possible

to achieve a one-sided approximation on facility location cost alone. In contrast,

for the r-Cellular Clustering problem, we provide an one-sided approximation

algorithm, specifically we obtain a (r, 80OPTr) solution, where OPTr is the cost of

the optimal solution with cluster size at least r,

To achieve this, we first study a sharing variant of this problem, where a point is

allowed to belong to multiple clusters, thus making it easier to satisfy the minimum

cluster size constraint. Interestingly, allowing sharing changes the value of the optimal

solution by at most a constant factor. We note that this observation does not hold for

facility location, where a shared solution might be arbitrarily better than an unshared

one. The algorithm consists of three main steps:

1. Augmenting with Setup Costs. Given an instance of r-Cellular Cluster-

ing, we first construct an instance of Cellular Clustering as follows: augment

3.3. CELLULAR CLUSTERING 61

the cluster cost fc of a cluster c by r×dc. In addition, if a cluster c = (vc, dc) has fewer

than r points within distance dc of its center vc, this cluster is eliminated from the

instance. If the original r-Cellular Clustering instance has an optimal solution

with cost OPTr, it is not hard to see that the same solution works for the Cellu-

lar Clustering instance constructed above with a total cost of at most 2OPTr.

We invoke the 4-approximation algorithm for Cellular Clustering on this new

instance to find a solution with cost at most 8OPTr.

2. Sharing Points between Clusters. We now describe the notion of a shared

solution for r-Cellular Clustering. In a shared solution, points are allowed to be

assigned to multiple clusters, as long as they pay the service cost for each cluster they

are assigned to. A shared solution is feasible if all clusters have at least r (potentially

shared) members. We modify the solution obtained above to get a feasible shared

solution for r-Cellular Clustering as follows: for each open cluster c with center

P , assign the r closest neighbors of P to c as well, regardless of where they are

initially assigned. The extra service cost of at most r × dc for these r points can be

accounted for by the extra facility cost of r × dc being paid by the open cluster c in

the Cellular Clustering solution. Thus, we have obtained an (r, 8OPTr) shared

solution for the r-Cellular Clustering instance.

3. Making the Clusters Disjoint. Finally we show how to convert a shared

solution to a valid solution where each point is assigned to only one cluster, with

only a constant blowup in cost. We note that for the corresponding facility location

problem, it is not feasible to do this “unsharing” without a large blowup in cost in

the worst case.

Initially, all points are labeled unassigned. We consider the clusters in order of

increasing cluster radius dc. If a cluster c has at least r unassigned members, then

it is opened and all its unassigned members are assigned to c and labeled assigned.

We stop this process when all the remaining clusters have fewer than r unassigned

members each. The remaining clusters are called leftover clusters. We temporarily

assign each of the unassigned points arbitrarily to one of the leftover clusters it belongs

to. Since each cluster had at least r members in the shared solution, each leftover

cluster c′ must have a member in the shared solution, which is now assigned to an

62 CHAPTER 3. CLUSTERING FOR ANONYMITY

open cluster o, s.t. dc′ ≥ do. We thus have the situation illustrated in Figure 3.4.

Member

Leftover Cluster

Center

Assigned members
Shared members

m ≥ r

VmV2V1

m′ < r
U1

U2 Um′

(weight m′)

Open Cluster o

Figure 3.4: Structures of open and leftover clusters

The points are organized in a forest structure, where each tree has two “levels”.

We can regroup points into clusters, on a per tree basis. It is obvious that each

tree has at least r points, since it contains at least one open cluster o. We further

simplify the structure into a true two-level structure as in Figure 3.4, by collapsing

each leftover cluster into a single node with weight equal to the number of points

temporarily assigned to it. Nodes in the first level of the tree have weight 1. We

apply the following greedy grouping procedure: first consider only the nodes at the

second level of the tree and collect nodes until the total weight exceeds r for the first

time. We group these nodes (belonging to leftover clusters) into a cluster, and repeat

the process. Notice that since we did not touch the first-level nodes, the total weight

of remaining nodes in the tree is at least r. If the total weight of remaining nodes in

the second level, Ws, is less than r, then we extend the grouping into the first level

nodes. Let m denote the total weight of nodes in the first level. If Ws + m ≥ 2r,

then we group the nodes in the second level with r − Ws first level nodes together

into a cluster; the remaining nodes in the first level form a cluster. Otherwise, all the

remaining nodes (both the first and second level) are grouped into a cluster. If we

break up the tree using the procedure above, each resulting cluster has size at least

r.

Lemma 3.3.4 For a cluster that contains any second-level nodes, the total number

of points in the cluster is no more than 2r − 1.

3.3. CELLULAR CLUSTERING 63

Proof: Since a single second-level node has weight less than r, a cluster containing

only second-level nodes has at most 2r − 1 members. If the cluster contains both

the first and second-level nodes, then we must have reached the case where the total

weight of remaining nodes in the second level is less than r. In that case, by definition,

the cluster formed containing these second-level nodes has size either r or less than

2r − 1. 2

There could be a cluster that only contains the first level nodes, and its entire cost

(both the service and cluster cost) can be accounted for by its cost in the original

(r, 8OPTr) shared solution. We now bound the cost of clusters containing the second-

level nodes.

Lemma 3.3.5 For each cluster c formed that contains second level nodes, there exists

a leftover cluster c′ unique to c, such that the following holds: let p be the center of

c′, if we center the cluster c at p, then the radius of cluster c, radius(c) ≤ 5dc′.

Proof: Among all the leftover clusters that contributed to c, let c′ be the one with the

maximum radius. By definition, all nodes assigned to a leftover cluster get assigned

to a single cluster, guaranteeing the uniqueness of c′. Let do be the radius of the open

cluster at level 1 of this tree. Consider a point q ∈ c. If q is a first-level node, then

d(q, p) ≤ 2do +dc′ ≤ 3dc′. If q is a second-level node, then let c′′ be the leftover cluster

that q was assigned to, then d(q, p) ≤ 2dc′′ + 2do + dc′ ≤ 5dc′. 2

The above lemma implies that by choosing p as the cluster center, the service cost

of each point in c is no more than 5dc′ and the total facility cost incurred within our

solution is no more than that of the shared solution. Together with Lemma 3.3.4, we

conclude that the service cost of points in c is no more than 10r × dc′. Notice that

in the shared solution, points in cluster c′ are paying a total service cost of at least

r × dc′. We thus have the following theorem.

Theorem 3.3.6 The above procedure produces a solution with minimum cluster size

r and total cost no more than 80OPTr, i.e., a (r, 80OPTr) solution, where OPTr is

the value of the optimal solution with a minimum cluster size of r.

We note that the above algorithm and analysis can be combined with the technique

developed in [CKMN01] to give an constant approximation to the (r, ǫ)-Cellular

64 CHAPTER 3. CLUSTERING FOR ANONYMITY

Clustering problem. The above algorithm can also be adapted to provide a

constant-factor approximation for the problem where the diameter of any cluster

is not allowed to exceed a certain pre-specified threshold. Details are deferred to the

full version of the paper.

3.4 Conclusions

Publishing data about individuals without revealing sensitive information is an im-

portant problem. The notion of privacy called k-Anonymity has attracted a lot of

research attention recently. In a k-anonymized database, values of quasi-identifying

attributes are suppressed or generalized so that for each record there are at least

k − 1 records in the modified table that have exactly the same values for the quasi-

identifiers. However, the performance of the best known approximation algorithms

for k-Anonymity depends linearly on the anonymity parameter k. In this paper, we

introduced clustering as a technique to anonymize quasi-identifiers before publishing

them. We studied r-Gather as well as a newly introduced clustering metric called

r-Cellular Clustering and provided the first constant-factor approximation al-

gorithms for publishing an anonymized database table. Moreover, we generalized

these algorithms to allow an ǫ fraction of points to remain unclustered.

Chapter 4

Probabilistic Anonymity

The results in this chapter appear in [LT06].

4.1 Introduction

“Over a year and a half, one individual impersonated me to procure over $50,000 in

goods and services. Not only did she damage my credit, but she escalated her crimes

to a level that I never truly expected: she engaged in drug trafficking. The crime

resulted in my erroneous arrest record, a warrant out for my arrest, and eventually,

a prison record when she was booked under my name as an inmate in the Chicago

Federal Prison.” - An excerpt from the verbal testimony of Michelle Brown to a US

Senate Committee [Bro00].

Unfortunately, in today’s highly networked digital world, incidents like the above

with Michelle Brown are commonplace. According to Bureau of Justice Statistics

Bulletin [Bau06], 3.6 million households, representing 3% of the households in the

United States, discovered that at least one member of the household had been the

victim of identity theft during the previous 6 months in 2004. According to the same

report, the estimated loss as a result of identity theft was about $ 3.2 billion. Needless

to say that preventing identity thefts is one of the top priorities for government,

corporations and society alike.

65

66 CHAPTER 4. PROBABILISTIC ANONYMITY

Globalization further complicates this picture. Due to legal directives or busi-

ness associations, there are multiple scenarios where in organizations need to share

or publish their micro-data to remain competitive. This puts personal privacy at fur-

ther risk. To surmount this risk, attributes that clearly identify individuals, such as

Name, Social Security Number, Driving License Number, are generally removed

or replaced by random values. But this may not be enough because such de-identified

databases can sometimes be joined with other public databases on seemingly innocu-

ous attributes to re-identify individuals who were supposed to remain anonymous.

For example, according to one study [Swe02b], approximately 87% of the popula-

tion of the United States can be uniquely identified on the basis of Gender, Date of

Birth, and 5-digit Zipcode. The uniqueness of such attribute combinations leads to

a class of attacks where data is re-identified by joining multiple and often publicly

available data-sets. This type of attack was illustrated by Sweeney in [Swe02b] where

the author was able to join a public voter registration list and the de-identified pa-

tient data of Massachusetts’ state employees to determine the medical history of the

state’s governor.

In literature, such an identity-leaking attribute combination is called as a quasi-

identifier. It is always critical to be able to recognize quasi-identifiers and to apply to

them appropriate protective measures to mitigate the identity disclosure risk posed

by join attacks. In fact, Sweeney herself proposed a k-anonymity model in [Swe00]

for the same. According to her, a database table is said to be k-anonymous if for each

row in the table there are k − 1 other rows in the table that are identical along the

quasi-identifier attributes. Clearly, a join with a k-anonymous table would give rise

k or more matches and create confusion. Thus, an individual is hidden in a crowd

of size k giving her k-anonymity. It also means that the identity disclosure risk is at

most 1/k for “join” class of attacks.

Although such a simple and clear quantification of privacy risk makes k-anonymity

model attractive, its widespread use in practice is severely hampered owing to the

following factors:

1. Choice of k is not clear. From pure privacy point of view, larger k would mean

more privacy, but it comes at the cost of utility [Agg05]. What is the right

4.1. INTRODUCTION 67

choice of k for the given data and the given notion of utility has not been very

well understood yet.

2. For k-anonymity model to be effective, it is critical that there is a complete

understanding of the quasi-identifiers for the give data-set. But there is no real

formalism available for deciding whether an attribute combination could form a

quasi-identifier. This is currently done manually, based on folk-lore and human

expertise.

3. For a given k, the goal is always to minimally suppress or generalize the data

such that the resultant data-set is k-anonymous. However, for some natural

notions of measuring this resultant distortion, the minimization problems turn

out to be NP-Hard [MW04, AFK+05a, AFK+06].

On the approximation front, no efficient but good approximation algorithms

are currently known. The known algorithms are either Õ(k) approximations

[MW04, AFK+05a] or super-linear [AFK+06] - thus making them inefficient or

expensive.

4.1.1 Organization and Contributions

In this chapter, we start out by providing the first formal characterization and a

practical technique to identify quasi-identifiers. In Section 4.2, we also show an

interesting connection between whether a set of columns forms a quasi-identifier and

the number of distinct values assumed by the combination of the columns.

We then use this characterization in Section 4.3 to come up with a probabilistic

notion of anonymity. Again we show an interesting connection between the number

of distinct values taken by a combination of columns and the anonymity it can offer.

This allows us to find an ideal amount of generalization or suppression to apply

to different columns in order to achieve probabilistic anonymity. We work through

many examples and show that our analysis can be used to make a published database

conform to privacy acts like HIPAA.

In order to achieve the probabilistic anonymity, we observe that one needs to solve

68 CHAPTER 4. PROBABILISTIC ANONYMITY

multiple 1-dimensional k-anonymity problems. In Section 4.4, we propose many effi-

cient and scalable algorithms for achieving 1-dimensional anonymity. Our algorithms

are optimal in a sense that they minimally distort data and retain much of its utility.

The algorithms provided are a stark contrast to previous NP-hard results and com-

paratively more complicated algorithms for the previous notion of anonymity called

k-anonymity [Swe02b].

We then experimentally verify our algorithms on real life data sets in Section 4.5.

We sketch the related work in Section 4.6 and finally conclude in Section 4.7.

4.2 Automatic Detection of Quasi-identifiers

Definition 4.1 A quasi-identifier set Q is a minimal set of attributes in table T

that can be joined with external information to re-identify individual records (with

sufficiently high probability).

Above definition is from [SS98]. A similar definition can be found in an earlier

paper of Dalenius [Dal86]. As the reader can sense, this definition is informal since

it does not make “external information” and “sufficiently high probability” explicit.

Possibly because of this, we do not know any formal procedure or test for identifying

quasi-identifiers. Almost always, researchers and practitioners assume that quasi-

identifier attribute sets are known based on specific knowledge domain [LDR05b].

We present a more formal definition of quasi-identifier below. In our definition,

we do not insist on minimality of attribute set as such although one could easily

accommodate it if required. The external information is the universal table U having

information about entire (relevant) population. It has n rows. Typically, U would

mean census records that many countries make readily available [Bur].

Definition 4.2 α-quasi-identifier An α quasi-identifier is a set of attributes along

which an α fraction of rows in the universe can be uniquely identified by values along

the combination of these attribute columns.

Example 1 Empirically it has been observed that 87% of the people in the U.S. can

be uniquely identified by the combination of Gender, Date of Birth and Zipcode.

4.2. AUTOMATIC DETECTION OF QUASI-IDENTIFIERS 69

Therefore (Gender, Date of Birth, Zipcode) forms a 0.87-quasi-identifier for the

U.S. population. Note that the U.S. census table is our universal table U here.

Ideally, given an α and U , it is straight-forward to figure out whether some par-

ticular attribute combination forms an α-quasi-identifier in U by simply measuring

the number of singletons in that attribute combination. One may even try an apriori

like approach [AS94] and calculate all α-quasi-identifiers in U . In practice, there are

errors in U that come in during data collection phase itself [CGGM03, Cen] and the

knowledge about U is never exact. This would lead to erroneous conclusions about a

quasi-identifier. Therefore, it does not justify the expensive calculations given above.

In fact, one then prefers a quick and inexpensive approach that gives a good estimate

of the same.

In what follows, we assume that the universal table U itself is not known. What

we know is that it is a random sample built with replacement from a probability

space. Thus our analysis is probabilistic. For the sake of analysis, we require that

there is a probability distribution, but in reality, our final results are independent of

this probability distribution. Moreover, we work only with the expectations since our

goal is to give good estimates quickly. Since the sum of random variables is tightly

concentrated around the expectation (by bounds like the Chernoff bounds [Che52]),

our analysis and results are quite fair. We do not work out the Chernoff analysis

though in order to keep our results and presentation simple.

We build our probability space on the distinct values that an attribute combination

can take. Therefore, we need to know the number of distinct values for every attribute

combination. Since one can get (or reasonably estimate) the count of distinct values

for each attribute in U [Gib01], we simplify our task with the following assumption.

Definition 4.3 Multiple Domain Assumption Let d1, d2, . . ., dk be the number

of distinct values along columns C1, C2, . . ., Ck respectively. Then, the total number

of distinct values taken by the (C1, C2, . . . , Ck) column set is D = d1 × d2 × . . . dk.

Example 2 We study the number of distinct values taken by the set of columns

(Gender, Date of Birth, Zipcode). The number of distinct values of column

70 CHAPTER 4. PROBABILISTIC ANONYMITY

Gender (C1) is d1 = 2. The number of distinct values of column Date of Birth (C2)

can be approximated as d2 = 60 ∗ 365 ≈ 2 ∗ 104.1 The number of distinct values along

column Zipcode (C3) is d3 = 105. The number of distinct values of the column-set

(Gender, Date of Birth, Zipcode) is D = d1×d2×d3 = 2∗ (2∗104)∗105 = 4∗109.

As another example, consider the set of columns (Nationality, Date of Birth,

Occupation). The number of distinct values of column Nationality (C1) is d1 =

200. Once again, the number of distinct values of column Date of Birth (C2) can

be approximated as d2 = 60 ∗ 365 ≈ 2 ∗ 104. The number of distinct values of column

Occupation (C3) is roughly d3 = 100. Thus D = d1×d2×d3 = 200∗ (2∗104)∗100 =

4 ∗ 108.

Suppose that a set of columns take D different values with probabilities p1, p2,

. . ., pD, where
∑D

i=1 pi = 1. Let us first calculate the probability that the ith element

is a singleton in the universal table U . It means first selecting one of the entries in

the table (there are n choices), setting it to be this ith element (which has probability

pi), and setting all other entries in the table to something else (which happens with

probability (1− pi)
n−1). Thus, the probability of ith element being a singleton in the

universal table U is npi(1 − pi)
n−1.

Let Xi be the indicator variable representing whether ith element is a singleton.

Then, its expectation

E[Xi] = P [Xi = 1] = npi(1 − pi)
n−1 ≈ npie

−npi.

Let X =
∑D

i=1 Xi be the counter for the number of singletons. Now its expectation

is given by

E[X] =
D

∑

i=1

E[Xi] =
D

∑

i=1

npie
−npi.

Let us analyze which distribution maximizes this expected number of singletons.

We aim to maximize
∑D

i=1 xie
−xi, subject to

∑D
i=1 xi = n and 0 ≤ xi, ∀1 ≤ i ≤ D.

1Throughout this chapter we assume that the ages of people belonging to the database comes
from an interval of size 60 years.

4.2. AUTOMATIC DETECTION OF QUASI-IDENTIFIERS 71

Theorem 4.2.1 If D ≤ n, then the expected number of singletons is bounded above

by D
e
.

Proof: If f(x) = xe−x, f
′

(x) = (1 − x)e−x and f
′′

(x) = (x − 2)e−x. Thus, the

function f has a global maximum at x = 1, since f
′

(1) = 0 and f
′′

(1) < 0.

Now the expected number of singletons,

D
∑

i=1

xie
−xi ≤

D
∑

i=1

e−1 =
D

e
.

This expression is a tight upper bound on the expected number of singletons for

D ≤ n. For example, it is almost obtained by setting xi = 1, for i = 1, 2, . . . , D − 1,

and xD = n − D + 1. 2

Theorem 4.2.2 If D ≥ n, then the expected number of singletons is bounded above

by ne
−n
D .

Proof: If f(x) = xe−x, f
′

(x) = (1 − x)e−x and f
′′

(x) = (x − 2)e−x. The function f

has a point of inflection at x = 2, since f
′′

(x) < 0 for x < 2 implying the function is

concave here, and f
′′

(x) > 0 for x > 2 implying the function is convex here.

First we claim that on maximizing
∑D

i=1 xie
−xi, no xi ≥ 2. Suppose otherwise:

after maximizing
∑D

i=1 xie
−xi, some xa ≥ 2. As D ≥ n, and

∑D
i=1 xi = n, some xb < 1.

For some small δ, replacing xa by xa − δ and xb by xb + δ we retain
∑D

i=1 xi = n.

As f(x) = xe−x increases towards x=1, f(xa − δ) > f(xa) and f(xb + δ) > f(xb).

Thus
∑D

i=1 xie
−xi is increased, contradicting the fact that it was maximized. Thus,

∀1 ≤ i ≤ D, xi ≤ 2 .

Now f
′′

(x) < 0 for 0 ≤ x ≤ 2. Since f is concave, we can apply Jensen’s

72 CHAPTER 4. PROBABILISTIC ANONYMITY

inequality [Rud87] 2 to get

D
∑

i=1

xie
−xi = D

D
∑

i=1

1

D
xie

−xi

≤ D · (
D

∑

i=1

xi

D
)e−(

PD
i=1

xi
D

)

= ne
−n
D .

Thus, if D ≥ n, the expected number of singletons is bounded above by ne
−n
D . 2

Figure 4.1: Quasi-Identifier Test

Figure 4.1 shows how the maximum expected fraction of singletons or unique rows

in a collection of n rows behaves, as the number of distinct values, D, varies. The

graph plots the maximum expected fraction of unique rows as a function of D
n
. It is

the line D
en

for D
n

≤ 1 according to Theorem 4.2.1. For D
n

≥ 1, it is the curve e
−n
D

2If f is a concave function, and
∑

m

i=1
pi = 1, with pi ≥ 0 ∀i, then

∑

m

i=1
pif(xi) ≤ f(

∑

m

i=1
pixi).

4.2. AUTOMATIC DETECTION OF QUASI-IDENTIFIERS 73

according to Theorem 4.2.2. The curve is both continuous and smooth (differentiable)

at D
n

= 1 with f(1) = 1
e

and f
′

(1) = 1
e
.

Figure 4.1 forms a ready reference table in order to test whether a set of attributes

forms a probable quasi-identifier. For example, if for a set of attributes D < 3n, then

it is unlikely that the set of attributes will form a 0.75 quasi-identifier. If a set of

attributes do not form an α-quasi-identifier according to the the number of distinct

values in Figure 4.1, then they almost certainly do not form an α-quasi-identifier as

the plot gives the maximum expected fraction of singletons (as per Theorem 4.2.1

and Theorem 4.2.2).

Example 3 We now show how (Gender, Date of Birth, Zipcode) forms a quasi-

identifier when restricted to the U.S. population. The size of the U.S. population

can be approximated as 3 ∗ 108, that is, the size of the universal table n is 3 ∗ 108.

The number of distinct values taken by the attribute set (Gender, Date of Birth,

Zipcode) is 4 ∗ 109 from Example 2. Therefore, by Theorem 4.2.2, the maximum

expected fraction of rows with singleton occurrence is e−3∗108/4∗109

= e−0.075 ≈ 0.93.

Thus, (Gender, Date of Birth, Zipcode) is a potential 0.93 quasi-identifier. Please

recall that this combination is already known to be a 0.87 quasi-identifier [Swe02b].

Example 4 We now give an example of a set of attributes that does not form a

quasi-identifier. Let us consider (Nationality, Date of Birth, Occupation). The

number of distinct values along these columns is given from Example 2 as D = 4∗108.

Here the size of the universal table is n = 6∗109, that is, equal to the world population.

Since D < n, we use Theorem 4.2.1 and find that the expected fraction of rows with

singleton occurrence is bounded above by D/en = 4 ∗ 108/2.7 ∗ 6 ∗ 109 ≈ 0.025. Thus

these columns almost certainly do not form even a 0.05 quasi-identifier as 0.025 is

an upper bound on the expected fraction of singletons over all possible probability

distributions over quasi-identifier values.

We now provide a simple test to decide whether a combination of attributes forms

a potentially dangerous quasi-identifier, that is, say α ≥ 0.5.

74 CHAPTER 4. PROBABILISTIC ANONYMITY

Theorem 4.2.3 Given a universe of size n, a set of attributes can form an α-quasi-

identifier (where 0.5 ≤ α < 1) if the number of distinct values along the columns,

D > n
ln(1/α)

.

Proof: Note that D > n. If not, then, by Theorem 4.2.1, the maximum expected

fraction of rows taking unique values is D/en ≤ 1/e < α.

From Theorem 4.2.2, the maximum expected fraction of rows taking unique values

along the columns with D distinct values is e−n/D. For the the set of rows to form

an α-quasi-identifier, this fraction must be larger than α. Thus, e−n/D > α, which

implies that D > n
ln(1/α)

. 2

4.2.1 Distinct Values and Quasi-Identifiers

In this section, we have provided an interesting connection between whether a set of

columns forms a quasi-identifier and the number of distinct values assumed by the

combination of the columns. The main contributions of this association are as follows.

1. We provide a fast and efficient technique to test whether a set of columns forms

a quasi-identifier. However there may be false positives. A set of columns

signaled as a probable α quasi-identifier may only be a β quasi-identifier for

some β < α.

2. We do not assume anything about the distribution on the values taken by the

quasi-identifier. The expected number of singletons is bounded by the expres-

sion provided in this section for all possible distributions over the values taken

by the quasi-identifier.

3. When a set of columns is declared not to be a quasi-identifier by the test in

this section, the set of columns is almost certainly not a quasi-identifier, that

is, there is a minuscule chance of false negatives.

4.3. PROBABILISTIC ANONYMITY 75

4.3 Probabilistic Anonymity

In Sweeney’s anonymity model [Swe02b], every row of the dataset is required to

be identical with k other rows in the dataset along Q. In the following notion of

anonymity, we insist that each row of the anonymized dataset should match with at

least k or more rows of the universal table U along Q. Since U is represented in a

probabilistic fashion, we want this event to happen with high probability.

Definition 4.4 A dataset is said to be probabilistically (1− β, k)- anonymized along

a quasi-identifier set Q, if each row matches with at least k rows in the universal table

U along Q with probability greater than (1 − β).

Our notion of anonymity is similar to that of [Swe02b] for an adversary who

is oblivious, that is, she is not really looking for some particular individuals, but is

trying to do a join on Q and checking if she is “lucky”. This kind of attack is quite

a possibility in today’s outsourcing scenarios where in an attacker, say, from a call

center, would want to know identities in her client’s data without really knowing whom

to look for. If an adversary is looking for a particular individual in the anonymized

dataset, then Sweeney’s model would generally provide better privacy than our model

for it would always yield k matches. For our model to work well against such an

adversary, we need to declare the original dataset itself as the universal table U and

carry out anonymization.

In what follows, we build on the strong connection between the number of distinct

values assumed by a set of attributes Q and its identity revealing potential that was

discovered in Section 4.2. Intuitively, it is clear from Theorems 4.2.1, 4.2.2 and 4.2.3

that the potency of Q as a quasi-identifier would decrease if we reduce the number

of distinct values assumed by Q. This is to be done with appropriate generalization.

We borrow the following definition of generalization from [Swe02b] which has an

excellent discussion on this topic.

Definition 4.5 Generalization involves replacing (or recoding) a value with a less

specific but semantically consistent value.

76 CHAPTER 4. PROBABILISTIC ANONYMITY

Example 5 The original ZIP codes {02138, 02139} can be generalized to 0213*,

thereby stripping the rightmost digit and semantically indicating a larger geographical

area.

One way of looking at generalization is creating << D partitions of the space of

D distinct values and choosing a representative for each partition. In fact, it would

give us k-anonymity if we could ensure that most of these partitions are represented

by k or more of their own members in the universal table U with high probability.

To make this work, let us suppose that we have got a D′-partition of original D

size space such that each partition has probability 1/D′ (or O(1/D′) to be precise).

Given a < p1, p2, . . . , pD > probabilities of the original D size space, such partitioning

is certainly possible using techniques we show in Section 4.4 for a single dimension.

Now, we analyze below the bound on D′ that is necessary is order to ensure that

most of these partitions are represented k or more times in U with high probability.

Please recall that U has size n and it is built by sampling with replacement.

Theorem 4.3.1 A data set is probabilistically (1 − β, k)-anonymized with respect to

a universal table U of size n along the quasi-identifier Q if the number of distinct

values along Q, D′ < n
k
(1 − c) for some small constant c.

Before we proceed with the proof, please note that Theorem 4.3.1 provides a rec-

ommendation for D′, the number of partitions of D size space of Q. If the probabilities

< p1, p2, . . . , pD > are known, then as per our earlier assumption, one could cluster

these probabilities such that D′ equi-probable partitions are created. This concretizes

generalization which could be used by any data-holder for anoymizing its data before

release.

Proof: Let us suppose that we have got a D′-partition of original D size space of

quasi-identifier Q such that each partition has probability 1/D′. Let Xi denote the

indicator variable if ≥ k rows in the universal table U are chosen from the ith

4.3. PROBABILISTIC ANONYMITY 77

partition.

P [Xi = 1] =

n
∑

j=k

(

n

j

)

(
1

D′
)j(1 − 1

D′
)n−j

= 1 −
k−1
∑

j=0

(

n

j

)

(
1

D′
)j(1 − 1

D′
)n−j

≥ 1 − exp(
−D′(n/D′ − (k − 1))2

2n
)

(by Chernoff bounds [Che52])

= 1 − exp(
−(n − (k − 1)D′)2

2nD′
).

For 1 − β probability guarantee, we would like to have

1 − exp(
−(n − (k − 1)D′)2

2nD′
) ≥ 1 − β,

that is,
−(n − (k − 1)D′)2

2nD′
≤ lnβ.

This is true when,

0 ≤ D′2 +
2nD′

k − 1

(

lnβ

k − 1
− 1

)

+

(

n

k − 1

)2

,

that is,

D′ ≤ n

k − 1
(1 + x −

√
x2 + 2x),

where

x =
−lnβ

k − 1
.

This implies that

D′ ≤ n

k
(1 − c)

is sufficient for some small constant c. 2

Example 6 Let U be the U.S. Census Table of size n = 3 ∗ 108. Consider the

78 CHAPTER 4. PROBABILISTIC ANONYMITY

columns Q = (Gender, Date of Birth, Zipcode). By Example 2, D = 4 ∗ 109.

According to Theorem 4.3.1, a dataset is (0.9, 100) anonymized along Q with respect

to U if we make D′ partitions (or generalizations) of the D size space where

D′ ≤ n

125
= 2.4 ∗ 106.

Thus, we have to reduce the number of possibilities for Q by a factor of D/D′ <

1700. Consider the following generalization (Gender, Half-year of Birth, First

Four Digits of Zipcode). Now D′ = d′
1 ∗ d′

2 ∗ d′
3. d′

1, the number of distinct values

of Gender, is 2. d′
2 is 60 ∗ 2 = 120, and d′

3 = 104. Therefore, D′ = 2.4 ∗ 106. This

should be good enough to make each row 100-anonymous with probability at least 0.9.

4.3.1 Privacy vs Utility

Note that (Gender, Half-year of Birth, First Four Digits of Zipcode) was

just one of many different ways we could have compressed the D size space in Exam-

ple 6 by factor 1700. Ideally, we would like to devise this generalization such that

there is little or no loss in the data utility. We frame this problem as an optimization

problem below where the goal is to retain maximum utility given privacy constraints.

Let there be m columns < C1, C2, . . . , Cm > that need generalization and

w1, w2, . . . , wm be their respective weights giving their relative importance. We aim

to anonymize this multi-column database so that maximum utility is retained in the

probabilistically k-anonymized output.

Let d′
1, d

′
2, . . . , d

′
m be the number of distinct values along columns C1, C2, . . . , Cm

after probabilistic k-anonymization. Then, by Theorem 4.3.1,

m
∏

i=1

d′
i =

n

k
(1 − c) = D′.

Let us suppose that the quantile based anonymization from Section 4.4 is used.

Thus, d′
i different quantiles are used along the column Ci. Then, the rank difference

of the transformation (from Section 4.4) is approximately (n
d′i

)2 × d′
i = n2

d′i
.

The sum of the distortion along all columns weighted by the column weights is,

4.3. PROBABILISTIC ANONYMITY 79

therefore, n2(
∑m

i=1
wi

d′i
). Minimizing this is equivalent to minimizing

∑m
i=1

wi

d′i
subject

to
∏m

i=1 d′
i = D′. For a fixed value of product, the sum of numbers is minimized when

all the numbers are equal. Therefore,

w1

d′
1

=
w2

d′
2

= . . .
wm

d′
m

=
1

d
(say).

Therefore, d′
i = d × wi ∀1 ≤ i ≤ m. The product condition implies,

∏m
i=1 d′

i =

dm
∏m

i=1 wi = D′. Therefore,

d = (
D′

∏m
i=1 wi

)1/m,

d′
i = (

D′

∏m
i=1 wi

)1/m × wi. (4.1)

Note that if d′
i is less than the number of distinct values in column i initially, say

di, it suggests applying an approach like quantiles proposed here on column Ci. If d′
i

is greater than the number of distinct values in column Ci initially, say di, then the

column Ci is left untouched. The number of distinct elements for other columns can

be recalculated (and increased) after this. That is, if d′
i > di, then the optimization

problem over all other variables is first solved after column Ci is eliminated, i.e.

Maximize
∑m

j=1,j 6=i
wj

d′j
subject to

∏m
j=1,j 6=i d

′
j = D′/di.

Example 7 Suppose that we want to probabilistically (0.9, 100)-anonymize a dataset

with 3 columns (Gender, Date of Birth, Zipcode) and all columns are equally im-

portant, that is , they have equal weight.

As worked out in Example 9, each row is given 100-anonymity with probability

at least 0.9 if D′ = 2.4 ∗ 106. As all 3 columns have equal weight, we get d′
1 =

d′
2 = d′

3 ≈ 133. However Gender has only 2 < d′
1 values. This means we have to

leave it untouched and work with the remaining two attributes. That gives d′
2 ∗ d′

3 =

1.2 ∗ 106. Since both the columns have equal weight, we get d′
2 = d′

3 ≈ 1.1 ∗ 103. As

d′
2 = 1.1 ∗ 103 is approximately 60 (years)∗12 (number of months per year), Date of

Birth is approximated to the month of birth. Also the number of distinct values of

Zipcode being O(103) implies that the last two digits of Zipcode are starred out. Thus

80 CHAPTER 4. PROBABILISTIC ANONYMITY

the anonymization produced is (Gender, Month of Birth, First Three Digits of

Zipcode).

Note that this anonymization was entirely worked out in constant time in the

above example. For general case, where the number of columns is m, it would require

O(m2) time. Previous techniques to provide anonymity were not only NP -hard in the

input size (that means it took exponential time in the dataset) [MW04, AFK+05b] but

even approximations required many passes over the database [AFK+05b, AFK+06].

[LDR05b] required passes to be exponential in the number of columns to be

anonymized as the lattice developed there took exponential time to be built.

Example 8 According to HIPAA [HIP], each person must be anonymized in a crowd

of k = 20, 000 = 2∗104 people. Now, suppose we want to anonymize a medical records

table with columns (Gender, Age (In Years), Zipcode, Disease).

As always, the U.S. Census Table is the universal table U with n = 3 ∗ 108 rows.

The quasi-identifier is (Gender, Age (In Years), Zipcode). As the number of distinct

values of Gender and Age are 2 and 100 respectively, the number of distinct values of

Zipcode allowed is approximately 3 ∗ 108/((2 ∗ 104) ∗ 2 ∗ 100) = 75 by Theorem 4.3.1.

Therefore, Zipcode must be anonymized to its first two digits and should only indicate

the State.

4.3.2 The Curse of Dimensionality

As the number of dimensions (columns) increase, the number of distinct values per

column on anonymization decrease rapidly. For example, consider a database table

with 25 columns. The aim is to anonymize the table so that 10-anonymity is achieved

for the U.S. population of size 3 ∗ 108. Further suppose that all the columns are

given equal weight (importance). Applying Theorem 4.3.1 and the Multiple Domain

Assumption, the number of distinct values per column can be obtained to be roughly

2. Thus all values in a column are generalized to two intervals or converted to two

types of values. This hints at reduced data utility measured by any reasonable metric.

This phenomenon was also observed as the curse of dimensionality on k-

anonymity [Agg05]. However, we must notice that the previous analysis should only

4.4. 1-DIMENSIONAL ANONYMITY 81

be applied to columns that are available publicly. For example, in the Adults data-

base [BM98], columns capgain, caploss, fnlwgt and income can be assumed to be

sensitive columns that are present only in the database itself and are not available

for an external join.

4.3.3 Distinct Values and Anonymity

In this section, we have provided an interesting connection between the number of

distinct values taken by a combination of columns and the anonymity it can offer.

The main contributions of this association are as follows.

1. This association between distinct values and anonymity guarantee results in an

easy technique to obtain a k-anonymized dataset. Merge similar distinct values

taken by a column so that the number of distinct values assumed by the column

is reduced. The appropriate reduction in the number of distinct values leads to

the conversion of a quasi-identifier into k-anonymous columns. As explained in

Section 4.3.1, this would also help retain much of data utility since it minimally

distorts ranks. We shall discuss this angle in more detail in the next section.

2. It also helps in coming up with the right kind of generalization for publicly

known attributes so that published database can conform to laws like HIPAA.

4.4 1-dimensional Anonymity

The results of Section 4.3 provide us with the right amount of generalization for each

publicly known attribute in order to achieve probabilistic k-anonymity for the entire

m column dataset. From any particular attribute point of view, the suggested gener-

alization tries to create appropriate number of buckets (or partitions) in its distinct

values space so that each bucket has k′ ≫ k individuals from the universal table

U . Thus, in nutshell, there are m 1-dimensional Sweeney’s k-anonymity problems,

of course, each with different value of k. Before we proceed further, we will like

the reader to take a note of this strong underlying connection between our notion of

probabilistic k-anonymity and Sweeney’s notion of k-anonymity.

82 CHAPTER 4. PROBABILISTIC ANONYMITY

Now k-anonymity for multiple columns is known to be NP-hard [MW04,

AFK+05b, LDR05b]. Thankfully we found that this is not the case for a single

column. In the remainder of this section, we showcase various algorithms that help

achieve 1-dimensional k-anonymity while retaining maximum possible data utility.

4.4.1 Numerical Attributes

We start out with algorithms for numerical attributes. Note that they are also ap-

plicable to attributes of type date and Zipcode.

Definition 4.6 k-Anonymous Transformation A k-anonymous transformation

is a function, f , from S = {s1, s2, . . . sn} to S such that ∀sj : |{f−1(sj)}| ≥ k or

|{f−1(sj)}| = 0, that is, at least k elements are mapped to each element (which has

some element mapped to it) in the range.

Example 9 Consider S = {1, 12, 4, 7, 3}, and a function f given by f(1) = 3, f(3) =

3, f(4) = 3, f(7) = 7 and f(12) = 7. Then f is a 2-anonymous transformation.

Dynamic Programming

Our goal is to find a k-anonymous transformation that minimizes, say, the maximum

cluster size amongst all clusters [Vaz04], or the sum of distances to the cluster cen-

ters [JV99], or the sum over all clusters the radius of the cluster times the number

of points in the cluster [AFK+06]. All these problems are known to be NP-hard for

a general metric space. However, for points in a single dimension, we showcase an

optimal polynomial time algorithm based on dynamic programming. The details of

the algorithm can be found below.

If not already sorted, first sort the input and suppose that it is p1 < p2 < . . . < pn.

For 1 ≤ a < b ≤ n, let Cluster(a, b) be the cost to cluster elements pa, . . . , pb.

Consider the optimal clustering of the input points. Note that each cluster in the

optimal clustering contains a set of contiguous elements. Moreover, each cluster is of

size at least k by the k-anonymity requirement. Since any cluster of size ≥ 2k can be

4.4. 1-DIMENSIONAL ANONYMITY 83

broken into two contiguous clusters of size at least k each and that would reduce the

clustering cost, the size of a cluster in the optimal clustering will be at most 2k − 1.

The optimal clustering of the n input points is, therefore, the optimal clustering of

points p1, p2, pn−i and one single cluster of the points (pn−i+1, . . . , pn), where i is the

size of the last cluster. Note that k ≤ i < 2k by the previous analysis. Therefore we

find the optimal clustering by trying out all possible values of i ∈ {k, k+1, . . . , 2k−1}.
Now, the dynamic programming recursive equation is given by

ClusterCost(1, n) = mink≤i<2k Cost(ClusterCost(1, n − i), Cluster(n − i + 1, n)).

Here Cost(A, B) is the sum for a metric like the k-median [JV99] or cellu-

lar [AFK+06] metric which minimizes the sum of costs over all clusters. It is the

maximum function for the k-center metric [Vaz04] which minimizes the maximum of

cluster sizes amongst all clusters.

ClusterCost(a, b) is initially set to ∞ if b − a + 1 < k. For b − a + 1 ≥ k,

ClusterCost(a, b) is initially set to the cost of clubbing all points into a single cluster,

that is, Cluster(a, b).

Time Complexity This algorithm needs input in the sorted order. Therefore,

its time complexity has two components: 1. Time taken for sorting the input, and 2.

time required for the dynamic programming. For input of size n points, sorting takes

O(n logn) time. The dynamic programming part requires time O(nk) as evaluating

ClusterCost(1 . . . i) takes O(k) time for each i. Thus, overall time complexity is

O(n(k + log n)).

Quantiles

The algorithm from previous section requires sorting of the input. For large n, this

would entail external sort. It is not very desirable in practice. In this section, we

explore efficient algorithms that cluster the data in time required to make 1 or 2

sequential passes over the data and use very little extra memory.

Definition 4.7 Rank Given a set of distinct elements S = {s1, s2, . . . , sn}, the rank

of an element si is r if si is the rth largest element in the set.

84 CHAPTER 4. PROBABILISTIC ANONYMITY

For a multi-set containing duplicates, different occurrences of the same element

are given consecutive ranks.

Example 10 Among elements S = {1, 12, 4, 7, 3}, 7 has rank 4, while 3 has rank 2.

Definition 4.8 Rank difference of a transformation Given a set S = {s1,

s2, . . . , sn} of n numbers, and a k-anonymous transformation f , let π(si) represent

the rank of element si. Then, the rank difference incurred by si under the transfor-

mation f is defined as |π(f(si)) − π(si)|. The rank difference of the transformation

f is the sum of rank difference over all elements, that is,
∑n

i=1 |π(f(si)) − π(si)|.

Example 11 For set S = {1, 12, 4, 7, 3}, π(1) = 1, π(12) = 5, π(4) = 3, π(7) = 4

and π(3) = 2. For f from Example 9, π(f(1)) = 2, π(f(12)) = 4, π(f(4)) = 2,

π(f(7)) = 4, and pi(f(3)) = 2. The rank difference of this transformation is 3.

Definition 4.9 Quantile Transformation Suppose that n = qk+r, where 0 ≤ r <

k. Then, the quantile transformation is a k-anonymous transformation that partitions

the elements into q contiguous groups of size (k + ⌊r/q⌋) or (k + ⌈r/q⌉) each. All

elements in a group are mapped to the median element of the group.

Theorem 4.4.1 The quantile transformation has the minimum rank difference

among all k anonymous transformations.

Proof: The proof is by a simple greedy argument. 2

Efficient Approximate Quantiles using Samples

It is possible to implement the exact quantile transformation. But finding the exact

median(quantile) in p passes over the data requires n1/p memory [MP78]. Thus, to

get the exact quantile transformation in 2 passes, would require Ω(
√

n) memory.

For those who work with smaller memory and/or look for something easier to

implement, we sketch a sampling based approach here. We maintain a uniform sample

of size s = 1
ǫ2

log(1
δ
) using Vitter’s sampling technique [Vit85]. The rank t element in

the original set is approximated by the rank st/n element in the sample, where n is

4.4. 1-DIMENSIONAL ANONYMITY 85

the size of the original dataset over which the sample is maintained. This element

has rank between t − (ǫn) and t + (ǫn) in the original data with probability greater

than (1 − δ) if the sample size s is chosen as given above [MRL99]. For example

suppose that we maintain a uniform sample of 100 elements out of a total 100, 000

elements. Then the 5, 000th element in sorted order among the 100, 000 elements can

be approximated well by the 5th element in sorted order from amongst the sample of

100 elements.

4.4.2 Categorical Attributes

Country:USA

50 States

AL AK CA WY

58 Counties

Alameda

Cities

Figure 4.2: A Categorical Attribute

In the previous sub-section, we discussed how to create appropriate buckets or

categories for numerical (ordered) attributes. But many a times, there is an attribute

with no intrinsic ordering among its value-set. Such an attribute is called as a cate-

gorical attribute

For categorical attributes we create a layered tree graph as explained. The first

layer consists of a node for each category value. The next layer groups together nodes

that generalize into one general categorical value, so that they form a single node.

86 CHAPTER 4. PROBABILISTIC ANONYMITY

This is set to be the parent of the generalized values. This is repeated till there

is a single category. Consider for example location information shown in Figure 4.2.

Zipcodes are generalized to cities which are generalized to counties to state and finally

to country. The top three levels of the generalization hierarchy are shown. To

anonymize this dataset so that there are d distinct values, the generalization is carried

till the level that there are d values. For example, to generalize location so that there

are 50 different values, the state information would be retained. However to generalize

it to 3000 distinct values, the county information would be retained.

4.5 Experiments

4.5.1 Quasi-Identifiers

We counted the number of singletons in the Adult Database available from the UCI

machine learning repository [BM98]. The Adult Database has got 32561 rows with

15 attributes, we considered 10 of them and dropped the remaining 5. The dropped

attributes are sensitive attributes (not quasi-identifiers): fnlwgt, capgain, caploss,

income and the attribute edunum which is equivalent to the attribute education. In

our experiments, we varied the size of the attribute set Q under consideration from

1 to the maximum of 10. The table in Figure 4.3 shows some of the results that we

obtained.

Labels A1, A2, . . ., A10 denote the 10 columns of the table. The first row gives

the number of distinct values each attribute A1, A2, . . ., A10 takes. All other rows

(which are labeled with row numbers from 1 to 12) of the table represent publishing

the projection of the table along the columns marked ‘x’. For example, the row 1

represents publishing the database projected on the Age (A1) column while the row

12 represents publishing all 10 columns in the database. The column Size gives the

number of ‘x’ marks in each row, that is, the number of columns that constitute the

quasi-identifier Q under consideration.

The column S is the number of rows uniquely identified by the projection of these

columns, that is, the number of rows uniquely identified in the published projection.

4
.5

.
E

X
P

E
R

IM
E

N
T

S
87

Row Size A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 S F1 D F2 k-Anon

60 8 15 7 14 6 5 2 20 40
1 1 x 2 6.1 ∗ 10−5 60 7.4 ∗ 10−8 5 ∗ 106

2 2 x x 986 0.03 1200 1.48 ∗ 10−6 2.5 ∗ 105

3 3 x x x 65 0.002 600 7.4 ∗ 10−7 5 ∗ 105

4 4 x x x x 5056 0.16 1 ∗ 105 1.2 ∗ 10−4 3 ∗ 103

5 4 x x x x 3105 0.095 2.7 ∗ 105 3.3 ∗ 10−4 1.1 ∗ 103

6 4 x x x x 7581 0.23 6.7 ∗ 105 8.3 ∗ 10−4 450
7 4 x x x x 1384 0.043 6.7 ∗ 104 8.3 ∗ 10−5 4.5 ∗ 103

8 5 x x x x x 7659 0.235 4 ∗ 106 4.9 ∗ 10−3 75
9 5 x x x x x 5215 0.16 2.8 ∗ 105 3.4 ∗ 10−4 1 ∗ 103

10 5 x x x x x 12870 0.40 8 ∗ 105 9.9 ∗ 10−4 380
11 5 x x x x x 10402 0.32 5.4 ∗ 106 6.7 ∗ 10−3 55
12 10 x x x x x x x x x x 24802 0.76 33 ∗ 109 0.99 1

Size = Number of columns that make the quasi-identifier, A1 = Age, A2 = Work class, A3 =
Education, A4 = Marital status, A5 = Occupation, A6 = Relationship, A7 = Race, A8 = Sex,
A9 = Hours per week, A10 = Native country, S = Number of singletons in the current table, F1=
Fraction of singletons using the table itself = S/32561, F2=Fraction of singletons using Figure 4.1
and n = 3 ∗ 108 for US population, k-Anon= Anonymity parameter for the published database =
n/D.

Figure 4.3: Quasi-Identifiers on the Adult Dataset

88 CHAPTER 4. PROBABILISTIC ANONYMITY

For example, for row 2, where A1 and A9 are the attributes of projection, S = 986

is returned by the following SQL statement in MS Access:

SELECT A1, A9 FROM T

GROUP BY A1, A9

HAVING count(*)=1

F1 is the fraction of rows uniquely identified, given by S/32561 where S is the

number of singletons while 32561 represents the total number of rows in the database

table. For row 2, F1 = 0.03. Some previous definitions of quasi-identifiers [XM06]

measured a quasi-identifier as a set of columns that have a large fraction of unique

rows. Thus, F1 is used as a measure of quasiness. This does not model the external

table present with the adversary. For example, by this definition, A1 and A9 would

together be a 0.03-quasi-identifier.

D is the product of the domain sizes of the attributes marked ‘x’ in the row.

By Multiple Domain Assumption, it is the size of the distinct values space for that

combination of columns. For example, for row 3, D = 60 ∗ 5 ∗ 2 = 600.

F2 captures the notion of quasiness as proposed in Section 4.2. It is given by

f(D/n) shown in Figure 4.1. Here, D is set to be equal to the value from column D,

and n = 3 ∗ 108, the size of US population. Please recall that, by Theorems 4.2.1 and

4.2.2, f(D/n) = D/en for D < n and e−n/D for D ≥ n. For all but the last row of

the table, D < 3 ∗ 108, hence F2 = D
2.7∗3∗108 , for the last row F2 = e−3∗108/D.

k-Anon is approximately the probabilistic k-anonymity obtained from the pub-

lished database. Based on the result of Theorem 4.3.1, it is set to n/D, where

n = 3 ∗ 108, the size of the US population. When D exceeds n, it is set to 1.

Suppose we are allowed to publish a set of columns with the condition that all

0.2-quasi-identifiers are to be suppressed. If we only consider the entries of the table

and look at those projections where at least 0.2 fraction of the rows are unique, then

the projections indicated by rows numbered 6, 8, 10, 11 and 12 cannot be published.

This is because their F1 values exceed 0.2.

In fact, our real worry is that > 0.2 fraction of the rows should not get uniquely

identified after taking an external join with the universal table U . Then, only row 12

4.5. EXPERIMENTS 89

qualifies as a possible 0.2-quasi-identifier as only its F2 value exceeds 0.2. Note that,

from Theorems 4.2.1 and 4.2.2, there is a minuscule chance of false negatives, that is,

rows 1 − 11 are unlikely to be 0.2-quasi-identifiers.

Row 12 needs a closer look since 0.99 is only an upper bound on the expected

fraction of unique rows. It may be noticed that many combinations are rare and

do not occur. In our example, two attributes A9 and A10 are special. A9 may be

represented with only 5 distinct values since the exact hours per week of an individual

may not be known and A10 is not uniformly distributed. Such a case by case analysis

of the different attributes may bring down the distinct values, D, and hence the

fraction of distinct rows. Thus, it can help improve the estimate of quasiness, say,

from a 0.99 fraction to (probably) a fraction lower than 0.2. In such a case, row 12

would be a false positive.

4.5.2 Anonymity Algorithms

We implemented sampling based approximate quantile algorithm (from Section 4.4.1)

as a technique in a commercial data masking tool. Our technique required 400 lines

of code to be added to the tool. The tool was run on an Oracle database containing

250, 000 rows of a table from a real bank, which was a customer of the tool vendor.

The database table was about 1GB in size and had 261 columns. We also repeated

our experiments on the public use microdata sample (PUMS) [Bur] provided by the

U.S. Census Bureau. This dataset was given in a flat file format as input to the data

masking tool. The experiments were run on a machine with 2.66GHz processor and

504 MB of RAM running Microsoft Windows XP with Service Pack 2.

Scaling with the Dataset Size

We studied how the running time of the quantile algorithm for masking a single

column changes as the number of rows in the database table is varied. We measured

the time required to mask various fractions of the table, the entirety of which contains

250, 000 rows. The time required to mask this single numeric column with k = 10, 000

anonymity (so that there are 25 different quantiles to which the data is approximated)

increased linearly to a total of about 10 seconds for the entire column. A straight line

90 CHAPTER 4. PROBABILISTIC ANONYMITY

with almost exactly identical slope and coordinates was obtained for the PUMS [Bur]

dataset.

Figure 4.4: Time taken for varying number of rows.

Scaling with the Number of Columns Masked

We studied how the running time of the quantile algorithm for masking multiple

columns varies as the number of columns to be masked is varied. For this experiment

too, we used the table with 250, 000 rows and 261 columns. As each column is in-

dependently anonymized, the time taken increases linearly as the number of columns

being anonymized increases. Previous algorithms [LDR05b] had an exponential in-

crease in the time taken for anonymization as the number of columns increased as

the lattice created was exponential in the number of columns being anonymized.

The time taken to anonymize 10 columns of data with 250, 000 rows was approx-

imately 100 seconds. This is almost an order of magnitude improvement over the

previous algorithm [LDR05b]. The results on the PUMS dataset were similar.

Scaling with the Anonymity Parameter

The implemented algorithm does a binary scan over all buckets to find the bucket

closest to each data item. The time required to anonymize a data value, therefore, log-

arithmically increases as the number of buckets increases (or the value k of anonymity

4.5. EXPERIMENTS 91

Figure 4.5: Time taken for varying number of columns.

parameter decreases). If b is the number of buckets and n the number of rows, then

the time to anonymize is nlog(b). The time taken to read n rows from disk is nC

where C is a large constant. The total time taken is, therefore, n(C + log b) where

C ≫ log(b). This explains the shape of the curve in Figure 4.6. Here nC ≈ 10

seconds and the log(b) term explains the slight increase from 0 to 500 buckets.

Tradeoff between Privacy and Utility

We studied how the error introduced in a column as a result of k-anonymization

varies with the anonymity parameter k. Let xi be the original value of the ith row.

Let x
′

i be its value after k-anonymization. Then (x
′

i − xi)
2 is the error introduced

for row i as a result of k-anonymization. The total error introduced over n rows is

Error =
∑n

i=1(x
′

i − xi)
2. Let x̄ =

Pn
i=1

xi

n
. If all x

′

i are constrained to be identical

(corresponding to anonymity with a single bucket), then x̄ gives the minimum error

according to the above metric, i.e. it gives MinError = Minx

∑n
i=1(x − xi)

2 =
∑n

i=1(x̄ − xi)
2. We, therefore, normalize the error as Error/MinError.

The curve is plotted in Figure 4.7 where the normalized error is plotted on the y-

axis while the number of buckets, b = n
k
, is plotted on the x-axis. An almost identical

curve was obtained for the PUMS dataset. The curve very closely follows the curve

92 CHAPTER 4. PROBABILISTIC ANONYMITY

Figure 4.6: Time taken for varying number of buckets.

1
b2

. This could be proven analytically.

Thus, for given n and k, we find that the identity disclosure risk is < 1/k (for

“join” class of attacks) and the error introduced in data is ∝ k2/n2. We may, therefore,

boldly quantify the privacy provided by k-anonymization as p = 1−1/k and the utility

retained as u = 1 − k2/n2 implying the following privacy-utility trade-off equation.

(1 − p)2(1 − u) = 1/n2 (a constant).

Note that, the fact that we used sum square errors, instead of sums of absolute

values of errors explains the square term above.

4.6 Related Work

One of the earliest definitions of quasi-identifier can be found in Dalenius [Dal86].

[Swe02b, Swe02a] and [LDR05b] use a similar definition.

Samarati and Sweeney formulated the k-anonymity framework and suggested

4.6. RELATED WORK 93

Figure 4.7: Tradeoff between privacy and utility.

mechanisms for k-anonymization using the ideas of generalization and suppres-

sion [SS98, Swe02b, Swe02a]. Subsequent work has shown some NP-hardness re-

sults [MW04, AFK+05a, AFK+06] and that has inspired many interesting heuristics

and approximation algorithms [Iye02, Win02, MW04, BA05, AFK+05a, LDR05b,

MKGV06, AFK+06]. All of this work assumes that quasi-identifier attribute sets are

known based on specific knowledge domain.

The basic theme of k-anonymity model is to hide an individual in a crowd of size

k or more. A similar intuition is pursued by Chawla et al in [CDM+05] who, in fact,

manage to convert it into a precise mathematical statement. They not only give

definition of privacy and its compromise for statistical databases, but also provide

a method for describing and comparing the privacy offered by specific sanitization

techniques. They also give a formal definition of an isolating adversary whose goal

is to single out someone from the crowd with the help of some auxiliary information

z. This work is further extended in [CDMT05] where Chawla et al study privacy-

preserving histogram transformations that provide substantial utility.

There is a wide consensus that privacy is a corporate responsibility [IBM]. In order

to help and ensure corporations fulfill this responsibility, governments all over the

94 CHAPTER 4. PROBABILISTIC ANONYMITY

world have passed multiple privacy acts and laws, for example, Gramm-Leach-Bliley

(GLB)Act [GLB], Sarbanes-Oxley (SOX) Act [SOX], Health Insurance Portability

and Accountability Act (HIPAA) [HIP] are some such well known U.S. privacy acts.

In fact, HIPAA recommends the following safe-harbor method of de-identification in

which it provides clear guidelines for sanitizing quasi-identifiers including date types,

Zipcode, etc. For 20, 000 anonymity, HIPAA advises to retain essentially only the

State information in Zipcode and year information in Date of Birth which is quite

inline with what we concluded in Examples 6, 7 and 8 based on our analysis. The

de-identification excerpt from the HIPAA law is provided in Appendix 4.8.

4.7 Conclusions

In this chapter, we provided the first formalism and a practical technique to identify

a quasi-identifier. Along the way we discovered an interesting connection between

whether a set of columns forms a quasi-identifier and the number of distinct values

assumed by the combination of the columns.

Then we defined a new notion of anonymity called as probabilistic anonymity

where in we insist that each row of the anonymized dataset should match with at least

k or more rows of the universal table U along a quasi-identifier. We observed that

this new notion of anonymity is similar to the existent k-anonymity notion in terms

of privacy guarantees and is sufficiently strong for many real life scenarios involving

oblivious adversaries. Building on our earlier work, we found an interesting connection

between the number of distinct values taken by a combination of columns and the

anonymity it can offer. This allowed us to find an ideal amount of generalization or

suppression to apply to different columns in order to achieve probabilistic anonymity.

We worked through many examples and showed that our analysis can be used to

make a published database conform to privacy acts like HIPAA.

In order to achieve the probabilistic anonymity, we observed that one needs to

solve multiple 1-dimensional k-anonymity problems. We proposed many efficient

and scalable algorithms for achieving 1-dimensional anonymity. Our algorithms are

optimal in a sense that they minimally distort data and retain much of its utility.

4.8. DE-IDENTIFICATION REQUIRED FOR HIPAA 95

4.8 De-identification required for HIPAA

“The following identifiers of the individual or of relatives, employers, or household

members of the individual must be removed to achieve the ”safe harbor” method of

de-identification: (A) Names; (B) All geographic subdivisions smaller than a State,

including street address, city, county, precinct, zip code, and their equivalent geocodes,

except for the initial three digits of a zip code if, according to the current publicly avail-

able data from the Bureau of Census (1) the geographic units formed by combining all

zip codes with the same three initial digits contains more than 20,000 people; and (2)

the initial three digits of a zip code for all such geographic units containing 20,000

or fewer people is changed to 000; (C) All elements of dates (except year) for dates

directly related to the individual, including birth date, admission date, discharge date,

date of death; and all ages over 89 and all elements of dates (including year) indica-

tive of such age, except that such ages and elements may be aggregated into a single

category of age 90 or older; (D) Telephone numbers; (E) Fax numbers; (F) Electronic

mail addresses: (G) Social security numbers; (H) Medical record numbers; (I) Health

plan beneficiary numbers; (J) Account numbers; (K) Certificate/license numbers; (L)

Vehicle identifiers and serial numbers, including license plate numbers; (M) Device

identifiers and serial numbers; (N) Web Universal Resource Locators (URLs); (O)

Internet Protocol (IP) address numbers; (P) Biometric identifiers, including finger

and voice prints; (Q) Full face photographic images and any comparable images; and

(R) any other unique identifying number, characteristic, or code, except as permit-

ted for re-identification purposes provided certain conditions are met. In addition to

the removal of the above-stated identifiers, the covered entity may not have actual

knowledge that the remaining information could be used alone or in combination with

any other information to identify an individual who is subject of the information. 45

C.F.R. §164.514(b). ”

Chapter 5

Masketeer

The results in this chapter appear in [DLP+06].

5.1 Introduction

Advances in storage, networks, and hardware technology have resulted in an explosion

of data and given rise to multiple sources of overlapping data. This, combined with

general apathy towards privacy issues while designing systems and processes, leads

to frequent breaches in personal identity and data security. What makes this worse

is that many of these breaches are committed by the legitimate users of the data.

Major countries like the U.S., Japan, Canada, Australia and EU have come up with

strict data distribution laws which demand their organizations to implement proper

data security measures that respect personal privacy and prohibit dissemination of

raw data outside the country.

Since companies are not able to provide real data, they often resort to completely

random data. It is obvious that such a data would offer complete privacy, but would

have very low utility. This has serious implications for an IT services companies, since

application development and testing environments rely on realistic test data to verify

that the applications provide the functionality and reliability they were designed to

deliver. It is always desirable that the test data is similar to, if not the same as, the

production data. Hence, deploying proven tools that make de-identifying production

96

5.2. DATA MASKING 97

data easy, meaningful and cost-effective is essential.

Data masking methods came into existence to permit the legitimate use of data

and avoid misuse. In this Chapter, we consider various such techniques to be able to

come up with a comprehensive solution for data privacy requirements. We present the

data masking product MASKETEERTM (developed at TCS), which implements these

techniques for providing maximum privacy for data while maintaining good utility.

5.2 Data Masking

Masking the production data is simply the process of systematically removing or trans-

forming data elements that could be used to gain additional knowledge about the sen-

sitive information. The objective of data masking is to maximize data utility in such

a way that the masked data should have the same characteristics as the original data

and at the same time minimize disclosure risks, that is, reduce the ability to identify

an individual and reduce the ability to predict the value of confidential attributes.

The need for data masking is, in fact, ubiquitous. The contract software devel-

opment is just one such striking example. Data masking plays a key role when a

certain version of privately held data has to be made public. Here goal is to keep the

identities of the individuals who are the subjects of the data secret, and yet allow

the legitimate users to make perfect use of the released data. This problem is very

common in the health sector and financial sectors.

5.2.1 Approaches

Over the years, statisticians, cryptographers and computer scientists have developed

many models and techniques to address the trade-off between data privacy and its

utility. We present here techniques that are robust, practical, and have simple quan-

tification of privacy/utility. We explain them using Figures 5.1 and 5.2.

Randomization: In this approach, a data-element is replaced by a randomly chosen

value from a given range or a dataset. The Name column of Figure 5.1 is replaced

by randomly chosen names from a dataset of English Names in Figure 5.2. This

98 CHAPTER 5. MASKETEER

SSN Name Gender Age Zipcode Balance
101 Alice F 31 94305 100
102 Bob M 31 94308 24
103 Carol F 32 94308 35
104 David M 22 94125 85
105 Evelyn F 34 90428 12
106 Frank M 18 92405 73
107 George M 35 94308 57

Figure 5.1: Original Database table

SSN Name Gender Age Zipcode Balance
501 Jane F 31 9430* 110
438 Kurt M 31 9430* 30
107 Lance M 31 9430* 45
745 Molly F 20 94*** 75
885 Nancy F 34 9**** 25
990 Oscar M 20 94*** 60
210 Philip M 34 9**** 52

Figure 5.2: Masked Database table

5.2. DATA MASKING 99

technique provides strong identity protection.

Encryption: In this approach, the data-element X is replaced by its image h(X)

where h is a suitable hash function. Ideally, one would want the hash function h to

be collision-free, non-idempotent and one-way. Unfortunately no such h is provably

known. But in practice, MD5, SHA-1, or Discrete Log based functions are useful. In

the above example, encryption is applied to the SSN column. Encryption techniques

are often efficient, but they provide low data utility by destroying semantics readily.

Shuffling: Shuffling randomly permutes the data-elements in a column. Thus, it can

easily destroy relations between the columns. Shuffling is applied to the Gender

column in the above example.

Perturbation: Another popular approach is to use perturbation techniques in order to

hide the exact values, for example, adding noise to data and its numerous improve-

ments. Here it is possible to capture the richness of data, say, with the covariance

matrices . A simple perturbation technique could be addition of Gaussian noise to the

input data. Let X be the input column. Then, the resultant Y would be Y = X + e,

here e is the Gaussian noise taken from a standard distribution. Perturbation is

applied to the Balance column in the above example.

Perturbation techniques, capable of providing high data utility and low disclosure

risk, may require some pre-processing of the data to yield parameter values. Oth-

erwise, they are fairly efficient. They are not very suitable if one wants to draw

inferences with 100% confidence.

k-Anonymity: De-identifying the data by masking key attributes like SSN and Name

may not protect identities since linking such a masked database with a publicly avail-

able database on non-key attributes like Gender, Date of Birth and Zipcode can

uniquely identify an individual [Swe02b].

A table provides k-anonymity [Swe02b] if any attempt to link the identifying

columns by external joins results in k or more matches. It means that each row

in the table is forced to be same as at least k − 1 other rows in the potentially

identifying attributes. Thus, identification of an individual by external join is with

a probability of at most 1/k. k-Anonymity is achieved by blocking all the dissimilar

100 CHAPTER 5. MASKETEER

Technique Data Utility Identity Disclosure Risk Value Disclosure Risk Scalability

Randomization Low Low Low High

Encryption Low Medium Medium High

Shuffling Medium Low High Medium
Perturbation Medium Low Medium Medium
k-Anonymity High Low High Low

Figure 5.3: Techniques Overview

values (suppression) or by replacing them with a less specific common consistent value

(generalization). Hence k-anonymity is a trade off between data utility and privacy.

A higher value of k enforces a stricter privacy but more data loss. It is important to

note that the data loss happens mainly for the potentially identifying attributes only,

and the sensitive information (for example, say, medical condition of patients or cash

balance) may appear as it is.

In the above example, we have applied 2-Anonymity to Age and Zipcode. The

first three, the 4th and 6th, and the 5th and 7th rows in Figure 5.2 are identical

in these two columns. Non identical values in Age are replaced by their average,

while those in Zipcode are substituted by *. Hence anybody trying to link some

known Age and Zipcode values with those in this table to find the Balance value

would essentially be confused with two balance values. Thus, we are guaranteed 50%

privacy.

k-Anonymity provides high data utility since it generalizes or suppresses only

the quasi-identifiers. It also quantifies the identity disclosure risk at 1/k. But the

optimal k-anonymity is known to be NP-hard [AFK+05a]. The known algorithms

are either O(k) approximations [AFK+05a] or super-linear [AFK+06] or require time

exponential in the number of columns [LDR05b] thus making them inefficient or

expensive. Our product uses the efficient algorithm outlined in [LT06].

A comparative overview of the different techniques is given in Figure 5.3. It is

clear from this table that no single technique by itself can provide low disclosure

risk, high data utility and work for high data volumes. But good news is that these

techniques seem to complement each other. So their right combination may generate

good data for us. A recent Forrester report [Yuh06] also advocates the same.

5.3. CONSTRAINTS 101

5.3 Constraints

We chose the above techniques because they are privacy-preserving and amenable to

efficient implementations that scale well. Also appropriate choice of parameters for

these techniques can help us retain much of the characteristics and patterns from the

original data. In order to further improve the utility aspect in the masked data, we

note that one has to account for the following database related considerations as well.

They bring in serious engineering challenges.

Syntactic Constraints: The masked values should be within the limits specified in the

database schema.

Uniqueness Constraints: For attributes that are marked as unique or as primary keys

of the table, the masked values should be unique.

Relational Integrity: In order to support RDBMS, it is important to make sure that

relational integrity constraints are satisfied, that is, the masked data-elements are

propagated from the parent table to child tables.

Business Constraints: Much of the known business logic is encoded in company data-

bases by linking multiple columns through some arithmetical or logical operations.

The masked data should also satisfy these constraints.

5.4 MASKETEERTM

There has been a lot of other products in the market that address a similar prob-

lem [Cam, Mas, Van, Sof]. Our data-masker software, is to the best of our knowledge,

the one that provides all different masking techniques.

5.4.1 Key Features

MASKETEERTM is a platform independent, user friendly, highly extensible and easily

portable data masking solution.

102 CHAPTER 5. MASKETEER

1. Masking Techniques: MASKETEERTM comes with the following different tech-

niques providing mathematical robustness guarantee for masking purposes: ran-

domization, encryption, shuffling, perturbation, and k- anonymity.

If deemed necessary, users can code and easily plug-in their own masking tech-

niques through its extensible framework.

2. Compliance Assistance: MASKETEERTM has proprietary algorithms to identify

and optimally mask quasi-identifiers for the given database. This not only

provides k-anonymity [Swe02b] and increased protection against identity thefts,

but also helps in meeting HIPAA like compliance [HIP].

3. Operational Modes: MASKETEERTM is available in both client-server and a

separate stand-alone application mode.

In case of the client-server mode of operation, multiple users can connect to the

MASKETEERTM server and carry out specific masking tasks remotely. Different

roles and rights can be assigned to different users.

4. Data Integrity: Integrity constraints such as primary or foreign key and unique

constraints are satisfied while masking the data. If referential integrity is not

defined as a part of the database schema, user can specify it through the con-

straint editor. Similarly business constraints can also be specified on the masked

data using another constraint editor.

5. Enterprise Masking: Most companies have overlapping data spread across dif-

ferent types of databases on various platforms. Often, they would need to mask

the data in a consistent fashion even in such heterogeneous environs.

MASKETEERTM allows users to specify cross database integrity constraints. It

generates consistent masked data for all mentioned databases.

6. Convenient Data Export: MASKETEERTM does not modify the production

data. In fact, it stores the masked data in flat files. These flat files can be

5.4. MASKETEERTM 103

loaded into any target database. An export utility is also provided for mov-

ing the masked data from the flat files into the target database. Thus, ship-

ping/uploading of masked data is made convenient.

7. Masked Data Validation: MASKETEERTM provides visual comparative valida-

tion of original and masked data. It also includes different statistical tests for

assessing the quality of masking. In fact, users can define their own tests as

well.

8. Easy Customization MASKETEERTM facilitates the plug-in of user defined

masking techniques. The user has to just program the masking algorithm using

the interface exposed by MASKETEERTM . The fetching and export of data

is handled by MASKETEERTM itself. Similar interfaces to add user defined

validation tests on masked data are provided.

9. Robustness: In case of failure, MASKETEERTM resumes the masking process

from the point of failure. This feature is particularly useful while masking large

size databases.

10. Performance: On an average, MASKETEERTM can mask 5GB/hour on a 2GHz

Pentium machine having 512MB RAM.

11. Database Support: MASKETEERTM supports most of the RDBMS using, say,

JDBC drivers for connectivity. For example, it supports DB2, MS Access,

Oracle, MS SQL Server, Sybase, VSAM, ISAM, and also flat files. Its extensible

framework allows users to plug-in other databases as well.

As a service offering, this product has already enabled more offshoring of IT

projects. As a product, it has been used by major banks, insurance companies and

health care providers not only for their IT engagements. It is helping these clients

secure their test environments without compromising software quality. It is also

playing a crucial role in their privacy compliance initiatives.

Evaluation copies of MASKETEERTM , are available at masketeer@tcs.com.

Part II

Auditing Query Logs for Privacy

Compliance

105

Chapter 6

Auditing Batches of SQL Queries

The results in this chapter appear in [MNT07].

6.1 Introduction

Auditing is the process of inspecting past actions to determine whether they were

in conformance with official policies. In the context of database systems with data

disclosure policies, auditing queries is the process of inspecting queries that have

been answered in the past and determining whether these answers could have been

pieced together by a user to infer private information about an individual or a group

of individuals.

More formally, given a set of forbidden views, V = {V1, . . . , Vk}, of a database

that must be kept confidential according to the data disclosure policies, a batch

of queries, Q = {Q1, . . . , Qm}, that have been posed over this database, and a

system-defined notion of suspiciousness, S, the task of an auditor is to determine

whether Q is suspicious with respect to V. In all the notions of suspiciousness that

we study in this chapter a batch of queries is suspicious with respect to a set of

forbidden views if it is suspicious with respect to any one view. Therefore we focus

on the auditing problem for a single forbidden view.

107

108 CHAPTER 6. QUERY AUDITING

Throughout this chapter, we also restrict ourselves to the class of “duplicate-

preserving” select-project-join (SPJ) queries. Here by duplicate-preserving we mean

that the SELECT clauses do not contain distinct in the select list and multi-set

semantics is used in projection. Since by default all the queries that we consider

will be duplicate-preserving, we drop this qualifier from here on. Furthermore, we

assume that all foreign key relationships are known and the universal table ob-

tained by joining along these foreign keys is polynomial in the size of the input tables.

The need for some sort of an audit mechanism in database management sys-

tems is clear. For example, an individual on receiving targeted health advertisements

might suspect his health-care provider of having leaked private information from his

medical records to interested parties. If the provider’s privacy policy stipulates that

it does not release patient data to external parties, it would be in the best interests

of the provider to be able to demonstrate compliance with this policy.

It is in this context that the authors of [ABF+04] introduced an auditing

framework for checking whether any one query that had been posed in the past

accessed/revealed some specified private data. In their approach, audit expressions

are formulated to specify forbidden parts of the data that one would like to ensure

were not wrongfully disclosed. The audit component then returns all suspicious

queries that accessed this data during their execution. For reasons that will become

evident later, we call the notion of suspiciousness used here semantic suspiciousness.

In general, however, it need not be any single query on its own that is the

cause of a disclosure. Instead, the results of a few different queries in conjunction

might enable a user to infer private data and we therefore extend the definition of

semantic suspiciousness to a batch of queries in Section 6.3. We discover that an

extension of the approach used in [ABF+04] would suffice for auditing the class of

duplicate-preserving SPJ queries. We call this auditor a semantic auditor.

6.2. RELATED WORK 109

A drawback of our approach to semantic auditing is that it requires that can-

didate queries actually be run against the database. A natural question to ask,

therefore, is whether this could be avoided. For this purpose, in Section 6.4, we

formulate the notion of strong syntactic suspiciousness wherein suspiciousness of

queries is determined independently of the underlying database instance. We show

that it is in fact NP-hard to audit a batch of queries under this definition, even when

we restrict ourselves to the class of conjunctive select-project queries. We therefore

define a relaxed notion of weak syntactic suspiciousness, and provide a polynomial

time auditing algorithm for batches of “duplicate-preserving” conjunctive queries

under this definition. Note that such an auditor would only be more conservative, in

that it would certainly detect query batches that are strongly suspicious as well.

This chapter is thus an exploration of auditing schemes for different notions of

suspiciousness. The new definitions of suspiciousness that we introduce fall in

between those introduced in [MS04, MG06] at one end and [ABF+04] at the other,

both in terms of their privacy guarantees as well as the tractability of auditing

with respect to these definitions for certain classes of queries. We illustrate these

relationships in Section 6.5. Further, we draw an interesting connection to another

database mechanism for controlling access to data — namely fine-grained access

control studied in [Mot89, RS00, RS01, RSD99, RMSR04].

In the next section we give a brief overview of relevant results in these areas

of auditing and access control.

6.2 Related Work

Auditing Aggregate Queries: The problem of auditing queries

has been extensively studied in the context of statistical databases

[DJL79, Rei79, Chi86, KPR00, KMN05, NMK+06]. Statistical databases allow

users to retrieve only aggregate statistics over subsets of its data. In this chapter

we consider only SPJ queries and our work is orthogonal to the body of work on

110 CHAPTER 6. QUERY AUDITING

statistical databases.

Perfect Privacy: In [MS04, MG06] the authors consider the problem of en-

suring “perfect privacy”: as a database system reveals various views of its data,

does it disclose any information at all about a view that was required to be kept

confidential. The work here can also be cast in the auditing framework proposed in

this chapter — the secret view corresponds to the forbidden view/audit expression

in our scenario, and the views of the data that were released correspond to queries

that were answered. The notion of information disclosure used in [MS04, MG06] is,

however, very strict and results in the following definition of suspiciousness:

Definition 6.1 (Critical Tuple) A tuple t belonging to the domain of all possible

tuples in the database, is critical for a query Q, if there exists any possible database

instance I for which Q(I − {t}) 6= Q(I), i.e., t is critical for Q if there exists some

instance for which dropping t makes a difference to the result of Q. 2

Definition 6.2 (Suspiciousness of a Query Batch Under Perfect Privacy)

A batch of SQL queries Q is suspicious with respect to a secret view V according

to the perfect privacy definition of security, if and only if there exists some critical

tuple common to both V and to all the queries in Q. 2

This definition is grounded in a precise theory of information disclosure for databases

where tuples are drawn independently from some probability distribution. The

result, however, is a very weak definition of suspiciousness, resulting in very strong

privacy guarantees and causing many seemingly innocuous queries to be marked

as suspicious. Consider, for example, a database containing the names and phone

numbers of patients in a hospital and imagine that we wish to keep secret all the

phone numbers listed in this database. A query asking for the names of all the

patients in the hospital would be considered suspicious with respect to the secret

view even though not a single phone number would have been revealed by this query.

This is because every possible tuple in the domain of all tuples is critical to both the

query and the secret view. The idea is that simply by revealing information about

6.2. RELATED WORK 111

the size of the database, the query revealed some small amount of information about

the phone numbers column and therefore should be considered suspicious.

Auditing SQL Queries: In [ABF+04], the authors study the problem of de-

termining whether any single SQL query in the query log accessed forbidden

information. Here the data being subject to a disclosure review is specified very

simply through an audit expression that closely resembles a SQL query:

AUDIT audit list

FROM table list

WHERE condition list

The audit expression can be viewed as an SPJ query, specifying a certain view of the

database that it wishes to ascertain was not disclosed. It essentially identifies the

tuples of interest from the cross-product of tables in the FROM clause via predicates

in the WHERE clause. The audit expression thus asks for all queries that accessed all

the audit list columns for any of these tuples. We illustrate this approach with

some examples from [ABF+04]. Consider the audit expression:

AUDIT p.disease

FROM Patients p

WHERE p.zipcode = 94305

This expression asks for all queries that accessed the disease column of any

patient living in the zipcode 94305. All such queries will be considered suspicious.

Now consider the SQL query:

SELECT p.zipcode

FROM Patients p

WHERE p.disease = ‘diabetes’

112 CHAPTER 6. QUERY AUDITING

If any patient who has diabetes lives in zipcode 94305, this SQL query will be

considered suspicious with respect to the above audit expression. This is because,

in answering the query, the disease column of a patient living in zipcode 94305 was

accessed. On the other hand, this SQL query would not be suspicious with respect

to the audit expression given below:

AUDIT p.zipcode

FROM Patients p

WHERE p.disease = ‘hypertension’

This is because this audit expression is only interested in checking if the zip-

code of any patient with hypertension was revealed. But what if a patient has both

diabetes and hypertension? Although this patient’s address would be revealed by

the SQL query, the fact that he had hypertension was not relevant to the query and

so it is reasonable to deem the SQL query unsuspicious. Note that in doing so, we

take queries at their face value, assuming away background knowledge. For instance,

a user might know that most patients with diabetes also have hypertension and

thus his query ought to be considered suspicious. But the assumption made here

is that users do not use external information to formulate queries so as to deduce

information without detection.

We now formalize what it means for a query to be suspicious with respect to

an audit expression. Consider an SPJ query of the form Q = πCQ
(σPQ

(T × R)) and

an audit expression of the form A = πCA
(σPA

(T × S)). Here T is the cross-product

of tables common to both the audit expression and the query and R and S are the

crossproducts of other tables in their FROM clauses. CQ(resp. A) are the columns that

are projected out in Q (resp. A) and PQ(resp. A) are the predicates of Q (resp. A).

We also use C∗
Q to denote all the column names that appear anywhere in the query

Q.

Definition 6.3 (Candidate Query) A query Q is a candidate query with respect

to an audit expression A, if Q accesses all the columns that A specifies in its audit

6.2. RELATED WORK 113

list, i.e. C∗
Q ⊇ CA. 2

Definition 6.4 (Indispensable Tuple) A tuple t ∈ T is indispensable to a query

Q if the presence or absence of t makes a difference to the result of Q, i.e. πCQ
(σPQ

(T ×
R)) 6= πCQ

(σPQ
(T − {t} × R)). 2

Definition 6.5 (Suspicious Query) A candidate query Q is suspicious with re-

spect to an audit expression A, if they share an indispensable tuple. 2

The idea is that an indispensable tuple for the audit expression would be one of the

forbidden tuples being subjected to a disclosure review. So if any one of these tuples

is also an indispensable tuple for a candidate query in the query log, then that query

would have accessed all the columns of the audit list for the forbidden tuple and

should therefore be considered suspicious. .

For the class of SPJ queries, the condition of sharing an indispensable tuple

translates to the following: a candidate query Q is suspicious with respect to an

audit expression A if and only if σPA
(σPQ

(T × R × S)) 6= ∅. So now the audit

process is simple: for every candidate query, Q, in the query log if the result of the

running the query σPA
(σPQ

(T ×R×S)) is non-empty, then Q is marked as suspicious.

Since the notion of suspiciousness of a query derives meaning from a particu-

lar world view which is the current state of the database, we call it semantic

suspiciousness. This is in contrast with syntactic suspiciousness that we will define

later where suspiciousness of a query depends entirely on its structure and not on

the current database state. We next briefly describe the notion of query validity

described in access control work.

Fine-Grained Access Control: In database access control literature, the

problem studied is essentially the dual of the auditing problem: Given a set of

“authorization views”, U = {U1, . . . , Uk} for a user and a definition of validity,

V, what queries posed by the user are valid with respect to the authorization

114 CHAPTER 6. QUERY AUDITING

views and therefore safe to answer? Here the authorization views correspond to

information that the user is allowed to access and they can be specified via SQL

queries similar to audit expressions. One notion of validity considered in particular

in [Mot89, RS00, RS01, RSD99, RMSR04] is that of unconditional validity of a

query:

Definition 6.6 (Unconditionally Valid Query) Given a set of authorization

views, a query Q is said to be unconditionally valid if there is a query Q′ that can be

written using only the instantiated authorization views, and is equivalent to Q, that

is Q′ produces the same result as Q on all possible database instances. 2

We will see in Section 6.5 how the notion of syntactic suspiciousness of a query is

tightly connected to the notion of unconditional validity.

6.3 Semantic Auditing for a Batch of SQL Queries

The work most closely related to ours and that we build on is that of [ABF+04]

where semantic suspiciousness was considered for single SQL queries. In general,

however, no one query in isolation may access all the columns of the audit list of

an audit expression, instead a few queries together may cause sensitive information

to be disclosed. For example, the audit expression might be

AUDIT p.name, p.disease

FROM Patients p

WHERE p.zipcode = 94305

Here the data that needs to be kept secret is the association between names

and diseases of patients living in the zipcode 94305. Now consider the SQL queries:

SELECT p.zipcode

FROM Patients p

WHERE p.disease = ‘diabetes’

6.3. SEMANTIC AUDITING FOR A BATCH OF SQL QUERIES 115

SELECT p.name

FROM Patients p

WHERE p.zipcode = 94305

Note that neither of these queries on their own reveal the association between

name and disease of any individual living in zipcode 94305, however the combination

of the queries does reveal something. For instance, if there is only one patient in

zipcode 94305 and this patient has diabetes, then these two queries have revealed

the name, disease association for that individual. In general, there are subtle ways

in which the results of queries could be combined to reveal information.

One simplifying assumption that we make here is that the adversary is very

powerful and knows exactly which tuples in the results of two queries join together,

i.e., we assume that in each query he implicitly also selects the key column. The

resulting definition of suspiciousness is conservative — it may at times label as

suspicious batches of queries whose results could not have been easily joined in

reality.

Definition 6.7 (Semantically Suspicious Query Batch) A batch of queries, Q
is said to be semantically suspicious with respect to an audit expression A if there is

some subset of queries Q′ ⊆ Q such that (1) a tuple t ∈ T is indispensable to both

A and every query in Q′ and (2) the queries in Q′ together access all the columns of

the audit list in A. Here T is the cross product of all the tables common to A and

every query in Q′. 2

Note that, as in [ABF+04], we require the query to access all the columns of the

audit list in ordered to be even considered for suspiciousness testing. This is

motivated by findings such as those in [Swe00] where attributes such as date-of-birth,

gender or zipcode on their own are not selective, however in conjunction can be used

to uniquely identify individuals. In such a case, revealing the diseases of all females

in a certain zipcode would be harmless enough, however revealing this information

116 CHAPTER 6. QUERY AUDITING

in conjunction with date-of-birth information could cause significant privacy leaks.

The much stronger notion of perfect privacy [MS04, MG06], which does not re-

quire this would mark as suspicious many innocuous views as explained in Section 6.2.

This definition of suspiciousness is a natural extension of the definition in

[ABF+04] and as in that case, lends itself to an auditing approach where a query is

executed over the database for every query in the query batch.

Theorem 6.3.1 There is a polynomial time algorithm to test semantic suspicious-

ness of a batch of SQL queries Q with respect to an audit expression A.

Proof: We first run the query π∗(σPA
(T ×R×S) on the given database instance. On

the resulting view, we now run every single query Q ∈ Q. Each time one of the tuples,

t, in this view satisfies the predicates of Q, the portion of t that comes from T must

be indispensable to both Q and A. This is because Q is a duplicate-preserving query:

every input tuple that satisfies its predicates will have a corresponding output tuple.

We mark as “accessed” all the cells of t that were accessed by Q during its execution.

If at the end of this process, there exists a tuple in the view all of whose audit list

columns are marked as accessed, then Q is semantically suspicious with respect to

A. To determine exactly which set of queries from the batch were involved in the

disclosure, we can maintain with each marked cell, the set of queries that accessed

it. The cross-product of all the query sets for each cell of each disclosed row gives us

all the query sets that were involved in the disclosure. Under the assumption that

all joins (along foreign keys) are polynomial in the size of the input tables, this is a

polynomial time algorithm. 2

A natural question to ask is whether executing every single query in Q against the

forbidden view specified by A could be avoided. This leads us directly to the next

section.

6.4. SYNTACTIC AUDITING FOR A BATCH OF SQL QUERIES 117

6.4 Syntactic Auditing for a Batch of SQL Queries

In this section we define notions of suspiciousness that are independent of the actual

data in the database.

6.4.1 Strong Syntactic Suspiciousness

Definition 6.8 (Strong Syntactic Suspiciousness of a Query Batch) A

query batch is said to be strongly syntactically suspicious with respect to an audit

expression if there is some possible instantiation of database tables for which it is

semantically suspicious. 2

Note that since the current database tables form an instantiation, it follows that if a

set of queries is semantically suspicious with respect to an audit expression A, then

it is also strongly syntactically suspicious with respect to A.

Unlike semantic auditing, however, the hope is that strong syntactic auditing

would require the auditor to only analyze the structure of queries in the query log,

not the answers to the queries on the actual database tables since suspiciousness is

independent of the underlying database instantiation. Unfortunately, our result here

is negative, even if we restrict ourselves to just the class of conjunctive select-project

queries without any joins.

Theorem 6.4.1 Testing whether a batch of conjunctive select-project queries is

strongly syntactically suspicious with respect to an audit expression is NP-hard.

Proof: We provide a reduction from 3-SAT. Consider a 3-SAT formula

(x11 ∨ x12 ∨ x13) ∧ (x21 ∨ x22 ∨ x23) ∧ . . . (xm1 ∨ xm2 ∨ xm3). We now create a

set of queries and an audit expression such that the queries are syntactically

suspicious with respect to the audit expression if and only if the above 3-SAT

formula is satisfiable.

Let y1, . . . yn be the variables that appear in the clauses of the 3-SAT formula.

118 CHAPTER 6. QUERY AUDITING

For each variable yi create a column Yi that can take on two possible values 0 or 1.

For the jth clause (xj1∨xj2∨xj3) create a column Xj that can take on only one value.

Let literal yi occur in clauses i1, i2, . . . ik and literal ȳi occur in clauses ī1, ī2, . . . īm. We

then create n query pairs corresponding to each variable, where the ith pair looks like:

Q+
i : SELECT Xi1, Xi2, Xik, Yi

FROM T

WHERE Yi = 1

and

Q−
i : SELECT Xī1, Xī2, X ¯im, Yi

FROM T

WHERE Yi = 0

The audit expression is

AUDIT X1, X2, X3, . . ., Xm

FROM T

Now if the 3-SAT formula is satisfiable, then this batch of queries is syntactically

suspicious with respect to the audit expression: Consider the queries Q+
i for every

yi that is set to true in the satisfying assignment and Q−
i for every yi that is set to

false. This subset of queries and the audit expression all share an indispensable tuple

- namely the tuple with Yi = 0 for every yi that is set to false and Yi = 1 for every

yi that is set to true. Moreover, since every clause is satisfied, this subset of queries

together selects all the columns that are in the audit list of the audit expression.

Similarly, if the batch of queries is syntactically suspicious with respect to the

audit expression, then the 3-SAT formula must be satisfiable. Some subset of the

queries must share an indispensable tuple with the audit expression. It cannot be

6.4. SYNTACTIC AUDITING FOR A BATCH OF SQL QUERIES 119

the case that both Q+
i and Q−

i are included in this subset for no one tuple can be

indispensable to both Q+
i and Q−

i as their selection predicates are contradictory. For

each query in the subset of the form Q+
i , we set yi to be true and for each query of

the form Q−
i , we set yi to be false. For all the yis that are not set in the process, we

set them arbitrarily to 0 or 1. Since the select columns of this subset of queries cover

all the columns in the audit list, this ensures that every clause is set to true.

Thus we’ve shown that the 3-SAT formula is satisfiable if and only if the

above query batch is suspicious with respect to the audit expression. 2

Weakening the definition of suspiciousness, however, enables us to make some positive

claims, while providing auditors that would only be more conservative than strong

syntactic auditors, i.e., all queries batches marked as strongly suspicious would also

be classified as weakly suspicious.

6.4.2 Weak Syntactic Suspiciousness

Definition 6.9 (Weak Syntactic Suspiciousness of a Query Batch) A batch

of SPJ queries Q is weakly syntactically suspicious with respect to an audit expres-

sion A, if there exists some subset of the queries Q′ ⊆ Q and some instantiation of

database tables I such that (1) a tuple t ∈ T is indispensable to both A and every

query in Q′ in the context of I and (2) the queries in Q′ together access at least one

of the columns of the audit list in A. Here T is the cross product of all the tables

in I common to both A and every query in Q′. 2

Note that to arrive at this definition, we simply weakened condition (2) in the de-

finition of strong syntactic suspiciousness and thus a query batch that is strongly

syntactically suspicious will also be weakly syntactically suspicious. Note also that

weakening this condition enables us to come up with the following decomposability

result.

Theorem 6.4.2 A batch of SPJ queries is weakly syntactically suspicious with respect

to an audit expression if and only if one of the SPJ queries in the batch is weakly

syntactically suspicious with respect to the audit expression.

120 CHAPTER 6. QUERY AUDITING

This enables us to test suspiciousness of a batch simply by testing suspiciousness of

every individual query on its own. Still testing suspiciousness of an arbitrary SPJ

query under this definition is NP-hard. The intuition is that an arbitrary 3-SAT

formula could be embedded in the where clause predicates of the query.

Theorem 6.4.3 Testing weak syntactic suspiciousness of an arbitrary SPJ query Q

with respect to an audit expression A is NP-hard.

Proof: Consider a 3-SAT formula (x11∨x12∨x13)∧(x21∨x22∨x23)∧. . . (xm1∨xm2∨xm3)

with n variables y1, . . . , yn and m clauses. Let the table T contain n binary attributes

Y1, . . . , Yn corresponding to these variables. In the following, we use the predicate

Xij = 1 to mean Yk = 1 if yk is the jth literal of the ith clause and Yk = 0 if ȳk is

the jth literal of the ith clause. Consider the query

Q: SELECT Y1, Y2, . . . , Yn

FROM T

WHERE X11 = 1 ∨ X12 = 1 ∨ X13 = 1 ∧
X21 = 1 ∨ X22 = 1 ∨ X23 = 1 ∧
...

Xm1 = 1 ∨ Xm2 = 1 ∨ Xm3 = 1

and the audit expression

A: AUDIT Y1, Y2, . . . , Yn

FROM T

Now Q is weakly syntactically suspicious with respect to A if and only the 3-

SAT formula is satisfiable. This is because every tuple in the domain of possible

tuples that is indispensable to Q would correspond to a satisfying assignment of the

3-SAT formula. 2

The natural question to ask is whether there are classes of queries for which weak syn-

tactic auditing can be efficiently done. We restrict ourselves to the class of conjunctive

6.4. SYNTACTIC AUDITING FOR A BATCH OF SQL QUERIES 121

SPJ queries and show that it is possible to develop a polynomial time algorithm for

detecting weakly suspicious query batches. In this chapter we only provide a sketch

of the auditing algorithm for such queries.

Theorem 6.4.4 There exists a polynomial time auditing algorithm for determining

if a batch of conjunctive queries is weakly syntactically suspicious with respect to an

audit expression.

Proof Sketch: First, due to Theorem 6.4.2 it suffices to check suspiciousness of each

query in the batch individually. If any one query is suspicious, we can mark the

entire batch as suspicious. Second, we only check suspiciousness of queries that

access at least one of the audit list columns of the audit expression. Now for

such a candidate conjunctive query, suspiciousness is tested in polynomial time by

testing compatibility of the predicates in the WHERE clauses of the candidate query

and the audit expression, i.e., could there be any tuple in the domain of possible

tuples of T × R × S that could satisfy all the predicates in both the candidate

query and the audit expression. If such a tuple could exist, then the query is weakly

syntactically suspicious with respect to the audit expression. This follows from the

fact that the query is duplicate-preserving thereby ensuring that every input tuple

that satisfies the WHERE clause predicates will have a corresponding output tuple

and will therefore be indispensable to the query. Consider, for now, predicates over

numerical attributes. These predicates could be between two attributes or between

an attribute and a constant. Group attributes in to equivalence classes based on

equality predicates between attributes. Then a pass over the inequality predicates

between attributes enables us to establish relationships between these equivalence

classes. If at any point a strict inequality is expressed over attributes that belong

to the same equivalence class, we immediately know that the set of predicates is

incompatible and can stop. Similarly other such inconsistencies can be checked for.

Once predicates between attributes have been processed, the predicates between

attributes and constants can be used to derive upper and lower bounds on the values

of attributes in the equivalence classes. The predicates are compatible only if the

upper and lower bounds of all attributes in a particular equivalence class have a

122 CHAPTER 6. QUERY AUDITING

common intersection and so on, and this can be checked in polynomial time.

In general, any of the query classes that can be audited under the perfect privacy

notion of suspiciousness, can also be audited under weak syntactic suspiciousness —

the only additional check that needs to be done is whether the queries access some

of the audit list columns. This means that techniques in [MG06] can be used for

weakly syntactically auditing different classes of queries.

6.5 Auditing and Access Control

As we have seen, previous work in [MS04, MG06, ABF+04] can be cast in the au-

diting framework proposed in this chapter. The differences lie in the definitions of

suspiciousness used. If A and B are two different notions of suspiciousness, then we

use the notation A ≤ B to indicate that A is a weaker definition than B, i.e., for a

given set of forbidden views on a database, an auditor that audits with respect to A

will always mark as suspicious every batch of queries that are marked as suspicious

with respect to B. Then it is clear that the following relationship holds:

Theorem 6.5.1 Perfect Privacy (PP) ≤ Weak Syntactic Suspiciousness (WSS) ≤
Strong Syntactic Suspiciousness (SSS) ≤ Semantic Suspiciousness (SEM).

The table below summarizes some properties of auditors that audit with respect

to these definitions of suspiciousness. Recall that the hardness results are for the

default of duplicate-preserving queries. Also the polynomial time result for semantic

auditing holds under the assumption that foreign key joins are polynomial in the size

of the input tables.

PP WSS SSS SEM

Online Auditing Yes Yes Yes No

SPJ NP-hard NP-hard NP-hard P

Conjunctive P P NP-hard P

6.5. AUDITING AND ACCESS CONTROL 123

Here, the first row asks the question whether it would be meaningful to use auditors

that audit with respect to these definitions of suspiciousness in an online fashion. In

online auditing, as queries arrive, the task of the auditor is to determine whether the

current query in conjunction with all previously answered queries would be suspicious

with respect to the forbidden views. If so, the query must be denied, else it can be

answered. If semantic suspiciousness is used as the definition of suspiciousness, online

auditing would not make much sense as the act of denying a query itself might leak in-

formation about the forbidden view. For instance, if the forbidden view is specified as

AUDIT p.name, p.disease

FROM Patients p

WHERE p.zipcode = 94305

Now suppose the following query is permitted and it returns only one dis-

ease.

SELECT p.disease

FROM Patients p

WHERE p.zipcode = 94305

But the following query is denied

SELECT p.name

From Patients p

WHERE p.zipcode = 94305 and p.name = ‘Alex’

The only reason that this could happen is that Alex who lives in 94305 is ac-

tually in the database and his disease was the one returned by first query. Even

though the second query was denied, the name-disease association of an individual in

the forbidden view was revealed. Thus online auditing with respect to the semantic

notion of suspiciousness does not make sense. In general, as shown in [KMN05],

124 CHAPTER 6. QUERY AUDITING

denials that are based on the actual data in a database can leak considerable

information. Auditors that audit according to the other definitions of suspiciousness

would, however, be independent of the true state of the database and could thus be

used in an online fashion as well. Any decision to deny a query by such auditors

could always be simulated by a user and thus denials would not leak information.

As we saw in Section 6.2, another closely related problem to auditing is that

of database access control, where the problem studied is almost the dual of the

auditing problem. We now formalize this connection.

Theorem 6.5.2 Given a forbidden view, V, there exists an authorization view, U,

such that a query is suspicious with respect to V under the perfect privacy notion of

suspiciousness if and only if it is not unconditionally valid with respect to U.

Proof: The proof has two parts. Firstly suppose query Q = πCQ
(σPQ

(T ×R)) is sus-

picious with respect to view V , represented by the audit expression πCA
(σPA

(T ×S))

under the perfect privacy notion of suspiciousness. Consider the view U = π∗(σP̄A
(T ×

S × R)). We will first show Q is not unconditionally valid with respect to U . By

Definition 6.2 ∃t ∈ (T × R × S) such that PA(t) = 1 and PQ(t) = 1. Consider the

database instance I consisting of the single tuple t in (T ×R×S). Then as PQ(t) = 1,

the Q(I) is non-empty. However, P̄A(t) = 0 so the view U does not contain the tuple

t, and hence the query Q rewritten using view U is empty for this instance. Thus as

the answers differ on this instance, Q is not unconditionally valid with respect to U .

For the other direction, suppose Q not suspicious with respect to V . As they

never share a critical tuple, for all instances I ∀t ∈ (T × R × S) such that PQ(t) =

1 ↔ PA(t) = 0, i.e. PQ → P̄A. The query. Q can be rewritten so that the selection

conditions PQ and P̄A are both applied on the view U before projecting columns CQ.

Thus Q is unconditionally valid with respect to U .

2

Theorem 6.5.3 Given a conjunctive forbidden view, V, such that there is no inter-

section between the audit list columns and the where clause predicate columns, there

6.5. AUDITING AND ACCESS CONTROL 125

exist a set of authorization views, U, such that a conjunctive query with non-trivial

predicates (define non-trivial beforehand) is suspicious with respect to V under the

weak syntactic notion of suspiciousness if and only if it is not unconditionally valid

with respect to U.

Proof: Suppose Q is not unconditionally valid with respect to U . Then there for

some instance I ∃t ∈ (T ×R×S) such that PQ(t) = 1 and P̄A(t) = 0, i.e. PA(t) = 1.

Now, view V and query Q share the critical tuple t, so Q is suspicious with respect

to the view V under the notion of perfect privacy.

2

Theorem 6.5.4 Given a forbidden view over a database, and a weak syntactic audi-

tor, there exist a set of authorization views over the database such that an SPJ query

is suspicious with respect to the forbidden view if and only if it is unconditionally

valid with respect to the authorization views.

Proof: The intuition behind this result is that the forbidden view implicitly defines

a set of authorization views that are essentially its complement. We will show the

result here for the case where all the tuples in the database tables have unique tuple

identifiers, but the result holds even if this is not true (although the corresponding

set of authorization views would be different).

Let the forbidden view over the database be represented by the audit expres-

sion πCA
(σPA

(T × S)). Then define the authorization views over the database as

follows π∗(σP̄A
(T ×S ×U)) and π∗\CA

(σPA
(T ×S ×U)) where U represents the cross

product of the remaining base tables of the database and P̄A is the complement of

the selection predicates of the forbidden view. We will use the notation P (t) = 1 to

denote that tuple t satisfies predicates P .

Now suppose a query πCQ
(σPQ

(T × R)) is considered weakly syntactically sus-

picious with respect to the audit expression. This means that C∗
Q ∩ CA 6= ∅ and

there exists a tuple t in the domain of all possible tuples in T × R × S such that

126 CHAPTER 6. QUERY AUDITING

PA(t) = 1 and PQ(t) = 1. Note, however, that for no such tuple where PA(t) = 1 are

any of the columns in CA included in any of the authorization views. This means

that there must be at least one column in C∗
Q for the tuple t that is not included

in any of the authorization views. Therefore there can be no Q′ expressed over the

authorization views that is equivalent to Q. Thus if the query is weakly syntacti-

cally suspicious, it is not unconditionally valid with respect to the authorization views.

Similarly, now suppose query Q is not weakly syntactically suspicious. This

means that either C∗
Q ∩CA = ∅ or there exists no tuple t in the domain of all possible

tuples in T ×R×S such that PA(t) = 1 and PQ(t) = 1. If the latter is true, then all

tuples that satisfy PQ(t) = 1 must satisfy P̄A(t) = 1 and such tuples can be returned

by predicates expressed over view 1. If the former is true, then since none of the

columns in C∗
Q appear in CA, these columns will be queriable for all tuples in the

two authorization views and a query can be written over the authorization views

that is equivalent to the query Q over the entire database for all possible database

instantiations. To ensure that multiplicities of tuples in the result are maintained,

the query can group by the tuple identifiers. Thus every query that is not weakly

syntactically suspicious is also unconditionally valid with respect to the defined

authorization views. 2

This result is interesting as it ties together work in auditing and work in the database

access control literature. Mechanisms that are used for detecting validity of an SPJ

query could now also be used for detecting suspiciousness of SPJ queries. Ideally a

database management system would try to incorporate both mechanisms - a data-

base access control mechanism that gives users access to various parts of the data,

thereby providing utility, and an auditing mechanism to detect privacy breaches.

An interesting avenue for future work would be to see how both these mechanisms

could be combined in a system to work together. Checking for consistency in such

a system would then be an interesting question, i.e., for a set of forbidden views, a

notion of suspiciousness, a set of authorization views and a notion of validity, is it

the case that every suspicious query is invalid and every valid query is not suspicious.

Another interesting question to ask would be for a given level of privacy (forbidden

6.6. CONCLUSIONS 127

views and definition of suspiciousness), what is the maximum utility one could have

while maintaining consistency and vice versa. We are able to answer this question

for weak syntactic suspiciousness and unconditional validity, but for other definitions,

the question remains wide open.

6.6 Conclusions

In this chapter we introduced a framework for auditing queries and several differ-

ent notions of suspiciousness that differed in their privacy guarantees as well as the

tractability of auditing under them for different classes of queries. We tied in our

work with existing auditing mechanisms and also drew an interesting connection to

the area of database access control. Extending the tractability results to other classes

of queries would be an interesting avenue for future work as would investigating fur-

ther, the connection to database access control mechanisms.

Part III

Distributed Architecture for

Privacy

129

Chapter 7

Distributed Architectures for

Secure Database Services

The results in this chapter appear in [ABG+05]. Algorithms for an implementation

of ideas in this chapter are presented in [FGGM+07].

7.1 Introduction

The database community is witnessing the emergence of two recent trends set on

a collision course. On the one hand, the outsourcing of data management has be-

come increasingly attractive for many organizations [HIM02]; the use of an external

database service promises reliable data storage at a low cost, eliminating the need

for expensive in-house data-management infrastructure, e.g., [Mor02]. On the other

hand, escalating concerns about data privacy, recent governmental legislation [sb102],

as well as high-profile instances of database theft [O’B04], have sparked keen interest

in enabling secure data storage.

The two trends described above are in direct conflict with each other. A client

using a database service needs to trust the service provider with potentially sensitive

data, leaving the door open for damaging leaks of private information. Consequently,

there has been much recent interest in a so-called Secure Database Service – a DBMS

that provides reliable storage and efficient query execution, while not knowing the

131

132 CHAPTER 7. DISTRIBUTED PRIVACY

contents of the database [KC04]. Such a service also helps the service provider by

limiting their liability in case of break-ins into their system – if the service providers

do not know the contents of the database, neither will a hacker who breaks into the

system.

Existing proposals for secure database services have typically been founded on

encryption [HILM02, HH04, AKSX04]. Data is encrypted on the (trusted) client side

before being stored in the (untrusted) external database. Observe that there is always

a trivial way to answer all database queries: the client can fetch the entire database

from the server, decrypt it, and execute the query on this decrypted database. Of

course, such an approach is far too expensive to be practical. Instead, the hope is

that queries can be transformed by the client to execute directly on the encrypted

data; the results of such transformed queries could be post-processed by the client to

obtain the final results.

Unfortunately, such hopes are often dashed by the privacy-efficiency trade-off

of encryption. Weak encryption functions that allow efficient queries leak far too

much information and thus do not preserve data privacy [KC04]. On the other hand,

stronger encryption functions often necessitate resorting to Plan A for queries – fetch-

ing the entire database from the server – which is simply too expensive. Moreover,

despite increasing processor speeds, encryption and decryption are not exactly cheap,

especially when performed over data at fine granularity.

We propose a new approach to enabling a secure database service. The key idea is

to allow the client to partition its data across two, (and more generally, any number

of) logically independent database systems that cannot communicate with each other.

The partitioning of data is performed in such a fashion as to ensure that the exposure

of the contents of any one database does not result in a violation of privacy. The

client executes queries by transmitting appropriate sub-queries to each database, and

then piecing together the results at the client side.

The use of such a distributed database for obtaining secure database services offers

many advantages, among which are the following:

Untrusted Service Providers The client does not have to trust the administrators

of either database to guarantee privacy. So long as an adversary does not gain access

7.1. INTRODUCTION 133

to both databases, data privacy is fully protected. If the client were to obtain database

services from two different vendors, the chances of an adversary breaking into both

systems is reduced greatly. Furthermore, “insider” attacks at one of the vendors do

not compromise the security of the system as a whole.

Provable Privacy The presence of two databases enables the efficient encoding of

sensitive attributes in an information-theoretically secure fashion. To illustrate, con-

sider a sensitive fixed-length numerical attribute, such as a credit-card number. We

may represent a credit card number c, by storing c XORed with a random number r

in one database, and storing r in the other database. The set of bits used to repre-

sent the credit-card number in either database is completely random, thus providing

perfect privacy. However, we may recover the number merely by XORing the values

stored in the two databases, which is more efficient than using expensive encryption

and decryption functions.

Efficient Queries The presence of multiple databases enables the storage of many

attribute values in unencrypted form. Typically, the exposure of a set of attribute

values corresponding to a tuple may result in a privacy violation, while the exposure of

only some subset of it may be harmless. For example, revealing an individual’s name

and her credit card number may be a serious privacy violation. However, exposing the

name alone, or the credit card number alone, may not be a big deal [sb102]. In such

cases, we may place individuals’ names in one database, while storing their credit-

card number in the other, avoiding having to encrypt either attribute. A consequence

is that queries involving both names and credit-card numbers may be executed far

more efficiently than if the attributes had been encrypted.

The rest of this paper is organized as follows. In Section 7.2, we present a general

architecture for the use of multiple databases in preserving privacy, describing the

space of techniques available for partitioning data and the trade-offs involved. In

Section 7.3, we define a specific notion of privacy based on hiding sets of attribute

values, and consider how to achieve such privacy using a subset of the available

partitioning techniques. Section 7.4 expands upon this framework and describes how

queries may be transformed, optimized and executed in a privacy-preserving fashion.

Section 7.5 discusses how one may design the database schema in order to minimize

134 CHAPTER 7. DISTRIBUTED PRIVACY

(Trusted)
Client

Provider 2

Provider 1

�������������
�������������
�������������

�������������
�������������
�������������

interface
SQL

User/App

SQL
interface

Answers

SQL Queries

Figure 7.1: The System Architecture

the execution cost of a given query workload, while obeying the constraints imposed

by the needs of data privacy.

7.2 General Architecture

The general architecture of a distributed secure database service, as illustrated in

Figure 7.1, consists of a trusted client as well as two or more servers that provide a

database service. The servers provide reliable content storage and data management

but are not trusted by the client to preserve content privacy.

The client wants to out-source the (high) costs of managing permanent storage to

the service providers; hence, we assume that the client does not store any persistent

data. However, the client has access to cheap hardware – providing processing power

as well as temporary storage – which is used to provide three pieces of functionality:

1. Offer a DBMS Front-End The client exports a standard DBMS front-end to

client-side applications, supporting standard SQL APIs.

2. Reformulate and Optimize Queries The queries received by the client need

to be translated into appropriate SQL sub-queries to be sent to the servers; such

translation may involve limited forms of query-optimization logic, as we discuss later

in the paper.

3. Post-process Query Results The sub-queries are sent to the servers (using a

standard SQL API), and the results are gathered and post-processed before being

7.2. GENERAL ARCHITECTURE 135

returned in a suitable form to the client-side application.

We note that all three pieces of functionality are fairly cheap, at least if the amount

of post-processing required for queries is limited, and can be performed using inex-

pensive hardware, without the need for expensive data management infrastructure or

personnel.

Security Model As mentioned earlier, the client does not trust either server to

preserve data privacy. Each server is honest, but potentially curious: the server may

actively monitor all the data that it stores, as well as the queries it receives from

the client, in the hope of breaching privacy; it does not, however, act maliciously by

providing erroneous service to the client or by altering the stored data.

The client maintains separate, permanent channels of communication to each

server. We do not require communication to be encrypted; however, we assume that

no eavesdropper is capable of listening in on both communication channels. The two

servers are assumed to be unable to communicate directly with each other (depicted

by the “wall” between them in Figure 7.1) and, in fact, need not even be aware of

each other’s existence.

Note that the client side is assumed to be completely trusted and secure. There

would not be much point in developing a secure database service if a hacker can

simply penetrate the client side and transparently access the database. Preventing

client-side breaches is a traditional security problem unrelated to privacy-preserving

data storage, and we do not concern ourselves with this problem here.

7.2.1 Relation Decomposition

We now consider different techniques to partition data across the two servers in the

distributed architecture described above. Say the client needs to support queries

over the “universal” relation R(A1, A2, . . . , An). Since the client itself possesses no

permanent storage, the contents of relation R need to be decomposed and stored

across the two servers. We require that the decomposition be both lossless and

privacy preserving.

A lossless decomposition is simply one in which it is possible to reconstruct the

136 CHAPTER 7. DISTRIBUTED PRIVACY

original relation R using only the contents in the two servers S1 and S2. The exact

manner in which such a reconstruction is performed is flexible, and may involve not

only traditional relational operators such as joins and unions, but also other user-

defined functions, as we discuss shortly. We also require the decomposition to be

privacy preserving: the contents stored at server S1 or S2 must not, in themselves, re-

veal any private information about R. We postpone our discussion of what constitutes

private information to the next section.

Traditional relation decomposition in distributed databases is of two types:

Horizontal Fragmentation Each tuple of the relation R is stored at S1 or S2. Thus,

server S1 contains a relation R1, and S2 contains a relation R2 such that R = R1∪R2.

Vertical Fragmentation The attributes of relation R are partitioned across S1 and

S2. The key attributes are stored at both sites to ensure lossless decomposition.

Optionally, other attributes may also be replicated at both sites in order to improve

query performance. If the relations at S1 and S2 are R1 and R2 respectively, then

R = R1 ⊲⊳ R2, where ⊲⊳ refers to the natural join on all common attributes.

We believe that horizontal fragmentation is of limited use in enabling privacy-

preserving decomposition. For example, a company might potentially store its Amer-

ican sales records as R1 and its European records as R2 to prevent an adversary from

gathering statistics about overall sales, thus providing a crude form of privacy. In

this paper, we will focus on vertical fragmentation which appears to hold much more

promise.

We now discuss a variety of extensions to vertical fragmentation which all aid in

making the decomposition privacy preserving.

Unique Tuple IDs Vertical partitioning requires a key to be present in both data-

bases in order to ensure lossless decomposition. Since key attributes may themselves

be private (and can therefore not be stored in the clear), we may introduce a unique

tuple ID for each tuple and replicate this tuple ID alone across the two sites. (This

concept is not new. Tuple IDs have been considered as an alternative to key replica-

tion to lower update costs in distributed databases [OV99].)

There are a variety of ways to generate unique tuple IDs when inserting new

7.2. GENERAL ARCHITECTURE 137

tuples. Tuple IDs could simply be sequence numbers generated independently at the

two servers with each new tuple insertion; so long as the client ensures that tuple

insertions are atomic, both servers will automatically generate the same sequence

number for corresponding tuples. Alternatively, the client could generate random

numbers as tuple IDs, potentially performing a query to a server to make sure that

the tuple ID does not already exist.

Semantic Attribute Decomposition It may be useful to split an attribute A into

two separate, but related, attributes A1 and A2, in order to exploit privacy constraints

that may apply to A1 but not to A2. To illustrate, consider an attribute representing

people’s telephone numbers. The area code of a person’s number may be sufficiently

harmless to be considered public information, but the phone number, in its entirety,

is information subject to misuse and should be kept private. In such a case, we may

decompose the phone-number attribute into two: a private attribute A1 representing

the last seven digits of the phone number, and a public attribute A2 representing the

first three digits.

We can immediately see the benefits of such attribute decomposition. Selection

queries based on phone numbers, or queries that perform aggregation when grouping

by area code, could benefit greatly from the availability of attribute A2. In contrast,

in the absence of A2, and if the phone numbers were completely hidden (e.g., by

encryption), query processing becomes more expensive.

Attribute Encoding It may be necessary to encode an attribute value across both

databases so that neither database can deduce the value. For example, consider an

attribute that needs to be kept private, say the employee salary. We may encode

the salary attribute A as two separate attributes A1 and A2, to be stored in the two

databases. The encoding of a salary value a as two separate values a1 and a2 may be

performed in different fashions, three of which we outline here:

1. One-time Pad: a1 = a
⊕

r, a2 = r, where r is a random value;

2. Deterministic Encryption: a1 = E(a, k), a2 = k, where E is a deterministic

encryption function such as AES or RSA;

138 CHAPTER 7. DISTRIBUTED PRIVACY

3. Random Addition: a1 = a + r, a2 = r, where r is a random number drawn

from a domain much larger than that of a.

In all the above cases, observe that we may reconstruct the original value of a

using the values a1 and a2. The three different encoding schemes above offer different

trade-offs between privacy and efficiency.

The first scheme offers true information-theoretic privacy, since both a1 and a2

consist of random bits that reveal no information about a1. It also offers fast re-

construction of a from a1 and a2, since only a XOR is required. However, such an

encoding rules out any hope of “pushing down” a selection condition on attribute A;

such conditions can be evaluated only on the client side, after fetching all correspond-

ing a1 and a2 values from the servers and reconstructing value a.

The second scheme offers no benefits over the first if the key k is chosen to be an

independent random value for each tuple. However, one could use the same key k

for all tuples, i.e., all values for attribute A2 are equal to the same key k. In such a

case, we may be able to execute selection conditions on A more efficiently by pushing

down a condition on A1. Consider the selection condition σA=v. We may evaluate

this condition efficiently as follows, assuming key k is stored at S2:

1. Fetch key k from database S2.

2. Send selection condition σA1=E(v,k) to database S1.

3. Obtain matching tuples from S1.

However, a drawback of such an encoding scheme is a loss in privacy. For example,

if two different tuples have the same value in attribute A, they will also possess the

same encrypted value in attribute A1, thus allowing database S1 to deduce that the

two tuples correspond to individuals with identical salaries. A second drawback of the

scheme is that it requires encryption and decryption of attribute values at the client

side which may be computationally expensive. Finally, such an encryption scheme

1We assume that attribute A is of fixed length. Variable-length attributes may leak information
about the length of the value unless encoded as fixed-length.

7.3. DEFINING THE PRIVACY REQUIREMENTS AND ACHIEVING IT 139

does not help if the selection condition is a range predicate on the attribute rather

than an equality predicate.

The third scheme outlined above is useful when handling queries that perform

aggregation on attribute A. For example, a query that requires the average salary of

employees may be answered by obtaining the average of attribute A1 from database

S1, and subtracting out the average of attribute A2 from database S2. The price paid

for this efficiency is once again a compromise of true privacy: in theory, it is possible

for database S1 to guess whether the salary value in a particular tuple is higher than

that in another tuple.

Adding Noise Another technique for enabling privacy is the addition of “noise”

tuples to both databases S1 and S2 in order to improve privacy. Recall that the

actual relation R is constructed by the natural join of R1 and R2. We may thus add

“dangling tuples” to both R1 and R2 without compromising the lossless decomposition

property. The addition of such noise may help provide privacy, say by guaranteeing

that the probability of any set of attribute values being part of a “real” tuple is less

than a desired constant.

7.3 Defining the Privacy Requirements and

Achieving It

So far, we have not stated the exact requirements of data privacy. There are many

different formulations of data privacy, some of which are harder to achieve than

others, e.g., [AS00, Swe02b]. We introduce one particular definition that we believe

is appropriate for the database-service context. We refer the reader to Appendix 7.8

to see how our definition captures privacy requirements imposed in legislation such

as California bill SB1386 [sb102].

Our privacy requirements are specified as a set of privacy constraints P, expressed

on the schema of relation R2. Each privacy constraint is represented by a subset, say

2Other notions of privacy, such as k-anonymity [Swe02b], are defined on the actual relation
instances and may be harder to enforce in an efficient fashion.

140 CHAPTER 7. DISTRIBUTED PRIVACY

P , of the attributes of R, and informally means the following:

Let R be decomposed into R1 and R2, and let an adversary have access to the

entire contents of either R1 or R2. For every tuple in R, the value of at least one of

the attributes in P must be completely opaque to the adversary, i.e., the adversary

should be unable to infer anything about the value of that attribute. Note that it is

permissible for the values of some attributes in P to be open, so long as there is at

least one attribute completely hidden from the adversary.

We illustrate this definition by an example. Consider a company desiring to store

relation R consisting of the following attributes of employees: Name, Date of Birth

(DoB), Gender, Zipcode, Position, Salary, Email, Telephone. The company may have

the following considerations about privacy:

1. Telephone and Email are sensitive information subject to misuse, even on their

own. Therefore both these attributes form singleton privacy constraints and

cannot be stored in the clear under any circumstances.

2. Salary, Position and DoB are considered private details of individuals, and so

cannot be stored together with an individual’s name in the clear. Therefore,

the sets {Name, Salary}, {Name, Position} and {Name, DoB} are all privacy

constraints.

3. The set of attributes {DoB, Gender, Zipcode} can help identify a person in

conjunction with other publicly available data. Since we already stated that

{Name, DoB} is a privacy constraint, we also need to add {DoB, Gender,

Zipcode} as a privacy constraint.

4. We may also want to prevent an adversary from learning sensitive association

rules, for example, between position and salary, or between age and salary.

Therefore, we may add two privacy constraints: {Position, Salary}, {Salary,

DoB}.

What does it mean to not be able to “infer the value” of an attribute A? We have

left this definition intentionally vague to accommodate the requirements of different

7.3. DEFINING THE PRIVACY REQUIREMENTS AND ACHIEVING IT 141

applications. On one end, we may require true information-theoretic privacy – the

adversary must be unable to gain any information about the value of the attribute

from examining the contents of either R1 or R2. We may also settle for weaker

forms of privacy, such as the one provided by encoding an attribute using encryption

or random addition. Neither of these schemes provides true information-theoretic

privacy as above, but may be sufficient in practice. In this paper, we will restrict

ourselves to the stricter notion of privacy, noting the advantages of the weaker forms

where appropriate.

7.3.1 Obtaining Privacy via Decompositions

Let us consider how we might decompose data, using the methodologies outlined

in Section 7.2, into two relations R1 and R2 so as to obey a given set of privacy

constraints. We will restrict ourselves to the case where R1 and R2 are obtained

by vertical fragmentation of R, fragmented by unique tuple IDs, with some of the

attributes possibly being encoded. (We ignore semantic attribute decomposition, as

well as the addition of noise tuples. The former may be assumed to have been applied

beforehand, while the latter is not useful for obeying our privacy constraints.)

We abuse notation by allowing R to refer to the set of attributes in the relation.

We may then denote a decomposition of R as D(R) = 〈R1, R2, E〉, where R1 and R2

are the sets of attributes in the two fragments, and E refers to the set of attributes

that are encoded (using one of the schemes outlined in Section 7.2.1). Note that

R1 ∪ R2 = R, E ⊆ R1, and E ⊆ R2, since encoded attributes are stored in both

fragments. We denote the privacy constraints P as a set of subsets of R, i.e., P ⊆ 2R.

From our definition of privacy constraints, we may state the following requirement

for a privacy-preserving decomposition:

The decomposition D(R) is said to obey the privacy constraints P if, for

every P ∈ P, P * (R1 − E) and P * (R2 − E).

To understand how to obtain such a decomposition, we observe that each privacy

constraint P may be obeyed in two ways:

142 CHAPTER 7. DISTRIBUTED PRIVACY

1. Ensure that P is not contained in either R1 or R2, using vertical fragmentation.

For example, the privacy constraint {Name, Salary} may be obeyed by placing

Name in R1 and Salary in R2.

2. Encode at least one of the attributes in P . For example, a different way to obey

the privacy constraint {Name, Salary} would be to use, say, a one-time pad to

encode Salary across R1 and R2. Observe that such encoding is the only way

to obey the privacy constraint on singleton sets.

Example Let us return to our earlier example and see how we may find a decomposi-

tion satisfying all the privacy constraints. We observe that both Email and Telephone

are singleton privacy constraints; the only way to tackle them is to encode both these

attributes. The constraints specified in items (2) and (3) may be tackled by vertical

fragmentation of the attributes, e.g., R1(ID, Name, Gender, Zipcode), and R2(ID,

Position, Salary, DoB), with Email and Telephone being stored in both R1 and R2.

Such a partitioning satisfies the privacy constraints outlined in item (2) since Name

is in R1 while Salary, Position and DoB are in R2. It also satisfies the constraint in

item (3), since DoB is separated from Gender and Zipcode. However, we are still

stuck with the constraints in item (4) which dictate that Salary cannot be stored

with either Position or DoB. We cannot fix the problem by moving Salary to R1 since

that would violate the constraint of item (2) by placing Name and Salary together.

The solution is to resort to encoding Salary across both databases. Thus, the

resulting decomposition is R1 ={ID, Name, Gender, Zipcode, Salary, Email, Tele-

phone}, R2 = {ID, Position, DoB, Salary, Email, Telephone} and E = {Salary,

Email, Telephone}. Such a decomposition obeys all the stated privacy constraints.

Identifying the Best Decomposition It is clear by now that it is always possible

to obtain a decomposition of attributes that obeys all the privacy constraints – in the

worst case, we could encode all the attributes to obey all possible privacy constraints.

A key question that remains is: What is the best decomposition to use, where “best”

refers to the decomposition that minimizes the cost of the workload being executed

against the database?

7.4. QUERY REFORMULATION, OPTIMIZATION AND EXECUTION 143

Site 1 Site 2

Client

(a) (b) (c)

Name

⊲⊳

σ

π

π

R1

σ

π

R2

σ

Salary > 80K

Name
π

σ

Salary > 80K

R

Name
π

σ

Salary > 80K

⊲⊳

R1 R2
Name LIKE ′Bob′

Name LIKE ′Bob′∧

ID, Name, SalaryName LIKE ′Bob′∧
DoB > 1970∧

DoB > 1970∧

DoB > 1970

ID, Salary

Figure 7.2: Example of Query Reformulation and Optimization

An answer to the above question requires us to understand two issues. First,

we need to know how an arbitrary query on the original relation R is transformed,

optimized and executed using the two fragments R1 and R2. We will address this

issue in the next section. We will then consider how to exploit this knowledge in

formulating an optimization problem to find the best decomposition in Section 7.5.

7.4 Query Reformulation, Optimization and Exe-

cution

In this section, we discuss how a SQL query on relation R is reformulated and opti-

mized by the client as sub-queries on R1 and R2, and how the results are combined to

produce the answer to the original query. For the most part, it turns out that simple

generalizations of standard database optimization techniques suffice to solve our prob-

lems. In Sections 7.4.1 and 7.4.2, we explain how to repurpose the well-understood

distributed-database optimization techniques [OV99] for use in our context. We dis-

cuss the privacy implications of query execution in Section 7.4.3 and present some

144 CHAPTER 7. DISTRIBUTED PRIVACY

open issues in query optimization in Section 7.4.4.

7.4.1 Query Reformulation

Query reformulation is straightforward and identical to that in distributed databases.

Consider a typical conjunctive query that applies a conjunction of selection conditions

C to R, groups the results using a set of attributes G, and applies an aggregation

function to a set of attributes A. We may translate the logical query plan of this

query into a query on R1 and R2 by the following simple expedient: replace R by

R1 ⊲⊳ R2 (with the understanding that the ⊲⊳ operation also replaces encoded pairs

of attribute values with the unencoded value). When the query involves a self-join

on R, we simply replace each occurrence of R by the above-mentioned join3.

Figure 7.2 shows how a typical query involving selections and projections on R

(part (a) of figure) is reformulated as a join query on R1 and R2 (part (b) of figure).

7.4.2 Query Optimization

The trivial query plan for answering a query reformulated in the above fashion is as

follows: Fetch R1 from S1, fetch R2 from S2, execute all plan operators locally at

the client. Of course, such a plan is extremely expensive, as it requires reading and

transmitting entire relations across the network.

Optimizing the Logical Query Plan The logical query plan is first improved, just

as in traditional query optimization, by “pushing down” selection conditions, with

minor modifications to account for attribute fragmentation. Consider a selection

condition c:

• If c is of the form 〈Attr〉 〈op〉 〈value〉, and 〈Attr〉 has not undergone attribute

fragmentation, condition c may be pushed down to R1 or R2, whichever contains

〈Attr〉. (In case 〈Attr〉 is replicated on both relations, the condition may be

pushed down to both.)

3Note that since R is considered to be the universal relation, all joins are self-joins.

7.4. QUERY REFORMULATION, OPTIMIZATION AND EXECUTION 145

• If c is of the form 〈Attr1〉 〈op〉 〈Attr2〉, and both 〈Attr1〉 and 〈Attr2〉 are un-

fragmented and present in either R1 or R2, the condition may be pushed down

to the appropriate relation.

Similarly, projections may also be pushed down to both relations, taking care not

to project out tuple IDs necessary for the join. Group-by clauses and aggregates may

also pushed down, provided all attributes mentioned in the Group-by and aggregate

are unfragmented and present together in either R1 or R2. Self-joins of R with

itself, translated into four-way joins involving two copies each of R1 and R2, may

be rearranged to form a “bushy” join tree where the two R1 copies, and the two R2

copies, are joined first.

Figure 7.2(c) shows the pushing down of selections and projections to alter the

logical query plan. We assume attributes are fragmented as in the example of Sec-

tion 7.3: R1 contains Name, while DoB is in R2 and Salary is encoded across both

relations. Thus, the condition on Name is pushed down to R1, while the condition

on DoB is pushed down to R2. The selection on Salary cannot be pushed down since

Salary is encoded. In addition, we may push down projections as shown in the figure.

Choosing the Physical Query Plan Having optimized the logical query plan, the

physical plan needs to be chosen, determining how the query execution is partitioned

across the two servers and the client. The basic partitioning of the query plan is

straightforward: all operators present above the top-most join have to be executed

on the client side; all operators underneath the join and above Ri are executed by a

sub-query at server Si for i = 1, 2 (shown by the dashed boxes in Figure 7.2).

In the ideal case, it may be possible to push all operators to one of R1 or R2,

eliminating the need for a join. Otherwise, we are left with a choice in deciding how

to perform the join.

The first option is to send sub-queries to both S1 and S2 in parallel, and join the

results at the client. The second option is to send only one of the two sub-queries, say

to server S1; the tuple IDs of the results obtained from S1 are then used to perform a

semi-join with the content on server S2, in addition to applying the S2-subquery to

filter R2.

146 CHAPTER 7. DISTRIBUTED PRIVACY

To illustrate with the example of Figure 7.2(c), consider the following two sub-

queries:

Q1: SELECT Name, ID, Salary FROM R1 WHERE (Name LIKE Bob)

Q2: SELECT ID, Salary FROM R2 WHERE (DoB > 1970)

There are then three options available to the client for executing the query:

1. Send sub-query Q1 to S1, send Q2 to S2, join the results on ID at the client,

and apply the selection on Salary.

2. Send sub-query Q1 to S1. Apply πID to the results of Q1; call the resulting set

Λ. Send S2 the query Q3: SELECT ID, Position, Salary FROM R2 WHERE

(ID IN Λ) AND (DoB > 1970). Join the results of Q3 with the results of Q1.

3. Send sub-query Q2 to S2. Apply πID to the results of Q2 and rewrite Q1 in an

analogous fashion to the previous case.

The first plan may be expensive, since it requires a lot of data to be transmitted

from site S2. The second plan is potentially a lot more efficient, since only tuples

that match the condition Name LIKE Bob are ever transmitted from both S1 and S2.

However, there may be a greater delay in obtaining query answers; the results from

S1 need to be obtained before a query is sent to S2. In our example, the third plan

is unlikely to be efficient unless the company consists only of old people.

We illustrate query optimization with two more examples.

Example 2 Consider the query:

SELECT SUM(Salary) FROM R

Say Salary is encoded using Random Addition instead of by a one-time pad. In

this case, the client may simultaneously issue two subqueries:

Q1: SELECT SUM(Salary) FROM R1

Q2: SELECT SUM(Salary) FROM R2

The client then computes the difference between the results of Q1 and Q2 as the

answer.

Example 3 Consider the query:

7.4. QUERY REFORMULATION, OPTIMIZATION AND EXECUTION 147

SELECT Name FROM R

WHERE DoB> 1970 AND Gender=M

The client first issues the following sub-query to S2:

Q2: SELECT ID FROM R2 WHERE DoB> 1970

After it gets the ID list Λ from Q2 , it sends S1 the query: SELECT Name FROM R1

WHERE Gender=M AND ID in Λ. Note that the alternative plan – sending sub-queries

in parallel to both S1 and S2 – may be more efficient if the condition DoB> 1970 is

highly unselective.

7.4.3 Query Execution and Data Privacy

One question that may arise from our discussion of query execution is: Is it possible

for an adversary monitoring activity at either S1 or S2 to breach privacy by viewing

the queries received at either of the two databases?

We claim that the answer is ‘No’. Observe that when using simple joins as the

query plan, the sub-queries sent to S1 and S2 are dependent only on the original query

and not on the data stored at either location; thus, the sub-queries do not form a

“covert channel” by which information about the content at S1 could potentially be

transmitted to S2 or vice versa.

However, when semi-joins are used, we observe that the query sent to S2 is in-

fluenced by the results of the sub-query sent to S1. Therefore, a legitimate concern

might be that the sub-query sent to S2 leaks information about the content stored at

S1. We avoid privacy breaches in this case by ensuring that only tuple IDs are carried

over from the results of S1 into the query sent to S2. Since knowledge of some tuple

IDs being present in S1 does not help an adversary at S2 in inferring anything about

other attribute values, such a query execution plan continues to preserve privacy.

7.4.4 Discussion

The above discussion does not by any means exhaust all query-optimization issues

in the two-server context. We now list some areas for future work, with preliminary

observations about potential solutions.

148 CHAPTER 7. DISTRIBUTED PRIVACY

Maintaining Statistics for Optimization Our discussion of the space of query

plans implicitly assumed that the client has sufficient database statistics at hand,

and a sufficiently good cost model, for it to choose the best possible plan for the

query. More work is required to validate both the above assumptions.

For example, one question is to understand where the client obtains its statistics

from. Statistics on the individual relations R1 and R2 could be obtained directly

from the servers S1 and S2. The statistics may be cached on the client side in order

to avoid having to fetch them from the servers for each optimization. There may

potentially be statistics, e.g., multi-dimensional histograms, that require knowledge

of both relations R1 and R2 in order to be maintained. If necessary, such statistics

could conceivably be maintained on the client side and may be constructed by means

of appropriate SQL sub-queries sent to the two servers.

Supporting Other Decomposition Techniques Our discussion of query opti-

mization so far has only covered the case of vertical fragmentation with attribute

encoding using one-time pads or random addition. It is possible to optimize the

query plans further when performing attribute encoding by deterministic encryption,

or when using semantic attribute decomposition.

For example, when an attribute is encrypted by a deterministic encryption func-

tion, it is possible to push down selection conditions of the form 〈attr〉 = 〈const〉, by

obtaining the encryption key from one database and encrypting 〈const〉 with this key

before pushing down the condition.

When an attribute is decomposed by semantic decomposition, the resulting func-

tional dependencies across the decomposed attributes may potentially be used to

push down additional selection conditions. To illustrate, consider a PhoneNumber

(PN) attribute which is decomposed into AreaCode (AC) and LocalNumber(LN). A

selection condition of the form σPN=5551234567 could still be pushed down partially as

σAC=555 and σLN=1234567. (Note that the original condition cannot be eliminated, and

still needs to be applied as a filter at the end.) Such rewriting depends on the nature

of the semantic decomposition; the automatic application of such rewriting therefore

requires support for specifying the relationship between attributes in a simple fashion.

7.5. IDENTIFYING THE OPTIMAL DECOMPOSITION 149

7.5 Identifying the Optimal Decomposition

Having seen how queries may be executed over a decomposed database, our next

task at hand is to identify the best decomposition that minimizes query costs. Say,

a workload W consisting of the actual queries to be executed on R is available. We

may then think of the following brute-force approach:

For each possible decomposition of R that obeys the privacy constraints P:

• Optimize each query in W for that decomposition of R, and

• Estimate the total cost of executing all queries in W using the optimized query

plans.

We may then select that decomposition which offers the lowest overall query cost.

Observe that such an approach could be prohibitively expensive, since there may be

an extremely large number of legitimate decompositions to consider, against each of

which we need to evaluate the cost of executing all queries in the workload.

To work around this difficulty, we attempt to capture the effects of different de-

compositions on query costs in a more structured fashion, so that we may efficiently

prune the space of all decompositions without actually having to evaluate each de-

composition independently. A standard framework to capture the costs of different

decompositions, for a given workload W , is the notion of the affinity matrix [OV99]

M , which we adopt and generalize as follows:

1. The entry Mij represents the “cost” of placing the unencoded attributes i and

j in different fragments.

2. The entry Mii represents the “cost” of encoding attribute i across both frag-

ments.

We assume that the cost of a decomposition may be expressed simply by a linear

combination of entries in the affinity matrix. Let R = {A1, A2, . . .An} represents

the original set of n attributes, and consider a decomposition of D(R) = 〈R1, R2, E〉.
Then, we assume that the cost of this decomposition C(D) is

∑

i∈(R1−E),j∈(R2−E) Mij

150 CHAPTER 7. DISTRIBUTED PRIVACY

+
∑

i∈E Mii. (For simplicity, we do not consider replicating any unencoded attribute,

other than the tupleID, at both sites.)

In other words, we add up all matrix entries corresponding to pairs of attributes

that are separated by fragmentation, as well as diagonal entries corresponding to

encoded attributes, and consider this sum to be the cost of the decomposition.

Given this simple model of the cost of decompositions, we may now define an

optimization problem to identify the best decomposition:

Given a set of privacy constraints P ⊆ 2R and an affinity matrix M , find a

decomposition D(R) = 〈R1, R2, E〉 such that

(a) D obeys all privacy constraints in P, and

(c)
∑

i,j:i∈(R1−E),j∈(R2−E) Mij +
∑

i∈E Mi is minimized.

We are left with two questions:

• How is the affinity matrix M generated from a knowledge of the query workload?

• How can we solve the optimization problem?

We address the first question in Appendix 7.9, where we present heuristics for

generating the affinity matrix. We discuss the second question next.

7.5.1 Solving the Optimization Problem

We may define our optimization problem as the following hypergraph-coloring prob-

lem:

We are given a complete graph G(R), with both vertex and edge weights

defined by the affinity matrix M . (Diagonal entries stand for vertex

weights.) We are also given a set of privacy constraints P ⊆ 2R, rep-

resenting a hypergraph H(R,P) on the same vertices. We require a 2-

coloring of the vertices in R such that (a) no hypergraph edge in H is

monochromatic, and (b) the weight of bichromatic graph edges in G is

minimized. The twist is that we are allowed to delete any vertex in R

(and all hyperedges in P that contain the vertex) by paying a price equal

to the vertex weight.

7.5. IDENTIFYING THE OPTIMAL DECOMPOSITION 151

Observe that coloring a vertex is equivalent to placing it in one of the two par-

titions. Deleting the vertex is equivalent to encoding the attribute; so, all privacy

constraints associated with that attribute are satisfied by the vertex deletion. Also

observe that vertex deletion may be necessary, since it is not always possible to 2-color

a hypergraph.

The above problem is very hard to solve – even if we remove the feature of vertex

deletion (allowing encoding), say by guaranteeing that the hypergraph is 2-colorable.

In fact, much more restrictive special cases are NP-hard, even to approximate, as the

following result shows:

It is NP-hard to color a 2-colorable, 4-uniform hypergraph using only c

colors for any constant c [GHS00].

In other words, even if all privacy constraints were 4-tuples of attributes, and it

is known that there exists a partitioning of attributes into two sets that satisfies all

constraints, it is NP-hard to partition the attributes into any fixed number of sets,

let alone two, to satisfy all the constraints!

Given the hardness of the hypergraph-coloring problem, we consider three different

heuristics to solve our optimization problem. All our heuristics utilize the following

two solution components:

Approximate Min-Cuts If we were to ignore the privacy constraints for a moment,

observe that the resulting problem is to two-color the vertices to minimize the weight

of bichromatic edges in G(R); this is equivalent to finding the min-cut in G (assuming

that at least one vertex needs to be of each of the two colors). This problem can be

solved optimally in polynomial time, but we will be interested in a slightly more

general version: We will require all cuts of the graph that have a weight within a

specified constant factor of the min-cut.

Intuitively, we want to produce a lot of cuts that are near-optimal in terms of their

quality, and we will choose among the cuts to pick one that helps satisfy the most

privacy constraints. This approximate min-cut problem can still be solved efficiently

in polynomial time using an algorithm based on edge contraction [KS96]. (Note

152 CHAPTER 7. DISTRIBUTED PRIVACY

that this also implies that the number of cuts produced by the algorithm is only

polynomially large.)

Approximate Weighted Set Cover Our second component uses a well-known tool

in order to tackle the satisfaction of the privacy constraints via vertex deletion. Let

us ignore the coloring problem and consider the following problem instead: Find the

minimum weight choice of vertices to delete so that all hypergraph edges are removed,

i.e., each set P ∈ P loses at least one vertex.

This is the minimum weighted set-cover problem, and the best known solution is

to use the following greedy strategy: keep deleting the vertex that has the lowest cost

per additional set that it covers, until all sets are covered. This greedy strategy offers

a (1+ log |P|)-approximation to the optimal solution [Joh73, Chv79] and will be used

by us in our heuristics.

We now present three different heuristics which utilize the above two components:

Heuristic 1 Our first heuristic is to solve the optimization problem in three phases:

1. Ignore fragmentation, and delete vertices to cover all the constraints using Ap-

proximate Weighted Set Cover. Call the set of deleted vertices E.

2. Consider the remaining vertices, and use Approximate Min-Cuts to find

different 2-colorings of the vertices, all of which approximately minimize the

weight of the bichromatic edges in G.

3. For each of the 2-colorings obtained in step (2): Find all deleted vertices that

are present only in bichromatic hyperedges, and consider “rolling back” their

deletion, and coloring them instead, to obtain a better solution.

4. Choose the best of (a) the solution from step (3) for each of the 2-colorings,

and (b) the decomposition 〈R − E, E, E〉.

In the first step, we cover all the privacy constraints by ensuring that at least

one attribute in each constraint is encoded. Note that this step leads us directly to

one possible decomposition: place all deleted vertices in both fragments, and all the

remaining vertices in one of the two fragments. Call this decomposition D1.

7.5. IDENTIFYING THE OPTIMAL DECOMPOSITION 153

In the next two steps, we attempt to improve on D1 by avoiding encrypting all

these attributes, hoping to use fragmentation to cover some of the constraints in-

stead. To this end, we find different approximate min-cuts in step (2), each of which

fragments the attributes differently. In each fragmentation, we try to roll back some

of the attribute encoding (vertex deletion) that had earlier been necessary to cover

some constraints, but is no longer needed thanks to the fragmentation satisfying the

constraints instead.

Finally, we compare the quality of the different solutions obtained from step (3),

with the basic solution D1 obtained directly from step 1, and select the best of the

lot. Note that the entire heuristic runs in polynomial time, because the number of

different cuts considered is only a polynomial function of |R|.
Heuristic 2 Our second heuristic reverses the order in which fragmentation (2-

coloring) and encoding (deletion) are attempted. We first apply Approximate

Min-Cuts to the original graph G(R) to obtain a set of possible cuts. For each

such cut, we perform the following steps:

(a) Some of the privacy constraints are already satisfied by the fragmentation; we

therefore delete these constraints from P,

(b) We apply Approximate Weighted Set Cover to the modified P, deleting

vertices until all constraints are satisfied.

Finally, we may once again compare the solutions obtained from each cut and

select the best one.

Heuristic 3 The third approach we consider is to interleave the execution of our

approximate min-cut and set-cover components, instead of just using one after the

other. We start with some 2-coloring obtained by running Approximate Min-cuts.

We then repeat the following steps until all constraints are satisfied:

1. Use Approximate Set Cover to greedily select one vertex to delete. (Note

that we only delete one vertex, instead of deleting as many as necessary to

satisfy all constraints.)

2. Having deleted this vertex, re-run Approximate Min-Cuts and attempt to

find a 2-coloring that satisfies even more constraints than the current coloring.

154 CHAPTER 7. DISTRIBUTED PRIVACY

(If we can’t find such a coloring, retain the current coloring.)

Observe that the above heuristic uses many more invocations of the min-cut al-

gorithm in order to recompute colorings after each vertex deletion. To obtain some

intuition as to why this heuristic is useful, consider some vertex v which has high-

weight graph edges to some of its neighbors v1, v2, . . . vk. A min-cut on the original

graph will tend to force v together with all these neighbors (i.e., all these vertices

will have the same color) since the edges from v to v1, v2, . . . vk are all of high weight.

However, once v is deleted, the nature of the coloring may change dramatically; the

different vertices v1, v2, . . . vk may no longer need to have the same color, which opens

the door for colorings that can satisfy many more privacy constraints (specifically,

constraints that can be satisfied by separating some of the vertices in v1, v2, . . . vk).

7.5.2 Discussion

There are many open questions surrounding the above decomposition problem. One

question is to understand the relative performance of our different design heuristics

on different relation schemata and privacy constraints. Another is to develop better

theoretical approaches to the optimization problem. Formulating the optimization

problem itself is based on a number of heuristics (discussed in Appendix 7.9) which

are also open to improvement. The scope of the optimization problem may also be

expanded in a number of different directions.

For example, we could allow attributes to be replicated across partitions, trying to

exploit such replication to lower query costs. In the terminology of the optimization

problem, vertices are allowed to take on both colors. Edges in G emanating from

a vertex v with two colors will not be considered bichromatic; however, hyperedges

involving v will need to be bichromatic even when ignoring v.

Another extension is to deal with constraints imposed by functional dependencies,

normal forms and multiple relations. For example, we may want our decomposition

to be dependency-preserving, which dictates that functional dependencies should not

be destroyed by data partitioning. Different partitioning schemes may have different

impacts on the cost of checking various constraints. Factoring these issues into the

7.6. RELATED WORK 155

optimization problem is a subject for future work.

Finally, expanding the definition of the optimization problem to accommodate the

space of different encoding schemes for each attribute is also an area as yet unexplored.

7.6 Related Work

Secure Database Services As discussed in the introduction, the outsourcing of data

management has motivated the model where a DBMS provides reliable storage and

efficient query execution, while not knowing the contents of the database [HIM02].

Schemes proposed so far for this model encrypt data on the client side and then store

the encrypted database on the server side [HILM02, HH04, AKSX04]. However, in

order to achieve efficient query processing, all the above schemes only provide very

weak notions of data privacy. In fact a server that is secure under formal cryptographic

notions can be proved to be hopelessly inefficient for data processing [KC04]. Our

architecture of using multiple servers helps to achieve both efficiency and provable

privacy together.

Trusted Computing With trusted computing [TCG03], a tamper-proof secure co-

processor could be installed on the server side, which allows executing a function

while hiding the function from the server. Using trusted tamper-proof hardware for

enabling secure database services has been proposed in [KC04]. However, such a

scheme could involve significant computational overhead due to repeated encryption

and decryption at the tuple level. Understanding the role of tamper-proof hardware

in our architecture remains a subject of future work.

Secure Multi-party Computation Secure multi-party computation [Yao86,

GMW87] discusses how to compute the output of a function whose inputs are stored

at different parties, such that each party learns only the function output and nothing

about the inputs of the other parties. In our context, there are two parties – the server

and the client – with the server’s input being encrypted data, the client’s input being

the encryption key, and the function being the desired query. In principle, the client

156 CHAPTER 7. DISTRIBUTED PRIVACY

and the server could then engage in a one-sided secure computation protocol to com-

pute the function output that is revealed only to the client. However, “in principle”

is the operative phrase, as the excessive communication overhead involved makes this

approach even more inefficient than the trivial scheme in which the client fetches the

entire database from the server. More efficient specialized secure multi-party compu-

tation techniques have been studied recently[LP00, FNP04, AMP04]. However all of

this work is to enable different organizations to securely analyze their combined data,

rather than the client-server model we are interested in.

Privacy-preserving Data Mining Different approaches for privacy-preserving data

mining studied recently include: (1) perturbation techniques [AS00, AA01, EGS03,

DN03, DN04] (2) query restriction/auditing [CO82, DJL79, KPR00] (3) k-anonymity

[Swe02b, MW04, AFK+05a]. However, research here is motivated by the need to

ensure individual privacy while at the same time allowing the inference of higher-

granularity patterns from the data. Our problem is rather different in nature, and

the above techniques are not directly relevant in our context.

Access Control Access control is used to control which parts of data can be accessed

by different users. Several models have been proposed for specifying and enforcing

access control in databases [CFMS95]. Access control does not solve the problem of

maintaining an untrusted storage server as even the the administrator or an insider

having complete control over the data at the server is not trusted by the client in our

model.

7.7 Conclusions

We have introduced a new distributed architecture for enabling privacy-preserving

outsourced storage of data. We demonstrated different techniques that could be used

to decompose data, and explained how queries may be optimized and executed in

this distributed system. We introduced a definition of privacy based on hiding sets of

attribute values, demonstrated how our decomposition techniques help in achieving

7.8. ADDENDUM: EXTRACT FROM CALIFORNIA SB 1386 157

privacy, and considered the problem of identifying the best privacy-preserving de-

composition. Given the increasing instances of database outsourcing, as well as the

increasing prominence of privacy concerns as well as regulations, we expect that our

architecture will prove useful both in ensuring compliance with laws and in reducing

the risk of privacy breaches.

We have built a prototype having algorithms for data partitioning, query decom-

position, and execution [FGGM+07].

7.8 Addendum: Extract from California SB 1386

The California Senate Bill SB 1386, which went into effect on July 1, 2003, defines

what constitutes personal information of individuals, and mandates various proce-

dures to be followed by state agencies and businesses in California in case of a breach

of data security in that organization. We present below its definition of personal

information, observing how it is captured by our definition of privacy constraints (the

italics are ours):

For purposes of this section, “personal information” means an individual’s

first name or first initial and last name in combination with any one or

more of the following data elements, when either the name or the data

elements are not encrypted:

(1) Social security number.

(2) Driver’s license number or California Identification Card number.

(3) Account number, credit or debit card number, in combination with

any required security code, access code, or password that would permit

access to an individual’s financial account.

For purposes of this section, “personal information” does not include pub-

licly available information that is lawfully made available to the general

public from federal, state, or local government records. [sb102]

158 CHAPTER 7. DISTRIBUTED PRIVACY

7.9 Addendum: Computing the Affinity Matrix

Let us revisit the definition of the affinity matrix to examine its semantics: the en-

try Mij is required to represent the “cost” of placing attributes i and j in different

partitions of a decomposition, while the entry Mii represents the “cost” of encod-

ing attribute i, with the overall cost of decomposition being expressed as a linear

combination of these entries.

Note that it is likely impossible to obtain a matrix that accurately captures the

costs of all decompositions. The costs of partitioning different pairs of attributes are

unlikely to be independent; placing attributes i and j in different partitions may have

different effects on query costs, depending on how the other attributes are placed and

encoded. Our objective is to come up with simple heuristics to obtain a matrix that

does a reasonable job of capturing the relative costs of different decompositions.

Similar matrices are used to capture costs in other contexts too, e.g., the allocation

problem in distributed databases [OV99]. Our problem is complicated somewhat by

the fact that we need to account for the effects of attribute encoding on query costs,

as well as the interactions between relation fragmentation and encoding.

A First Cut As a first cut, we may consider the following simple way to popu-

late the affinity matrix from a given query workload, along the lines of earlier ap-

proaches [OV99]:

• Mij is set to be the number of queries that reference both attributes i and j.

• Mii is set to be the number of queries involving attribute i.

Of course this simple heuristic ignores many issues: different queries in the work-

load may have different costs and should not be weighted equally; the effect of par-

titioning attributes i and j may depend on how i and j are used in the query, e.g.,

in a selection condition, in the projection list, etc.; the cost of encoding an attribute

may be very different from that of partitioning two attributes, so that counting both

on the same scale may be a poor approximation.

In order to improve on this first cut, we dig deeper to understand the effects of

fragmentation and encoding on query costs.

7.9. ADDENDUM: COMPUTING THE AFFINITY MATRIX 159

7.9.1 The Effects of Fragmentation

Let us consider a query that involves attributes i and j and evaluate the effect of

a fragmentation that separates i and j on the query. We may make the following

observations:

• If i and j are the only attributes referenced in the query, the fragmentation

forces the query to touch both databases, and increases the communication

cost for the query; the extra communication cost is proportional to the number

of tuples satisfying the most selective conditions on one of the two attributes.

• If attributes other than i and j are involved in the query, it is possible that the

query may have to touch both databases even if i and j were held together, since

the separation of other attributes may be the culprit. Therefore, the query cost

that may be attributed to Mij should be only a fraction of the query overhead

caused by fragmentation.

• If i or j is part of a GROUP BY clause, fragmentation makes it impossible to

apply the GROUP BY, making the query overhead very high.

Using the above observations, we may devise a scheme to populate the matrix

entries Mij for i 6= q. Each entry Mij is computed as a sum of “contributions” from

each query that references both i and j. The contribution of a query Q to Mij , for

any pair i and j referenced in Q, is a measure of the fraction of extra tuple fetches

from disk, and transmissions across the network, that are induced by the partitioning

of i and j. We define this contribution as follows: (Let si be the selectivity of Q,

ignoring all conditions involving i, and sj be its selectivity ignoring all conditions

involving j.)

• If Q involves either i or j in a GROUP BY, or a selection condition, the con-

tribution of Q to Mij is set to min(si, sj).

• If Q involves i and j only in the projection list, the contribution of Q to Mij

is set to min(si, sj)/n where n is the number of attributes referenced in Q’s

projection list.

160 CHAPTER 7. DISTRIBUTED PRIVACY

Note that the approach above requires the estimation of query selectivities; this

may be performed using standard database techniques, i.e., using a combination of

selectivity estimates from histograms, independence assumptions, and ad hoc guesses

about the selectivity of predicates [SAC+79].

7.9.2 The Effects of Encoding

Let us now consider the effects of encoding attributes on query costs. We make the

following observations about the effects of encoding attribute i on a query Q: (We

will assume that encoding is performed using one-time pads or random addition.)

• If Q contains a selection condition involving i, the condition cannot be pushed

down; the overhead due to this is proportional to the selectivity of the query

ignoring the conditions on i.

• If Q involves i only in the projection list, there may be additional overhead

equal to the cost of fetching i from both sides.

• If Q involves i in the GROUP BY clause, grouping cannot be pushed down,

and may cause additional overhead.

• If Q involves i only as an attribute to be aggregated, the use of Random Addition

for encoding ensures that the overhead of encoding is low.

From these observations, we use the following rules to determine the contributions

of Q to Mii: (Again, we let si be the selectivity of the query ignoring predicates

involving i.)

• If i is in a selection condition or a GROUP BY clause, the contribution to Mii

is set to si.

• Else, if i is in the projection list, the contribution to Mii is set to 1/n, where n

is the total number of attributes referenced by Q.

Chapter 8

Conclusions

This thesis addresses three problems.

Data sanitization for outsourcing for research or software development was cov-

ered in chapters 2, 3, 4, 5. These chapters provide not only models and theory for

these problems but also algorithms and implementations as well as a contribution to

commercial software in chapter 5. One area of future research involves refining the

current notions of privacy. The notion of privacy is quite clearly defined in cryptogra-

phy, for example, semantic security [GM82]. But semantically secure encrypted data

can provably not be used without decryption, i.e. this encrypted data has no utility.

Several middle grounds were proposed for this problem in many recent directions of

research [EGS03, AST05, Dwo06, AA01]. An interesting direction of research is to

find out whether a unifying view of privacy can be obtained. Or maybe two views, one

for categorical or discrete data and the other for numeric or continuous data. This

would be a wonderful contribution to research in this area. The main contribution

of MASKETEERTM was that it brought together many of the techniques for data

sanitization together in one tool. The user of the tool therefore can choose what kind

of sanitization to apply to the various tools – randomization, perturbation, shuffling,

encryption and k-anonymity. Maybe this is the way research and development in this

area should proceed: provide all the techniques to the user so that the user would

have a choice on what to techniques to use for the dataset in question.

We provide models and theory for auditing SQL query logs in chapter 6. However

161

162 CHAPTER 8. CONCLUSIONS

we are removed from practice in this chapter. This is not to say there are no tools

for auditing logs today: see for example [Log, Aud00]. A direction of research in this

area would be to bring theory and practice closer and develop practical algorithms

to check semantic or syntactic suspiciousness.

In chapter 7 we propose solutions to distribute data for data privacy. We already

have built a simple implementation for this [FGGM+07]. This presently handles

simple select-project-join SQL queries and we are presently extending it to group-by

queries. An interesting direction for future research would be to extend this to handle

general SQL queries which may have nested sub-queries.

Outsourcing data management has been presently considered by some products

in the market today. This may be very close to the hardware layer as in Amazon

Elastic Compute Cloud [Ama], or closer to applications as in Salesforce [Sal] or Google

applications for your domain [Goo]. None of these solutions consider privacy as a

primary pillar as in our proposal. It would be an interesting direction of research

whether privacy can be built into these architectures as a primary pillar.

Data privacy thus seems an interesting direction of research both from a funda-

mental contributions point of view as well as building software/hardware products.

This thesis hopefully broadens the horizon of both theory and practice in the field of

data privacy, but we do hope this is just the beginning of a lot more of work in this

area.

Bibliography

[AA01] D. Agrawal and C. Aggarwal. On the design and quantification of pri-

vacy preserving datamining algorithms. In Proceedings of the ACM Sym-

posium on Principles of Database Systems, 2001.

[ABF+04] R. Agrawal, R. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and

R. Srikant. Auditing compliance with a hippocratic database. In Pro-

ceedings of the International Conference on Very Large Data Bases, Sep-

tember 2004.

[ABG+05] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,

R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep

a secret: A distributed architecture for secure database services. In

Conference on Innovative Data Systems Research, 2005.

[AES03] R. Agrawal, A. Evfimievski, and R. Srikant. Information sharing across

private databases. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2003.

[AFK+05a] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,

D. Thomas, and A. Zhu. Anonymizing tables. In Proceedings of the

International Conference on Database Theory, pages 246–258, 2005.

[AFK+05b] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy,

D. Thomas, and A. Zhu. Approximation algorithms for k-Anonymity.

Journal of Privacy Technology, 20051120001, 2005. Earlier version ap-

peared in Proc. of the Intl. Conf. on Database Theory (ICDT 2005).

163

164 BIBLIOGRAPHY

[AFK+06] G. Aggarwal, T. Feder, K. Kenthapadi, R. Panigrahy, D. Thomas, and

A. Zhu. Clustering for privacy. In Proceedings of the ACM Symposium

on Principles of Database Systems, 2006.

[Agg05] Charu C. Aggarwal. On k-anonymity and the curse of dimensionality.

In Proceedings of the 2005 International Conference on Very Large Data

Bases, pages 901–909, 2005.

[AKSX04] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong

Xu. Order-preserving encryption for numeric data. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

2004.

[Ama] Amazon. Amazon elastic compute cloud. aws.amazon.com/ec2.

[AMP04] G. Aggarwal, N. Mishra, and B. Pinkas. Privacy preserving computation

of the k-th ranked element. In EUROCRYPT, 2004.

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining

Association Rules. In Proceedings of the International Conference on

Very Large Data Bases, pages 487–499, Santiago, Chile, September 1994.

[AS00] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceed-

ings of the ACM SIGMOD International Conference on Management of

Data, pages 439–450, May 2000.

[AST05] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving OLAP. In

Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, 2005.

[Aud00] SQL Server 2000 Auditing, 2000. Available from URL:

https://www.microsoft.com/technet/security/prodtech/sqlserver/

sql2kaud.mspx.

BIBLIOGRAPHY 165

[AW89] Nabil R. Adam and John C. Wortmann. Security control methods for

statistical databases: A comparative study. In ACM Computing Surveys,

Vol21, No 4, December 1989.

[BA05] Roberto J. Bayardo and Rakesh Agrawal. Data privacy through optimal

k-anonymization. In Proceedings of the International Conference on

Data Engineering, pages 217–228, 2005.

[Bau06] Katrina Baum. First estimates from the national crime vic-

timization survey: Identity theft, 2004. Bureau of Jus-

tice Statistics Bulletin, April 2006. Available from URL:

http://www.ojp.usdoj.gov/bjs/pub/pdf/it04.pdf.

[BM98] C.L. Blake and C.J. Merz. UCI repository of ma-

chine learning databases, 1998. Available from URL:

http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[Bro00] Michelle Brown. Identity theft victim stories: Verbal testimony by

michelle brown, July 2000. Privacy Rights ClearingHouse. Available

from URL: http://www.privacyrights.org/cases/victim9.htm.

[Bur] U.S. Census Bureau. Public use microdata sample (PUMS).

http://www.census.gov/acs/www/Products/PUMS/.

[Cam] Camouflage. http://www.datamasking.com/.

[CDM+05] Shuchi Chawla, Cynthia Dwork, Frank McSherry, Adam Smith, and

Hoeteck Wee. Toward privacy in public databases. In 2nd Theory of

Cryptography Conference (TCC), pages 363–385, 2005.

[CDMT05] Shuchi Chawla, Cynthia Dwork, Frank McSherry, and Kunal Talwar.

On the utility of privacy-preserving histograms. In 21st Conference on

Uncertainty in Artificial Intelligence (UAI), 2005.

[Cen] US Census. Accuracy of the US census data. Available from URL:

http://www.census.gov/acs/www/UseData/Accuracy/Accuracy1.htm.

166 BIBLIOGRAPHY

[CFMS95] S. Castano, M. Fugini, G. Martella, and P. Samarati. Principles of

Distributed Database Systems. Addison Wesley, 1995.

[CGGM03] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Mot-

wani. Robust and efficient fuzzy match for online data cleaning. In

Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, 2003.

[Che52] H. Chernoff. Asymptotic efficiency for tests based on the sums of obser-

vations. Annals of Mathematical Statistics, 23:493–507, 1952.

[Chi86] F. Chin. Security problems on inference control for sum, max, and min

queries. J. ACM, pages 451–464, 1986.

[Chv79] Vasek Chvatal. A greedy heuristic for the set-covering problem. Math-

ematics of Operations Research, 4(3):233–235, 1979.

[CKL+03] C. Clifton, M. Kantarcioglu, X. Lin, J. Vaidya, and M. Zhu. Tools

for privacy preserving distributed data mining. SIGKDD Explorations,

4(2):28–34, January 2003.

[CKMN01] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan. Algorithms for

facility location with outliers. In Proceedings of the Annual ACM-SIAM

Symp. on Discrete Algorithms, pages 642–651, 2001.

[CO82] F. Chin and G. Ozsoyoglu. Auditing and inference control in statistical

databases. In IEEE TSE, 8(6), 1982.

[Dal86] T. Dalenius. Finding a needle in a haystack or identifying anonymous

census records. In Journal of Official Statistics (2), pages 329–336, 1986.

[DJL79] D. Dobkin, A. Jones, and R. Lipton. Secure databases: Protection

against user influence. In ACM TODS, 4(1), 1979.

[DLP+06] Prasenjit Das, Sachin Lodha, Nikhil Patwardhan, Sharada Sundaram,

and Dilys Thomas. Data privacy using MASKETEER. Research Report,

Tata Consultancy Services, Pune, India, 2006.

BIBLIOGRAPHY 167

[DN03] I. Dinur and K. Nissim. Revealing information while preserving pri-

vacy. In Proceedings of the ACM Symposium on Principles of Database

Systems, pages 202–210, 2003.

[DN04] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically

partitioned databases. In Proc. CRYPTO, 2004.

[Dwo06] Cynthia Dwork. Differential privacy. pages 1–12, 2006.

[EGS03] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in

privacy preserving data mining. In Proceedings of the ACM Symposium

on Principles of Database Systems, June 2003.

[ESAG02] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserv-

ing mining of association rules. In Proceedings of the ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, July

2002.

[FGGM+07] Tomas Feder, Vignesh Ganapathy, Hector Garcia-Molina, Rajeev Mot-

wani, and Dilys Thomas. Algorithms for distributing data, parititioning

and executing queries for a secure database. 2007.

[FNP04] M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and

set intersection. In EUROCRYPT, 2004.

[FT03] J. D. Ferrer and V. Torra. Disclosure risk assesment in statistical mi-

crodata protection via advanced record linkage. In Statistics and Com-

puting, pages 343–354, 2003.

[GHS00] V. Guruswami, J. Hastad, and M. Sudan. Hardness of approximate

hypergraph coloring. In Proc. 41st Annual Symposium on Foundations

of Computer Science (FOCS), 2000.

[Gib01] Phillip B. Gibbons. Distinct sampling for highly-accurate answers to

distinct values queries and event reports. In Proceedings of the Interna-

tional Conference on Very Large Data Bases, pages 541–550, 2001.

168 BIBLIOGRAPHY

[GJ79] M. R. Garey and D. S. Johnson. Computers and intractability, a guide

to the theory of np-completeness. W. H. Freeman and Company, New

York, 1979.

[GL] G. Golub and C. V. Loan. Matrix computations.

[GLB] GLB. Gramm-Leach-Bliley Act. Available from URL:

http://www.ftc.gov/privacy/privacyinitiatives/glbact.html.

[GM82] S. Goldwasser and S. Micali. Probabilistic encryption and how to play

mental poker keeping secret all partial information. 1982.

[GMM00] S. Guha, A. Meyerson, and K. Munagala. Hierarchical placement and

network design problems. In Proceedings of the Annual IEEE Symposium

on Foundations of Computer Science, pages 603–612, 2000.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental

game – a completeness theorem for protocols with a honest majority. In

Proceedings of the 1987 Annual ACM Symp. on Theory of Computing,

1987.

[Goo] Google. Google apps for your domain. http://www.google.com/a/.

[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing pri-

vacy and trust in electronic communities. In Proc. of the 1st ACM

Conference on Electronic Commerce, pages 78–86, Denver, Colorado,

November 1999.

[HH04] S. Mehrotra H. Hacigumus, B. Iyer. Efficient execution of aggregation

queries over encrypted relational databases. In Proc. DASFAA, 2004.

[HILM02] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over

encrypted data in the database-service-provider model. In Proceedings of

the ACM SIGMOD International Conference on Management of Data,

2002.

BIBLIOGRAPHY 169

[HIM02] H. Hacigumus, B. Iyer, and S. Mehrotra. Providing database as a service.

In Proceedings of the International Conference on Data Engineering,

2002.

[HIP] HIPAA. Health Information Portability and Accountability Act. Avail-

able from URL: http://www.hhs.gov/ocr/hipaa/.

[HK71] K. Hoffman and R. Kunze. Linear algebra. Prentice-Hall Inc, 1971.

[HS85] D. Hochbaum and D. Shmoys. A best possible approximation algorithm

for the k-center problem. In Mathematics of Operations Research, 10(2),

pages 180–184, 1985.

[HT98] C. A. J. Hurkens and S. R. Tiourine. Model and methods for the mi-

crodata protection problem. In Journal of Official Statistics, 1998.

[IBM] IBM. Privacy is good for business. Available from URL:

http://www-306.ibm.com/innovation/us/customerloyalty/

harriet pearson interview.shtml.

[Iye02] V. Iyengar. Transforming data to satisfy privacy constraints. In 8th

ACM SIGKDD International Conference on Knowledge Discovery in

Databases and Data Mining, pages 279–288, 2002.

[JBIP93] G. Kortsarz J. Bar-Ilan and D. Peleg. How to allocate network centers.

In Journal of Algorithms, pages 385–415, 1993.

[Joh73] David S. Johnson. Approximation algorithms for combinatorial prob-

lems. In Proc. 5th annual ACM Symposium on Theory of Comput-

ing(STOC), 1973.

[Jr.] R. A. Moore Jr. Controlled data-swapping techniques for masking public

use microdata sets. In US Bureau of Census, Report.

[JV99] K. Jain and V.V. Vazirani. Primal-dual approximation algorithms for

metric facility location and k-median problems. In Proceedings of the

170 BIBLIOGRAPHY

Annual IEEE Symposium on Foundations of Computer Science, pages

2–13, 1999.

[KC04] Murat Kantarcioglu and Chris Clifton. Security issues in querying en-

crypted data. Technical Report TR-04-013, Purdue University, 2004.

[KM00] D. Karger and M. Minkoff. Building steiner trees with incomplete global

knowledge. In Proceedings of the Annual IEEE Symposium on Founda-

tions of Computer Science, pages 613–623, 2000.

[KMN05] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In

Proceedings of the ACM Symposium on Principles of Database Systems,

June 2005.

[KPR00] Jon M. Kleinberg, Christos H. Papadimitriou, and Prabhakar Raghavan.

Auditing boolean attributes. In Symposium on Principles of Database

Systems, pages 86–91, 2000.

[KS96] David Karger and Clifford Stein. A new approach to the minimum cut

problem. Journal of the ACM, 43(4):601–640, July 1996.

[KS00] S. Khuller and Y. Sussmann. The capacitated k-center problem. In

SIAM Journal on Discrete Mathematics, pages 403–418, 2000.

[LCL85] Chong K. Liew, Uinam J. Choi, and Chung J. Liew. A data distortion

by probability distribution. ACM Transactions on Database Systems,

10(3):395–411, 1985.

[LDR05a] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito: Efficient full-

domain k-anonymity. In Proceedings of the ACM SIGMOD International

Conference on Management of Data, 2005.

[LDR05b] Kristin Lefevre, David J. Dewitt, and Raghu Ramakrishnan. Incognito:

efficient full domain k-anonymity. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 49–60, 2005.

BIBLIOGRAPHY 171

[Log] ApexSQL Log. Available from URL:

http://www.apexsql.com/sql tools log.asp.

[LP00] Y. Lindell and B. Pinkas. Privacy preserving data mining. In CRYPTO,

pages 36–54, 2000.

[LT06] Sachin Lodha and Dilys Thomas. Probabilistic anonymity. Research

Report, Tata Consultancy Services, Pune, India, 2006.

[Mas] Data Masker. http://www.datamasker.com/.

[MG06] A. Machanavajjhala and J. Gehrke. On the efficiency of checking perfect

privacy. In PODS, 2006.

[MKGV06] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-

ramakrishnan Venkitasubramaniam. l-diversity: Privacy beyond k-

anonymity. In Proceedings of the International Conference on Data

Engineering, page 24, 2006.

[MNT07] Rajeev Motwani, Shubha Nabar, and Dilys Thomas. Auditing batches

of SQL queries. In PDM workshop with ICDE, 2007.

[Mor02] J.P. Morgan signs outsourcing deal with IBM. ComputerWorld, Dec 30,

2002.

[Mot89] A. Motro. An access authorization model for relational databases based

on algebraic manipulation of view definitions. In ICDE, 1989.

[MP78] I. Munro and M. Paterson. Selection and sorting with limited stor-

age. In Proceedings of the Annual IEEE Symposium on Foundations of

Computer Science, pages 253–258, 1978.

[MRL99] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay.

Random sampling techniques for space efficient online computation of

order statistics of large datasets. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 251–262, 1999.

172 BIBLIOGRAPHY

[MS04] G. Miklau and D. Suciu. A formal analysis of information disclosure in

data exchange. In SIGMOD, 2004.

[MW04] A. Meyerson and R. Williams. On the complexity of optimal k-

anonymity. In Proceedings of the ACM Symposium on Principles of

Database Systems, pages 223–228, June 2004.

[NMK+06] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani.

Towards robustness in query auditing. In VLDB, 2006.

[O’B04] Robert O’Barrow Jr. Advertiser charged in massive database theft. The

Washington Post, July 22, 2004.

[OV99] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Data-

base Systems. Prentice Hall, 2nd edition, 1999.

[Rei79] Steven P. Reiss. Security in databases: A combinatorial study. Journal

of the ACM, 26(1):45–57, 1979.

[RH02] S. Rizvi and J. R. Haritsa. Maintaining data privacy in association rule

mining. In Proceedings of the International Conference on Very Large

Data Bases, 2002.

[RMSR04] S. Rizvi, A. Medelzon, S. Sudarshan, and P. Roy. Extending query

rewriting techniques for fine-grained access control. In SIGMOD, 2004.

[RS00] A. Rosenthal and E. Sciore. View security as the basis for data warehouse

security. In International Workshop on Design and Management of Data

Warehouses, 2000.

[RS01] A. Rosenthal and E. Sciore. Administering permissions for distributed

data: Factoring and automated inference. In IFIP 11.3 Working Con-

ference in Database Security, 2001.

[RSD99] A. Rosenthal, E. Sciore, and V. Doshi. Security administration for feder-

ations, warehouses, and other derived data. In IFIP WG11.3 Conference

on Database Security, 1999.

BIBLIOGRAPHY 173

[Rud87] Walter Rudin. Real and Complex Analysis. McGraw-Hill, 1987.

[SAC+79] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Ray-

mond A. Lorie, and Thomas G. Price. Access path selection in a rela-

tional database management system. In Proc. SIGMOD, pages 23–34,

1979.

[Sal] Salesforce. On-demand customer relationship management.

http://www.salesforce.com/.

[sb102] California Senate Bill SB 1386, September 2002.

[Sof] Princeton Softech. http://www.princetonsoftech.com/Solutions/ PCIS-

tandards.asp.

[SOX] SOX. Sarbanes-Oxley Act. Available from URL:

http://www.sec.gov/about/laws/soa2002.pdf.

[SS98] P. Samarati and L. Sweeney. Generalizing data to provide anonymity

when disclosing information (abstract). In Proceedings of the ACM Sym-

posium on Principles of Database Systems, page 188, 1998.

[Swe00] L. Sweeney. Uniqueness of simple demographics in the U.S. population.

In LIDAP-WP4. Carnegie Mellon University, Laboratory for Interna-

tional Data Privacy, Pittsburgh, PA, 2000.

[Swe02a] L. Sweeney. Achieving k-anonymity privacy protection using generaliza-

tion and suppresion. International Journal on Uncertainty, Fuzziness

and Knowledge-based Systems, 10(5):571–588, 2002.

[Swe02b] L. Sweeney. k-Anonymity: A model for preserving privacy. Interna-

tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,

10(5):557–570, 2002.

[TCG03] TCG TPM specification version 1.2.

https://www.trustedcomputinggroup.org, Nov 2003.

174 BIBLIOGRAPHY

[Tim97] Time. The Death of Privacy, August 1997.

[Van] Data Vantage. http://www.datavantage.com/.

[Vaz04] Vijay Vazirani. Approximation Algorithms. Springer, 2004.

[Vit85] Jeff Vitter. Random sampling with a reservoir. ACM Transaction on

Mathematical Software, pages 37–57, 1985.

[War65] S.L. Warner. Randomized response: A survey technique for eliminat-

ing evasive answer bias. Journal of the American Statistical Assoc.,

60(309):63–69, March 1965.

[Win02] W. Winkler. Using simulated annealing for k-anonymity. Research Re-

port 2002-07, US Census Bureau Statistical Research Division, Novem-

ber 2002.

[WJW] Lingyu Wang, Sushil Jajodia, and Duminda Wijesekera. Securing OLAP

data cubes against privacy breaches. In In Proc. of the 2004 IEEE

Symposium on Security and Privacy.

[WWJ04] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. Cardinality-

based inference control in data cubes. In Journal of Computer Security,

2004.

[XM06] Ying Xu and Rajeev Motwani. Random sampling based algo-

rithms for efficient semi-key discovery, 2006. Available from URL:

http://theory.stanford.edu/~xuying/papers/minkey_vldb.pdf.

[Yao86] Andrew Yao. How to generate and exchange secrets. In Proceedings of

the 1986 Annual IEEE Symposium on Foundations of Computer Science,

1986.

[Yuh06] Noel Yuhanna. Protecting private data with data masking, March 2006.

Available from URL: http://www.forrester.com.

