Transitive Closure and Recursive Datalog Implemented on Clusters

Foto N. Afrati∗, and Jeffrey D. Ullman†

June 17, 2011

Abstract

Implementing recursive algorithms on computing clusters presents a number of new challenges. In particular, we consider the endgame problem: later rounds of a recursion often transfer only small amounts of data, causing high overhead for interprocessor communication. One way to deal with the endgame problem is to use an algorithm that reduces the number of rounds of the recursion. Especially, in an application like transitive closure (“TC”) there are several recursive-doubling algorithms that use a logarithmic, rather than linear, number of rounds. Unfortunately, recursive-doubling algorithms can deduce many more facts than the linear TC algorithms, which could negate any cost savings due to elimination of the overhead due to the proliferation of small files. We are thus led to consider TC algorithms that, like the linear algorithms, have the unique decomposition property that assures paths are discovered only once. We find that many such algorithms exist, and we show that they are incomparable, in that any of them could prove best on some data — even lower in cost than the linear algorithms in some cases. The recursive-doubling approach to TC extends to other recursions as well. However, it is not acceptable to reduce the number of rounds at the expense of a major increase in the number of facts that are deduced. In this paper, we prove it is possible to implement any Datalog program of right-linear chain rules with a logarithmic number of rounds and no order-of-magnitude increase in the number of facts deduced. On the other hand, there are linear recursions for which the two goals of reducing the number of rounds and maintaining the total number of deduced facts cannot be met simultaneously. We show that the reachability problem cannot be solved in logarithmic rounds without using a binary predicate, thus squaring the number of potential facts to be deduced. We also show that the same-generation recursion cannot be solved in logarithmic rounds without using a predicate of arity three.

∗School of Electrical and Computing Engineering, National Technical University of Athens, 15780 Athens, Greece
†Department of Computer Science, Stanford University, CA 94305
1 Recursion on Clusters

Computing clusters have been the focus of a large body of research recently. A familiar tool for certain jobs in such a computing environment is map-reduce [DG08] and its open source equivalent Hadoop [Apa06] built on top of a distributed file system (DFS) [GGL03]. A synopsis of the technology behind map-reduce, including implementation of the core relational-algebra operations, such as join, in map-reduce can be found in [RU10]. Extensions of map-reduce called workflow systems allow arbitrary acyclic (nonrecursive) connections of functions and the parallel tasks that implement those functions. Workflow systems include Dryad [IBY+07] and its extension DryadLINQ [YIF+08] from Microsoft, Clustera [DPR+08] from the University of Wisconsin, Hyracks [BCG+11] from the U. C. Irvine, Boom [ACC+10] from the U.C. Berkeley, and Nephele/PACT [BEH+10] from T. U. Berlin.

A number of large-scale computations of interest today are essentially recursive. Examples include the computation of PageRank and a number of problems on social-network graphs, such as certain community-finding algorithms (e.g., [GN02]), and connectivity studies on the Web (e.g., [BMK+00]). A few systems have been developed recently that handle recursion. Halooop [BHBE10] essentially implements recursion as a sequence of iterations of Hadoop jobs with special attention paid to run each task in iteration \(i \) at a compute node where it can find its needed output from round \(i - 1 \). A similar idea is used in Twister [twi]. Pregel [MAB+10] implements real recursion using a message-passing model of computation.

The computation model for cluster computing presents several challenges that have heretofore not been studied or were examined only peripherally. In [ABC+11] a number of key points and positions were argued:

- Compute-nodes in a cluster process tasks in parallel, and data needs to be transferred among nodes. Data-volume cost, the sum over all tasks of the size of their input, is the right measure of algorithm efficiency for many applications, including those that use relational-algebra operations.
- When large numbers of compute-nodes and tasks are involved in a recursion such as transitive closure (“TC”), later rounds tend to discover few new facts and therefore send many small files among compute nodes.
- Because the overhead of file transmission in a computing cluster is high, it is desirable that a recursion finish in as few rounds as possible.
- For TC, the nonlinear, or recursive-doubling approach, where each round doubles the length of the paths that have been discovered, has advantages because it computes the TC of an \(n \)-node graph in \(O(\log n) \) rounds rather than the \(O(n) \) rounds taken by linear TC algorithms. Unfortunately, nonlinear TC algorithms can have a much higher data-volume cost than do the linear algorithms.

A technique called Smart TC was discovered many years ago to reduce the cost of nonlinear TC. We shall discuss Smart TC and related algorithms in Section 2, where we examine the relative efficiency, in terms of data-volume cost, for a number of TC algorithms.

There is another issue with which we must grapple when we examine the implementation of recursions on relations. If we rewrite the recursion to allow recursive doubling and thereby reduce the number of rounds, we may increase the volume of data beyond a realistic limit due to increase of the arity of the recursive predicates, which, in turn results in computing more facts than necessary. In the past, optimization techniques, like magic sets [Ull89] where introduced to avoid computing non-relevant facts. Limitations of such techniques were also noticed [Cos99, ACY95, Afr94]. In Section 4, we show limitations of such arity-reducing techniques not previously seen. In particular we show that there is a tradeoff between the arity of recursive predicates and the number of rounds. We show it by using pumping techniques developed in [ACY95]. An example follows which will serve to introduce this problem as well as the Datalog notation we use.
1.1 The Arity of Recursive Predicates

Consider the reachability problem, which is defined by the Datalog program below, using the notation of [Ull89].

\[
\text{reach}(X) :- \text{source}(X) \\
\text{reach}(X) :- \text{reach}(Y) \land \text{arc}(Y,X)
\]

In the above rules, \text{source} and \text{arc} are EDB relations (extensional database relations, stored in the database), while \text{reach} is an IDB relation (intensional database relation, computed by recursive application of the rules). We assume \text{source} contains one source node, and tuple \((a,b)\) is in the relation \text{arc} if and only if there is an arc in the graph from \(a\) to \(b\).

Suppose that the database describes the link structure of a significant portion of the Web, say a billion nodes. If we implement the program above in the obvious way, the number of rounds needed by the recursion is the distance of the node in the graph that is furthest from the source node. In the Web, most nodes are fairly close to one another, but all it takes is one long path to force there to be a very large number of rounds. For example, most people writing a manual with 50 chapters will create a directory page that links to all 50 chapters. But somebody will decide to link Chapter \(i\) only from Chapter \(i-1\), thereby creating a very long path. In fact, the Google WebIQ project has explored reachability in the Web from many different source sets and finds that, while almost everything reachable is reached within 15 hops, some searches must use “hundreds of rounds” before terminating.\(^1\)

We might decide to reduce the number of rounds, and thereby reduce the overhead of moving many small files, by using nonlinear TC. The Datalog program might look like:

\[
\text{path}(X,Y) :- \text{arc}(X,Y) \\
\text{path}(X,Y) :- \text{path}(X,Z) \land \text{path}(Z,Y) \\
\text{reach}(X) :- \text{source}(Y) \land \text{path}(Y,X)
\]

The first two rules compute the nonlinear TC for the entire graph, and the third rule uses the path information to discover those nodes reachable from the source node.

However, such a program could never be implemented on a graph of a billion nodes, because there would be \(10^{18}\) possible path facts.\(^2\) The reason for the difference is that while the original reachability program has only IDB predicates (\text{reach}) of arity 1, the revised program above has an IDB predicate (\text{path}) of arity 2. If the domain size (number of values an argument of a predicate can take) is \(m\), then the number of potential facts that the program can derive is \(m\) raised to the maximum arity of any IDB predicate. Thus, the revised program winds up computing many facts about paths that do not originate at one of the source nodes, even though it will do all this work in a small number of rounds, say 10 rounds if the maximum-length shortest path in the graph is 1000.

1.2 Summary of Paper

We are thus led to consider the question that will be addressed in this paper:

- When is it possible to replace a linear recursion (recursive Datalog program with at most one IDB subgoal in the body of any rule) by an equivalent program that:
 a) Requires for its evaluation a number of recursive rounds that is only logarithmic in the domain size for the program, yet

\(^1\)T. Vassilakis, private communication, March, 2011.

\(^2\)One might wonder, therefore, how a Web analysis such as [BKM+00], which appears to have computed the transitive closure of a large Web graph, could be accomplished. In practice, it is possible to use heuristics to find strongly connected components quickly, and thus reduce significantly the number of nodes on which the full TC must be computed. For example, a search for short cycles will enable us to collapse many large groups of nodes to single nodes.
b) Uses IDB predicates of no greater arity than that of the IDB predicates in the original program?

In Section 2 we consider nonlinear TC algorithms. We introduce the unique-decomposition property, which is the property possessed by certain TC algorithms such as the linear algorithms, that assure each path is discovered only once. One such nonlinear algorithm, called “smart TC,” has been known for some time. We show that there are others, and that depending on the data, any of these algorithms might outperform the others.

Then, in Section 3, we examine a generalization of TC, called right-linear chain programs. These recursions have the desirable property that they can be converted to nonlinear recursions that use logarithmic rounds only, and yet the arity of the recursive predicates remains the same as in the original linear recursion.

Finally, in Section 4 we consider two examples of linear recursion for which we can prove it is impossible to convert to a recursion that both completes in a logarithmic number of rounds and has recursive predicates with the same arity as the original program. One of these is the reachability problem discussed in Section 1.1. The other is the “same-generation” problem, which has a linear recursion with predicates of arity two, yet requires arity three at least, if it is to be computed in a logarithmic number of rounds.

2 TC Algorithms Discovering Each Path Only Once

Algorithms such as the simple version of nonlinear TC not only discover the same path fact $\text{path}(a, b)$ several times if there are several different paths from a to b, but they will discover this fact using the same path several times. For example, if there is a path $a \rightarrow x \rightarrow y \rightarrow b$, then the fact $\text{path}(a, b)$ will be discovered once by combining $\text{path}(a, x)$ with $\text{path}(x, b)$ and again by combining $\text{path}(a, y)$ with $\text{path}(y, b)$. There are, however, several known algorithms (and many not previously considered) that have the property that a single path is never discovered more than once.

Most obvious of these algorithms are the left- and right-linear versions of TC. That is, if we are constrained to combine an edge (path of length one) with a following path, then the only way to discover $\text{path}(a, b)$ in the example above is to combine $\text{edge}(a, x)$ with $\text{path}(x, b)$. Similarly, if we are constrained to combine a path with a following edge, then the only way to discover $\text{path}(a, b)$ is to combine $\text{path}(a, y)$ with $\text{edge}(y, b)$. More interesting is the algorithm called Smart TC [Ioa86, VB86, KIC92], which combines two paths only if the first has a length a power of 2 and the second has a length no greater than the length of the first. This algorithm has several desirable features:

1. It discovers paths only once.
2. It requires only $O(\log n)$ rounds to discover all path facts about a graph of n nodes.
3. It has a very clean and succinct iterative implementation.

We call property (1) above the unique-decomposition property. For unique-decomposition algorithms, number of disjoint paths joining two nodes equals number of derivations for the fact in the transitive closure that is the pair of these two nodes.

However, there is an infinite variety of algorithms with the unique-decomposition property. We can characterize each such algorithm by a function from integers to pairs of integers that tells how paths of a certain length are to be discovered.

Definition 2.1 (A) *length partition* is a function from integers $\ell \geq 2$ to pairs of positive integers (ℓ_1, ℓ_2) such that $\ell_1 + \ell_2 = \ell$. The TC algorithm induced by a length partition P infers the fact $\text{path}(x, y)$ if and only if there exists a node z such that:

1. The shortest path from x to z is known to be of length ℓ_1.

4
2. The shortest path from \(z \) to \(y \) is known to be of length \(\ell_2 \).

3. \(P(\ell_1 + \ell_2) = (\ell_1, \ell_2) \). Less formally, the shortest path from \(x \) to \(y \) has length \(\ell \), and the only way that \(P \) allows the inference of paths of length \(\ell \) is by combining a path of length \(\ell_1 \) with a following path of length \(\ell_2 \).

EXAMPLE 2.1 The right-linear algorithm constructs paths of length \(\ell \) by combining paths of length 1 with a following path of length \(\ell - 1 \). That is, the right-linear length partition is \(\ell \rightarrow (1, \ell - 1) \). Similarly, the left-linear length partition is \(\ell \rightarrow (\ell - 1, 1) \). The Smart length partition is \(\ell \rightarrow (\ell_1, \ell_2) \), where \(\ell_1 \) is the largest power of 2 that is strictly less than \(\ell \) and \(\ell_2 = \ell - \ell_1 \).

We shall also consider here two other algorithms in the same class, in order to demonstrate several points about the space of options available.

1. The algorithm *Balance* is defined by the length partition \(\ell \rightarrow ([\ell/2], [\ell/2]) \). That is, Balance divides a path into two paths as nearly equal in length as possible.

2. The algorithm *Thirds* uses the length partition \(\ell \rightarrow (\ell_1, \ell_2) \), where
 (a) \(\ell_2 \) is the larger of 1 and \(\lfloor \ell/3 \rfloor \).
 (b) \(\ell_1 = \ell - \ell_2 \).

That is, the second path is about 1/3 of the length, and the first path is about 2/3 the length. For example, paths of lengths 2 through 9 are constructed from paths with the following pairs of lengths: \((1,1), (2,1), (3,1), (4,1), (4,2), (5,2), (6,2), (6,3)\).

2.1 Computation in Rounds

Consider any algorithm driven by a length partition \(P \). We can associate with any \(path(a,b) \) fact discovered the length of the shortest path from \(a \) to \(b \). We can then compute all path facts and their associated lengths in rounds as follows.

Basis: On the first round, all the facts \(edge(a,b) \) become \(path(a,b) \) facts, with a length of 1.

Induction: Suppose that after round \(i \), we have discovered all path facts with shortest paths of length up to \(m_i \). On round \(i + 1 \), we discover all paths of length \(\ell \) provided \(P(\ell) \) is a pair of integers, each no greater than \(m_i \). Since \(P(m_i + 1) \) is surely a pair of integers less than or equal to \(m_i \), we know that \(m_{i+1} > m_i \), and thus eventually all paths will be discovered.

It is desirable that the number of rounds needed to discover all paths is small. Some length partitions require few rounds, while others require many. The following example analyzes the five algorithms mentioned previously.

EXAMPLE 2.2 The left- and right-linear TC algorithms each have the property that \(m_i = i \). That is, we add only one to the length of discovered paths at each round.

The Smart algorithm discovers paths in as few rounds as possible. That is, \(m_1 = 1 \) and \(m_2 = 2 \), as is the case for all algorithms. But \(m_4 = 4 \), since on the third round we can discover any path composed of a path of length 2 and a path of length up to 2. Likewise, \(m_4 = 8 \), since on the fourth round we discover paths composed of a path of length 4 and a path of length up to 4. It is easy to conclude that \(m_i = 2^{i-1} \), and thus that Smart requires \(1 + \log_2 n \) rounds on a graph of \(n \) nodes.

Next, consider the algorithm Balance. This algorithm is defined by the length partition that constructs paths of lengths 2, 3, \ldots by the sequence of pairs \((1,1), (2,1), (2,2), (3,2), (3,3), (4,3), (4,4)\), and so on. We again observe that \(m_i = 2^{i-1} \) for Balance, which thus uses the same number of rounds as Smart.

Finally, consider the algorithm Thirds. As mentioned above, the sequence of pairs for this algorithm begins \((1,1), (2,1), (3,1), (4,1), (4,2), (5,2), (6,2), (6,3), \ldots \). The discovery of new paths starts slowly, with \(m_1 = 1 \), \(m_2 = 2 \), \(m_3 = 3 \), and \(m_4 = 4 \). But then \(m_5 = 6 \), \(m_6 = 9 \), etc.
m_7 = 13, and thereafter, the values of \(m_i \) grow by a factor of close to \(3/2 \) each time \(i \) grows by one. We conclude that the number of rounds required for Thirds on a graph of \(n \) nodes is \(O(\log n) \), although the constant of proportionality is not as small as for Smart or Balance. There is some evidence, however, that Thirds in practice produces fewer redundant path facts than these two algorithms; i.e., the number of times Thirds will discover a path fact that was already known is lower (see Section 2.3).

2.2 Ladder Graphs and the Incomparability of Algorithms

While we can compare the algorithms based on different length partitions by the number of rounds the require, we cannot order them strictly by the total work required for their execution. The computation model we shall use is data-volume cost from [ABC+11]. In this model, we assume TC algorithms are to be executed on a computing cluster. The usage of the cluster is the sum over all compute-nodes used of the amount of time that node is used. This sum is, for simple algorithms like those implementing TC, proportional to the sum over all tasks of the amount of input to that task. Also from [ABC+11] is the observation that for TC, the data-volume cost is proportional to the sum over all triples \(x, y, z \) of nodes such that the path from \(x \) to \(y \) and the path from \(y \) to \(z \) are combined to infer a path from \(x \) to \(z \) during the execution of the algorithm. These combining events are called derivations.

With these observations in mind, we shall define a family of graphs such that the number of derivations executed by different algorithms varies widely. A ladder graph is defined as follows:

1. The nodes are organized in rungs, numbered 0, 1, \ldots.
2. The \(i \)th rung can have any number \(m_i \geq 1 \) of nodes.
3. There is a directed edge from every node of rung \(i \) to every node of rung \(i + 1 \).

![Figure 1: Example of a ladder graph](image)

Example 2.3 Figure 1 is an example of a ladder graph with five rungs numbered 0 through 4. The “ladder” is on its side, with rungs vertical. \(m_0 \) through \(m_4 \) are 3, 2, 4, 1, and 3, respectively. The edges are directed from left to right, although we do not show the arrows at the ends of the edges.

An important property of ladder graphs that makes easier our estimate of the work performed by various algorithms is:

- All paths are shortest paths.

If the TC algorithm is defined by a length partition \(P \), there is a simple formula for the number of derivations executed by the algorithm. This number is the sum over all triples of rungs \((i, j, k)\), where \(i < j < k \) and \(P(k - i) = (j - i, k - j) \), of \(m_i m_j m_k \).

To see why, suppose there is a derivation that combines the facts \(path(x, y) \) with the fact \(path(y, z) \), where nodes \(x, y, \) and \(z \) are on rungs \(i, j, \) and \(k \), respectively. Then the distance
from \(x \) to \(y \) is \(\ell_1 = j - i \), the distance from \(y \) to \(z \) is \(\ell_2 = k - j \), and the distance from \(x \) to \(z \) is \(\ell = k - i \). Since the algorithm combines these two paths, it must be that \(P(\ell) = (\ell_1, \ell_2) \); i.e.,
\[
P(k-i) = (j-i, k-j).
\]

Next, consider ladder graphs with \(n \) rungs, in which the \(i \)th rung has either one node or \(m \) nodes, where \(m \) is very large compared with \(n^3 \). Then the number of derivations executed by the algorithm derived from length partition \(P \) is dominated by the number of triples \((i, j, k)\) such that:

1. \(m_i = m_j = m_k = m \), and
2. \(P(k-i) = (j-i, k-j) \).

EXAMPLE 2.4 Consider a ladder graph \(G \) with \(2^r - 1 \) rungs. Rungs whose numbers are of the form \(2^r - s \), where \(2 \geq s \geq r \) have \(m \) nodes, and other rungs have one node. For instance, if \(r = 4 \), then the rungs are numbered 0, 1, . . . , 14, and the rungs with \(m \) nodes are 0, 8, 12, and 14.

If we apply Smart to graph \(G \), there are three triples of integers such that involve combining paths between rungs all of which have \(m \) nodes; these are \((0, 8, 12)\), \((0, 8, 14)\), and \((8, 12, 14)\). Thus, the data-volume cost of Smart on \(G \) will be \(\Omega(m^4) \).

On the other hand, the algorithms Balance, Left-linear and Right-linear each combine no triples of rungs all of which have \(m \) nodes. Thus, these algorithms have a data-volume cost that is \(O(n^3m^2) \) at worst. Since we assumed \(m \) is large compared with \(n^3 \), Smart is the worst performing.

But the analysis could just as easily have gone the other way. For example, a ladder graph with rungs 0, 3, 6, 9, . . . having \(m \) nodes and the other rungs having 1 node demonstrates that Balance can be the worst of all as well. \(\square \)

2.3 Comparison on a Fixed Graph

In this section, we shall try to estimate typical behavior of the various algorithms by examining a particular graph, shown in Fig. 2, that represents the explosion of paths between two nodes that occurs in dense random graphs. This graph does, however, share with the ladder graphs the property that all paths are shortest paths, which simplifies the counting.

The graph of Fig. 2 is two complete binary trees with leaves shared. All arcs go from left to right, although we have omitted the arrows on the edges. There are 279 pairs of nodes \((a, b)\) such that \(a \) reaches \(b \) along a path of length one or more. Of these paths, 60 are the arcs, and the remaining 219 pairs are connected by paths of length 2 or more. It is only the paths of length \(\geq 2 \) that need to be constructed recursively. So, we are going to count only derivations using the recursive rule, ignoring the 60 derivations for the basis rule that is present in all algorithms.

In Fig. 3 is a table that breaks down the number of paths of length one or more reachable from nodes of each of the first eight ranks. Nodes of rank 9 cannot reach any node by a path of length one or more. Row (2) gives the number of nodes at each rank. Row (3) indicates how many nodes each node at that rank can reach along paths of length 2 or more. For example, each node at rank 3 reaches two nodes at rank 4, four nodes at rank 5, two at rank 6, and one each at ranks 7, 8, and 9, for a total of eleven nodes. Row (4) is the product of rows (2) and (3). The grand total of path facts is the sum of the entries in row (4), or 279. Of these, 60 are the arcs, leaving 219 derivations using the recursive rule.

Now, consider the right-linear algorithm, where paths of length 1 are combined with paths of any length in the recursive rule. Although there are only 219 path facts, some facts are discovered several times. For instance, the path from a node at rank 4 to the right root is discovered by two separate derivations, corresponding to the two nodes of rank 5 that are reached by arcs from each node at rank 4.

To organize the count of derivations using the recursive TC rule, observe that the number of derivations of \(\text{path}(a, b) \), where \(a \) is a node of rank \(i \) in Fig. 2, is equal to the product of the number of arcs out of \(a \) times the number of nodes reached by nodes of rank \(i + 1 \). The latter can be read from row (3) of Fig. 3. The counting is summarized by Fig. 4.
For example, there are four nodes of rank (3). Each of these nodes has two arcs out, as indicated by row (3). Each of the nodes of rank (4) reaches six other nodes, as indicated by row (4). Finally, row (5) is the product of rows (2), (3), and (4). The total number of derivations using the recursive rule is the sum of the numbers in row (5), which is 268. This number should be compared with 219, the theoretically smallest number of derivations any recursive rule could have, because 219 is the number of path facts that must be derived recursively by any TC algorithm.

For the algorithms Smart, Balance and Thirds, it is easier to count the number of derivations by looking at every length pair that is relevant to the graph of Fig. 2. For Balance, the length pairs that apply are (1,1), (2,1), (2,2), (3,2), (3,3), (4,3), and (4,4). Figure 5 is a table of the number of pairs of paths whose lengths are combined while computing the TC of Fig. 2. The total number of derivations — the sum of the numbers in row (2) — is 316, which somewhat larger than the count for the linear algorithms. Of course the benefit of algorithms such as Balance is that the number of rounds required is $O(\log n)$ rather than $O(n)$ as it is for the linear algorithms.

As an example of the calculation leading to the numbers in Fig. 5, consider the entry for (2,2). We need to consider each node in ranks 3 through 7 as the middle node that combines two paths. Consider any of the four nodes at rank 3. The path of length 2 leading to this node can only come from the left root, while the path of length 2 from this node could be any of
four different nodes of rank 5. Thus, the number of derivations using a node at rank 3 in the middle is \(4 \times 1 \times 4\). That is, there are four nodes at rank 3, and each combines one path to the left with four paths to the right. Similarly, the eight nodes at rank 4 each combine one path on the left with one path on the right. The 16 nodes at rank 5 each do the same, as do the eight nodes at rank 6. The four nodes at rank 7 combine four paths on the left with one path on the right, for a total of 16 derivations. The number of derivations in which two paths of length 2 are combined is thus \(16 + 8 + 16 + 8 + 16 = 64\).

Next, consider the Smart TC algorithm. The length pairs that apply are \((1,1), (2,1), (2,2), (4,1), (4,2), (4,3),\) and \((4,4)\). Except for the fourth and fifth in this sequence, the pairs are the same as for Balance. Figure 6 summarizes the count for each length pair. The sum of row (2) is 312.

Last, consider the Thirds TC algorithm, which for the graph of Fig. 2 is characterized by the sequence of length pairs \((1,1), (2,1), (3,1), (4,1), (4,2), (5,2),\) and \((6,2)\). The counts of derivations for these combinations of lengths is shown in Fig. 7. The sum of the numbers in row (2) is 288. It should not be surprising that this sum is between what we get from the linear algorithms and the Smart or Balance algorithms, since the number of rounds needed by Thirds also lies between these two pairs of algorithms.

2.3.1 Calculations for the General Case

Here we calculate the number of path facts (pairs of nodes connected by one or more paths) and the number of distinct paths in the general case of the paired trees graph with two trees of height \(H\). Notice that when a TC algorithm has the unique-decomposition property, the number of distinct paths equals the number of derivations and therefore is the appropriate measure of performance on a computing cluster. It turns out that the number of path facts and paths do not differ much (e.g., for data of 1TB, their ratio is approximately 10) giving formal evidence that on this graph the various algorithms in our class have similar performance.

We have rank from 1 through to \(H + 1\) (the leaves) to \(2H + 1\) (the right root). \((H)\) is the number of edges from the root to a leaf. In the figure \(H = 4\).

To begin, we partition the facts as follows:

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
(1) & (1,1) & (2,1) & (2,2) & (3,1) & (4,1) & (4,2) \\
(2) & Count & 72 & 72 & 64 & 36 & 28 \\
\hline
\end{array}
\]

Figure 6: Counts of derivations for the Smart TC rule. The total number of derivations is 312.
Again, there are three kinds of paths:

1. From a node of rank \(H + 1 - i \) to a node of rank \(H + 1 + i, i = 1, 2, \ldots, H \) (we call them symmetrical). For each \(i \), there are \(2^{H-i} \) of those facts. Thus total \(2^{H} - 1 \).

2. From a node of rank \(H + 1 - i \) to a node of rank \(H + 1 + i + j, i = 1, 2, \ldots, H, j = 1, 2, \ldots, H - i \) (we call them asymmetrical). For each \(i \), there are \(2^{H-i}(H - i) \) of those facts. Thus the total is \((H + 1) \times 2^{H+1} - 2^{H+2} + 2 \). This comes from the fact that

\[
2^1 + 2 \times 2^2 + 3 \times 2^3 + \cdots + H \times 2^H = (H + 1) \times 2^{H+1} - 2^{H+2} + 2
\]

Also in this category we have the facts from a node of rank \(H + 1 + i - j \) to a node of rank \(H + 1 + i \). The count is the same as above.

3. From a node of rank \(H - i \), to a node of rank \(H - j, i = 1, 2, \ldots, H - 1 \) and \(j < i \). We call them single-path facts. For each \(i \), there are \(2^{i-1} \times (2^{H-i} - 2) = (2^H - 2^i) / 2 \) such facts (i.e., each node of rank \(H - i \) reaches all nodes in the subtree rooted at this node and there are \(2^i \) nodes of rank \(H - i \)). Thus in total we have \((H - 1)2^H - 2^H + 2 \) such facts. (We do not count the facts that include the leaves because we have counted them in the previous category.) Also in this category there are the facts from \(H + i \) to \(H + i + j \), in an analogous way as in category 2.

Thus total number of path facts is

\[
\begin{align*}
2^H & - 1 + (H + 1) \times 2^{H+1} - 2^{H+2} + 2 + \\
&(H + 1) \times 2^{H+1} - 2^{H+2} + 2 + (H - 1)2^H - 2^H + 2 + \\
&(H - 1)2^H - 2^H + 2
\end{align*}
\]

We have counted the number of path facts. Now we count the number of distinct paths. Again, there are three kinds of paths:

1. For each symmetrical fact we have \(2^i \) paths. Thus, for each \(i \), we have \(2^{H} \) paths. And total over all \(i \) is \(2^{H-1} \).

2. For each asymmetrical fact, again there are \(2^i \) paths. Thus for each \(i \), we have \((H - i)2^{H} \) paths. Thus total is \(H(H - 1)/2 \times 2^{H+1} = H(H - 1)2^H \).

3. For single-path facts, we have only one path for each fact, thus total \((H - 1)2^H - 2^H + 2 \).

Thus, the total number of distinct paths is

\[
\begin{align*}
2^{H+1} + H(H - 1)2^H + H(H - 1)2^H + \\
&(H - 1)2^H - 2^H + 2 + (H - 1)2^H - 2^H + 2
\end{align*}
\]

The ratio of the two numbers computed above (number of paths and number of path facts) is less than \(H/3 + 3 \) and larger than \(H/3 \). Thus if \(n = 3 \times 2^H = 17TB \), then we have that \(H \approx 10 \). The number of derivations of any of the four algorithms will be between these two numbers. Thus we expect the four algorithms not to have large deviations in performance, at least not larger than a factor of \(\log n \) on the size \(n \) of the data. In the example the ratios where much smaller than that and indicated a constant ratio (of the order of 2). This can be explained by observing that the large term in counting the number of path facts was contributed by the asymmetrical facts. When computing such facts, however the four algorithms need many fewer derivations than the number of different paths that lead from the first node of the computed fact to its second node. The two linear algorithms need two derivations for each fact. The other two algorithms need a larger number of derivations but only for a small fraction of the facts. Thus

<table>
<thead>
<tr>
<th></th>
<th>Pair</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1,1)</td>
<td>72</td>
</tr>
<tr>
<td>(2)</td>
<td>(2,1)</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>(3,1)</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>(4,1)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(4,2)</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>(5,2)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(6,2)</td>
<td>4</td>
</tr>
</tbody>
</table>
this does not worsen them very much. In particular, for the asymmetric facts, the number of
derivations is only large when the two nodes of a fact are not “very asymmetrical, i.e., when their
distances from the leaves are very close to each other. If not, then the number of derivations of
this fact is much smaller than the number of distinct paths between its nodes.

3 Recursive Doubling for Linear Chain Programs

Many years ago, [JAN87] showed how to convert any linear Datalog program into a transitive
closure plus small pieces for initialization and for extracting the result. The motivation they
expressed was that thus an efficient implementation of TC could serve as an implementation
of all linear recursions. Today, there is another motivation for studying this question in the
context of cluster computing. As we discussed in Section 1.1, we would like to implement all
recursions, or at least all linear recursions, in a way that uses a logarithmic number of rounds,
yet does not increase significantly the number of facts we must derive.

In Section 4.1 we shall show that the reachability query requires either binary IDB predicates
or \(\Omega(n) \) rounds on databases of size \(n \). In Section 4.2 we shall show that the same-generation
query requires either ternary IDB predicates or \(\Omega(n) \) rounds on a databases of size \(n \). Here,
we explore a class of linear Datalog programs that can be implemented without increasing the
domain size significantly, and yet require only a logarithmic number of passes to complete.

3.1 Some Examples of the Rounds-Arity Tradeoff

By using the nonlinear version of TC, that is,

\[
\begin{align*}
\text{path}(X,Y) & :\!- \text{arc}(X,Y) \\
\text{path}(X,Y) & :\!- \text{path}(X,Z) \& \text{path}(Z,Y)
\end{align*}
\]

we can evaluate \(\text{path} \) in \(O(\log n) \) rounds on an \(n \)-node graph, and yet only have to construct
\(\text{path} \) facts with two arguments, just as we would if we used a linear recursion such as

\[
\begin{align*}
\text{path}(X,Y) & :\!- \text{arc}(X,Y) \\
\text{path}(X,Y) & :\!- \text{arc}(X,Z) \& \text{path}(Z,Y)
\end{align*}
\]

It appears not to be the case for all linear recursions. An example is the “same-generation”
query for finding cousins:

\[
\begin{align*}
\text{sg}(X,Y) & :\!- \text{par}(X,Z) \& \text{par}(Y,Z) \\
\text{sg}(X,Y) & :\!- \text{par}(X,Xp) \& \text{par}(Y,Yp) \& \text{sg}(Xp,Yp)
\end{align*}
\]

In the above query, \(\text{par}(A,B) \) is an EDB relation meaning that \(B \) is a parent of \(A \). The IDB
predicate \(\text{sg}(A,B) \) means that \(A \) and \(B \) have a common ancestor the same number of generations
back (i.e., they are cousins, or siblings if the number of generations is one).

While we can compute the above recursion discovering only facts that involve two arguments
(i.e., pairs of individuals), it appears that if we want to use a nonlinear recursion that gets the
same result in only \(O(\log n) \) rounds on a database involving \(n \) individuals, then we need to
compute an IDB predicate of arity 4. A program such as:

\[
\begin{align*}
\text{implies}(W,X,Y,Z) & :\!- \text{par}(W,Y) \& \text{par}(X,Z) \\
\text{implies}(W,X,Y,Z) & :\!- \text{implies}(W,X,A,B) \& \\
& \quad \text{implies}(A,B,Y,Z) \\
\text{sg}(X,Y) & :\!- \text{implies}(X,Y,Z,Z)
\end{align*}
\]

will serve. Here, \(\text{implies}(W,X,Y,Z) \) should be interpreted as “if \(Y \) and \(Z \) are either cousins or
the same individual, then \(W \) and \(X \) are cousins.
3.2 Right-Linear Chain Rules

Definition 3.1 (A) Datalog program is linear if no rule body has more than one IDB subgoal. A right-linear chain program consists of rules of the following forms:

\[
\begin{align*}
p(X, Y) & \leftarrow e(X, Z) \& q(Z, Y) \\
p(X, Y) & \leftarrow e(X, Y)
\end{align*}
\]

where in each rule, \(X, Y,\) and \(Z\) are distinct variables, \(e\) is an EDB predicate, and \(p\) and \(q\) are IDB predicates.

There are several extensions to the above forms. The variables could be sequences of distinct variables, and the order of the arguments in the various subgoals need not be as shown. Further, the subgoal with predicate \(e\) could be a sequence of EDB subgoals, and these subgoals could involve variables not shown, as long as \(Y\) is not among them. However, what is essential is that the head predicate and the IDB predicate in rules of the first form share the attribute \(Y\) (which could represent several attributes). We shall not consider these straightforward extensions here.

3.3 Expansions and Derivation Trees

In the discussion that follows, we assume that the reader is familiar with Datalog and conjunctive queries (CQ), using the notation of [Ull89]. In particular, you should understand that a Datalog rule or CQ consists of a head and a body with one or more subgoals. Variables that appear in the head are “distinguished,” while variables that appear only in the body are “nondistinguished.” The following definitions will be used in proofs that follow.

Definition 3.2 (A) canonical database of a conjunctive query is the database that is formed by the subgoals in the body of the query if we freeze the variables (replace each variable by a unique constant).

Let \(\Pi\) be a Datalog program that computes a predicate \(p\). Let \(Q\) be a conjunctive query with head \(p\) and a body that results from unfolding a rule with head \(p\) several times, until there are no IDB predicates in the body. By “unfold” we mean that an IDB subgoal \(q(\cdots)\) in the body is replaced by the body of a rule with head \(q\). During this replacement, we first unify the head of the rule with the subgoal, and use new variables for all the nondistinguished variables of the body. Such a query \(Q\) is called an expansion of \(\Pi\).

The process of expanding a goal (predicate with variables for arguments) can be shown as a derivation tree. This tree has the goal at the root. Each interior node represents an IDB subgoal at some stage of the expansion, and its children are the subgoals with which it was replaced. The leaves are EDB subgoals.

Each derivation tree of a Datalog program \(\Pi\) has an expansion of \(\Pi\) that corresponds to it and is constructed by following the unfolding that is depicted by the derivation tree. Thus, in the proofs we will talk about a derivation tree and its corresponding expansion. The relation between expansions and derivation trees was noticed in [CV92] (where derivation trees are called “expansion trees”) and in [ACY95, Afr94] (where derivation trees are called “skeleton trees”).

EXAMPLE 3.1 Figure 8 is a derivation tree for the reach program from Section 1.1:

\[
\begin{align*}
\text{reach}(X) & \leftarrow \text{source}(X) \\
\text{reach}(X) & \leftarrow \text{reach}(Y) \& \text{arc}(Y, X)
\end{align*}
\]

The goal at the root is \(\text{reach}(X)\), and this goal was expanded using the recursive rule. We chose \(Y_1\) as the nondistinguished variable in place of \(Y\), to avoid accidently using the same variable twice. The subgoal \(\text{reach}(Y_1)\) was also expanded using the recursive rule. Variable \(X\) was unified with \(Y_1\), and nondistinguished variable \(Y\) replaced by \(Y_2\). Finally, the subgoal \(\text{reach}(Y_2)\) was expanded using the basis rule.
reach (X) :- source(Y₂) & arc(Y₂, Y₁) & arc(Y₁, X)

is the expansion corresponding to this derivation tree.

3.4 Recursive Doubling for Right-Linear Chain Programs

Theorem 3.1 For every right-linear chain program, there is an equivalent program with the following properties:

1. All IDB predicates are binary.
2. The program can be evaluated in O(log n) rounds on a database of size n.

The proof of Theorem 3.1 involves a construction and a sequence of lemmas about this construction. Given a right-linear chain program Π, we construct a program Π’ meeting the conditions of the theorem. The IDB predicates of Π’ are the IDB predicates of Π plus:

{t_{pq}(U, V) | p and q are IDB predicates of Π}

The intent of t_{pq} is that t_{pq}(a, b) is true if and only if for all c, q(b, c) implies p(a, c). The rules of Π’ are as follows:

1. For all IDB predicates p, q, and r,
 \[t_{pq}(X, Y) :- t_{pr}(X, Z) & t_{rq}(Z, Y) \]
2. If p(X, Y) :- e(X, Z) & q(Z, Y) is a rule of Π, then Π’ has the rule
 \[t_{pq}(X, Z) :- e(X, Z) \]
3. Each basis rule p(X, Y) :- e(X, Y) of Π is also a rule of Π’.
4. If p and q are IDB predicates of Π, then Π’ has the rule
 \[p(X, Y) :- t_{pq}(X, Z) & q(Z, Y) \]

Example 3.2 Consider the following Datalog program Π:

\[p(X, Y) :- r(X, Z) & q(Z, Y) \]
\[q(X, Y) :- b(X, Z) & p(Z, Y) \]
\[p(X, Y) :- r(X, Y) \]
Intuitively, r and b are EDB predicates representing “red” and “blue” arcs, respectively. IDB predicate p represents paths that alternate red and blue arcs, but both begin and end with a red arc. IDB predicate q also represents paths of alternating color, but its paths begin with blue and end with red.

Part 1 of the construction of Π' gives us the following eight rules:

\[
\begin{align*}
 t_{pp}(X, Y) &::= t_{pp}(X, Z) \land t_{pp}(Z, Y) \\
 t_{pq}(X, Y) &::= t_{pq}(X, Z) \land t_{ap}(Z, Y) \\
 t_{pq}(X, Y) &::= t_{pq}(X, Z) \land t_{pq}(Z, Y) \\
 t_{ap}(X, Y) &::= t_{ap}(X, Z) \land t_{pp}(Z, Y) \\
 t_{ap}(X, Y) &::= t_{ap}(X, Z) \land t_{ap}(Z, Y) \\
 t_{pq}(X, Y) &::= t_{pq}(X, Z) \land t_{pq}(Z, Y) \\
 t_{qq}(X, Y) &::= t_{pq}(X, Z) \land t_{qq}(Z, Y) \\
 t_{qq}(X, Y) &::= t_{qq}(X, Z) \land t_{qq}(Z, Y)
\end{align*}
\]

Part 2 gives us the rules:

\[
\begin{align*}
 t_{pq}(X, Z) &::= r(X, Z) \\
 t_{aq}(X, Z) &::= b(X, Z)
\end{align*}
\]

From Part 3 we get the basis rule

\[p(X, Y) :: r(X, Y)\]

and from Part 4 we get

\[
\begin{align*}
 p(X, Y) &::= t_{pp}(X, Z) \land p(Z, Y) \\
 p(X, Y) &::= t_{pq}(X, Z) \land q(Z, Y) \\
 q(X, Y) &::= t_{aq}(X, Z) \land p(Z, Y) \\
 q(X, Y) &::= t_{qq}(X, Z) \land q(Z, Y)
\end{align*}
\]

We now turn to the proof of Theorem 3.1. First, any derivation tree for a right-linear chain program has a spine of IDB subgoals on the right. Moreover, each of these subgoals has the same variable in the second argument. Figure 9 suggests what these derivation trees look like. Suppose we apply the program to a database with n different constants, and the program has k different IDB predicates.

When we instantiate the variables of the derivation tree with constants, to make all EDB subgoals true, then there are at most kn different instantiated IDB subgoals that can appear along the spine. If the spine has more than kn IDB predicates, then two are the same, and we do not have the smallest derivation tree for the fact at the root. We have thus proved:

Lemma 3.1 If a right-linear chain program Π with k IDB predicates is applied to a database D with n different constants appearing among its tuples, then every fact derived from D by Π has a derivation tree of height at most kn.

Next, let us examine the rules of the first two groups in the construction of Π'; these are the rules that define the IDB predicates t_{pq}. A partial derivation tree is like a derivation tree, except some of the leaves may be IDB subgoals. For a right-linear chain program, a partial derivation tree has a subgoal $p(X, A)$ at the root, an IDB subgoal $q(Y, A)$ as the rightmost leaf (the bottom of the “spine”), and appropriate EDB leaves coming off the spine to the left. Note that if the EDB predicates can be made true, then this tree can be interpreted as saying “for all A, if $q(Y, A)$ then $p(X, A)$,” and is thus a justification for $t_{pq}(X, Y)$.

Lemma 3.2 After i rounds of application of the rules of Π', $t_{pq}(x, y)$ will be derived if and only if there is a partial derivation tree with $p(X, A)$ at the root, $q(Y, A)$ as the rightmost leaf, height at most 2^{i-1}, and a homomorphism from variables of the tree to constants that makes all of the EDB leaves true in the database to which Π' is applied.
Figure 9: A derivation tree for a right-linear chain program

Proof: We proceed by induction on i. For the basis, $i = 1$, the inference must be from a rule of Group 2. These rules let us infer $t_{pq}(x, y)$ from the database fact $e(x, y)$. But then, there must be a rule of $Π$ (possibly with different variables):

$$p(X, A) \leftarrow e(X, Y) \& q(Y, A)$$

We see immediately that a partial derivation tree with root $p(X, A)$ and two children $e(X, Y)$ and $q(Y, A)$ exists. We also know that if we substitute constant x for variable X and constant y for variable Y, then the EDB subgoal $e(x, y)$ is true. Thus, if the fact is inferred at the first round of $Π′$, the tree exists. Conversely, if the tree exists and the substitution makes the EDB subgoal true, then there is a Group 2 rule that allows us to make the inference at the first round of $Π′$.

For the inductive part, we use the Group 1 rules of $Π′$ that combine two t predicates. Suppose that on round i we derive $t_{pq}(x, y)$ from $t_{pr}(x, z)$ and $t_{rq}(z, y)$. From the latter two facts, we know there are two partial derivation trees. The first has root $p(X, A)$ and rightmost leaf $r(Z, A)$ for some variable A. The second has root $r(Z, A)$ and rightmost leaf $q(Y, A)$. Both trees are of height at most $2^{i−2}$, since they correspond to facts derived at round $i − 1$ or before. We may splice the two trees together, by identifying the root of the second with the rightmost leaf of the first. We also know from the inductive hypothesis that both trees have substitutions that make all their EDB leaves true, and both of these substitutions replace variable Z by constant z. Since there are no variables but Z that are shared by the two trees, we can construct a substitution for the combined tree that makes all of its EDB leaves true and also maps X to x and Y to y. These observations prove that if $t_{pq}(x, y)$ is derived on round i, then there is a partial derivation tree as described in the lemma.

Conversely, suppose there is a partial derivation tree T of height at most 2^i in $Π$. Let the tree have root $p(X, A)$ and rightmost leaf $q(Z, Y)$. Let $r(W, Y)$ be the IDB subgoal that is most nearly in the middle of the spine of T. If we break T into two at the node $r(W, Y)$, we have two partial derivation trees T_1 and T_2, each of height at most $2^{i−1}$. Any homomorphism that

3technically, the second tree might not have Z and A as the variables at the root, but we can always substitute for whatever variables actually appear there.
instantiates \(T \) to have true EDB subgoals also instantiates \(T_1 \) and \(T_2 \) and makes their EDB subgoals true. Let this instantiation map \(X, Y, Z, \) and \(W \) to \(a, b, c, \) and \(d, \) respectively. Then by the inductive hypothesis, on or before round \(i - 1 \) we infer \(t_{pq}(a, d) \) because of the instantiated \(T_1 \) and \(t_{rq}(d, c) \) because of the instantiated \(T_2. \) Applying a Group 1 rule to these two facts lets us infer \(t_{pq}(a, c) \) by round \(i. \)

Now, we can prove Theorem 3.1.

Proof: Suppose we derive \(p(a, b) \) in \(\Pi. \) Let the derivation tree for this derivation be \(T. \) By Lemma 3.1, \(T \) can have height at most \(n, \) the number of constants in the database. Let this height be \(h. \) If \(h = 1, \) then there must be a rule \(p(X, Y) :: e(X, Y) \) of \(\Pi. \) If so, this rule is also a rule of \(\Pi' \) in the third group. Moreover, \(e(a, b) \) must be true in the database. Thus, \(p(a, b) \) is derived by \(\Pi' \) on the first round.

Suppose \(h > 1. \) Like all derivation trees of a linear-chain program, \(T \) has a spine of IDB subgoals going down the right, and each interior node has one EDB child as well. We can instantiate the variables of \(T \) so that the root is \(p(a, b), \) the rightmost IDB subgoal is \(q(c, b), \) and the rightmost EDB subgoal is \(e(c, b) \) for some predicates \(q \) and \(e \) and some constant \(c. \) This instantiation makes all the EDB subgoals true.

If we remove the rightmost EDB subgoal \(e(X, Y), \) we get a partial derivation tree of height \(h - 1. \) By Lemma 3.2 we know that we can infer \(t_{pq}(a, c) \) by round \(\log_2 h - 1 \) of \(\Pi'. \) Moreover, we know \(q(X, Y) :: e(X, Y) \) is a rule of \(\Pi \) and \(\Pi'. \) Since we know \(e(c, b) \) is true, we can apply the rule of Group 4

\[
p(X, Y) :: t_{pq}(X, Z) \& q(Z, Y)
\]

to infer \(p(a, b) \) in \(\Pi' \) by round \(\log_2 h. \) As \(h \leq n, \) we see that all facts inferred by \(\Pi \) on any round are inferred by \(\Pi' \) by round \(\log_2 n. \)

To complete the proof, we must observe that any fact involving an IDB predicate of \(\Pi \) that is derived in \(\Pi' \) is also derived in \(\Pi. \) Then we can conclude that \(\Pi \) and \(\Pi' \) are equivalent. This part of the proof turns on the interpretation of the \(t \) predicates that we suggested. In particular, we claim that if in \(\Pi' \) we can infer \(t_{pq}(a, b), \) then for all constants \(c, q(b, c) \) implies \(p(a, c) \) in \(\Pi. \) This statement is a simple induction on the number of times we apply rules of Groups 1 and 2 in \(\Pi'. \)

Then, we can show by induction on the number of times we apply any rule of \(\Pi' \) that any derivation in \(\Pi' \) of a fact \(p(a, b), \) where \(p \) is an IDB predicate of \(\Pi \) implies that \(p(a, b) \) is also true in \(\Pi. \) Such a derivation must either end with a rule of Group 3 or 4. If of Group 3, it is obvious that \(p(a, b) \) is also derived in \(\Pi. \) If of Group 4, then we know that for some constant \(c, t_{pq}(a, c) \) is derived in \(\Pi' \) and so is \(q(c, b), \) by the inductive hypothesis. The first tells us (changing names of constants to fit the situation) that for all \(b, q(c, b) \) implies \(p(a, b) \) in \(\Pi, \) while the second tells us \(q(c, b) \) is true in \(\Pi \) for the particular \(b \) in question. Thus, \(p(a, b) \) is true in \(\Pi. \)

Theorem 3.2 For every linear program \(\Pi, \) there is an equivalent program \(\Pi' \) with the following properties:

1. The maximum arity of IDB predicates in \(\pi' \) is twice the maximum arity of IDB predicates in \(\Pi. \)
2. The program can be evaluated in \(O(\log n) \) rounds on a database of size \(n. \)

The proof of Theorem 3.2 involves a similar construction as in the proof of Theorem 3.1 and a sequence of lemmas about this construction which are again similar with the lemmas for Theorem 3.1. Actually, their proof is easier than the proofs for Theorem 3.1 since the construction is more straightforward because we do not have to do a trick to save on the arity. Hence, we give the construction here with an example and we omit the lemmas and their proof.

Given a right-linear chain program \(\Pi, \) we construct a program \(\Pi' \) meeting the conditions of the theorem. The IDB predicates of \(\Pi' \) are the IDB predicates of \(\Pi \) plus:
\{ t_{pq}(U_1, \ldots, U_k, V_1, \ldots, V_m) \mid p \text{ and } q \text{ are IDB predicates of } \Pi \text{ of arity } k \text{ and } m \text{ respectively} \}

The intent of \(t_{pq} \) is that \(t_{pq}(a_1, \ldots, a_k, b_1, \ldots, b_m) \) is true if and only if \(q(b_1, \ldots, b_m) \) implies \(p(a_1, \ldots, a_k) \). The rules of \(\Pi' \) are as follows:

1. For all IDB predicates \(p, q, \) and \(r \),
 \[t_{pq}(X_1, \ldots, X_k, Y_1, \ldots, Y_m) \leftarrow t_{pr}(X_1, \ldots, X_k, Z_1, \ldots, Z_n) \land t_{rq}(Z_1, \ldots, Z_n, Y_1, \ldots, Y_m) \]

2. If \(p(X_1, \ldots, X_k) \leftarrow e(\hat{Z}) \) and \(q(Y_1, \ldots, Y_m) \) is a rule of \(\Pi \) (where \(\hat{Z} \) is a vector of variables that may contain some variables \(X_i \), some variables \(Y_i \) and other variables), then \(\Pi' \) has the rule
 \[t_{pq}(X_1, \ldots, X_k, Y_1, \ldots, Y_m) \leftarrow e(\hat{Z}) \]

3. Each basis rule \(p(X_1, \ldots, X_k) \leftarrow e(\hat{Z}) \) of \(\Pi \) is also a rule of \(\Pi' \).

4. If \(p \) and \(q \) are IDB predicates of \(\Pi \), then \(\Pi' \) has the rule
 \[p(X_1, \ldots, X_k) \leftarrow t_{pq}(X_1, \ldots, X_k, Y_1, \ldots, Y_m) \land q(Y_1, \ldots, Y_m) \]

EXAMPLE 3.3 From

\begin{align*}
\text{sg}(X,Y) & \leftarrow \text{par}(X,Z) \land \text{par}(Y,Z) \\
\text{sg}(X,Y) & \leftarrow \text{par}(X,Xp) \land \text{par}(Y,Yp) \land \text{sg}(Xp,Yp)
\end{align*}

we get

\begin{align*}
\text{implies}(W,X,Y,Z) & \leftarrow \text{par}(W,Y) \land \text{par}(X,Z) \\
\text{implies}(W,X,Y,Z) & \leftarrow \text{implies}(W,X,A,B) \land \\
& \quad \text{implies}(A,B,Y,Z) \\
\text{sg}(X,Y) & \leftarrow \text{par}(X,Z) \land \text{par}(Y,Z) \\
\text{sg}(X,Y) & \leftarrow \text{implies}(X,Y,W,Z), \text{sg}(W,Z)
\end{align*}

Part 1 gives us the second rule; here predicate \text{implies} stands for \(t_{sg,sg} \). Part 2 gives us the first rule. Part 3 gives us the third rule. Part 4 gives us the fourth rule.

The above program is easily seen to be equivalent with what we wrote before which we repeat here:

\begin{align*}
\text{implies}(W,X,Y,Z) & \leftarrow \text{par}(W,Y) \land \text{par}(X,Z) \\
\text{implies}(W,X,Y,Z) & \leftarrow \text{implies}(W,X,A,B) \land \\
& \quad \text{implies}(A,B,Y,Z) \\
\text{sg}(X,Y) & \leftarrow \text{implies}(X,Y,Z,Z)
\end{align*}

\[\square \]

4 **The Iteration-Arity Tradeoff**

The number of attributes in the derived relations in a Datalog program (i.e., the arity of the IDB predicates) constrains what kind of queries can be expressed. Here we examine this matter in more detail. In some cases, a query can be expressed with IDB predicates of low arity, but only if the depth of the derivation trees (i.e., the number of rounds or iterations in a recursive implementation of the Datalog program) is high.

Next we will show that there is a tradeoff between the number of rounds and the arity.
4.1 The Reachability Query

Let us begin by examining the reachability query

\[
\begin{align*}
\text{reach}(X) & :- \text{reach}(Y) \& \text{arc}(Y,X) \\
\text{reach}(X) & :- \text{source}(X)
\end{align*}
\]

As we mentioned in Section 1.1, the IDB predicate \(\text{reach}\) is of arity 1, and it could take \(n - 1\) rounds to compute \(\text{reach}\) on a graph of \(n\) nodes. Now, we shall prove that this tradeoff is inherent; any Datalog program \(\Pi\) with IDB predicates of arity 1 that computes \(\text{reach}\) from EDB predicates \(\text{source}\) and \(\text{arc}\) must take \(\Omega(n)\) rounds on an \(n\)-node graph.

Definition 4.1 (C) Consider a derivation tree \(T\) for the program \(\Pi\) and its expansion \(E\). Note that \(E\) has only \(\text{arc}\) and \(\text{source}\) subgoals, although \(T\) may have any number of IDB predicates of arity 1, of which one is \(\text{reach}\). In \(E\) we say there is a path \(X_0, X_1, \ldots, X_k\) from variable \(X_0\) to variable \(X_k\) if for all \(i = 0, 1, \ldots, k - 1\) there is a subgoal \(\text{arc}(X_i, X_{i+1})\). The length of this path is \(k\).

The following theorem says that there is no Datalog program of maximum IDB arity equal to one that computes the reachability query and is such that each true fact can be computed in less than a linear number of rounds.

Theorem 4.1 Suppose \(\Pi\) is a Datalog program for reachability with IDB predicates of arity 1. Then there is a constant \(c > 0\), depending on \(\Pi\), such that when \(\Pi\) is applied to EDB relations \(\text{arc}\) and \(\text{source}\), the height of any derivation tree for the fact \(\text{reach}(a)\) is at least \(c\) times the length of the shortest path from the source node to \(a\).

Proof: We first prove the following inductive hypothesis by induction on \(h\):

Inductive hypothesis: A node \(p(X)\) with a derivation tree of height \(h\) has a corresponding expansion in which for every variable \(Y\), either \(Y\) has no path to \(X\), or \(Y\) is connected to \(X\) via a path of length at most \(kh\), where \(k\) is the size of the largest body in \(\Pi\).

The basis, \(h = 0\), is vacuous. To prove the inductive step, consider a tree of height \(h \geq 1\) with root \(p(X)\), and assume the hypothesis for all trees of length less than \(h\). There are at most \(k\) children of the root, so any variable \(Y\), found among the children, that has a path to \(X\) will be connected by a path of length at most \(k\). Suppose \(q(Y)\) is an IDB subgoal that is a child of the root. All variables in its subtree must have a path to \(X\) through \(Y\) (if they have a path to \(X\) at all), because all the variables in that subtree, other than \(Y\), were nondistinguished variables introduced at some stage of the expansion and do not appear among the children of the root or in any other subtree. Let \(Z\) be any such variable. By the inductive hypothesis, if there is a path from \(Z\) to \(Y\), it is of length at most \(k(h - 1)\). But any path from \(Z\) to \(X\) must go through \(Y\), and therefore, if there is any path from \(Z\) to \(X\), there is a path of length at most \(k(h - 1) + k = kh\).

We have proved that any expansion of a program with IDB predicates of arity 1 and EDB predicates \(\text{arc}\) and \(\text{source}\) contains paths that reach the variable in the root node and are of length at most \(kh\), where \(h\) is the height of the corresponding derivation tree. Now we shall prove that given a database \(D\) over relations \(\text{arc}\) and \(\text{source}\), there is no derivation tree for the fact \(\text{reach}(a)\) of height less than \(c\) times the length of the shortest path in \(D\) from a source node to \(a\), where \(c = 1/k\).

Let \(D\) be a database that has \(\text{source}(v_0)\) and \(\text{arc}(v_i, v_{i+1})\) for \(i = 1, 2, \ldots, n - 1\). That is, force \(D\) to be a single path. Now, we know \(\text{reach}(v_n)\) is true, so we must have an expansion \(E\) with head \(\text{reach}(X)\) and subgoals that are either \(\text{arc}\) or \(\text{source}\) subgoals; there is at least one \(\text{source}\) subgoal. Further, \(E\) maps homomorphically, by a homomorphism \(\mu\) from variables of \(E\) to nodes of the database \(D\) in such a way that all the subgoals are made true. In particular, \(X\) maps to \(v_n\).

Suppose this expansion corresponds to a tree of height less than \(cn\), where \(c < 1/k\), and \(k\) is the parameter associated with constant \(c\) and the particular Datalog program \(\Pi\). Then any
variable in E that has any path to X has a path to X of length less than n. There are two cases:

Case 1: E has a subgoal $\text{source}(Y)$, Y has a path to X, and the homomorphism μ maps Y to v_0. This path involves fewer than n variables of E. When we apply μ to these variables we get a sequence of nodes in the database D that are connected by arc facts and connect v_0 to v_n. However, we have a contradiction, because we know that in D there is no path of length less than n that connects v_0 to v_n.

Case 2: There is no such subgoal $\text{source}(Y)$ for which there is a path from Y to X. Then consider a database D' constructed from D as follows. D' has all the nodes v_0, v_1, \ldots, v_n and also has new nodes u_0, u_1, \ldots, u_n. In D', the fact $\text{arc}(v_i, v_{i+1})$ is true, and so are $\text{arc}(u_i, u_{i+1})$ and $\text{arc}(v_i, u_{i+1})$ for $i = 0, 1, \ldots, n-1$. Note that $\text{arc}(u_i, v_{i+1})$ is not true. In D', $\text{source}(u_0)$ is true, but not $\text{source}(v_0)$. Consider a new homomorphism μ' from E to D'. If Z has a path to X in E, then $\mu'(Z) = \mu(Z)$. In particular, $\mu'(X) = v_n$. However, if Z has no path to X, then $\mu'(Z)$ is such that $\mu(Z) = v_i$. Whenever $\text{source}(Z)$ is a subgoal of E, we know Z has no path to X. We also know $\mu(Z) = v_0$. Thus, $\mu'(Z) = u_0$, which makes this subgoal true. Whenever $\text{arc}(W, Z)$ is a subgoal, we know that if Z has a path to X then W has a path to X. We also know μ mapped this subgoal to a true fact in D. Therefore, μ' will map it to a true fact in D'. We conclude that Π derives $\text{reach}(v_n)$ when applied to database D', since in the expansion E the homomorphism μ' maps X to v_n and maps the body of E to true facts of D'. Since in D', v_n is not reached from any source, we again have a contradiction.

4.2 The Same-Generation Query

Now we consider the same-generation query

$$\text{sg}(X, Y) :- \text{par}(X, Z) \& \text{par}(Y, Z)$$
$$\text{sg}(X, Y) :- \text{par}(X, Xp) \& \text{par}(Y, Yp) \& \text{sg}(Xp, Yp)$$

The following theorem essentially says that any Datalog program with IDB predicates of arity 2 that computes sg from EDB predicate par cannot take $o(n)$ rounds on all databases of size n for all n.

A fact $\text{sg}(A, B)$ in a database D can be proved in various different ways, e.g., either because there is a common parent, (i.e., $\text{par}(C', A)$ and $\text{par}(C', B)$ are true), because there is a common ancestor C which is a grandparent to both i.e., $\text{par}(C, A_1)$, $\text{par}(A_1, A)$ $\text{par}(C, B_1)$ and $\text{par}(B_1, B)$ are true, and so on. All the ways have a common feature: a pair of paths of the same length leading to two individuals from a common ancestor. Thus we say that a pair of nodes A, B has an equal-length pair of paths if there are two sequences of facts $\text{par}(C(A_1), \text{par}(A_1, A_2), \ldots \text{par}(A_n,A)$ and $\text{par}(C, B_1), \text{par}(B_1, B_2), \ldots \text{par}(B_n, B)$. The number of facts in each sequence (i.e., $n + 1$ here) is called the length of the equal-length pair of paths.

Theorem 4.2 Suppose Π is a Datalog program for same-generation with all IDB predicates of arity less than 3. Then there is a constant $c > 0$, depending on Π, such that when Π is applied to EDB relation arc, the height of any derivation tree for the fact $\text{sg}(a_1, a_2)$ is at least c times the length of the shortest equal-length pair of paths for the pair of nodes (a_1, a_2).

Proof: In analogy with Definition 4.1, let us say that in an expansion E there is a path from a variable X to a variable Y in E if E has subgoals $\text{par}(X, X_1), \text{par}(X_1, X_2), \ldots, \text{par}(X_n, Y)$, for some n. Similarly in a database, a path is a similar sequence of facts from a constant a to constant b.

First we need some definitions and then we prove a lemma which concerns properties of expansions of programs with arity at most 2 that compute the same-generation query.

Let Π be a Datalog program on binary predicate par with arity at most 2 that computes the same-generation query. Let E be an expansion of tree T, and let $\text{sg}(X, Y)$ be the root of T. We classify the variables of E according to whether or not they reach X or Y. By reach we
mean that in the expansion there is a path of parent subgoals from the variable in question to the variable \(X \) or \(Y \) that appear at the root of \(T \).

We define three types for interior nodes in the derivation tree \(T \) of \(E \) as follows:

1. A node is of type 1 if both its variables have paths to a single one of the variables \(X \) and \(Y \), which we shall assume is \(X \) by symmetry.
2. A node is of type 2 if one of its variables has a path to one of \(X \) and \(Y \) (which we shall assume is \(X \) by symmetry) and the other has no path to \(X \).
3. A node is of type 3 if neither of its variables reaches \(X \) or \(Y \).

Clearly each node belongs to exactly one of the three types.

The intuition of the rest of the proof is as follows: First we prove Lemma 4.1 which says that if, in the derivation tree of expansion \(E \), nodes of type 1 contain “short” paths (i.e., of length bounded by a constant \(c \)) in their expansions then all paths in \(E \) are of length at most linear on the height of the corresponding derivation tree of \(E \). To prove the lemma we prove an inductive hypothesis which is similar to the inductive hypothesis in the proof of Theorem 4.1 about reachability. The proof of the inductive hypothesis here, however, is considerably more complicated than in Theorem 4.1 because arity greater than 1 introduces more complications. Then we consider two cases: The first case (Case A) assumes an expansion \(E \) with corresponding derivation tree (a particular expansion that computes the \(sg \) query on a particular database) where all type 1 nodes contain short paths in their expansion. Thus we can use the lemma and proceed with the proof in this case, in a similar way as we proceed with the proof of Theorem 4.1 — again with more complications because of the arity being greater than 1. The second case (Case B) is proved to be impossible by using a pumping argument. The pumping argument is enabled because we assume arity less than 3. 4

Lemma 4.1 Let \(\Pi \) be a Datalog program on binary predicate \(par \) with arity at most 2 that computes the same-generation query. Let \(c \) be any constant. Let \(E \) be an expansion of \(\Pi \) with root \(sg(X,Y) \) and let \(h \) be the height of the corresponding derivation tree \(T \) of \(E \). Suppose each node \(q(X',Y') \) of type 1 is such that if \(X' \) and \(Y' \) are connected in the expansion of the subtree rooted at \(q(X',Y') \) then they are connected by a path of length at most \(c \).

Then the following holds for each variable \(Z \) of the expansion \(E \): There is no path from \(Z \) to \(X \) longer than \(kh \), where \(k \) depends on the program \(\Pi \) and the constant \(c \).

Proof:

The proof of the lemma follows from the following inductive hypothesis:

Inductive hypothesis: A node \(p(X',Y') \) in \(E \) with a derivation tree of height \(h \) has a corresponding expansion in which for every variable \(Z \) the following is true: if \(X' \) (\(Y' \) respectively) reaches \(X \) and if \(Z \) is connected to \(X' \) then it is connected via a path of length at most \(kh \), where \(k = k'c \) and \(k' \) is the size of the largest body in the program.

To prove the inductive step, consider a tree of height \(h \geq 1 \) with root \(p(X',Y') \), and assume the hypothesis for all trees of length less than \(h \). \(p(X',Y') \) will belong to one of the three types and we argue accordingly as follows:

1. \(p(X',Y') \) is of type 3. In this case, neither \(X' \) nor \(Y' \) reach \(X \), so we have nothing to prove.
2. \(p(X',Y') \) is of either type 1 or type 2. In both cases, we need to consider the children of node \(p(X',Y') \) and this is what we do in the rest of the proof of this lemma.

4Otherwise we wouldn’t know how to argue because the pumping that we do could affect the length of paths in the expansion that run towards both head variables — whereas in the case of arity at most 3 we can limit its effect only on paths that run towards one of the head variables of \(E \). Of course, if we want to argue about arity 4 predicates, we would need to begin with defining more types depending on the combinations of the variables that reach \(X \).
Thus, suppose \(p(X', Y') \) belongs to either type 1 or type 2. Suppose \(q(Y_1, Y_2) \) is an IDB subgoal that is a child of the root \(p(X', Y') \). All variables in its subtree must be connected to \(X' \) (or \(Y' \) – we will mean either in the following without mentioning it) through either \(Y_1 \) or \(Y_2 \), if they are connected to \(X' \) at all, because all the variables in that subtree, other than \(Y_1 \) or \(Y_2 \) are nondistinguished variables introduced at some stage of the expansion and do not appear either among the children of the root or in any other subtree. Note that (since the arity of predicates is greater than 1) paths that connect those variables to \(X' \) may also contain variables appearing in other children of \(p(X', Y') \), because, now, it is possible to form a path that leads to \(X' \) by combining paths from expansions rooted to a number (greater than 1) of children of \(p(X', Y') \).

To argue regarding the type of children that contribute to the formation of such paths, we think as follows. Assume that \(X' \) reaches \(X \). Hence, any variable \(Z \) that reaches \(X' \) also reaches \(X \), and hence \(Z \) also reaches a variable \(Z' \) in a node that is a child of \(p(X', Y') \), and \(Z' \) also reaches \(X \). Hence the children of \(p(X', Y') \) that contribute to such paths are either of type 1 or type 2. Even more particularly, a child of type 2 may contribute only one of its variables to such paths (because the other does not reach \(X \)) and a child of type 1 may either contribute paths that lead from one of its variables to the other (and hence are of length at most \(c \) by the assumption in the statement of the lemma) or they contribute paths (similarly to children of type 2) only via one of its variables. I.e., a path that leads from \(Z \) to \(X' \) uses several paths of length at most \(c \) and only one path of length \(k(h - 1) = k'c(h - 1) \).

In summary, the ways that we can combine paths from various children to form a path from \(Z \) to \(X' \) are limited to the following:

1. Combine paths from various type 1 children. In this case, each such child can contribute a path of length at most \(c \).
2. Add to the combination only one path that leads from \(Z \) to some variable that appears in a child of \(p(X', Y') \), e.g., child \(q(Y_1, Y_2) \).

By the inductive hypothesis, if there is a path from \(Z \) to \(Y_1 \) or \(Y_2 \) it is of length at most \(k'c(h - 1) = k(h - 1) \). There are at most \(k' \) children of the root \(p(X', Y') \) of the subtree, hence the paths formed are of length at most \(k'c + k'c(h - 1) = k'ch = kh \).

Now we begin to prove the theorem. Let \(D \) be a database that only includes a node \(a \) and two sets of nodes \(u_1, \ldots, u_n \) and \(v_1, \ldots, v_n \), with arcs:

1. \(\text{par}(a, u_1) \) and \(\text{par}(a, v_1) \).
2. \(\text{par}(u_i, u_{i+1}) \) and \(\text{par}(v_i, v_{i+1}) \) for all \(i = 1, 2, \ldots, n - 1 \).

Let \(D \) be a Datalog program that computes the same-generation by its predicate \(\text{sg} \). Now, we know \(\text{sg}(u_n, v_n) \) is true, so we must have an expansion \(E \) with head \(\text{sg}(X, Y) \) and subgoals that are \(\text{par} \) subgoals. Further, \(E \) maps homomorphically, by a homomorphism \(\mu \) from variables of \(E \) to the database \(D \) in such a way that all the subgoals are made true. In particular, \(X \) maps to \(u_n \) and \(Y \) to \(v_n \). Let \(T \) be the corresponding derivation tree of expansion \(E \).

As a consequence of the facts that a) in the canonical database of the expansion the fact \(\text{sg}(x, y) \) is true where \(x, y \) are the frozen constants of the root variables of the expansion and b) there is a homomorphic mapping from the expansion to the database \(D \) (remember \(D \) contains two disjoint paths of length \(n \) each and with the same end) the following are true on the expansion \(E \): Because of (a) there are in \(E \) two paths of equal length both starting from a variable \(Z \) and one leading to \(X \) and the other to \(Y \), and because of (b) these two paths can only be disjoint (except \(Z \)) and of length \(n \) each. Thus we summarize the properties in \(E \):

- \(E \) contains two disjoint paths each starting at the root variables, of length \(n \) each, and with the same beginning at some variable \(Z \). (There may exist more than one variable with the properties of \(Z \), i.e., having two disjoint path to the root variables of length \(n \) each.)
- If there are in \(E \) two paths leading to \(X, Y \) and starting in the same variable after equal length then this length is \(n \) and these paths are disjoint.
We choose constant c so that for every IDB predicate of Π its smallest expansion (i.e., the one with the fewer subgoals) contains at most c EDB subgoals. We have two cases.

Case A: In E, each node $q(X', Y')$ of type 1 is such that the expansion of the subtree rooted at $q(X', Y')$ contains a path shorter than or equal to c from X' to Y' or no path at all.

Now we use Lemma 4.1 where the constant c in the lemma is the c above. We have proved in Lemma 4.1 that any expansion of program Π with the property that type 1 nodes have short paths (in particular shorter than c) in their expansion contains paths that reach the variable X in the root node and are of length at most kh, where h is the height of the corresponding derivation tree. Now we shall prove that for D there is no derivation tree for the fact $sg(u_n, v_n)$ of height less than c_1, times the length of the shortest equal-length pair of paths for the pair u_n, v_n, i.e., shorter than c_1n.

Suppose the expansion E corresponds to a tree of height less than c_1n, where $c_1 < 1/k$, and k is the parameter associated with the particular Datalog program Π as defined in Lemma 4.1. Then any variable in E that connects to X does so by a path of length less than n. There are two cases:

Case 1: There is a variable Z in E from which there are two disjoint paths one to root variable X and the other to root variable Y of length each equal to some n_1. If $n_1 = n$ this is a contradiction because there is no path from any variable of E to X of length more than or equal to n. If $n_1 \neq n$, this is a contradiction because of the properties of expansion E we stated above.

Case 2: There is no such variable of E (say Z). Then take the canonical database D_E of E. On D_E the expansion E can be used to compute the same-generation query $sg(x, y)$ where x, y are the areen root variables. However, in D_E there is no constant of equal-length from the pair x, y, since there is no variable of equal-length from root variables X, Y in E.

Case B: There is in E at least one node $q(X, Y)$ of type 1 such that the expansion of the subtree rooted at $q(X, Y)$ contains a path longer than c from X to Y. We will prove by contradiction that such an expansion E does not exist as follows:

From E we construct another expansion of $\Pi E'$ as follows: For each node $q(X, Y)$ of type 1 such that the expansion of the subtree rooted at $q(X, Y)$ contains a path longer than c from X to Y we do:

We replace in E the set S_q of subgoals in the expansion of $q(X, Y)$ by another set of subgoals S_q' which correspond to a minimal expansion of $q(X, Y)$ (i.e., an expansion of $q(X, Y)$ with the minimum number of subgoals). (Note that c has been chosen so every IDB predicate of Π has an expansion into at most c EDB subgoals.) In S_q' all variables are new except the variables X and Y. Now we have an expansion E' which differs from E only on the EDB subgoals we have replaced.

In E' there are subgoals that are not replaced and subgoals that are new in that they have replaced subgoals in E that are deleted. We call the variables in the former subgoals old and the variables in the latter subgoals new.

We are going to do some observations which will lead us to the conclusion that in E' there are no equal-length pair of paths.

A new variable reaches X via the head variables of the expansion of a node in the derivation tree which (expansion) was replaced by a shorter expansion. These nodes are of type 1 and hence its variables only reach X and they do not reach Y. Hence a new variable does not reach Y.

- Thus only old variables reach both X and Y in E'.

Paths that reach Y in E do not use variables contained in type 1 nodes. Hence the same paths that reach Y exist in E and E'.

The change from E to E' only replaced long paths joining variables contained in type 1 nodes by shorter or no paths at all; hence old variables that reach X in E' also reach X in E. Suppose variable Z reaches both X and Y in E'. Then Z reaches X in E and also reaches Y in E (according to the above explanations). Hence Z has to be an old variable. Therefore only old variables that reach both X and Y in E may reach both X and Y in E'.

Hence variables at distance less than n either reach X or Y but not both in E'. 22
Finally, after the above, only variables at minimum distance \(n \) from \(Y \) reach both \(X \) and \(Y \) in \(E' \). Since there are no variables in \(E' \) that reach \(X \) with such long paths (according to Lemma 4.1), there is no variable in \(E' \) that creates an equal-length pair of paths. Therefore on canonical database of \(E' \), although \(E' \) can be used to compute \(sg \), this is false, hence a contradiction.

5 Conclusions

We have addressed the endgame problem — reducing the number of rounds of a recursion to avoid sending large numbers of small files between compute nodes. For transitive closure, it is possible to solve the endgame problem by using a nonlinear recursion. Modifications to the standard nonlinear transitive closure that have the unique-decomposition property can be expected to do approximately the same amount of work as linear TC, and yet use many fewer rounds. The best choice among unique-decomposition algorithms is data dependent, and it is impossible to declare one algorithm best under all circumstances.

Unfortunately, not all linear recursions are like TC. While it is possible to reduce any linear recursion to TC, doing so can square the number of facts that the recursion must infer. We have investigated whether it is possible to turn a linear recursion into a nonlinear equivalent that takes a logarithmic number of rounds to complete and yet does not increase by more than a constant factor the total work (data-volume cost) of execution. We proved that all right-linear chain recursions have this desired property. However, for two significant examples — reachability and same-generation — we showed that it is impossible to get a sublinear number of rounds without increasing the arity of the recursive predicate(s) and thus increasing significantly the number of facts with which the recursion must deal.

Reachability has a lot of applications including social networks, XML databases, bioinformatics, model verification. The bibliography on this topic, both past and recent is huge; some recent work on indexing techniques for fast reachability computation can be found in [JRXW11, YCZ10, BSD+09, WH+06, CYL+06, CHKZ03].

5.1 Open Questions

We have begun investigation into the matter of when a linear recursion can be replaced by a nonlinear recursion with similar data-volume cost that needs only logarithmic (in the data size) rounds to complete. We suggest:

1. Find classes of linear recursions more general than the right-linear chain recursions (or the obviously equivalent left-linear class) for which one can guarantee logarithmic rounds with no increase in the arity of recursive predicates.

2. For any such class discovered in (1), are there unique-decomposition variants of the nonlinear recursion? Can we argue that these variants are comparable in data-volume cost to the original linear recursions?

3. Find general classes of linear recursions for which we can prove no equivalent recursion that completes in logarithmic rounds can use only predicates of the same arity as the linear recursion.

4. It is reasonable to assume that when the arity of recursive predicates is increased, the number of facts deduced during the recursion grows significantly, and such is the case in the examples we have examined. Is this intuition correct in all cases?

With regard to point (4), we should note the probabilistic single-source reachability algorithm of [UY90] which achieves a low number of derivations although the arity is equal to two. It suggests picking \(O(\sqrt{n \log n}) \) distinguished nodes from an \(n \)-node graph and searching forward from both the source node and all the distinguished nodes, but for only distance \(\sqrt{n} \). Then,
construct a graph on the distinguished nodes, with \(u \rightarrow v \) if distinguished node \(u \) reaches distinguished node \(v \) in at most \(\sqrt{n} \) steps. Take the transitive closure of this graph, using nonlinear TC. Then conclude that the source node reaches node \(w \) if the source reaches some distinguished node \(u \) in up to \(\sqrt{n} \) steps, \(u \) reaches distinguished node \(v \), and \(v \) reaches \(w \) in up to \(\sqrt{n} \) steps.

When translated into Datalog, we have an algorithm in which any reachability fact has a derivation tree of depth \(O(\sqrt{n}) \). Although it has a binary predicate (for taking the TC of the graph of distinguished nodes), we can’t derive more than \(O(n \log^2 n) \) facts using this predicate, not the \(n^2 \) that we supposed would be possible for any algorithm that used a binary predicate. This algorithm works only with high-probability; it is not guaranteed to find all nodes reachable from the source. Thus, an interesting generalization of the theorems of Section 4 would take algorithms such as the one just sketched into account and find tradeoffs between the number of derivations and the depth of the tree. E.g., this improvement on the data-volume cost despite the arity being two, gives motivation to the following question: Can reachability be computed with \(O(n) \) data-volume cost? In a more algorithmic line, another question is to see whether we can get better balance in the probabilistic algorithm by choosing, e.g., \(n^{2/3} \) distinguished nodes and search for distance \(n^{1/3} \); that would give data-volume cost of \(n^{4/3} \) instead of \(n^{3/2} \).

References

