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ABSTRACT
User Defined Function(UDFs) are used increasingly to augment
query languages with extra, application dependent functionality.
UDFs tend to be expensive, either in terms of monetary cost or
latency. In this paper, we study ways to efficiently evaluate selec-
tion queries involving UDFs. We provide a family of techniques
for processing queries at low cost while satisfying user-specified
precision and recall constraints. Our techniques are applicable to
a wide variety of scenarios, such as when selection probabilities of
tuples are available beforehand, when this information is available
but noisy, or when no such prior information is available. We also
generalize our techniques to more complex queries. Finally, we
test our techniques on real datasets, and show that they achieve sig-
nificant savings in cost of upto 80%, while incurring only a small
reduction in accuracy.

1. INTRODUCTION
User defined functions (UDFs) provide query languages with ex-

tra, application-dependent functionality. UDFs are especially im-
portant in data science, enabling data scientists to augment their
workflows with complex computation, including calls to machine
learning algorithms or external APIs. Overall, UDFs come in many
flavors: they could invoke external services (e.g., calls to an up-to-
date weather monitoring service, or a credit check service), expen-
sive algorithms (e.g., image, video or text analysis algorithms), or
even crowdsourced workers (e.g., workers on Mechanical Turk in
CrowdDB or Deco [14, 28]). In all of these cases, UDFs are costly
to evaluate, either (i) in terms of time, for instance in the expensive
algorithm scenario, or (ii) in terms of monetary cost, for instance in
the crowdsourcing or external service call scenario.

In this paper we study techniques for reducing the number of
UDF invocations during query execution, provided the user toler-
ates some reduction in accuracy. In our case we define accuracy in
information retrieval terms (and not in terms of errors of individual
values). That is, say C (a set of tuples) is the correct result of a
query (performing all UDF calls), and R is the approximate result.
Then the precision is |R ∩ C|/|R| and the recall is |R ∩ C|/|C|.
The user specifies bounds on precision and recall to indicate what
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accuracy is acceptable.

EXAMPLE 1.1. To motivate our approach, consider the follow-
ing simple example. A user wants to contact customers with a very
good credit rating to offer a special promotion. The following query
describes his needs:

Q : SELECT ∗ FROM R(A, ID) WHERE f(ID) = 1.

Here f is a UDF, say, a call to a credit check service —returning 1
(for “good”) and 0 (for “bad”)—taking as input ID the identity of
the customer.

If the user requires perfect precision and recall, then the system
must retrieve every R record and check if its f(ID) value is 1.
The cost, either in terms of time taken or money paid to the credit
bureau, will be high.

Instead say the user is willing to tolerate a slightly lower value
of precision and/or recall, say 90% for each. (The precise meaning
of this bound will be discussed later.) In other words, the user is
willing to pitch the promotion to a few customers with a bad credit
rating, and to miss a few good customers, in order to get the query
results significantly faster.

Then, one straightforward query execution strategy is to simply
evaluate f on as many tuples as necessary in sequence until the re-
call and precision constraints are met. Thus, we will end up making
close to 90%× 3000 = 2700 calls to the credit check f function.

Another approach, which we will explore in depth in this paper,
is to estimate and then exploit correlations. In our example, let us
assume there is an attribute A of R that is correlated to the output
of f. For instance, A could be an income attribute or a housing
status that could indicate a higher likelihood for having a good
credit score. (We discuss later how we can discover one or more
attributes that may be correlated to the UDF.)

Step 1: Estimating Correlations. One way to estimate corre-
lations is by sampling some R tuples. For example, after reading
5% of the tuples with each A value, the system has the following
estimates:

• If A=1, f(ID) = 1 with probability 0.9

• If A=2, f(ID) = 1 with probability 0.5

• If A=3, f(ID) = 1 with probability 0.1.

(As we discuss later, sampling is not the only way to obtain the
statistics needed by our next step.) The system also knows that
there are 1000 tuples with each of the possible A values, for a total
of 3000 R records.

Step 2: Executing Query. Then, a better query execution strat-
egy is to handle tuples with each A value differently: Tuples with
A=1 are very likely to satisfy the predicate, so we can add them to



the result without evaluating f. Similarly, tuples with A = 3 and
unlikely to match, so we can simply discard them. Tuples with A =
2 can go either way, so we evaluate f for all of them and only add
to the result matching tuples. With this strategy we only need to
evaluate f 1000 times (plus the evaluations needed for sampling),
not the 2700 calls of the straightforward approach, and we still get
an expected precision and recall of (approximately) 90%.

Note that the execution strategy illustrated above is one of many:
for every group of tuples that shares the same A value, we can
choose to (a) directly add all of them to the result without eval-
uating f, (b) discard all of them, or (c) evaluate all of them and
then decide whether to add it to the result or not. Thus, if n is
the number of distinct values of A, we have 3n possible alternative
execution strategies. We could also employ probabilistic execution
strategies, where we toss a biased coin for each tuple in a group of
tuples sharing the same A value, and decide what to do based on
the outcome. Overall, it is not immediately obvious which of these
strategies we should use in order to meet our precision and recall
guarantees. Indeed, as we will see in the following, designing opti-
mized execution strategies can be shown to be NP-Hard.

To summarize, our approach involves avoiding UDF evaluations by
exploiting correlations between UDF calls and values of other at-
tributes. In our example we have swept a number of details and pos-
sible generalizations “under the rug” in order to present the essence
of our approach. The details will be formalized in the sections that
follow, but for now we make a few clarifications:
• What we called attribute A in our example, could be several

attributes or even a virtual attribute representing the output of
a machine learning algorithm that predicts the f output based
on values in a tuple. That is, with appropriate training data
we may develop a less expensive function f’ that predicts f
(and also provides confidences for its predictions). With such
a function we can skip Step 1, and in step 2 use the f’ values
to decide whether to discard a tuple, output it immediately,
or evaluate the expensive f function. In this paper we will
focus on the sampling approach because it makes it easier to
account for the cost of obtaining correlations.
That said, our techniques for step 2 are agnostic to where the
confidences come from, and can still be used. As a result,
we can certainly use confidences generated by say, logistic
regression or least squares estimation, or any other statistical
techniques. We experimentally evaluate the impact of where
the confidences come from (including sampling and logistic
regression) in Section 6.
• We assume that f values have not been cached in advance. If

the values are available, then the expense of evaluating f on
every tuple has been paid in advance, and conventional query
processing strategies can be used. Our techniques can be
applied even if some of the values are available in advance.
Note however that in many cases f outputs are time sensitive
and should not be cached. For example, weather predictions
or credit ratings change continuously.

We reiterate that our approach hinges on two assumptions: (a)
that the user is willing to accept lower precision and/or recall, and
(b) that there is an attribute (possibly virtual, possibly multiple at-
tributes) that is correlated to the UDF output. For (a), we believe
that users are familiar with document retrieval models where it is
not practical to get the complete and exact answer to a query. Of-
ten, the output of the UDF itself is subjective or approximate (e.g.,
whether a patient is prone to a particular illness, or an image is in-
appropriate), so errors cannot be ruled out no matter what we do.
For (b), if correlated attributes are not known in advance, there are
well known techniques for learning what attributes are good pre-

dictors, and for combining these attributes into a virtual attribute
that can be used by our solution.

When these assumptions hold, we will show (with real data sets)
that queries can be evaluated very efficiently. These savings will
grow in importance as data sets grow in size and UDFs become
more and more popular. In our experiments we will also study var-
ious performance related questions: For example, how much sam-
pling should one do in Step 1? As we sample more, our statistics
improve, but our cost savings decrease. How sensitive is our ap-
proach to the number of A values? As the number of values grows,
the number of tuples with a given value shrinks, possibly making it
harder to get estimates.

Prior work has addressed the optimal placement of UDF evalu-
ation in query plans [11, 12, 17, 19], assuming users have provided
hints for costs of UDFs; in our work, we aim to avoid UDF evalua-
tions entirely by exploiting correlations. Our work is also similar to
the work on exploiting correlations between sensors to reduce eval-
uations in the sensor networks domain [13], however, the scenario
is very different, necessitating different approaches. Related work
is surveyed in more detail in Section 7.

Contributions: We propose a novel approach to optimize expen-
sive UDF optimization by exploiting correlation information. Specif-
ically,
• In Section 2, we introduce the relevant notation for the setup

of the problems we consider.
• In Section 3, we study the case where correlations are known,

and can be exploited — we consider three scenarios where
we can exploit existing correlations, and we describe essen-
tially optimal algorithms for each scenario.
• In Section 4, we study the case where correlations are not

known in advance, and we must jointly estimate correlations,
and exploit them. We describe a method of obtaining correla-
tion information, how to use this information adaptively, and
provide a rule of thumb to use in practice.
• In Section 6, we experimentally evaluate the performance of

our algorithms on two real datasets, and also demonstrate the
correctness of the algorithms.

In Section 5, we mention some extensions of our methods to more
advanced SQL queries that involve more than one table and/or UDF
predicate.

2. PRELIMINARIES
We begin by considering queries like our example query Q in

Section 1. We reproduce the query here:

Q : SELECT ∗ FROM R(A, ID) WHERE f(ID) = 1

The relation R contains an attribute A, the values of which are cor-
related with the output of f(ID) across tuples. It is straightforward
to generalize to queries with more correlated attributes, with joins
or projects, or with categorical predicates for f with operators other
than equality. (We discuss generalizations in Section 5.)

To assist the description of our terminology, we provide example
data for R in Table 1. Naturally, f(ID) is not known in advance
(and instead must be computed using UDF evaluations), but is also
shown along with the table. The tuples in R that satisfy the predicate
(i.e., f(ID) equals 1) are called correct, while those that do not are
called incorrect. Thus, in Table 1, tuples 1-4, 6, and 12 are correct,
while the rest are incorrect.

Groups of Tuples: We use A to denote both the correlated attribute,
as well as the set of distinct values that appear in R.A. Therefore,
we use a ∈ A to denote a value that attribute A can take. In Table 1,
a can be 1, 2, or 3.



Tuple No. A ID f(ID)

1 1 999-999-999 1
2 1 913-418-777 1
3 1 719-334-111 1
4 1 999-999-999 1
5 2 913-418-737 0
6 2 719-334-113 1
7 2 999-999-299 0
8 3 913-418-737 0
9 3 719-334-121 0
10 3 999-999-959 0
11 3 913-418-727 0
12 3 719-334-311 1

Table 1: Example Data for R

The set of tuples that share the same value of A is called a group.
We let ta be the number of tuples in the group that has A=a. Thus,
t1 = 4, t2 = 3, and t3 = 5 in our example. In a group correspond-
ing to A=a, we let ca denote the number of correct tuples (i.e., tu-
ples satisfying the predicate), and wa be the number of incorrect
tuples. Thus, for a = 2, c2 = 1, while w2 = 2.

Note that while we assume ca, wa to be known in our example
(and also in our initial setting in Section 3.1), typically these values
are not known, and are treated as random variables. In such cases,
we use upper case Ca and Wa to denote the random variables. We
assume ta for all a ∈ A is always known.

Actions and Costs: For our simple query Q, we must decide if
each tuple in R is in the result. We have three alternative actions we
could take:
• First, we could discard the tuple, i.e., no action is taken on

the tuple, and the tuple does not contribute to the output. In
this case, we are predicting that the tuple is not correct.
• Next, we could retrieve but not evaluate the tuple, i.e., re-

trieve the tuple from R, and add it to the result without actu-
ally evaluating the UDF. In this case, we are predicting that
the tuple is correct.
• Last, we could retrieve and evaluate the tuple, i.e., retrieve

the tuple from R, evaluate the UDF on the tuple, and add the
tuple to the result if it satisfies the condition f(ID)=1. In this
case, we are certain to be accurate in our assessment of the
tuple.

We assume that we incur a cost of ce for every tuple evaluated,
and a cost of cr for every tuple retrieved from storage. Since UDFs
are expensive, ce is likely to be much greater than cr . Thus, the cost
of discarding a tuple is 0, the cost of retrieving and not evaluating
is cr , and the cost of retrieving and evaluating is cr + ce. Note
that this cost model implies we have some type of index on A so
we can reach the examined tuples with constant cost independent
of the discarded tuples.

We now present expressions denoting costs across tuples. We
first define the following terms for convenience:
• R+

a denotes the total number of correct tuples that we re-
trieved from group a, while R-

a denotes the total number of
incorrect tuples that we retrieved from group a.
• E+

a denotes the total number of correct tuples that we evalu-
ated from group a. E-

a denotes the total number of incorrect
tuples we evaluated from group a.

Then, our overall cost, which we will aim to minimize, is:

C =
∑
a∈A

cr(R
+
a +R-

a) + ce(E
+
a + E-

a) (1)

Metrics and Constraints: Our output must meet a user-specified
precision and recall constraint. As defined earlier, precision is the
fraction of tuples in the output that are correct. Using our notation,∑
a∈AR

+
a is the number o correct tuples that we return, whereas∑

a∈AR
+
a+R

-
a−E-

a is the total number of tuples we return (incor-
rect tuples that are retrieved and evaluated get discarded). Hence,

P =

∑
a∈AR

+
a∑

a∈AR
+
a +R-

a − E−a

Analogously, recall is the fraction of the correct tuples that are
present in the output, i.e.,

R =

∑
a∈AR

+
a∑

a∈A Ca

The user specifies a precision lower-bound α ∈ [0, 1], and a recall
lower-bound β ∈ [0, 1]. Our output must then meet the following
criteria:

P ≥ α; R ≥ β

A special case of interest is the browsing scenario, where 100%
precision is required, and thus we have to evaluate every tuple we
retrieve, and our objective is to minimize expected cost while sat-
isfying the recall constraint.

Probabilistic Constraints: The above bounds are strict, but if
we are making discard and evaluate decisions based on imprecise
statistics, there is a (hopefully small) chance that the output will
violate the bounds. Thus, we also allow the used to define a satis-
faction probability ρ (which we expect to be very close to 1). The
system should then guarantee that with probability ρ the precision
and recall constraints are met.

3. EXPLOITING CORRELATIONS
In the example of Section 1 we described the two steps of our

approach: Step 1 obtains correlations, and Step 2 takes this cor-
relation information as input to process the query efficiently. We
consider three forms of such correlations::
• Perfect Information: In this case, Step 2 receives both Wa

and Ca (the number of wrong and correct tuples, respec-
tively) for all a. This case is included simply as a baseline,
so we can compare the other more realistic cases against it.
• Perfect Selectivities: in this case, we know the probability of

each tuple in a group being correct, i.e., sa for each group
a. If we take a random tuple from group a, then f(ID)=1 for
that tuple with probability sa independent of other tuples.
• Estimated Selectivities: in this case we do not know the se-

lectivity sa precisely. That is, we have a random variable Sa
that represents the selectivity of group a. Selectivity sa is
now the mean of Sa and va is the variance of Sa.

Exploiting these different types of correlations is the technical fo-
cus of this section.

3.1 Warm-up: Perfect Information
We begin by considering the perfect information case, i.e., we

know, in advance, the precise number of correct and incorrect tu-
ples in each group. That is, for each a ∈ A, we know the values of
Ca, i.e., the number of correct tuples, andWa, the number of incor-
rect tuples. Thus, in this section, these values are constants. While
these assumptions are not completely realistic (we will rarely have
such information available in advance), this section will demon-
strate that even when perfect information is available, the problem
of selecting which groups to retrieve and evaluate, which groups to



retrieve but not evaluate, and which groups to discard is already in-
tractable. Furthermore, the section will act as a introduction to the
more complex schemes that we describe in subsequent sections.

Query Optimization and Execution: Since the exact number of
correct and incorrect tuples is known, our processing of this query
proceeds in two steps:
• Optimization: We determine, for each group, whether to

(a) retrieve and evaluate, (b) retrieve but not evaluate, or (c)
directly discard the tuples in that group. In this section, we
focus on deterministic schemes; that is, we pick one of (a) (b)
or (c) for each group to minimize the cost objective C while
meeting precision and recall constraints. (We will consider
probabilistic schemes in subsequent sections.) No query ex-
ecution happens at this point.
• Execution: Then, we execute the query by retrieving all the

tuples in the groups for which we either chose to do (a) or
(b) in the previous step, then we evaluate all the tuples in the
groups for which we chose to do (a).

Optimization Problem: Given the values of Ca and Wa for each
a, the goal of our optimization step is to output boolean decision
variablesRa andEa to satisfy recall and precision constraints while
minimizing cost. The boolean variableRa is set to 1 if the tuples in
that group with A = a are to be retrieved during query execution
(and 0 if the tuples are to be discarded), and the boolean variable
Ea is set to 1 if the tuples in that group with A = a are to be
evaluated during query execution (and 0 if they are not). Note that
Ra ≥ Ea for each a ∈ A since we may only evaluate the UDF on
a tuple if it is retrieved first.

We now rewrite the constraints in the previous section in terms of
the new boolean variables Ra, Ea. The recall constraint becomes:∑

a∈A

CaRa ≥ β
∑
a∈A

Ca (2)

Note that given Ca values, the right hand side of the inequality is a
constant γ = β

∑
a∈A Ca. The precision constraint becomes:∑

a∈A CaRa∑
a∈A CaRa +Wa(Ra − Ea)

≥ α

⇔
∑
a∈A

((
1

α
− 1)Ca −Wa)Ra +WaEa ≥ 0 (3)

Then, the optimization problem can be restated as:

PROBLEM 1 (PERFECT-INFORMATION). GivenCa,Wa, ta∀a,
identifyRa, Ea ∈ {0, 1};Ra ≥ Ea to minimize C =

∑
a∈A(Wa+

Ca)(Racr + Eace), such that Constraints 2 and 3 are satisfied.

We demonstrate that Problem 1 is NP-hard, which motivates the
more relaxed semantics throughout this section.

Hardness of Special Case. We can show that Problem 1 is
NP-hard even when there is no precision constraint. Since Prob-
lem 1 can be cast as an Integer Linear Program (ILP), overall, the
problem is NP-Complete.

THEOREM 3.1. Problem 1 is NP-Complete in |A| (i.e., the num-
ber of distinct values of A).

PROOF. (Sketch) Let Wa = Ca, α = 0, β = 1/2, then Con-
straint 3 is trivially satisfied, and the objective becomes (Ea = 0
since we don’t have any other constraint on Ea):

Minimize
∑
a∈A

CaRa, such that
∑
a∈A

RaCa ≥
∑
a∈A

1

2
Ca

We may reduce the NP-Hard Partition problem to this special case,
with the integers in the partition problem being mapped to Ca val-
ues.

Complete proofs of this as well as other results in the paper can be
found in the appendix of the extended technical report [24].

The hardness result continues to hold when
• Ca is any constant multiple of Wa (for all a)
• β is set to any arbitrarily small or large number

As a result, even very simple versions of the problem are already in-
tractable. On the other hand, the hardness result does not hold when
there is only a precision constraint (and no recall constraint)—the
precision constraint can be trivially satisfied by retrieving no tuples.

3.2 Perfect Selectivity Information
In the previous section, we demonstrated that the optimization

problem to generate deterministic execution schemes meeting pre-
cision and recall guarantees exactly, was NP-Hard. In this section,
we make the following modifications to the problem in the previous
section:
• Selectivities: We now assume that Wa, Ca,∀a ∈ A are not

provided to us. Instead, we assume that we know the selec-
tivity sa of each group a ∈ A, i.e., for a tuple with A = a,
the probability of it being correct is independently true with
probability sa. These selectivities could be learned using his-
torical data. We assume that the selectivity values are perfect.
(In the next section, we consider selectivity values that may
be imperfect.)
• Satisfaction Probability: Since we are dealing with selec-

tivities which are probabilities, rather than deterministicWa,
Ca values, there are always adversarial inputs on which any
query execution strategy would perform poorly. Thus, in this
section (and subsequent ones) we assume that the user has
given us a probability value ρ such that our precision and re-
call constraints must be met with probability ρ. We expect ρ
to be very close to 1.
• Probabilistic Schemes: Since we are dealing with probabil-

ities for both the quantities mentioned previously, it is more
natural to consider probabilistic execution strategies rather
than deterministic ones.

We now present the problem formally.

Query Optimization and Execution: As before, our processing
proceeds in two steps:
• Optimization: We determine, for each group, whether to

(a) retrieve and evaluate, (b) retrieve but not evaluate, or (c)
directly discard the tuples in that group. We do this by gener-
ating probabilities 0 ≤ Ea, Ra ≤ 1,∀a ∈ A. The objective
of this step is to choose Ras and Eas such that the results
after execution (described next) satisfy the precision and re-
call constraints with probability at least ρ, while minimizing
expected cost C. No query execution happens at this point.
• Execution: We then execute the query by retrieving each

of the tuples in group a with probability Ra, independent
of all other tuples, and evaluate each of the retrieved tuples
from group awith probability Ea

Ra
, again independently of all

other tuples. (Note that these two probabilities when multi-
plied together give Ea, which is precisely the probability we
evaluate a tuple from group a.) Tuples that are retrieved but
not evaluated are returned in the output (that is, we assume
those tuples are correct).

Optimization Problem: For each a ∈ A, we are given the se-
lectivity sa of group a, i.e., each tuple in group a is correct with
probability sa independent of other tuples.



Our constraints can be expressed as follows: We have the ba-
sic constraint 1 ≥ Ra ≥ Ea ≥ 0. Recall that R+

a denotes the
random variable corresponding to the number of correct tuples re-
trieved from group a (similarly for R−a , E+

a , E
−
a .) The precision

constraint, which must be satisfied with probability ρ, can be ex-
pressed as: ∑

a∈A

R+
a − α

∑
a∈A

(R+
a +R-

a − E-
a) ≥ 0 (4)

The recall constraint, which again must be satisfied with probability
ρ, can be expressed as:∑

a∈A

R+
a − β

∑
a∈A

Ca ≥ 0 (5)

Since our solution is now probabilistic, we try to minimize the ex-
pected value of the objective.

C = E

[∑
a∈A

cr(R
+
a +R-

a) + ce(E
+
a + E-

a)

]
=
∑
a∈A

(Wa + Ca)(crRa + ceEa) =
∑
a∈A

ta(crRa + ceEa)

PROBLEM 2 (PERFECT-SELECTIVITIES). Given sa, ta∀a, iden-
tify 0 ≤ Ea ≤ Ra ≤ 1 to minimize C =

∑
a∈A ta(crRa + ceEa),

such that Constraints 4 and 5 are satisfied with probability greater
than ρ.

In the next few subsections, we will (a) describe a LP-based so-
lution for Problem 2 (b) demonstrate that the LP-based solution is
asymptotically optimal (c) describe how we may speed up the com-
putation of the LP, by leveraging the special structure of the LP.

3.2.1 LP-Based Solution
First, notice that the expected value of the LHS of Constraint 4

can be rewritten as follows:

Gp =
∑
a∈A

tasa(1− α)Ra + ta(1− sa)α(Ea −Ra) (6)

We get the above equation by substitutingE[R+
a ] = sataRa,E[R−a ]

= (1− sa)taRa (the Ea equations are similar). Similarly, the ex-
pected value of the LHS of Constraint 5 can be rewritten as follows:

Gr =
∑
a∈A

tasaRa −
∑
a∈A

βtasa (7)

Our approach will be to ensure that Gp and Gr , i.e., the expected
values of quantities closely related to precision and recall, are greater
than some carefully chosen thresholds tpρ and trρ respectively, to en-
sure that the corresponding constraints 4 and 5 are satisfied with
probability ρ.

We define tpρ, trρ as follows:

tpρ =

√
log(1− ρ)

∑
a∈A ta

2
(8)

trρ =

√
log(1− ρ)

∑
a∈A ta(1− β)
2

(9)

Then, consider the following linear program:

LINEAR PROG. 3.2 (PERFECT-SELECTIVITIES). Minimize∑
a∈A ta(Racr + Eace) subject to:∑
a∈A

tasa(1− α)Ra + ta(1− sa)α(Ea −Ra) ≥ tpρ (10)

∑
a∈A

tasaRa −
∑
a∈A

βtasa ≥ trρ (11)

∀a ∈ A; 1 ≥ Ra ≥ Ea ≥ 0

It can be shown that solving the linear program above gives us Ra
and Ea that satisfy the precision and recall constraints with prob-
ability at least ρ. Our proof uses repeated applications of Hoeffd-
ing’s inequality, union bounds [30], as well as other standard results
in probability. The proof of the following theorem, along with those
for other theorems, can be found in the appendix.

THEOREM 3.3. Solving Linear-Prog. 3.2 provides a feasible so-
lution for Problem 2.

The theorem above only states that the solution will be feasible, but
not how close the resulting cost C is to the optimal cost. Thankfully,
as we will show below, our solution is close to optimal.

Tightness. We state the tightness bound on our result below.

THEOREM 3.4. Let smina be the smallest non-zero value of sa.
Then, the difference between the cost of the optimal solution to
Linear-Prog. 3.2, and the cost of the optimal solution to Problem 2,
is at most

(ce + cr)
1

smina

max(trρ + tr1−ρ,
tpρ + tp1−ρ
1− α )

This cost difference described in the previous theorem isO(
√
n)

where n is number of tuples, because the tp, tr values are O(
√
n).

Now consider what happens as n → ∞ for fixed sa’s, α, β. This
means we have the same constraints, and groups with the same
selectivities, but the group sizes are scaled up. As n → ∞, the
ratio of our cost to optimal cost→ 1, as indicated by the theorem
below:

THEOREM 3.5. As n→∞, the ratio of the cost of the optimal
solution to Linear-Prog. 3.2, to the cost of the optimal solution to
Problem 2 approaches 1.

Thus, our solution for Problem 2 is asymptotically optimal.

3.2.2 Greedy Solution for the linear problem
In this section, we describe an efficient way to solve Linear-

Prog. 3.2 without even using a linear solver, inO(|A| log |A|) time:

THEOREM 3.6. If the following constraints hold:

tpρ <
∑
a∈A

max(ta(sa − α), 0)

trρ <
∑
a∈A

(1− β)tasa

then the solution to Linear-Prog 3.2 can be found inO(|A| log |A|)

The first constraint simply states that the variance term tpρ is not too
large (the constraint is trivially satisfied if the term is 0). It ensures
that the precision constraint can be satisfied without evaluating any
tuple with selectivity ≥ α, while the second constraint simply en-
sures that the problem has a solution.

Our algorithm is the following:



Algorithm GREEDY-LP
• Initialize all Ra and Ea to 0. Sort the a’s based on sa.
• Then start increasing the values of Ra in a greedy fashion.

That is, increase Ra for the highest selectivity a until it be-
comes 1, then increase Ra for the next highest selectivity a,
and so on. Keep doing repeating this step until the recall con-
straint Equation 11 is satisfied.

• After that, keep the Ras fixed, and start increasing the Eas
in a greedy fashion, but in reverse order. That is, start by
increasing Ea for the a with lowest selectivity and non-zero
Ra, until it reaches Ra, then move to the a with next low-
est selectivity, and so on. Keep repeating this step until the
precision constraint Equation 10 is satisfied.

Thus the approach is to round up the values of the Ra in the
order of decreasing sa, and then round up the values of the values
of the Ea in the order of increasing sa. The intuition is simple;
we want to retrieve all the groups where the selectivity is high, in
order to meet our recall constraint. Once we know we’re retrieving
enough groups to meet our recall constraint, we then ensure that
we’re evaluating enough groups to meet the precision constraint.
Naturally, we’d rather evaluate UDFs for the most incorrect groups
among those we’re already retrieving — i.e., those with the lowest
sa first, so that we can have the maximum impact on precision.

The proof that Algorithm GREEDY-LP provides the solution to
Linear-Prog. 3.2 uses the following Lemmas, whose proofs can be
found in the appendix:

LEMMA 3.7. There exists an optimal solution where, for every
a1 and a2 such that sa1 > sa2 : either Ea2 = Ra2 or Ea1 = 0

LEMMA 3.8. There exists an optimal solution where, for every
a1 and a2 such that sa1 > sa2 : either Ra1 = 1 or Ra2 = 0

LEMMA 3.9. In an optimal solution, either the precision con-
straint must be satisfied tightly (with equality) or all the Es must
be 0. In addition, the recall constraint must be satisfied tightly.

3.3 Estimated Selectivity Information
In the previous section, we developed probabilistic execution

strategies when the selectivity of each group is precisely known
in advance. In reality, however, we are unlikely to know the pre-
cise selectivity of each group, and must instead rely on estimates
of selectivity (found using sampling or some other method). In this
section, we consider the case where we only have an estimate of
the selectivity.

As in the previous section, we focus on probabilistic execution
strategies that ensure that the precision and recall constraints are
met with satisfaction probability ρ close to 1. Further, as in the pre-
vious section, our query processing proceeds in two steps, one, that
solves an optimization problem, and second, that actually executes
the query using the solution to the optimization problem.

Optimization Problem: Suppose the tuple selectivity for each
value a ∈ A is given by a value s′a unknown to us. What is known
to us instead is an estimate sa of s′a, which is an instance of a ran-
dom variable Sa. Let

E [Sa] = s′a and Var(Sa) ≈ va

where va is our estimate of the variance of Sa. Note that in this
section sa is an estimate of Sa, and not the actual selectivity like in
the previous section.

We are given α, β, ρ, and we want to choose probabilities 1 ≥
Ra ≥ Ea ≥ 0, ∀a ∈ A, such that when execution strategy re-
trieves and evaluates tuples probabilistically as described in Section
3.2, the eventual result satisfies the precision and recall constraints
with probability at least ρ, while minimizing cost:

PROBLEM 3 (ESTIMATED-SELECTIVITIES). Given sa, va, iden-
tify 0 ≤ Ea ≤ Ra ≤ 1 to minimize C =

∑
a∈A ta(crRa + ceEa),

such that Constraints 4 and 5 are satisfied with probability greater
than ρ.

3.3.1 Convex Optimization-Based Solution
Until now, we have not specified the correlations between Sas

for different as. We solve the problem for two cases, one where the
correlations are unknown (and hence we assume the worst case of
maximum correlation between Sas) and the other case where Sas
for different a’s are independent of each other. Our solutions for
the two cases are:

CONVEX PROG. 3.10 (UNKNOWN-CORRELATIONS). Minimize∑
a∈A ta(Racr + Eace) such that∑

a∈A

(1− α)taRasa − taα(Ra − Ea)(1− sa) ≥ X∑
a∈A

taRasa − βtasa ≥ Y

cρ
∑
a∈A

√
vata(Ra − αEa) + 0.5

√
ta = X

cρ
∑
a∈A

√
vata|Ra − β|+ 0.5

√
ta = Y

Ra, Ea ∈ {0, 1};Ra ≥ Ea

where cρ = 1√
1−ρ

Notice that the first two constraints and the objective of the problem
above are identical to those in Linear-Prog. 3.2. However, the next
two constraints (regarding X,Y ) are highly non-linear, forcing the
problem to be a convex problem. Solving this problem gives a
solution which has precision ≥ α and recall ≥ β with probability
at least ρ each.

CONVEX PROG. 3.11 (INDEPENDENT GROUPS). Minimize∑
a∈A ta(Racr + Eace) such that∑

a∈A

(1− α)taRasa − taα(Ra − Ea)(1− sa) ≥ X∑
a∈A

taRasa − βtasa ≥ Y

cρ

√∑
a∈A

t2ava(Ra − αEa)2 + 0.25ta = X

cρ

√∑
a∈A

t2ava(Ra − β)2 + 0.25ta = Y

Ra, Ea ∈ {0, 1};Ra ≥ Ea

where cρ = 1√
1−ρ

Once again, the first two constraints and the objective of the prob-
lem above are identical to those in Linear-Prog. 3.2, while the next
two constraints make it highly non-linear.

Solving this problem gives a solution which has precision ≥ α
and recall ≥ β with probability at least ρ each.



THEOREM 3.12. Solving Convex-Prog. 3.10 provides a feasi-
ble solution for Problem 3 when correlations between Sas are un-
known.

THEOREM 3.13. Solving Convex-Prog. 3.11 provides a feasible
solution for Problem 3 when Sas are independent.

Both our solutions make use of Chebyshev’s inequality, which
says that for any random variable X

Prob [|X − E [X] | > t] ≤ Var(X)

t2

This implies that

Prob
[
|X − E [X] | ≤ Dev(X)√

1− ρ

]
≥ ρ

Thus in order to satisfy a constraint X ≥ 0 with probability ρ, it is
sufficient to ensure that E [X] ≥ Dev(X)√

1−ρ . We use this to transform
the precision and recall constraints ’with probability ρ’ into non-
probabilistic constraints. The X and Y in Convex-Prog. 3.10 and
Convex-Prog. 3.11 are the deviation times 1

1−ρ terms, and the lhs
in the first two constraints say that expected value is greater thanX
or Y .

4. JOINT ESTIMATION & EXPLOITATION
In the previous section, we developed probabilistic execution

strategies when selectivity estimates are already available. How-
ever, in many cases, selectivity estimates are not usually available
beforehand, and need to be gathered on-the-fly. In this section, we
focus on the problem of jointly estimating and exploiting selectiv-
ity information. Our estimation of selectivities will happen using
sampling (i.e., retrieving and evaluating a small fraction of the tu-
ples).

Our key idea will be to adapt the technique from Section 3.3
to work with sampling-based estimates of selectivities. We first
examine how we can map knowledge from samples to the setting
from Section 3.3 in Section 4.1. We then describe our extension
of the solution from Section 3.3 to this new scenario, assuming
samples are given, in Section 4.2. Lastly, we consider the problem
of deciding how much to sample from each group in Section 4.3.

4.1 Sampling-based Estimates
For the purposes of this subsection, we assume that some number

of tuples per group have been sampled, i.e., for each of those tuples,
we have retrieved and evaluated them. We now describe how the
sampled UDF evaluations lead to selectivity estimates.

For each a ∈ A, we use random variable Sa to represent the
distribution of selectivity estimates we may obtain for tuples from
group a. We assume that the Sas themselves are independent of
each other for different as, so evaluating a tuple for a = a1 ∈ A
tells us nothing about the selectivity Sa2 , for a2 6= a1.

Suppose for each a ∈ A, we have evaluated the UDF on Fa
tuples for that a, and found F +

a of them to satisfy the predicate,
and F -

a that don’t (thus Fa = F +
a + F -

a ). Then at that point, the
probability density function of our estimate at x will be given by us
a Beta distribution [30]: Beta(F +

a + 1, F -
a + 1) Therefore

sa = E
[
Beta(F +

a + 1, F -
a + 1)

]
=
F +
a + 1

Fa + 2
;

va = Var(Beta(F +
a + 1, F -

a + 1)) =
sa(1− sa)
Fa + 3

where sa and va are defined as per Section 3.3.

4.2 Solution given Sampling-based Estimates
As described above, we can use sampling to obtain selectivity

estimates. The estimates can then be used to solve the problem in a
way similar to Section 3.3.

However, there is a small wrinkle that needs to be dealt with:
in addition to giving us selectivity estimates, the sampled tuples
will themselves have been evaluated already. So, among these tu-
ples, those that are correct (based on the UDF invocation on that
tuple) can be simply returned as part of the query result without
re-evaluating them.

Expressing the mean and variance of selectivities in terms of F +
a ,

F -
a and Fa, and taking into account the tuples that have already

been sampled (and hence retrieved and evaluated), we can rephrase
the optimization problem from Section 3.3 as below:

CONVEX PROG. 4.1 (SAMPLING SELECTIVITIES). Minimize∑
a∈A(ta − Fa)(Racr + Eace) + Fa(ce + cr) such that∑

a∈A

F +
a (1− α) + (1− α)(ta − Fa)Rasa−

(ta − Fa)α(Ra − Ea)(1− sa) ≥ X∑
a∈A

F +
a + (ta − Fa)Rasa − β(ta − Fa)saβF +

a ≥ Y

cρ

√∑
a∈A

(ta − Fa)2va(Ra − αEa)2 + 0.25(ta − Fa) = X

cρ

√∑
a∈A

(ta − Fa)2va(Ra − β)2 + 0.25(ta − Fa) = Y

Ra, Ea ∈ {0, 1};Ra ≥ Ea

where cρ = 1√
1−ρ

and we have:

THEOREM 4.2. When Sas are been obtained by sampling Fa
tuples from group a for each a ∈ A, of which F +

a tuples turn
out to be correct (based on UDF evaluations for each of the Fa
tuples), solving Convex-Prog. 4.1 provides a feasible solution for
Problem 3.

Note that nothing prevents us from going back-and-forth be-
tween estimating selectivities and exploiting them: that is, we may
continuously update our selectivity estimates as we evaluate more
tuples. We can start off with certain selectivity estimates, apply
CONVEXPROG 4.1, decide whether to retrieve and/or evaluate for
each group, and as we evaluate more tuples per group, we can go
back to Section 4.1, derive new estimates for selectivities, and then
apply CONVEXPROG 4.1 again: Thus, our algorithms can be used
multiple times in an adaptive fashion.

4.3 Deciding how much to Sample
We now consider the question of how many tuples Fa to sample

from each group a. One simple baseline, is to fix a constant c and
then sample c tuples from each group. However, since we know the
sizes of the different groups, we can use that to significantly reduce
overall cost.

We first state a property, and then use that to derive a rule of
thumb for how many tuples to sample per group. Let n be the
total number of tuples in the table. Then, if the precision and recall
thresholds are fixed, it can be shown that a desirable Fa should be

O(tan
− 1

3 )

The justification for this statement can be found in the extended
technical report [24].



Therefore, our rule of thumb is:

For a suitably chosen parameter num, Fa, the number of tuples
sampled from group a for each a ∈ A should be

Fa = num × tan−
1
3

We can use this rule of thumb in conjunction with the previous
sections to decide how much to sample from each group. Naturally,
the rule of thumb (as stated) cannot be applied if the value of the
parameter num is not known to us. As we will see in the experi-
mental section, the rule of thumb is not very sensitive to the value
of num, and will work even for values of num in a fairly large range
in a variety of experimental scenarios.

As it turns out (as we will see in the experimental section), the
optimal value of num is proportional to α, the desired precision
threshold. In fact, we find that a value zα, with 2 ≤ z ≤ 5 usually
works well. But even if it doesn’t, we can guess the optimal value of
z using adaptive sampling as follows: We start with a small value
of zα for num, and keep increasing it. We also keep solving the
convex optimization problem (CONVEXPROG. 4.1) for each value
of num and keep estimating the cost of the solution as we increase
num. The cost will initially fall as num increases, and will later start
to rise as num crosses its optimal value. When cost starts to rise, we
can stop further sampling and proceed to solve the problem using
our technique from Section 4.2.

5. EXTENSIONS
In this section, we mention some variations of the problem that

can be handled using small extensions to the techniques discussed
so far. Further details on the extensions and their solution can be
found in the appendix of the technical report [24].
• Alternate Objective Functions : There may be scenarios

where the user has a fixed cost budget, and wishes to max-
imize the number of tuples returned while ensuring a lower
bound on precision. Minor modifications of our techniques
can be used to handle this variation.
• Multiple Predicates : Another variation of the problem is

where the query might have multiple chained UDF selects on
a table (which is equivalent to a conjunction of multiple UDF
predicates). Since precision and recall constraint are speci-
fied by the user for the final output, for this variation it may
be possible to trade-off accuracy in one predicate for higher
accuracy in the other at the same cost. This problem can be
handled by introducing one decision variable per mapping of
UDF to decisions. For example, there may be one decision
variable which is true if and only if we retrieve for the first
predicate and retrieve and evaluate the second predicate.
• Single Predicate with Join : Another variation we can con-

sider is where the table T being selected on is later going to
be joined with another table T ′. Each tuple of the table T
may match with a different number of tuples of T ′, possi-
bly making it worthwhile for us to evaluate a tuple with low
correctness-probability that matches with a large number of
tuples from T ′, over a tuple with higher correctness proba-
bility that joins with fewer tuples from T ′. This variation can
also be solved by a minor modification of our techniques.

6. EXPERIMENTS
Our experimental evaluation studies the following three items
• In Experiment 1, we discuss the performance of our query

evaluation algorithms versus both baseline algorithms and al-
gorithms that have perfect knowledge. On both our data sets,

we show that our algorithm achieves 40 − 80% reduction
in cost compared to baseline approaches, and is competitive
with (unrealistic) approaches that have perfect knowledge.
We also verify that our approaches meet the specified preci-
sion and recall constraints. For this evaluation, we assume a
fixed sampling procedure.
• In Experiment 2, we discuss the sensitivity of our approach

to the choice of sampling procedure and its parameters. We
also demonstrate that our method can be used with more so-
phisticated sampling models, such as a logistic regressor.
• In Experiment 3, we discuss the sensitivity of the perfor-

mance of our approach to the precision, recall, and proba-
bility constraints in the query.

6.1 Experimental Setup
We use two datasets for our experiments both based on loan data.
Lending Club The first dataset, denoted LC, consists of loan

data from the peer-to-peer lending website, the Lending Club [1].
The data consists of two csv files, which together contain about
53000 labelled tuples. Each tuple corresponds to a single loan ap-
plication, and includes attributes like applicant’s id, loan amount,
term, applicant’s grade (a grade assigned by the lending club to
reflect borrower quality), employment title, housing status, annual
income, purpose of loan. One of the columns is Loan Status, which
is the current status of the loan. Values for this column include
’Current’, ’Charged Off’ (which means that the loan is considered
unlikely to be repaid), ’Fully Paid’, ’Default’ and ’Late’. We assign
a value of ’good’ to ’Fully Paid’ and a value of ’bad’ to ’Charged
Off’, ’Late’, and ’Defaulted’.

Prosper The second dataset consists of loan data from the web-
site Prosper [2]. It consists of about 30000 tuples, each tuple cor-
responds to an individual loan application. It has columns such as
amount borrowed, debt to income ratio, and grade. The Loan Status
column has values which we classify as ’good’ and ’bad’. ’good’
values correspond to loans which were paid back on time, while
’bad’ ones are for loans which were either paid late or not repaid at
all.

Protocol. We then assume that the loan status attribute (’good’
vs. ’bad’) is the UDF f to be selected on. That is, we consider the
query on a table of loan applications, that selects loan applications
that will be repaid on time. Overall, we have 53000 tuples from one
dataset and 30000 from the other for which the value of the UDF f
is known precisely for the purposes of evaluation, but assumed to
be unknown to any of the query evaluation algorithms initially. We
can then simulate ’sampling’ by revealing the value of f for any tu-
ple requested by the query evaluation algorithm. Moreover, we can
check the precision and recall obtained by any query evaluation al-
gorithm using our knowledge of f. Unless otherwise specified, we
set the default value for the query constraints to be α = 0.8 (pre-
cision), β = 0.8 (recall), ρ = 0.8 (satisfaction probability). We
experimented with different costs for evaluation versus retrieval,
but found our results were largely insensitive to these parameters.
Hence we set ce = 3 and cr = 1, which implies that evaluating the
UDF is a factor of three more expensive than retrieving the tuple.

6.2 Experiment 1 : Performance Comparison
In this experiment, we show that our algorithm has significantly

better performance compared to baseline approaches, and is com-
petitive with (unrealistic) approaches that have perfect knowledge.
We compare four different query evaluation algorithms:
• Full : This is a baseline algorithm in which one retrieves and

evaluates every tuple. Full is the current standard of process-
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Figure 1: Number of retrievals and evaluates for various Query Evaluation Algorithms

ing with UDFs.
• BiGreedy: Here we use the technique from Section 3.2. The

technique is unrealistic as it requires that selectivities be known
exactly, so we use our knowledge of all values of f to com-
pute the selectivities and provide them as input to the tech-
nique. Thus, this algorithm acts as a cost lower bound to the
first algorithm (since it has perfect knowledge of selectivi-
ties). We again form groups using grade as the correlated
column.
• Greedy: This algorithm also receives perfect selectivities as

input (and so is unrealistic). It then greedily retrieves tuples
in decreasing order of selectivity until the recall constraint
is met in expectation, and evaluates every tuple it retrieves.
This algorithm is used as a baseline.
• Sampling: In this algorithm, we form groups based on some

correlated column, sample to get selectivity estimates, and
then use the technique from Section 3.3 to decide what to re-
trieve and evaluate. For this experiment, we keep the sample
size fixed at 5% of the data, and fix the correlated column to
grade.

We include Greedy and BiGreedy as they represent unrealistic
baselines that have perfect information. Our method, Sampling,
obtains the selectivity information and exploits it. The cost of sam-
pling tuples to estimate the selectivity will be included in the total
cost of the Sampling algorithm. Thus, by comparing Sampling with
Greedy and BiGreedy, we can understand how effectively Sam-
pling deal with imperfect selectivity information. We present ex-
periments on the LC dataset as the results are similar on the Prosper
dataset.

6.2.1 Comparison of Costs
We estimate the average number of tuples retrieved and eval-

uated by each algorithm over 50 iterations, and plot them in the
bar chart in Figure 1. We see that while the number of retrievals
is almost the same for all algorithms (except Full), the number of
evaluations is far smaller for our two algorithms than for the base-
lines. Specifically, our sampling based algorithm ends up evaluat-
ing around 11000 tuples, which is almost one-fourth of the 39000
tuples evaluated by greedy. The Sampling algorithm is not too
much worse than BiGreedy, even though BiGreedy has the unre-
alistic advantage of knowing exact selectivities beforehand.

6.2.2 Satisfaction of Precision and Recall Constraints
While our algorithms avoid several evaluations, they do so at the

cost of slightly lower precision and recall. In this experiment, we

show that the precision and recall guarantees are met by our algo-
rithm. Our algorithms are supposed to guarantee that the precision
and recall constraints will be satisfied with probability at least ρ.
We now test if this guarantee is being met.

We first fix a value of ρ. For that value of ρ, we execute the Sam-
pling algorithm 100 times (all the way from sampling, to finally
retrieving and evaluating and returning tuples), and for each exe-
cution, we note whether the precision and recall constraints were
satisfied or not. Then we compute the accuracy i.e. the fraction of
times the constraints were satisfied for this ρ, and repeat this proce-
dure for different values of ρ. The accuracy is then plotted vs. ρ, in
Figures 2(a) (Precision Accuracy) and 2(b) (Recall Accuracy). The
x = y line in the figures is the minimum level of accuracy required
to satisfy our guarantee. As the figures show, our accuracy is con-
sistently above the line, which means our algorithms do satisfy the
precision and recall constraints more than ρ fraction of the time, as
desired.

6.3 Experiment 2: Robustness of Estimation
As we saw in the previous section, the Sampling algorithm does

not involve any unrealistic assumptions like knowing exact selec-
tivities, and still performs far better than the baselines. However,
the Sampling algorithm contains several free parameters, such as
the correlated column to be used to estimate selectivities of UDF
evaluations, and the number of tuples to be sampled to obtain se-
lectivity estimates. In this section, we will attempt to explore how
the parameters may be chosen so as to obtain good results.

Sampling Algorithms . We compare two different sampling
algorithms. Each sampling algorithm tells us how many tuples
to sample from each group, before finalizing the selectivity esti-
mates. Subsequently, techniques from Section 3.3 (denoted ’Sam-
pling’ above) may be used, using selectivity estimates as input. The
sampling algorithms are:
• Constant(c): This algorithm samples c tuples from each group.
• Two-Third-Power(num): This algorithm uses our result from

Section 4 which says that if a table has n tuples, and group
a has ta tuples, then the optimal number of tuples to sample
from group a is proportional to tan−

1
3 . Hence this algorithm

samples numtan−
1
3 tuples from group a.

6.3.1 Sampling Schemes and Sample Sizes
We now explore the question of how many tuples to sample per

group. When we have formed groups but not sampled any tuples,
the only information we have is the sizes of the groups.

The schemes of Section 6.3 tell us the proportion in which to
sample tuples from each group. Each scheme has an additional free
parameter (c or num), which we use to determine the exact number
of tuples to sample from each group. We study the average cost of
evaluating tuples as a function of this parameter, for each scheme.

Specifically, we first fix the value of the parameter (c or num)
and use the parameter value to compute the number of tuples to
sample from each group. Then we randomly sample and evalu-
ate the corresponding number of tuples from the groups, and form
estimates about the selectivity of each group. We then solve our
convex optimization problem as in Section 3.3 to decide how many
tuples to retrieve and evaluate from each group, and compute the
expected number of tuples we needed to evaluate to determine cost
(the number of tuples retrieved does not vary much for different
sampling schemes or sizes). We do this for 100 iterations, and take
the average the number of evaluations across iterations. We find av-
erage evaluations for several different values of the parameter, and
using different correlated columns, and plot the results. The cor-
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Figure 2: (a) Fraction of times precision constraint was satisfied, for different values of ρ (b) Fraction of times recall constraint was satisfied, for different values of ρ

related columns we use are Loan Term, Housing Status and Grade
for LC, and grade for Prosper. The evaluations vs. parameter c
for the Constant Sampling scheme is plotted in Figure 3(a), while
evaluations vs. parameter num for the Two-Third-Power scheme
is in Figure 3(b).

We make three observations about Figures 3(a) and 3(b). The
first observation is that sampling too little or too much leads to
higher cost; too little because our selectivity estimates are bad, and
too much because of the cost of sampling itself. There is a re-
gion in between that gives low cost. The second observation is
that the Two-Third-Power scheme generally leads to lower opti-
mal costs than the Constant scheme. For instance, the optimal cost
for predictor variable grade on LC is about 10500 for the Constant
scheme, while it is about 9400 for the Two-Third-Power scheme.
Similarly, for predictor variable Term on LC, the optimal cost for
scheme Constant is about 17300, while for scheme Two-Third-
Power, the optimal cost is about 16100. The third observation is
that a value of num between 2α and 5α (where α is the precision
constraint) leads to near optimal cost for all three predictors on LC
as well as grade on Prosper, while for the Constant scheme, the
optimal number of tuples to sample varies quite a bit for different
predictors (We discuss further the dependence of optimal num on
α in Section 6.4). Thus the Two-Third-Power scheme is also ro-
bust to small changes in the parameter values, or changes in the
predictor or dataset.

While a num parameter value between 2α and 5α works fine
for the current datasets, it may not necessarily be optimal on other
datasets. Thankfully, we do not even need to know the optimal
value of the parameter a priori, because we can find the value by
running our algorithm adaptively as described in Section 4.

Another thing to note from the results on using different corre-
lated columns is that any one of them is much cheaper than using
a naive greedy algorithm that evaluates β fraction of the tuples.
Such a greedy algorithm would evaluate about 43000 tuples for LC
and about 24000 tuples from Prosper, so using any of the predic-
tors (even the ones whose correlatedness with the predicate doesn’t
seem obvious a priori) with our method leads to a huge savings in
cost.

6.3.2 Using logistic regression to estimate selectivity
In the introduction, we had mentioned that the “correlated col-

umn” used to form groups does not have to be a single column from
the table. It can be a combination of columns, or even a new virtual
column that we create using available data. Specifically, if we have
a machine learning algorithm that uses available columns to make a
prediction about the UDF f, then we can think of the output of that

algorithm as a new column, and use that column as our correlated
column.

In this experiment, we use logistic regression to provide us with
such a new column. Specifically, we randomly sample and evaluate
UDF f on 1% of the rows of the table (later, we also try this for 2%
of the rows). The resulting set of rows is used as training data to
learn a logistic regressor from available columns to the predicate f.
We only learn the regressor over columns that are either numeric,
or nominal with < 50 different values (to avoid overfitting).

After learning the regressor, we apply it to the table to get a prob-
ability score for each tuple (The training tuples are included in the
table as well, and the cost of evaluating them before training is
taken into account in our cost graphs). Then we split the tuples into
10 buckets (groups) based on the probability score. The bucket
ranges are chosen so as to get equal sized buckets. For example,
if 10% of the training data tuples got a probability score between
0 and 0.55, and the remaining probability scores were uniformly
distributed between 0.55 and 1, then we may create one bucket
for tuples with score in [0, 0.55), one for [0.55, 0.6) and so on.
Then, we proceed as earlier for these buckets, sampling from them
to estimate their selectivities. We do not directly use the selectivity
estimates output by the logistic regressor, because we do not have
guarantees on the correlation between probability scores of differ-
ent tuples. (Sampling seems to confirm this lack of correlation;
for instance, the fraction of tuples having probability score ≈ 0.5
which actually satisfy predicate f is not close to 0.5). Thus we
make buckets and treat them as groups instead, sample from them
to estimate selectivities, and apply the convex optimization from
Section 3.3. We use the Two-Third-Power scheme to decide how
many tuples to sample per group, and we plot the average number
of evaluations across 100 iterations, versus the sampling parame-
ter, in Figure 4. The number of tuples evaluated as shown in the
plot includes the tuples evaluated to generate training data for the
logistic regressor. Note that in spite of this, the number of eval-
uations required by our algorithm is far lower than that required
by the Greedy algorithm baseline. On LC, we evaluate less than
10000 tuples, while on Prosper, we evaluate about 18000 tuples,
while Greedy evaluates about 40000 and 24000 respectively.

The optimal cost in the plot is less than the one we get if we
use Grade as a correlated column for LC, while it is a bit more for
Prosper. But more importantly, using logistic regression to create
the correlated column gives us the advantage of not having to know
beforehand which column to use.

6.4 Experiment 3: Query Parameters
In this experiment, we study the effect of precision and recall
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Figure 4: Expected number of tuples evaluated for different levels of sampling per
group

constraints α and β on the cost of our algorithm. We demonstrate
why some approximation can result in a large cost saving.

We consider LC with Grade as the fixed predictor, we vary α and
β from 0.2 to 0.9 each, and we plot average retrieval and evaluation
costs over 50 iterations for each combination of α and β. We keep
ρ fixed at 0.5 and use the Two-Third-Power sampling scheme for
this experiment. The results are similar for other predictors, other
ρ values, and the other dataset. Figure 5(a) compares the number
of evaluations vs α for β = 0.8, Figure 5(b) compares the number
of evaluations vs. β for α = 0.8, and Figure 5(c) compares the
number of retrieves vs β for α = 0.8.

When α and β are equal to 1 (100%), we must necessarily re-
trieve and evaluate every tuple, whereas when they’re 0, we don’t
need to retrieve or evaluate any tuple. But when they are both 0.8
we don’t need to evaluate 80% of the tuples, but much fewer. The
figures show that cost as a function of either α or β looks like a
convex function. This tells us why approximating results can be a
performance win: a small loss in accuracy can lead to a much larger
saving in cost.

As we vary α and β, we observe that the optimal value of the
num parameter is approximately proportional to α. So we set the
value of num to 2.5α, 3.5α, and so on for the plots. The plots
show that num = 2.5α performs slightly better than other values of
numconsistently (for all values of α), which reflects our observa-
tion that the optimal value of num is proportional to α. Number of
retrieves vs α is not plotted because the two are nearly independent,
with number of retrieves depending almost entirely on β and ρ.

7. RELATED WORK
The prior work related to our paper can be divided into a few

categories. We describe each one in turn below:

Sensor Networks: There has been a lot of work on data processing
applied on sensor networks [6]. We could regard taking additional
readings for a sensor as an expensive operation (which only must
be done as needed, for example, to answer a user query), much
like the expensive UDFs we consider in this paper. There has been
some work on query processing for sensor networks while mini-
mizing the amount of data acquired (i.e., readings taken) [27]. Fur-
ther, there has been work on using correlated attributes to avoid
acquiring data [13], which is very similar to our setting. However,
the underlying scenarios and assumptions are very different, neces-
sitating different techniques.

Approximate Query Processing: Over the past decade, there has
been a lot of work on approximate query processing; as examples,
see [10, 16, 18, 23]. Garofalakis et al. [15] provides a good survey
of the area. There are multiple systems that support approximate
query processing, including BlinkDB [5] and Aqua [4], allowing
users to trade-off accuracy for performance. Often, these schemes
achieved the desired level of accuracy by running the query on a
sample of the database. There has also been work on deciding how
to choose appropriate samples for query processing [3, 8]. All of
these systems and algorithmic papers focus on a notion of approx-
imation that is slightly different from the one used in our paper:
in particular, these papers only approximate numerical aggregate
quantities, focusing on operators such as SUM, AVG, VAR, as well as
frequency moments [7]. On the other hand, our paper focuses on
approximating selection (i.e., set-valued) queries, as a result, our
work is complementary.

Reference [22] uses histograms to approximate set-valued queries,
but their notion of approximation involves approximating values
within tuples, rather than approximating the set of tuples them-
selves, within a certain desired precision and recall.

Query Processing with UDFs: UDFs occur often in database queries.
The work on optimizing queries with UDFs has focused primarily
on identifying the best placement of UDFs within query plans [12,
20], and not on using correlations to avoid UDF evaluations in the
first place.

Recently, crowd-powered database systems, such as CrowdDB
[14] and Deco [29] have been treating calls to human workers for
data processing and data gathering on-the-fly, as expensive UDFs
that should be used sparingly. Our optimization techniques could
easily be applied to these systems.
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Figure 5: (a) Expected number of tuples evaluated for different levels of alpha (b) Expected number of tuples evaluated for different levels of beta (c) Expected number of tuples
retrieved for different levels of beta

Correlation-aware Query Processing: There has been some re-
cent work on finding correlations between attributes of a relation [9,
21, 25] — these papers could be used to identify the correlated at-
tributes to bootstrap our techniques for estimating and exploiting
correlations. Correlations have also been used for traditional query
optimization, allowing for more accurate estimates of intermediate
result sizes, and therefore of query-plan costs. Recent work has
also looked at appropriately choosing which indexes and material-
ized views to maintain taking correlations into account [26]. While
these papers mainly focus on correlations between attributes within
a relation (and therefore there is no cost to acquiring data since it
is already provided), our paper exploits correlations between at-
tributes in a relation and an external UDF.

8. CONCLUSIONS
In this paper, we introduced techniques for efficiently approxi-

mating select queries with expensive UDFs. We found that even
though the basic problem for even the simplest scenario is NP-
Hard, there are efficient techniques that allow us to achieve near-
optimality. Our techniques apply to a variety of different scenarios,
based on what information is available to us, and allow us to re-
duce cost while satisfying precision and recall constraints specified
by the user. As UDFs become increasingly ubiquitous and datasets
get larger, the cost savings can become quite significant. Moreover,
our methods integrate well with machine learning techniques such
as logistic regression, allowing us to leverage these techniques to
reduce cost even further. Our techniques can also be generalized to
other classes of queries, such as selects followed by joins, or multi-
ple selection conditions. Finally, our experiments on real data show
that the cost savings we obtain are quite large relative to the small
loss in accuracy. As future work, we plan to explore generalizing
our techniques to complete select-from-where queries, as well as
queries involving nesting and aggregation.
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10. APPENDIX

10.1 Correctness Proof for our solution to Per-
fect Selectivities Case

R+
a, R-

a, E+
a, E-

a, Ca and Wa are all binomial random variables,
since they’re a sum of Bernoulli random variables. Moreover, since
each tuple with A = a is retrieved randomly with probability Ra
independently of other tuples, and correct with probability sa inde-
pendently of other tuples, we must have

E
[
R+
a

]
= tasaRa

V ar(R+
a) = tasaRa(1− saRa)

and

E [R-
a] = ta(1− sa)Ra

V ar(R-
a) = ta(1− sa)Ra(1− (1− sa)Ra)

Similarly,

E
[
E+
a

]
= tasaEa

V ar(E+
a) = tasaEa(1− saEa)

and

E [E-
a] = ta(1− sa)Ea

V ar(E-
a) = ta(1− sa)Ea(1− (1− sa)Ea)

.
Thus for the precision, we have:

E

[∑
a∈A

R+
a − α

∑
a∈A

(R+
a +R-

a − E-
a)

]
=
∑
a∈A

tasaRa(1− α) + αta(1− sa)(Ea −Ra)

For recall, we have,

E

[∑
a∈A

R+
a − β

∑
a∈A

Ca

]
=
∑
a∈A

tasaRa − βtasa

To convert the probabilistic satisfaction constraints for precision/recall,
into an absolute constraint in terms of the Ras and Eas, we need
the general form of Hoeffding’s inequality:

Hoeffding’s inequality: Let X1, X2, ... Xn be independent
random variables, which are almost surely bounded i.e.

Pr(ai ≤ Xi ≤ bi) = 1

Let there sum be

S =

n∑
i=1

Xi

Then:

Pr(S − E [S] ≤ −t) ≤ e
− 2t2∑n

i=1
(bi−ai)2

Pr(S − E [S] ≥ t) ≤ e
− 2t2∑n

i=1
(bi−ai)2

2

For a tuple t in the table that satisfies the predicate, consider the
variable Ipt which takes value:

1. 1− α if the tuple is correct and retrieved

2. −α if the tuple is incorrect and retrieved but not evaluated

3. 0 otherwise

Then the lhs of the precision constraint, is the sum of Ipt over all t
in the table.

Similarly, for every tuple t let Irt be an indicator variable which
takes value:

1. 1− β if the tuple is correct and retrieved

2. 0 otherwise

Then the lhs of the recall constraint is the sum of Irt over all t.
All the Ip variables are independent of each other, and all the

Ir variables are independent of each other. Moreover, the variables
are all bounded in the following ranges:

1. Ip in [−α, 1− α]
2. Ir in [0, 1− β]
Now we can apply Hoeffding’s inequality to get a concentration

bound on the lhs of the precision and recall constraints. Specifi-
cally,

Pr(|(
∑
a∈A

R+
a − α

∑
a∈A

(R+
a +R-

a − E-
a))−

(
∑
a∈A

tasa(1− α)Ra + ta(1− sa)α(Ea −Ra))|

≥ t) ≤ e−
2t2∑
a∈A ta

and

Pr(|(
∑
a∈A

R+
a−βCa)−(

∑
a∈A

tasaRa−βtasa)| ≥ t) ≤ e
− 2t2∑

a∈A ta(1−β)

We have

T pρ =

√
log(1− ρ)

∑
a∈A ta

2

and

T rρ =

√
log(1− ρ)

∑
a∈A ta(1− β)
2

Then with probability≥ ρ the lhs of the precision constraint will
be within T pρ of it’s expectation, and the lhs of the recall constraint
will be within T rρ of its expectation.

Our Ras and Eas satisfy∑
a∈A

tasa(1− α)Ra + ta(1− sa)α(Ea −Ra) ≥ T pρ

So with probability ≥ ρ, the value of
∑
a∈AR

+
a − α

∑
a∈A(R

+
a +

R-
a − E-

a) will be greater than it’s expectation minus T pρ , that is,∑
a∈A tasa(1 − α)Ra + ta(1 − sa)α(Ea − Ra) − T pρ which is

greater than 0.
Our Ras and Eas also satisfy∑

a∈A

tasaRa −
∑
a∈A

βtasa ≥ T rρ

So with probability ≥ ρ, the value of
∑
a∈AR

+
a − βCa will be

greater than it’s expectation minus T rρ , i.e. (
∑
a∈A tasaRa−βtasa)−

T rρ which is greater than 0.
Thus both precision and recall constraints are satisfied with prob-

ability ρ.



10.2 Proof of Tightness Bound for solution to
Perfect Selectivities Case

Suppose an optimal solution (where precision and recall con-
straints are satisfied with probability ρ and expected cost is min-
imised) is given by Roa, Eoa for each a ∈ A. The expected cost for
this solution is

∑
a∈A ta(R

o
acr + Eoace). Consider the expected

values of lhs of their precision and recall constraints. For preci-
sion, it is given by:

P o =
∑
a∈A

tasa(1− α)Roa + ta(1− sa)α(Eoa −Roa)

and for recall, it is given by:

Ro =
∑
a∈A

tasaR
o
a − βtasa

Let the solution produced by our algorithm by given by R′a, E′a for
each a ∈ A. And let:

P ′ =
∑
a∈A

tasa(1− α)R′a + ta(1− sa)α(E′a −R′a)

and for recall, it is given by:

R′ =
∑
a∈A

tasaR
′
a − βtasa

Hence P ′ ≥ T pρ , R′ ≥ T rρ
Moreover, we must have P o ≥ −T p1−ρ, since if the expected

value of the lhs of precision constraint for the optimal solution is
less than −T p1−ρ, then by the chernoff bound, the lhs of the preci-
sion constraint will be ≤ 0 with probability ≥ 1 − ρ, and hence
the precision constraint will be satisfied with probability ≤ ρ. For
a similar reason, we must have Ro ≥ −T r1−ρ.

We will now show two tightness bounds, one in terms of the cost,
and one in terms of the precision and recall constraints.

First we will find a bound in terms of expected cost
∑
a∈A(tasa+

ta(1− sa))(Racr + Eace). We know that∑
a∈A

Roatasa −
∑
a∈A

βtasa ≥ −T r1−ρ

and ∑
a∈A

(1− α)tasaRoa + ta(1− sa)α(Eoa −Roa) ≥ −T p1−ρ

. We will increase some values ofRa, and increase the correspond-
ing values of Ea by the same amount, so as to get the resulting Ra
and Ea values to satisfy,

∑
a∈AR

o2
a tasa ≥ T rρ +

∑
a∈A βtasa

and
∑
a∈A(1 − α)tasaR

o
a + ta(1 − sa)α(Eoa − Roa)geqT pρ . We

choose which Ras value to raise, in a greedy manner, as follows:
We choose the a with highest value of selectivity ( tasa

tasa+ta(1−sa) )
for whichRa < 1, and keep increasing thatRa (andEa) tillRa be-
comes 1 (or both the constraints are satisfied), then move on to the
next best a, and so on. When a Ra and Ea are increased by d, the
value of

∑
a∈ARatasa goes up be dtasa, the value of

∑
a∈A(1−

α)tasaRa+ta(1−sa)α(Ea−Ra) goes up by d(1−α)tasa while
cost goes up by (cr+ce)d(tasa+ta(1−sa)). If we keep raising the
values till both constraints

∑
a∈AR

o2
a tasa ≥ T rρ +

∑
a∈A βtasa

and
∑
a∈A(1 − α)tasaR

o
a + ta(1 − sa)α(Eoa − Roa)geqT pρ are

satisfied, then the cost increase will be at most

(ce + cr)
1

sa
Max(T rρ + T r1−ρ,

T pρ + T p1−ρ
1− α )

where sa is the smallest value of selectivity from among the as
whose Ra, Ea we raised. Now since the resulting Ra and Ea val-
ues satisfy these constraints, the total cost

∑
a∈A(tasa + ta(1 −

sa))(Racr + Eace) has to be more than the cost of our solution
(R′a, E′a) (which was optimal for the linear problem with the given
constraints). Thus the difference between the cost of our solution,
and the cost of the optimal solution to the original problem, is at
most

(ce + cr)
1

sa
Max(T rρ + T r1−ρ,

T pρ + T p1−ρ
1− α )

. This is our tightness bound on cost. If table size is n, and the
minimum sa is constant as n grows, the cost difference is O(

√
n)

because the T p, T r values are O(
√
n). Since the cost of the solu-

tion is expected to be linear in n, an extra cost ofO(
√
n) should be

a small fraction of the actual cost.
For the precision/recall tightness bound, let Let β? = β+

Trρ+Tr1−ρ∑
a∈A tasa

.

And let α? = α +
Tpρ+T

p
1−ρ∑

a∈A β
?tasa

And let the optimal solution for
precision α? (with probability ρ) and recall β? (with probability ρ)
beR?a,E?a for each a ∈ A. Then that optimal solution must satisfy:∑

a∈A

(1− α?)tasaRa + α?ta(1− sa)(Ea −Ra) ≥ −T p1−ρ

and ∑
a∈A

Ratasa ≥ −T r1−ρ +
∑
a∈A

β?tasa

which implies (because of our choice of α? and β?)∑
a∈A

(1− α)tasaRa + αta(1− sa)(Ea −Ra) ≥ T pρ

and ∑
a∈A

Ratasa ≥ T rρ +
∑
a∈A

βtasa

Hence the optimal solution forα?, β? satisfies the constraints of the
linear problem we used to find R′a, E′a. Since we had the optimal
solution to our linear problem, it’s cost is necessarily less than the
cost of R?a, E?a . Thus our solution has cost less than the optimal
cost for α? and βstar . Note that for table size n, the T p, T r terms
grow as O(

√
n, while the

∑
a∈A tasa would probably be linear

in n. Thus the difference between β and β?, and the difference
between α and α? are in O( 1√

n
).

10.3 Proof for Greedy solution to the linear
problem

For purposes of this proof, let’s use cai to denote taisai and wai
to denote tai(1− sai) for all i.

Lemma: Suppose we have a1 and a2 such that sa1 > sa2 . Then
in an optimal solution, one of the following must be true:

1. Ea2 = Ra2

2. Ea1 = 0

Proof: Suppose Ea2 < Ra2 and Ea1 > 0. Suppose we re-
place Ea2 by Ea2 + ε, and Ea1 by Ea1 − ε

wa2
wa1

for an epsilon
small enough so as to not violate the 0 ≤ Ea ≤ Ra bound for
either a1 or a2. Then the recall constraint and rhs of precision
constraint aren’t affected at all, while lhs of precision constraint is
increased by εα(wa2 − δwa1) = 0. Thus both the constraints con-
tinue to be satisfied as before. On the other hand, cost increases by
ceε(wa2+ca2−

(wa2 )(wa1+ca1 )

wa1
) = ceε(ca2−

ca1wa2
wa1

) < 0. Thus
this transformation keeps the constraints satisfied and reduces cost,
contradicting the optimality of the solution. Hence, at least one the
the conditions



1. Ea2 = Ra2

2. Ea1 = 0

must be satisfied.
This lemma shows why once the Rs are fixed, the Es must be

filled in increasing selectivity order. According to the lemma, E
for at most one selectivity value can be strictly between 0 and R,
while Es must be zero for all higher selectivities, and R for all
lower selectivities.

Lemma: Suppose we have a1 and a2 such that sa1 > sa2 . Then
in an optimal solution, one of the following must be true:

1. Ra1 = 1

2. Ra2 = 0

Proof: SupposeRa1 < 1 andRa2 > 0. We consider two cases:

1. Case 1: Ea2 = Ra2 . Reduce Ra2 , Ea2 by ε, and raise Ra1 ,
Ea1 by ε ca2

ca1
. This keeps the rhs and lhs values of both the

constraints unchanged, but reduces cost by (wa2 + ca2)(cr+
ce)ε − (wa1 + ca1)(cr + ce)ε

ca2
ca1

= ε(cr + ce)(wa2 −
wa1

ca2
ca1

) > 0. This contradicts the optimality of the solu-
tion, proving the lemma in case 1.

2. Case 2: Ea2 < Ra2 . Let l = max(
ca2
ca1

,
(1−α)ca2−αwa2
(1−α)ca1−αwa1

)

Reduce Ra2 by ε, and raise Ra1 by lε. The rhs of both con-
straints remain the same, while the lhs either remain the same
or increase. Hence the constraints continue to be satisfied.
The cost decreases by εcr(wa2 + ca2 − lwa1 − lca1). If
l =

ca2
ca1

, then cost decreases as shown in case 1. If l =
(1−α)ca2−αwa2
(1−α)ca1−αwa1

, then cost decreases by

εcr
1

(1− α)ca1 − αwa1
((wa2 + ca2)((1− α)ca1 − αwa1)− (wa1 + ca1)((1− α)ca2
− αwa2))

= εcr
ca1wa2 − ca2wa1
(1− α)ca1 − αwa1

> 0

This contradicts the optimality of the solution, thus proving
the lemma.

The second lemma means that there is at most one selectivity for
which 0 < R < 1, and R is 0 for all lower selectivities and 1 for
all higher selectivities.

Lemma: In an optimal solution, either the precision constraint
must be satisfied tightly (with equality) or all the Es must be 0. In
addition, the recall constraint must be satisfied tightly.

Proof: Suppose the precision constraint is not tight in our so-
lution, and at least one E is > 0. Then we can decrease that E
slightly, while still satisfying the precision and recall constraints,
and reducing cost. This proves the first part of the lemma.

We next prove that the recall constraint must also be tight. Let
ar be the lowest selectivity a with R > 0. Suppose the recall con-
straint isn’t tight, suppose all Es are 0. If the precision-constraint-
coefficient (1− α)car − αwar < 0, then decreasing Rar slightly
will continue to satisfy the precision and recall constraints and re-
duce cost, which is not possible. So recall constraint must be tight
if all Es are 0.

That leaves the case where not all Es are zero (so precision con-
straint is tight) and recall constraint isn’t tight. Let ar be the low-
est selectivity a with R > 0 and let ae be the highest selectivity
a with E < R. Because of condition X <

∑
a∈Amax((1 −

α)tasa − αta(1 − sa), 0), the selectivity of ae must be <= α.
For a small ε, decreasing Rar and Ear by ε and increasing Eae
by ε (1−α)car

αwae
will continue to satisfy the precision and recall con-

straints. Cost will reduce by εcr(car + war ) + εce(war + car −
(wae+cae )(1−α)car

αwae
). Clearly, εcr(car+war ) > 0. And (αwae)(war+

car )− (1− α)car (wae + cae)
≥ (wae + cae)(war + car )(α(1−α)− (1−α)α) = 0. Thus the
transformation keeps constraints satisfied and reduces cost, which
contradicts the optimality of the solution, proving the lemma.

Thus the recall constraint must be tight. This, along with the
lemma on greedy assignment of Rs, proves that increasing Rs in
decreasing order of selectivity, until the recall constraint is satis-
fied, is optimal. After that, the greedy assignment of Es lemma
shows that increasing Es in order of increasing selectivity gives
the optimal solution.

10.4 Correctness Proof for our solution to the
Estimated Selectivities Case

As before, we have for each a ∈ A:

1. R+
a is the number of correct tuples (f(B) = 1) that we end

up retrieving for A = a.

2. R-
a is the number of incorrect tuples that we end up retrieving

for A = a.

3. E+
a is the number of correct tuples we end up evaluating (and

hence accepting) for A = a.

4. E-
a is the number of incorrect tuples we end up evaluating

(and hence rejecting) for A = a.

In addition, we have

1. Ca is the number of tuples satisfying the predicate forA = a.

2. Wa is the number of tuples not satisfying the predicate for
A = a.

Then we must satisfy∑
a∈A

R+
a − α

∑
a∈A

(R+
a +R-

a − E-
a) ≥ 0

must be satisfied with probability ρ, and∑
a∈A

R+
a − βCa ≥ 0

must be satisfied with probability ρ.
Let

P =
∑
a∈A

R+
a − α

∑
a∈A

(R+
a +R-

a − E-
a)

and let

R =
∑
a∈A

R+
a − βCa

To satisfy the constraints P ≥ 0 and R ≥ 0 with probability ρ
each, we want to satisfy

E (P ] ≥ cρDev(P )

and

E (R] ≥ cρDev(R)

for an appropriate cρ determined by Chebyshev’s inequality. Thus
we want to find the expectation and variances of P and R in terms
of Ra, Ea, and fixed quantities.

For a random variable U (from among R+
a, R-

a, E+
a, E-

a, Ca,
Wa), and a tuple number i, let IU,i denote the indicator variable



that is 1 if the ith tuple adds one to U , and 0 otherwise. For exam-
ple, IR+

a,2
is 1 if tuple number 2 forA = a is retrieved and satisfies

the predicate, and 0 otherwise. Thus U =
∑ta
i=1 IU,i. The I’s are

all Bernoulli random variables. Both P and R can be expressed as
weighted sums of these Bernoulli random variables. Thus to find
expectation and variance of P and R, we first try to find the ex-
pectation, variance, and covariances of the I variables. Each tuple
with A = a is retrieved with probability Ra, and evaluated with
probabilityEa. Moreover, it satisfies the predicate with probability
Sa. Thus this tuple contributes 1 to R+

a with probability RaSa. So
for each i, IR+

a,i
is a Bernoulli random variable with

E
[
IR+

a,i

]
= RaSa

. Similarly,

E
[
IR-

a−E-
a,i

]
= (Ra − Ea)(1− Sa)

E [ICa,i] = Sa

For all U , i,

V ar(IU,i) = E [IU,i] (1− E [IU,i])

For each U , i, Var(IU,i = E [IU,i] (1− E [IU,i])
To find covariances, we note that

E
[
S2
a

]
= E

[
(1− Sa)2

]
= s2a + va

and

E [(1− Sa)Sa] = sa(1− sa)− va

Thus for i 6= j

Cov(IR+
a,i
, IR+

a,j
) =E

[
IR+

a,i
IR+

a,j

]
− E

[
IR+

a,i

]
E
[
IR+

a,j

]
=E [RaSaRaSa]−RasaRasa
=R2

a(va + s2a)−R2
as

2
a

=R2
ava

Similarly,

Cov(IR-
a−E-

a,i
, IR-

a−E-
a,j

) = (Ra − Ea)2va

and

Cov(ICa,i, ICa,j) = va

Moreover,

Cov(IR+
a,i
, IR-

a−E-
a,j

) =E
[
IR+

a,i
IR-

a−E-
a,j

]
− E

[
IR+

a,i

]
E
[
IR-

a−E-
a,j

]
=E [RaSa(Ra − Ea)(1− Sa)]
−Rasa(Ra − Ea)(1− sa)

=Ra(Ra − Ea)(sa(1− sa)− va)
−Ra(Ra − Ea)sa(1− sa)

=−Ra(Ra − Ea)va

and similarly,

Cov(IR+
a,i
, ICa,j) = Rava

Finally,

Cov(IR+
a,i
, IR-

a−E-
a,i) =E

[
IR+

a,i
IR-

a−E-
a,i

]
− E

[
IR+

a,i

]
E
[
IR-

a−E-
a,i

]
=E [0]−Rasa(Ra − Ea)(1− sa)
=−Ra(Ra − Ea)sa(1− sa)

and

Cov(IR+
a,i
, ICa,i) =E

[
IR+

a,i
ICa,i

]
− E

[
IR+

a,i

]
E [ICa,i]

=E [RaSa]−Rasasa
=Rasa(1− sa)

Now that we know the relevant expectations, variances and co-
variances, we can compute the expectation and variance of P and
R. We have

P =
∑
a∈A

ta∑
i=1

(1− α)IR+
a,i
− αIR-

a−E-
a,i

and

R =
∑
a∈A

ta∑
i=1

IR+
a,i
− βICa,i

Hence,

E [P ] =
∑
a∈A

ta((1− α)Rasa − α(Ra − Ea)(1− sa))

E [R] =
∑
a∈A

ta(Rasa − βsa)

Let P a = (1−α)R+
a−α(R-

a−E-
a) andRa = R+

a−βCa Thus
P =

∑
a∈A P

a and R =
∑
a∈AR

a

Var(P a) =Var(
ta∑
i=1

(1− α)IR+
a,i
− αIR-

a−E-
a,i

)

=ta(Var((1− α)IR+
a,1

) + Var(−αIR-
a−E-

a,1
)

+ 2Cov((1− α)IR+
a,1
,−αIR-

a−E-
a,1

))

+ ta(ta − 1)(Cov((1− α)IR+
a,1
, (1− α)IR+

a,2
)

+ Cov(−αIR-
a−E-

a,1
,−αIR-

a−E-
a,2

)

+ 2Cov((1− α)IR+
a,1
,−αIR-

a−E-
a,2))

=ta((1− α)2Var(IR+
a,1

) + (α)2Var(IR-
a−E-

a,1
)

− 2α(1− α)Cov(IR+
a,1
, IR-

a−E-
a,1

))

+ ta(ta − 1)((1− α)2Cov(IR+
a,1
, IR+

a,2
)

+ (α)2Cov(IR-
a−E-

a,1
, IR-

a−E-
a,2

)

− (1− α)α2Cov(IR+
a,1
, IR-

a−E-
a,2

))

=ta((1− α)2Rasa(1−Rasa)
+ α2(Ra − Ea)(1− sa)(1− (Ra − Ea)(1− sa))
+ 2α(1− α)Rasa(Ra − Ea)(1− sa))
+ ta(ta − 1)((1− α)2R2

ava

+ α2(Ra − Ea)2va + 2α(1− α)Ra(Ra − Ea)va)
=ta((1− α)2Rasa(1−Rasa)+
α2(Ra − Ea)(1− sa)(1− (Ra − Ea)(1− sa))
+ 2α(1− α)Rasa(Ra − Ea)(1− sa))
+ ta(ta − 1)va(Ra − αEa)2



Var(Ra) =Var(
ta∑
i=1

IR+
a,i
− βICa,i)

=ta(Var(IR+
a,1

) + Var(−βICa,1) + 2Cov(IR+
a,1
,−βICa,1))

+ ta(ta − 1)(Cov(IR+
a,1
, IR+

a,2
) + Cov(−βICa,1,−βICa,2)

+ 2Cov(IR+
a,1
,−βICa,2))

=ta(Var(IR+
a,1

) + (β)2Var(ICa,1)− 2βCov(IR+
a,1
, ICa,1))

+ ta(ta − 1)(Cov(IR+
a,1
, IR+

a,2
) + (β)2Cov(ICa,1, ICa,2)

− 2βCov(IR+
a,1
, ICa,2))

=ta(Rasa(1−Rasa) + β2sa(1− sa)− 2βRasa(1− sa))
+ ta(ta − 1)(vaR

2
a + vaβ

2 − 2βRava)

=ta(Rasa(1−Rasa) + β2sa(1− sa)− 2βRasa(1− sa))
+ ta(ta − 1)va(Ra − β)2

Until now, we hadn’t assumed anything about the correlation be-
tween Sas for different as. It’s known that for any set of random
variables Xi over some values of i,

Dev(
∑
i

Xi) ≤
∑
i

Dev(Xi)

. Equality holds in the worst case where allXis are fully correlated.
If Xis are independent, then we have Var(

∑
iXi) =

∑
i Var(Xi).

We now consider two cases.
Unknown Correlations Case:

If we know nothing about the correlations between Sas, the best
bounds we can place on Dev(P ) and Dev(R) are

∑
a∈A Dev(P a)

and
∑
a∈A Dev(Ra) respectively.

When we write the constraints E [P ] ≤ cρDev(P ) and E [P ] ≤
cρDev(R), we want the resulting optimization problem to be easy
to solve. Specifically, we would like the constraints to be linear,
and if that’s not easily possible, then we’d like them to be convex.
Expectations of P andR are already linear in decision variablesRa
andEa, and so is the objective function. We will try to upper bound
the rhs of both constraints (the deviations) so as to make it linear,
while using a fairly tight upper bound. The rhs of both constraints
are going to be a sum of standard deviations over a ∈ A. The
standard deviation is a square root of the variance, which consists
of a ta factor and a ta(ta − 1) factor. The key observation is that
ta is the only large quantity in the expression, where large means
that is scales with the size of the table. The other terms, like Ra,
Ea, sa, α, β are all between 0 and 1. Thus only the ta(ta − 1)
factor under the square root can contribute an O(n) factor to the
rhs (where n =

∑
a∈A ta is the size of the table), while the ta

factor can contribute at most O(
√
n). Moreover, since the cost of

our final solution is likely to be O(n), it is ok if the rhs is made
linear by adding to it a factor that is at most O(

√
n).

Specifically, we have

(1− α)2Rasa(1−Rasa)
+ α2(Ra − Ea)(1− sa)(1− (Ra − Ea)(1− sa))
+ 2α(1− α)Rasa(Ra − Ea)(1− sa)

≤0.25(1− α)2 + 0.25α2 + 0.25 ∗ 2α(1− α)
=0.25

Rasa(1−Rasa) + β2sa(1− sa)− 2βRasa(1− sa)
=(Rasa(1−Rasa)−R2

asa(1− sa)) + (R2
asa(1− sa)

+ β2sa(1− sa)− 2βRasa(1− sa))
=saRa(1−Ra) + (Ra − β)2sa(1− sa)
≤saRa(1−Ra) + max(R2

a, (1−Ra)2)sa(1− sa)
=max(saRa(1−Ra) +R2

asa(1− sa),
saRa(1−Ra) + (1−Ra)2sa(1− sa))

=max(saRa(1−Ra +Ra −Rasa),
sa(1−Ra)(Ra + 1−Ra − (1−Ra)sa))

=max(saRa(1− saRa), sa(1−Ra)(1− (1−Ra)sa))
≤max(0.25, 0.25)
=0.25

And hence

Var(P a) =ta((1− α)2Rasa(1−Rasa)
+ α2(Ra − Ea)(1− sa)(1− (Ra − Ea)(1− sa))
+ 2α(1− α)Rasa(Ra − Ea)(1− sa))
+ ta(ta − 1)va(Ra − αEa)2

≤t2ava(Ra − αEa)2 + 0.25ta

We can then use √
x2 + y2 ≤ |x|+ |y|

to get

Dev(P a) =
√

Var(P a

≤
√
vata(Ra − αEa) + 0.5

√
ta

Hence

Dev(P ) ≤
∑
a∈A

√
vata(Ra − αEa) + 0.5

√
ta

giving us a linear upper bound on the rhs of the constraint as needed.
Similarly, we can get

Dev(R) ≤
∑
a∈A

√
vata|Ra − β|+ 0.5

√
ta

. Thus we get the convex optimization problem:

minimize
∑
a∈A

ta(Racr + Eace) such that

∑
a∈A

(1− α)taRasa − taα(Ra − Ea)(1− sa)

≥ cρ
∑
a∈A

√
vata(Ra − αEa) + 0.5

√
ta∑

a∈A

taRasa − βtasa ≥ cρ
∑
a∈A

√
vata|Ra − β|+ 0.5

√
ta

Ra, Ea ∈ {0, 1};Ra ≥ Ea
And solving this problem gives a solution which has precision
≥ α and recall ≥ β with probability at least ρ each.

Independent Sa’s case:
Now we move to the case where Sas are independent of each other.
This case is worth considering because it’s common. If we groups
tuples by their value in a column, and evaluate a sample of tuples



from each group, then we get selectivity estimates for each group,
with some variance. But tuple evaluations from one group don’t
give us information about selectivity of other groups. Thus in case
of sampling, we have independent random variables Sa for each
a ∈ A.

Because of the independence, we have

Var(P ) =
∑
a∈A

Var(P a)

and

Var(R) =
∑
a∈A

Var(Ra)

Thus in the optimization problem constraints are

E [P ] ≤ cρ
√∑
a∈A

Var(P a)

*

E [R] ≤ cρ
√∑
a∈A

Var(Ra)

Again, the objective function as well as lhs of both constraints are
linear in decision variables Ra and Ea. The rhs has a square root.
Like we did before, we would like to upper bound the rhs so as
to make the optimization problem linear or convex. In this case,
there does not seem to be a way to make the rhs linear without
increasing it significantly. But it is possible to make the problem
convex instead, with a slight increase in the rhs.

As in the last section, we note that

Var(P a) ≤ t2ava(Ra − αEa)2 + 0.25ta

Thus

Dev(P ) ≤
√∑
a∈A

t2ava(Ra − αEa)2 + 0.25ta

The rhs is a square root of a sum of squares and a positive con-
stant. Suppose we have a |A| + 1 dimensional vector ~R whose
components are the Ra

√
t2ava for each a ∈ A and the constant√∑

a∈A 0.25ta and a |A| + 1 dimensional vector ~E whose com-

ponents are αEa
√
t2ava for each a ∈ A and 0. Then the rhs is

given by
∥∥∥~R− ~E

∥∥∥
2
. For vectors ~R1, ~E1, ~R2, ~E2, by the triangle

inequality, we have∥∥∥ ~R1 − ~E1

∥∥∥
2
+
∥∥∥ ~R2 − ~E2

∥∥∥
2
≥ 2

∥∥∥∥∥ ~R1 − ~E1

2
+

~R2 − ~E2

2

∥∥∥∥∥
2

= 2

∥∥∥∥∥ ~R1 + ~R2

2
−

~E1 + ~E2

2

∥∥∥∥∥
2

Thus the function
∥∥∥~R− ~E

∥∥∥
2

is convex over the Ras and Eas.
Now consider the precision constraint

E [P ] ≥ cρ
∥∥∥~R− ~E

∥∥∥
2

Since the lhs is linear in Ras and Eas, while the rhs is convex,
the constraint is convex. Similarly, we can show that upper bound-

ing Dev(R) by
√∑

a∈A t
2
ava(Ra − β)2 + 0.25ta makes the re-

call constraint convex. Thus we reduce our problem to the follow-
ing convex optimization problem

minimize
∑
a∈A

ta(Racr + Eace) such that

∑
a∈A

(1− α)taRasa − taα(Ra − Ea)(1− sa)

≥ cρ
√∑
a∈A

t2ava(Ra − αEa)2 + 0.25ta

∑
a∈A

taRasa − βtasa ≥ cρ
√∑
a∈A

t2ava(Ra − β)2 + 0.25ta

Ra, Ea ∈ {0, 1};Ra ≥ Ea

which can be solved with any local optimization technique.

10.5 Justification for Rule of Thumb from Sec-
tion 4

We will justify our rule of thumb, by making some simplifying
assumptions in our equations, and then optimizing our problem lo-
cally. To start with, we ignore the exact values ofRas, Eas and sas
and instead write the precision and recall constraints approximately
as ∑

a∈A

Faτ1 −
√∑
a∈A

τ2t2a
Fa
≥ 0

for some constants τ1 and τ2.
Then, the derivative of the lhs with respect to Fa is:

τ1 −
t2aτ2

2F 2
a

√∑
a∈A

τ2t2a
Fa

The derivative is negative when Fa ≈ 0, and thus increasing Fa
helps satisfy the constraint better (compared to increasing other F s
or Es with larger derivative). As Fa increases, the derivative de-
creases, and the marginal value of increasing Fa decreases. In the
locally optimal solution, the derivative with respect to each Fa will
be equal. Suppose for the locally optimal solution,

Y = 2

√∑
a∈A

τ2t2a
Fa

, and the derivative with respect to each Fa is τ3. Then, we have

τ1 − τ3 =
t2a
F 2
aY

and hence

Fa ≈
ta√

Y (τ1 − τ3)

Let n =
∑
a∈A ta be the total number of tuples in the table. Now

we want to find the order of magnitude value of Y . We have

ta
Fa

=
√
Y ((τ1 − τ3))



and thus

Y = 2

√∑
a∈A

τ2t2a
Fa

= 2

√∑
a∈A

√
Y (τ1 − τ3)τ2ta

⇒ Y
3
4 ≈ 2

√
τ2
√

(τ1 − τ3)n

⇒ Y = (4τ2
√
τ1 − τ3n)

2
3

⇒ Fa =
ta√

(4τ2
√
τ1 − τ3n)

2
3 (τ1 − τ3)

⇒ Fa ≈ τ4tan−
1
3

where tau4 is a constant in terms of the other τs. This justifies our
rule of thumb, with the constant τ4 being the num parameter in the
rule of thumb.

10.6 Extensions

10.6.1 Alternate Objective Functions
Our paper focuses on the scenario where precision and recall

constraints are specified, while we try to minimize cost. An in-
teresting variation of the problem is where a user has a fixed cost
budget, and wishes to maximize the number correct tuples returned
while maintaining some level of precision and not exceeding the
budget.

Minor modifications of our techniques can be used to handle this
variation. The cost now becomes one of the constraints, while re-
call (or precision) becomes the objective function to be maximized.
We can tighten the constraints slightly to turn the resulting problem
into a convex optimization problem, and solve it to maximize pre-
cision or recall while keeping cost within a given limit.

10.6.2 Multiple Predicates
Another variation of the problem is where the query might have

multiple chained selects on a table (which is equivalent to a con-
junction of multiple predicates). If any of these predicates is not
an expensive UDF, then it makes sense to execute those predicate
first. But after doing this, we may still have more than one UDF
in the select condition, which creates an interesting variation of our
problem. The precision and recall constraint are specified by the
user for the final output, making it possible to trade-off accuracy
in one predicate for higher accuracy in the other at the same cost.
Also, the probability of a tuple being correct is now affected by the
probabilities of it satisfying both the predicates, so if a tuple that
is very unlikely to satisfy one predicate, then we may not bother to
evaluate the second predicate on it even if it was likely to satisfy the
second predicate (because it probably won’t be in the final output
anyway).

We can extend our method to solve this variation of the problem,
by introducing decision variables representing combined decisions
on the predicates (For example, there may be a decision variable
RRa for group a that is 1 if and only if we are assuming both
predicates are true for the tuple). This gives us a problem where
the number of variables is exponential in the number of predicates,
but still linear in table size (which is likely to be much higher than
number of predicates anyway), which we can solve with a variation
of our techniques.

10.6.3 Single Predicate with Join

Another variation we can consider is where the table T being
selected on is later going to be joined with another table T2. Each
tuple of the table T may match with a different number of tuples of
T2. Thus it may be worthwhile for us to evaluate a tuple with low
correctness-probability that matches with a large number of tuples
from T2, over a tuple with higher correctness probability that joins
with fewer tuples from T2.

We can solve this variation by
• Creating a separate decision variable for each value in the join

column. (Thus if a ∈ A is a value in the correlated column,
and j is a value in the join column, then we have decision
variables Ra,j and Ea,j).
• Multiplying the Ra,j and Ea,j terms in the precision and re-

call constraints by the number nj of tuples from T2 that have
value j in the join column.
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