
CROWDSOURCING STRUCTURED DATA

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Hyunjung Park
June 2014

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/cn920wc7145

© 2014 by Hyunjung Park. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/cn920wc7145

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jennifer Widom, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Hector Garcia-Molina

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Neoklis Polyzotis

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Crowdsourcing can be used to incorporate human computation into a variety of
data-intensive tasks that are difficult for computers alone to solve well. Crowd-
powered algorithms treat humans as processing units, while crowdsourced data
uses humans as a data source. We present two different approaches to the second
problem: collecting data from the crowd.

We first present Deco, a system for “declarative crowdsourcing.” Given a
declarative query posed over a relational database, Deco uses the microtask ap-
proach to ask specific questions to the crowd, augmenting existing data to pro-
duce the query result. After briefly describing Deco’s data model and query
language, we focus on how Deco’s query execution engine and query optimizer
work together to produce high-quality query results while minimizing monetary
cost and reducing latency.

Second, we present CrowdFill, an alternative approach for collecting struc-
tured data from the crowd. Instead of posing specific questions as microtasks,
CrowdFill shows a partially-filled table to all participating workers; these work-
ers contribute by filling in empty cells, as well as upvoting and downvoting data
entered by other workers. We describe how the system uses our primitive opera-
tions to guide data collection towards prespecified constraints while providing an
intuitive data entry interface. We also describe CrowdFill’s compensation scheme
that encourages useful work while adhering to a monetary budget.

iv

Contents

Abstract iv

1 Introduction 1
1.1 Approaches for Crowdsourcing Structured Data 2

1.1.1 Microtask-based Approach . 2
1.1.2 Table-filling Approach . 4
1.1.3 Comparison of the Two Approaches 5

1.2 Overview of Contributions . 7
1.2.1 Deco . 8
1.2.2 CrowdFill . 10

1.3 Summary . 11

2 Foundations of Deco 12
2.1 Data Model . 12

2.1.1 Conceptual Relation . 12
2.1.2 Raw Schema . 13
2.1.3 Fetch Rules . 14
2.1.4 Resolution Rules . 14
2.1.5 Data Model Semantics . 15

2.2 Query Language and Semantics . 16
2.3 System Overview . 17
2.4 Related Work . 18

v

3 Query Execution in Deco 20
3.1 Challenges and Approach . 21

3.1.1 Executing Queries in Two Phases 21
3.1.2 Enabling Parallelism Using Asynchronous Pull 21
3.1.3 Choosing Right Degree of Parallelism 22
3.1.4 Initiating Good Fetches . 22
3.1.5 Changing Result Incrementally 23

3.2 Query Operators and Execution Plans 23
3.2.1 Query Operators . 23
3.2.2 Query Plans . 25

3.3 Query Execution with No Existing Data 30
3.3.1 Basic Query Plan . 32
3.3.2 Reverse Query Plan . 35
3.3.3 Combined Query Plan . 36
3.3.4 Hybrid Query Plan . 36
3.3.5 Join of Conceptual Relations 37

3.4 Query Execution with Existing Data 38
3.4.1 Materialization Phase . 38
3.4.2 Accretion Phase . 40
3.4.3 Meeting Parallelism Objectives 42

3.5 Fetch Prioritization . 44
3.5.1 Formal Problem Definition . 45
3.5.2 Heuristic Algorithm . 49
3.5.3 Query Execution Engine Extension 50
3.5.4 Amazon Mechanical Turk Support 51

3.6 Experimental Evaluation . 52
3.6.1 Performance of Different Query Plans 52
3.6.2 Parallelism, Cost, and Latency 54
3.6.3 Effectiveness of Fetch Prioritization 56

3.7 Related Work . 60
3.8 Conclusion . 61

vi

4 Query Optimization in Deco 62
4.1 Challenges and Approach . 63

4.1.1 Cost and Cardinality Estimation 64
4.1.2 Statistics . 64
4.1.3 Plan Enumeration . 65

4.2 Cost Estimation . 65
4.2.1 Cardinality Estimation Algorithm 68
4.2.2 Cost Estimation Examples . 74

4.3 Search Space and Plan Generation . 77
4.3.1 Join Tree . 78
4.3.2 Algebraic Representation . 81
4.3.3 Fetch Rule Selection . 81
4.3.4 Complete Query Plan . 82

4.4 Enumeration Algorithm . 83
4.4.1 Naive Enumeration . 84
4.4.2 Efficient Enumeration . 85

4.5 Experimental Evaluation . 86
4.5.1 Accuracy of Cost Estimation 86
4.5.2 Efficiency of Plan Enumeration 94

4.6 Related Work . 95
4.7 Conclusion . 95

5 Design and Implementation of CrowdFill 97
5.1 Formal Model . 98

5.1.1 Table Specification . 98
5.1.2 Table State and Primitive Operations 100
5.1.3 Constraints . 101
5.1.4 Concurrent Operations . 104

5.2 System Overview . 110
5.2.1 Architecture . 110
5.2.2 Front-end Server . 112
5.2.3 Back-end Server . 113

vii

5.2.4 Worker Client . 113
5.3 Satisfying the Constraints . 114

5.3.1 Probable Rows Invariant . 115
5.3.2 Maintaining the Invariant . 116
5.3.3 Probable Rows Invariant Maintenance Example 117

5.4 Compensating Workers . 119
5.4.1 Challenges and Approach . 119
5.4.2 Allocating Total Budget to Workers 120
5.4.3 Estimating Compensation . 125

5.5 Experimental Evaluation . 127
5.6 Related Work . 130
5.7 Conclusion . 131

6 Summary and Future Work 133
6.1 Summary of Contributions . 133
6.2 Contrasting Our Two Approaches . 134
6.3 Future Work . 135

6.3.1 Deco . 135
6.3.2 CrowdFill . 136
6.3.3 Crowdsourcing Structured Data 137

Bibliography 138

viii

List of Tables

1.1 Comparison of the microtask-based and table-filling approaches . . 6

3.1 Message exchanges during the accretion phase (empty raw tables) . 32
3.2 Message exchanges for materialization 39
3.3 Message exchanges to start accretion phase 41

ix

List of Figures

1.1 An example partially-filled table . 3

2.1 Deco architecture . 17
2.2 Deco user interface: query execution 18
2.3 Deco user interface: query plan visualization 19

3.1 Basic query plan . 26
3.2 Reverse query plan . 27
3.3 Combined query plan . 28
3.4 Hybrid query plan . 29
3.5 Performance of different query plans 53
3.6 Interactions among parallelism, cost, and latency 55
3.7 Effectiveness of fetch prioritization (Experiment 3) 58
3.8 Effectiveness of fetch prioritization (Experiment 4) 60

4.1 Example query plans . 67
4.2 Trace of EstimateCard . 75
4.3 Example join trees . 80
4.4 Accuracy of cost estimation (Experiment 1) 87
4.5 Accuracy of cost estimation (Experiment 2, part 1) 89
4.6 Accuracy of cost estimation (Experiment 2, part 2) 90
4.7 Accuracy of cost estimation (Experiment 3, part 1) 91
4.8 Accuracy of cost estimation (Experiment 3, part 2) 93
4.9 Efficiency of plan enumeration . 94

5.1 CrowdFill architecture . 110

x

5.2 Table schema editor . 111
5.3 Data entry interface . 112
5.4 Bipartite graph representation of the PRI maintenance 118
5.5 Accuracy of estimated compensation 129
5.6 Earning rates for uniform and weighted allocation, two workers . . 130

xi

Chapter 1

Introduction

Many modern data-processing tasks are difficult for computer algorithms alone
to solve well, as the tasks require full understanding of data presented in a va-
riety of forms. Crowdsourcing [22] can help accomplish such tasks by providing
a programmatic way of incorporating the use of human abilities into computer
algorithms. In a typical crowdsourcing scenario, human workers are asked to per-
form computation as if they were processing units, or generate data as if they
were a data source.

In data-intensive tasks, perhaps the most common usage of crowdsourcing to
date has been annotating a set of data items with human inputs, e.g., video or
image labeling [56, 59], search relevance judgements [10], and natural language
annotation tasks [55]. More recently, “crowd-powered” algorithms have been de-
veloped to better process existing datasets by leveraging humans, e.g., filtering
items [40], finding a maximum item [31, 58], sorting and joins [38, 61], and entity
resolution [60, 62]. Another important usage of crowdsourcing is creating new
data, or augmenting an existing dataset, based on human inputs, which is the
topic of this thesis.

In collecting data from the crowd, as well as in other crowdsourcing tasks,
there are three important considerations. First, human workers need to be paid,
incurring monetary cost. Second, overall latency of a computer-driven task is much
longer once humans are involved. Third, human workers make mistakes, affect-
ing the quality of result. Overall, many new issues and tradeoffs involving cost,

1

CHAPTER 1. INTRODUCTION 2

latency, and quality make dealing with crowdsourced data quite challenging. We
will see in later chapters that an underlying principle of the systems we have
developed is to optimize for some combination of cost, latency, and quality.

1.1 Approaches for Crowdsourcing Structured Data

In this thesis we consider crowdsourcing structured data: data that adheres to an
explicitly-specified, fixed schema. Structured data is well-understood and easy to
deal with, letting us focus specifically on the new challenges of gathering data
from the crowd, and integrating crowdsourced data with existing data and pro-
cessing techniques. Structured data most commonly follows the relational data
model [17, 27]. In this model, data is represented as a two-dimensional table
called a relation, or simply a table. In a table, each row typically corresponds to a
data element or a fact, while each column is a property or attribute of the element
or fact. Figure 1.1 is an example of a table (with some empty rows and missing
column values, explained shortly) with information about countries. All of our
work in this thesis considers relational data.

In the thesis we explore two complementary approaches for crowdsourcing
structured data: a microtask-based approach, and a table-filling approach. In the
remainder of this section we provide a high-level description of each approach,
including a running example for motivation, then we discuss the advantages and
disadvantages of the two approaches.

1.1.1 Microtask-based Approach

Our first approach is based on microtasks: tasks that are designed to be completed
by human workers in a relatively short duration (e.g., in a few minutes or less).
For example, a microtask might ask a worker to label a given image or to rate a
piece of text based on its sentiment. Users who compose microtasks can post them
on crowdsourcing marketplaces such as Amazon Mechanical Turk [1] and specify
a monetary compensation they are willing to offer for each microtask. Human
workers can browse through available microtasks on a marketplace and complete

CHAPTER 1. INTRODUCTION 3

country language capital
Chile SantiagoPeru SpanishAustriaGermanyKorea Korean Seoul

Figure 1.1: An example partially-filled table

the ones they choose. Once a submitted answer to a microtask is approved by the
user who posted it, the marketplace collects the specified compensation from the
user and pays the worker on behalf of the user.

Since microtasks posted on a marketplace can be completed independently by
different workers, crowdsourcing marketplaces give users on-demand, parallel
access to many human workers. However, data-intensive tasks that users want to
accomplish via crowdsourcing do not usually fit in a single microtask. Thus, to
benefit from crowdsourcing marketplaces, special algorithms, or the users them-
selves, must decompose overall tasks into sets of microtasks.

Collecting structured data using a microtask-based approach thus begins with
decomposing the data collection task into a set of microtasks. Once the microtasks
are posted on a marketplace and completed by workers, submitted answers are
assembled into table form. As a running example, let us consider the table shown
in Figure 1.1. This example table is partially-filled because we might have some
data already collected from humans or obtained by other means, and we would
like to reuse the data instead of starting from scratch. Let us suppose our goal is
to fill in all empty rows and cells in the example table with no duplicate values
for the country column. In other words, we want complete language and capital
information for eight countries.

There are many possible ways of decomposing our example task into a set
of microtasks, corresponding to different partitionings of the table. Suppose we
partition the table in the finest granularity, making each microtask responsible for

CHAPTER 1. INTRODUCTION 4

filling in a cell. To fill in the empty language cell in the first row, we may pose
the following question as a microtask: “What is the language spoken in Chile?”
A corresponding question can be posed to obtain language values for Austria and
Germany. Likewise, we can collect the capital value for Peru using the microtask:
“What is the capital city of Peru?” Notice that we can pose these questions only
for countries already known to us. To fill in the three empty rows, we can first ask
for a country name: “Provide a country name.” Once we obtain a new country
name, we instantiate the previous microtasks to collect its language and capital
values. As illustrated here, not all microtasks are posted at once; some may be
created later based on the answers to the completed microtasks.

Alternatively, we may always want to ask for language and capital values at the
same time, e.g., “What are the official language and capital city of Austria?” This
type of question might be somewhat wasteful for those countries whose language
or capital value is already present, such as Chile and Peru. On the other hand,
workers might be able to provide both values with lower overall cost and/or la-
tency than obtaining them separately, benefiting rows for Austria and Germany.
In general, different partitioning yields different costs and latencies in data col-
lection, and finding an optimal partitioning is a challenging problem.

As we mentioned earlier, in addition to cost and latency, the quality of crowd-
sourced data is an important consideration. To improve the quality of collected
data in the microtask-based approach, we can instantiate multiple identical micro-
tasks for the same question and resolve inconsistencies of the submitted answers
using voting, averaging, or some other means. This redundancy not only makes
finding an optimal partitioning even more complicated, but it also makes assem-
bling the final table more complex.

1.1.2 Table-filling Approach

In the microtask-based approach, table partitioning is the primary means to en-
able parallelism among workers in collecting data. Our table-filling approach
enables parallelism in a more holistic fashion: We do not partition a table, but
instead allow multiple workers to view and concurrently modify the entire table.

CHAPTER 1. INTRODUCTION 5

Specifically, we show a copy of an entire partially-filled table (such as the one in
Figure 1.1) to each participating worker and ask workers to contribute what they
know by filling in empty cells in the displayed table. We immediately propagate
each data entry by a worker to all other copies of the table displayed elsewhere,
so workers can collaboratively enter data while the displayed table is updated in
real time.

Let us consider again the partially-filled table shown in Figure 1.1. If work-
ers take turns in filling in empty cells, our table-filling approach operates in a
straightforward manner: Each data entry simply takes the table one step closer
to a completion. However, under this assumption, workers cannot enter data in a
parallel fashion, and waste time waiting for their turns.

When workers are allowed to fill in empty cells concurrently, conflicts can
occur when two workers fill in empty cells in the same row (either for the same
cell or for different cells) at the same time. For example, suppose one worker fills
in Mexico for country in one of the empty rows, and another worker fills in Athens
for capital in the same empty row at the same time. Without proper resolution,
the table ends up in a state no worker intended to reach. A more basic conflict
occurs when two workers fill in the same cell with different values. Intuitive
and seamless conflict resolution is a key component that makes the table-filling
approach work in practice.

As in the microtask-based approach, data quality concerns make things much
more complicated. Since new data entries are propagated and displayed imme-
diately to all workers, our approach to ensuring quality of the collected data is
to ask workers to upvote and downvote rows entered by other workers. Enough
downvotes on a row suggest that the row has incorrect values, and the row is
removed from the table. Additionally, when rows conflict (such as two different
rows with the same key value), the one with the most upvotes is selected.

1.1.3 Comparison of the Two Approaches

Table 1.1 summarizes advantages and disadvantages of the two approaches con-
sidered in the thesis. We discuss each of the five comparisons listed in the table.

CHAPTER 1. INTRODUCTION 6

Microtask-based approach Table-filling approach
+ More scalable − Less scalable
− Nontransparent + Transparent
− Passive + Active
− Inflexible + Flexible
+ Suitable for combining humans
and computers

− Targeted to humans only

Table 1.1: Comparison of the microtask-based and table-filling approaches

Scalability

The microtask-based approach is fairly scalable in number of workers as well as
in data size. Since each microtask is completed independently by one worker,
each worker has the same efficiency regardless of the total number of concurrent
workers or the total number of microtasks. The table-filling approach is not as
scalable as the microtask-based approach. As more workers fill in the table con-
currently, more conflicts may occur, potentially wasting work and thus decreasing
overall efficiency of each worker. Also, individual workers will tend to be more
efficient at filling in a smaller table than a larger one, due to human attention and
comprehension, and data-entry interface issues.

Transparency

From the perspective of workers, the microtask-based approach is nontransparent:
Each microtask presents a self-contained question asking for a piece of data, so in-
dividual workers do not know what other workers are doing, nor what the user’s
overall intention is. In contrast, the table-filling approach is transparent: Workers
can see data entered by other workers, as well as the user’s overall intention. This
transparency allows workers to learn from data entered by other workers, and to
satisfy constraints specified by the user, e.g., not entering duplicate values.

Active participation

In the microtask-based approach, workers are relatively passive in selecting what
work they do. In Amazon Mechanical Turk, for example, workers first choose a

CHAPTER 1. INTRODUCTION 7

group of microtasks, which include different instantiations of one question type.
Within the chosen group, workers usually perform a series of preselected mi-
crotasks. (In principle workers could select specific microtasks out of the series,
but doing so might significantly lower their overall efficiency and compensation,
given current worker interfaces.) In the table-filling approach, workers actively
identify those parts of the table they can contribute to best, and select which data
they feel most qualified to endorse or refute.

Flexibility

In the microtask-based approach, workers do not have much flexibility in data
entry. The order of data entry is predetermined by the types of questions avail-
able. Similarly the granularity of data entry is set beforehand based on the table
partitioning. In contrast, the table-filling approach provides workers with a great
deal of flexibility: Workers can fill in values in arbitrary order, and they can enter
data at any granularity as long as there are empty cells.

Combining humans and computers

Although this thesis focuses primarily on collecting data from human workers,
the microtask-based approach is also suitable for combining data from humans
with computer-collected data: The microtasks we create conform to fixed input-
output signatures based on table partitioning. For example, if we have a pro-
grammed function that takes as input a country name and produces as output
its capital city, we can plug that function directly into our solution, in place of
human workers. While in theory such a function could be incorporated into the
table-filling approach as well, the integration would be far less seamless.

1.2 Overview of Contributions

The goal of our thesis work was to design and implement systems for crowd-
sourcing structured data, exploring both of the two complimentary approaches

CHAPTER 1. INTRODUCTION 8

described in the previous section. Here we motivate and outline the primary
technical contributions of the thesis.

1.2.1 Deco

As discussed in Section 1.1.1, collecting data using the microtask-based approach
involves several difficult decisions such as finding an optimal table partitioning
and selecting question types to instantiate. To hide these complexities from users,
we want a declarative system, where users express their needs at a high level, and
our system determines the best strategy for collecting data from workers. Since
our goal is to collect relational data, a declarative database query language is a
natural choice for users to specify their needs. Moreover, we want our system
to transparently manage existing data together with crowdsourced data, thus an
extended database system is a natural approach here as well.

In Chapters 2-4, we present Deco, a database system for “declarative crowd-
sourcing” that collects structured data using the microtask-based approach. De-
veloping a new type of database system involves first establishing its data model
and query language, then implementing a system supporting the model and lan-
guage. Typically, the goal is to reuse previous models, languages, and implemen-
tation techniques to the extent possible, making modifications and extensions as
needed for the novel challenges and features. In Deco, the biggest challenges and
novelty involved designing suitable query semantics, and implementing a query
processor that answers a Deco query while minimizing the monetary cost and
latency incurred by microtasks.

Data Model, Query Language, and System

To develop a new database system that supports crowdsourced data, we first need
to design a data model and a query language. Designing an intuitive, expressive,
and implementable data model and query language can involve significant effort
and consideration of many alternatives [41]. Once the data model and query
language have been defined completely, implementing a system to support them
can also involve many nontrivial challenges.

CHAPTER 1. INTRODUCTION 9

In Chapter 2, we briefly describe Deco’s data model and query language, then
describe the overall architecture of the Deco system.1 As we will explain in Chap-
ter 2, Deco’s data model is an extension to the relational model, designed to be
general, flexible, and principled. Deco’s query language is a simple syntactic ex-
tension to SQL, incorporating certain constraints necessary for the crowdsourcing
environment. Deco’s query semantics is based directly on SQL semantics, but
with some important extensions for the new environment. Deco’s overall archi-
tecture is similar to a traditional database system, however there are many sig-
nificant differences in its query execution engine and query optimizer, discussed
next.

Query Execution

Database systems typically use an internal query execution plan to represent how
data is accessed and processed to produce a query result. A query plan is com-
posed of query operators, each of which corresponds to a particular data process-
ing step, such as filtering or sorting. To use a similar approach in Deco, we first
needed to design several new query operators, then we considered the overall
structure of query plans. It turns out that the structure of Deco query plans
looks similar to traditional query plans, but our objective of minimizing cost and
reducing latency requires significant changes in the details of query execution.

In Chapter 3, we describe Deco’s query plans, new query plan operators, and
query execution engine in detail. Deco’s new query operators implement data op-
erations specific to the crowdsourcing environment, e.g., instantiating microtasks
and resolving inconsistencies of answers. Deco’s query execution engine uses a
new “hybrid” execution model, which respects Deco semantics while enabling
our objective. In this execution model, query execution bears as much similarity
to incremental view maintenance [12] as to a traditional iterator model [27]. Our ob-
jective also requires prioritizing accesses to crowdsourced data, which turns out
to be an interesting NP-hard problem.

1Deco’s data model and query language were the result of a group effort, while the Deco
architecture and system were developed primarily by the author.

CHAPTER 1. INTRODUCTION 10

Query Optimization

In traditional database systems, for a given query there are usually many differ-
ent possible query plans, all of which produce a correct query result. Executing
the different plans may incur vastly different costs, so it is very important to find
the best query plan, which is the problem of query optimization. A typical query
optimizer consists of three components: a cost estimation algorithm (for a given
query plan), a search space of valid query plans, and a plan enumeration algo-
rithm. In Deco, our goal in query optimization is to find the best plan to answer
a given Deco query in terms of estimated monetary cost.

In Chapter 4, we describe Deco’s query optimizer in detail. To accurately
estimate the monetary cost of executing a given query plan, Deco’s cost model
distinguishes between free existing data versus paid new data, and Deco’s cost
estimation algorithm copes with changes to the database state as data is gath-
ered from workers during query execution. When exploring the search space and
applying the cost estimation algorithm, Deco’s plan enumeration algorithm max-
imizes reuse of common subplans, which turns out to be particularly challenging
in our setting.

1.2.2 CrowdFill

In Chapter 5, we present CrowdFill, a separate system from Deco that implements
the table-filling approach described in Section 1.1.2. In CrowdFill, one of our
biggest initial challenges involved designing a formal model for table states and
for primitive operations such as “fill” and “upvote”, to serve as the basis for our
data-entry interface. The model is carefully designed to accommodate concurrent
operations, with conflicts resolved in an intuitive and seamless fashion. We will
see that our approach enables us to prove a strong result about table synchroniza-
tion and consistency across multiple workers.

As described in Section 1.1, we often start data collection from a partially-
filled table with some prespecified values, which CrowdFill treats as constraints
on the final table. Ensuring that the final table meets the constraints is nontrivial:
Enough downvotes may effectively remove rows with prespecified values from

CHAPTER 1. INTRODUCTION 11

the table; those values need to be restored to satisfy the constraints. To provide
an intuitive data-entry interface while guiding the final table towards meeting
the constraints, CrowdFill only allows new rows (with prespecified values) to be
inserted into the table by a central monitoring client. With this approach, workers
never need to add rows, and they need not be aware of the constraints, allowing
them to simply fill in empty values in existing rows, and cast votes. We will
see that the monitoring client populates new rows using an algorithm based on
maximum bipartite matching.

Lastly, we needed to devise a compensation scheme that encourages useful
work, provides compensation commensurate with a worker’s efforts, yields high-
quality data, and adheres to a fixed monetary budget. Instead of offering fixed
compensation for each data entry or voting action, CrowdFill’s compensation
scheme is based on each worker’s overall contribution to the final table, as well
as variability in the difficulty of filling in cells. At the same time, CrowdFill dis-
plays estimated compensation for individual actions during table-filling, to keep
workers engaged and focused on entering the needed data.

1.3 Summary

Crowdsourcing structured data is a new research area, with new challenges stem-
ming from issues involving monetary cost, latency, and data quality. In this thesis
we present two systems for collecting structured data from the crowd: Deco with
a microtask-based approach, and CrowdFill with a table-filling approach. The
two approaches are complimentary with different advantages and disadvantages,
and each of them presents numerous technical challenges. After briefly describ-
ing Deco’s data model, query language, and overall architecture in Chapter 2, we
describe Deco’s query execution engine and query optimizer in Chapters 3 and
4, respectively. Then, we switch to CrowdFill in Chapter 5, describing its formal
model, system architecture, constraint satisfaction algorithm, and compensation
scheme. (We discuss related work at the end of each chapter.) In Chapter 6, we
conclude with future directions for Deco and CrowdFill, as well as the general
area of crowdsourcing structured data.

Chapter 2

Foundations of Deco

In this chapter we lay foundations for Deco (for “declarative crowdsourcing”), a
system that answers declarative queries posed over stored relational data together
with data gathered on-demand from the crowd.1 In Section 2.1, we define a data
model for Deco that is general, flexible, and principled. In Section 2.2, we define a
query language for Deco as a simple extension to SQL with constructs necessary
for crowdsourcing. In Section 2.3, we describe Deco’s overall architecture. In
Section 2.4, we discuss related work.

2.1 Data Model

We begin by describing each of the Deco data model components using a running
example.

2.1.1 Conceptual Relation

Conceptual relations are the logical relations specified by the Deco schema de-
signer and queried by end-users and applications. The schema designer also

1The material presented in this chapter first appeared in [42, 43, 44, 45]. Deco’s data model
and query language (Sections 2.1-2.2) were the result of a group effort, but are presented here as
necessary background for the remainder of the thesis. The Deco architecture and system (Section
2.3) were developed primarily by the author.

12

CHAPTER 2. FOUNDATIONS OF DECO 13

partitions the attributes in each conceptual relation into anchor attributes and de-
pendent attribute-groups. Informally, anchor attributes typically identify “entities”
while dependent attribute-groups specify properties of the entities.

As a running example, suppose our users are interested in querying two con-
ceptual relations with information about countries and cities:

Country(country, [language], [capital])
City(city, country, [population])

Each dependent attribute-group (single attributes in this case) is enclosed within
square brackets. In the Country relation, the anchor attribute country is a country
name, while language and capital are properties of the country. In the City relation,
the pair of city and country names identifies a city, while population is a property
of the city.

2.1.2 Raw Schema

Deco is designed to use a conventional RDBMS as its back-end. The raw schema—
the schemas for the data tables actually stored in the underlying RDBMS—is
derived automatically from the conceptual schema, and is invisible to both the
schema designer and end-users. Raw tables contain existing data obtained by
past queries or otherwise present in the database, and are extended as new data
is obtained from the crowd, enabling seamless integration of conventional data
and crowdsourced data. For each relation R in the conceptual schema, there is
one anchor table containing the anchor attributes, and one dependent table for each
dependent attribute-group; dependent tables also contain anchor attributes. (In
general, both anchor and dependent attributes can be a group of attributes.)

In our example, we have the raw schema:

CountryA(country)
CountryD1(country, language)
CountryD2(country, capital)
CityA(city, country)
CityD1(city, country, population)

CHAPTER 2. FOUNDATIONS OF DECO 14

2.1.3 Fetch Rules

Fetch rules allow the schema designer to specify how data can be obtained from
humans. A fetch rule takes the form A1 ⇒ A2 : P, where A1 and A2 are sets
of attributes from one conceptual relation (with A1 = ∅ permitted), and P is a
fetch procedure that implements access to human workers. (P might generate HITs
(Human Intelligence Tasks) to Amazon Mechanical Turk [1], for example.) When
invoked, the fetch rule A1 ⇒ A2 obtains new values for A2 given values for A1,
and populates raw tables using those values for attributes A1 ∪ A2. The schema
designer also specifies a fixed monetary cost for each fetch rule, to be paid to
human workers once they complete the fetch rule.

Here are some example fetch rules and their interpretations for our example.

• [Country] ∅⇒ country: Ask for a country name, inserting the obtained value
into raw table CountryA.

• [Country] country⇒ capital: Ask for a capital given a country name, inserting
the resulting pair into table CountryD2.

• [Country] language ⇒ country: Ask for a country name given a language,
inserting the resulting country name into CountryA, and inserting the country-
language pair into CountryD1.

Note there are many more possible fetch rules for our example. The only restric-
tion on fetch rules is that A1 ∪ A2 must include all anchor attributes.

The schema designer may add or remove fetch rules at any time during the
lifetime of a database—they are more akin to “access methods” than to part of the
permanent schema.

2.1.4 Resolution Rules

Suppose we have obtained values for our raw tables, but we have inconsistencies
in the collected data. We use resolution rules to cleanse the raw tables—to get
values for conceptual relations that are free of inconsistencies. For each concep-
tual relation, the schema designer can specify a resolution rule ∅ → A : f for
the anchor attributes A treated as a group, and one resolution rule A → D : f
for each dependent attribute-group D. Resolution function f is a black-box that

CHAPTER 2. FOUNDATIONS OF DECO 15

adheres to a simple API, taking as input a set of values for the right-hand side
attributes (corresponding to a specific value for the left-hand side) and returning
a “cleaned” set of values. If the empty set is returned, more input values are
needed to produce an output. In addition, the schema designer should specify
the minimum and average number of input values needed for f to produce an
output value. These numbers are needed for plan execution and cost estimation,
as we will see in Chapters 3 and 4.

In our example, we might have the following resolution rules:

• [Country] ∅→ country : dupElim

• [Country] country→ language : majority-of-3

• [Country] country→ capital : majority-of-3

• [City] ∅→ city,country : dupElim

• [City] city,country→ population : average-of-2

Resolution function dupElim produces distinct country values for Country and dis-
tinct city-country pairs for City. Resolution function majority-of-3 produces the
majority of three or more language (or capital) answers for a given country. We
assume a “shortcutting” version that can produce an answer with only two val-
ues, if the values agree. On the other hand, sometimes more than three values are
input to the function, in which case a majority is needed to produce an output.
Resolution function average-of-2 produces the average of two or more population
answers for a given city. Note any resolution functions are permitted, not just the
types used here for illustration.

2.1.5 Data Model Semantics

The semantics of a Deco database is defined as a potentially infinite set of valid
instances for the conceptual relations. A valid instance is obtained by a Fetch-
Resolve-Join sequence: (1) Fetching additional data for the raw tables using fetch
rules; this step may be skipped. (2) Resolving inconsistencies using resolution rules
for each of the raw tables. (3) Outerjoining the resolved raw tables to produce the
conceptual relations.

CHAPTER 2. FOUNDATIONS OF DECO 16

It is critical to understand that the Fetch-Resolve-Join sequence is a logical
concept only. As we will see in later chapters, when Deco queries are executed,
not only may these steps be interleaved, but only those portions of the conceptual
data needed to produce the query result are actually materialized.

2.2 Query Language and Semantics

A Deco query Q is simply a SQL query over the conceptual relations. Deco’s
query semantics dictate that the answer to Q must represent the result of eval-
uating Q over some (logical) valid instance of the database. Because our Fetch-
Resolve-Join database semantics is based on outerjoins, conceptual relations may
logically include numerous NULL values. Thus, we restrict query results to
include only those conceptual tuples whose attribute values are non-NULL, al-
though this restriction could be lifted if desired.

One valid instance of the database can be obtained by resolving and joining
the current contents of the raw tables, without invoking any further fetch rules.
Thus, it appears a query Q can always be answered correctly without consulting
the crowd at all. The problem is that this “correct” query result may be very small,
or even empty. To retain our straightforward semantics over valid instances, while
still forcing answers to contain some amount of data, we add one of the following
constraints to a Deco query:

• “MaxCost c” specifies to spend up to c dollars (or other cost unit) to answer
the query, while attempting to maximize the number of tuples in the result.

• “MaxTime t” specifies to spend up to t seconds (or other time unit) to answer
the query, while attempting to maximize the number of tuples in the result.

• “MinTuples n” specifies that at least n tuples should be in the result, while
attempting to minimize cost (or time).

In this thesis we focus on the third type of constraint: producing a minimum
number of (non-NULL) result tuples while minimizing cost. We will discuss the
other two types briefly in Section 6.3.

CHAPTER 2. FOUNDATIONS OF DECO 17

Parser

Deco API

Optimizer

Execution Engine

Amazon
Mechanical

Turk

Other
Crowdsourcing

Service

Other
External
Source

End
User

Schema
Designer

Register
UDFP/UDRFsResultsDML

Statistics

Catalogs

Raw Tables

User Defined
Fetch Proc.

User Defined
Fetch Proc.

MTurk
Fetch Proc.

Built-in
Resolution
Functions

User
Defined

Resolution
Functions

DDL,

Figure 2.1: Deco architecture

2.3 System Overview

We implemented our Deco prototype in Python with a PostgreSQL back-end.
The system supports DDL commands to create tables, resolution functions, and
fetch rules, as well as a DML command that executes queries. Deco’s overall
architecture is shown in Figure 2.1.

Client applications interact with the Deco system using the Deco API, which
implements the standard Python Database API v2.0: connecting to a database,
executing a query, and fetching results. The Deco API also provides an inter-
face for registering and configuring user defined fetch procedures and resolution
functions. Using the Deco API, we built a command-line interface as well as a

CHAPTER 2. FOUNDATIONS OF DECO 18

Figure 2.2: Deco user interface: query execution

web-based graphical user interface. The GUI executes queries (Figure 2.2), visu-
alizes query plans (Figure 2.3), and shows log messages in real-time.

When the Deco API receives a query, at a very high level the overall process of
parsing the query, choosing the best query plan, and executing the chosen plan
is similar to a traditional database system. However, there are many significant
differences in the details. The next two chapters describe details of query plan
execution (Chapter 3), and how the system constructs and selects a plan (Chapter
4).

2.4 Related Work

This section discusses related work for Deco in general. More specific compar-
isons regarding Deco’s query execution and optimization are given in Sections 3.7
and 4.6, respectively.

CHAPTER 2. FOUNDATIONS OF DECO 19

Figure 2.3: Deco user interface: query plan visualization

Several recent data-oriented systems have proposed a declarative approach
to incorporate crowdsourced data [13, 20, 26, 36, 38]. Among those systems,
CrowdDB [26] bears the closest similarity to Deco in terms of the data model
and query language; however, Deco opts for more generality and flexibility, thus
requiring the novel query processing techniques described in Chapters 3 and 4.
(A detailed comparison between the two systems can be found in [41].) Qurk
[38] is a workflow system that uses crowdsourcing primarily as part of its oper-
ations on existing structured data, and reference [38] studied how to reduce the
monetary cost of its crowd-powered sort and join operators by improving worker
interfaces. Since Deco makes no assumption about worker interfaces, their work
is complimentary to Deco and can be incorporated into Deco to improve fetch
procedures. To the best of our knowledge, CrowdDB and the other systems in
this category do not yet have a cost-based query optimizer.

Chapter 3

Query Execution in Deco

We specified the Deco data model, query language, and system architecture in
Chapter 2. In this chapter and the next one we consider how Deco’s query op-
timizer and query execution engine together answer a given Deco query. Our
primary goal in query processing is to produce at least the required number of
result tuples, while minimizing monetary cost. Our secondary goal is to reduce
latency while maintaining the minimum cost. Note that Deco’s resolution func-
tions effectively specify minimum thresholds for the third axis of interest, data
quality. In our design of Deco, the query optimizer selects the plan with the least
estimated monetary cost, without explicitly considering latency. Then, when the
plan is executed by the execution engine, both cost and latency are considered.

In this chapter, we consider details of the query execution engine, specifically
addressing how to implement the defined semantics while executing queries effi-
ciently, assuming that the query optimizer has already picked a query execution
plan.1 We will describe how the query optimizer chooses query plans in Chapter
4. In Section 3.1, we discuss several unique challenges in Deco’s query execution
engine, along with our approach to tackling them. In Section 3.2, we describe
Deco’s query operators and execution plans. In Section 3.3, we provide details of
query execution for the case where there are no existing tuples in any of the raw
tables. In Section 3.4, we extend query execution for the general case where there
may be existing tuples in raw tables. In Section 3.5, we describe prioritization of

1The material presented in this chapter first appeared in [41, 44].

20

CHAPTER 3. QUERY EXECUTION IN DECO 21

accesses to crowdsourced data. Section 3.6 describes our experimental evaluation,
Section 3.7 covers related work, and we conclude in Section 3.8.

3.1 Challenges and Approach

Deco’s data model and query semantics along with the primary and secondary
goals described above—minimizing cost, then reducing latency—give us several
unique challenges to address. We motivate those challenges and how Deco’s ex-
ecution engine addresses them. As in traditional database systems [27], a query
plan is a rooted DAG of query operators; each operator corresponds to a data pro-
cessing step and produces “output tuples” based on “input tuples” that are the
outputs of its children.

3.1.1 Executing Queries in Two Phases

Consider a query with “MinTuples n” constraint. To minimize monetary cost,
Deco’s query execution engine must ensure that fetches are issued to the crowd
only if the raw tables do not have sufficient data to produce n result tuples. To
do so, Deco executes queries in two phases. In the materialization phase, the “cur-
rent” result is materialized using the existing contents of the raw tables without
invoking additional fetches. If this result does not meet the MinTuples constraint,
the accretion phase invokes fetch rules to obtain more results. This second phase
extends the result incrementally as fetch rules complete, and invokes more fetches
as needed until the constraint is met.

3.1.2 Enabling Parallelism Using Asynchronous Pull

As a data source, the crowd has unique characteristics that are not found in con-
ventional sources (like disks): very high latency and abundant parallelism. Thus,
to reduce overall latency, it is important for Deco’s query execution engine to
exploit parallelism when accessing the crowd. However, the traditional iterator
model [27] for executing query plans is ill suited to this kind of parallelism, be-
cause getNext calls on query operators do not return until data is provided. (The

CHAPTER 3. QUERY EXECUTION IN DECO 22

solution used in parallel database systems does not apply in our setting; see dis-
cussion in Section 3.7.) In Deco’s hybrid execution model, query operators do not
expect an immediate response to a “pull” (getNext) request; the child operator
will respond whenever a new output tuple becomes available. This built-in asyn-
chrony in query execution ultimately allows Deco to ask multiple questions to
the crowd in parallel, without having to wait for individual crowd answers. The
concept of asynchronous iteration introduced in [28] also aims to enable parallelism
when accessing outside sources during query execution. However, our specific
setting led us to a somewhat different solution; see Section 3.7 for further com-
parison.

3.1.3 Choosing Right Degree of Parallelism

To reduce latency while still minimizing monetary cost, it is critical to choose the
right degree of parallelism when accessing the crowd: too much parallelism might
waste work, while too little increases latency. Our approach is to exploit as much
parallelism as possible (to reduce latency), but only when the parallelism will not
waste work (to minimize cost). Specifically we set the following two fundamental
objectives for Deco’s query execution engine:

• Objective #1: Never parallelize accesses to the crowd if it might increase the
monetary cost.

• Objective #2: Always parallelize accesses to the crowd if it cannot increase
the monetary cost.

3.1.4 Initiating Good Fetches

In certain cases where existing data must be combined with new data to produce
the result, minimizing monetary cost is especially difficult because existing data
can make some fetches more “profitable” than others: choosing these fetches
allows us to meet the MinTuples constraint with less cost. For example, it is
better to invoke fetches that complete nearly-complete result tuples, or that may
eventually contribute to many result tuples. Thus, Deco’s query execution engine
has to choose not only the right degree of parallelism, but also the specific “good”

CHAPTER 3. QUERY EXECUTION IN DECO 23

fetches to invoke in parallel. Individual query operators do not always have
enough information to choose the good fetches, so our approach is to invoke more
fetches than needed, but prioritize them so the better fetches are more likely to
complete first (thus minimizing monetary cost). The query engine cancels any
outstanding fetches once the MinTuples constraint is met, which for our model we
assume incurs no extra cost. (Note this assumption largely holds in, e.g., Amazon
Mechanical Turk [1].)

3.1.5 Changing Result Incrementally

Due to the flexibility of Deco’s fetch rules and resolution rules, implementing
the Deco semantics defined in Chapter 2 requires query operators to sometimes
remove or modify intermediate output tuples that were passed to their parents
previously. For instance, considering our example of Chapter 2, fetch rules such
as country⇒ language,capital can provide tuples to multiple raw tables. Even if
this fetch rule is invoked based on the need for a language value, data may as
a side effect be inserted into the raw table for capital. This insertion can change
the resolved capital value already produced because resolution functions are not
necessarily monotonic. The process of propagating updates becomes similar to
incremental view maintenance [12].

3.2 Query Operators and Execution Plans

In this section, we first describe Deco’s query operators. Then we explain how
those operators are assembled into query plans. Note the current Deco system
processes Select-Project-Join queries only.

3.2.1 Query Operators

Deco includes standard Filter and Project operators that we do not describe fur-
ther [27]. The following query operators are specific to Deco:

• Each Fetch operator corresponds to a fetch rule A1 ⇒ A2 : P. It invokes

CHAPTER 3. QUERY EXECUTION IN DECO 24

procedure P using values for A1 either received from its parent operator
or bound based on the query. It does not wait for answers, so that many
instances of the fetch procedure can be invoked in parallel. When values for
A1 ∪ A2 are returned by P, they are sent to one or more Scan operators that
work with the Fetch operator. Scan operators insert the new tuples into raw
tables and also pass them up to their parent Resolve operators. Note Fetch
and Scan operators do not have any child operators, i.e., they are always
leaves in the plan.

• Each Resolve operator corresponds to a resolution rule A1 → A2 : f . It buffers
all tuples in the raw table associated with its child Scan operator, grouped by
their A1 values. For each group, it maintains the result of function f on the
set of A2 values in the group. When f produces a non-empty set of resolved
A2 values, each of them is passed to the parent, along with the value for
A1. When a new tuple is needed, the Resolve operator asks its child Fetch
operator for the minimum number of additional input A2 values needed for
f to produce a resolved A2 value for the group (recall Section 2.1.4).

• Each DepJoin (for dependent join [25, 28, 34]) operator is used to join con-
ceptual relations in the From clause. It performs an inner join [27] based on
equijoin predicates. Its behavior is similar to a relational indexed nested-
loop join: It receives attribute values from its outer child, which it passes to
its inner child to obtain additional attributes that constitute join result tuples.

• Each DLOJoin (for Dependent Left Outerjoin) operator is used to join raw
tables constituting one conceptual relation. It performs a left outerjoin to im-
plement Deco’s data model semantics (recall Section 2.1.5): It always obtains
anchor attributes from its outer child and dependent attributes from its in-
ner, and produces a result even if there are no matching inner tuples. As in
DepJoin its behavior is similar to a relational indexed nested-loop join.

• The MinTuples operator buffers the partial result of the query at the root of
query plans: It contains the answer to the query computed so far, but may
include tuples with NULL values. Based on the buffered partial result, the
operator determines when the MinTuples constraint is satisfied.

CHAPTER 3. QUERY EXECUTION IN DECO 25

We will see in the next subsection how query operators are assembled into a
rooted DAG to make up a query plan.

3.2.2 Query Plans

In this section we introduce Deco’s query plans by explaining four possible query
plans for an example query. Sections 3.3 and 3.4 will go into far more detail of
plan execution. We continue with the example database from Chapter 2 (Section
2.1). Our example query finds eight Spanish-speaking countries and their capitals:

SELECT country, capital
FROM Country
WHERE language=‘Spanish’
MINTUPLES 8

Basic Query Plan

Figure 3.1 shows a basic query plan for the example query. This plan uses three
fetch rules: ∅⇒ country (operator 8), country⇒ language (operator 11), and coun-
try⇒ capital (operator 14). Recall from Section 2.1 that the raw schema includes
three raw tables CountryA(country) (operator 7), CountryD1(country, language) (op-
erator 10), and CountryD2(country, capital) (operator 13). Also recall that resolution
functions for country, language, capital are dupElim, majority-of-3, and majority-of-3,
respectively. Abbreviations in the query plan should be self-explanatory.

At a high level, the plan performs an outerjoin (operator 5) of a resolved ver-
sion of CountryA (operator 6) and a resolved version of CountryD1 (operator 9),
followed by a filter on language (operator 4). This result is outerjoined (operator
3) with a resolved version of CountryD2 (operator 12). Lastly, country and capital
attributes are projected (operator 2).

For now let us assume there are no existing tuples in any of the raw tables.
When we provide more details in later sections, we will consider the case of empty
as well as non-empty raw tables. First, the root operator sends eight “pull” re-
quests to its child operator (based on MinTuples). These requests propagate down
the left (outer) side of the joins, and eventually invoke fetch rule ∅ ⇒ country

CHAPTER 3. QUERY EXECUTION IN DECO 26

MinTuples[8]

Project[co,ca]

DLOJoin[co]

DLOJoin[co]

Resolve[dupeli] Resolve[maj3]

Resolve[maj3]Filter[la=’Spanish’]

Scan
[CtryA]

Fetch
[Φàco]

Scan
[CtryD2]

Fetch
[coàca]

Scan
[CtryD1]

Fetch
[coàla]

1

2

3

4 12

5 13

96

7 8 10 11

14

Figure 3.1: Basic query plan

eight times, without waiting for answers. At this point, there are eight outstand-
ing fetches in parallel.

As these outstanding fetches complete, the new country values are inserted
into raw table CountryA and passed up the plan by the Scan operator. Through
the DLOJoin, new countries trigger invocations of fetch rule country⇒ language.
For each country value, two instances of this fetch rule are invoked in parallel
because the resolution function majority-of-3 requires at least two language values
as input. At this point, we may have many fetches going on in parallel: some to
fetch more countries, and some to fetch languages for given countries.

Until theMinTuples constraint is met, the query plan invokes additional fetches
as needed. For example, if the two instances of fetch rule country⇒ language for
a given country return two different language values, the plan invokes another
instance of the same fetch rule to obtain the third language value. Likewise, as
soon as a resolved language value for a certain country turns out to not be Spanish,
the plan invokes a new instance of fetch rule ∅⇒ country. For countries whose
resolved language value is Spanish, the plan obtains capital values for the country,

CHAPTER 3. QUERY EXECUTION IN DECO 27

MinTuples[8]

Project[co,ca]

DLOJoin[co]

DLOJoin[co]

Resolve[dupeli] Resolve[maj3]

Resolve[maj3]Filter[la=’Spanish’]

Scan
[CtryA]

Fetch
[laàco]

Scan
[CtryD2]

Fetch
[coàca]

Scan
[CtryD1]

Fetch
[coàla]

1

2

3

4 12

5 13

96

7 8a 10 11

14

Figure 3.2: Reverse query plan

in parallel with other fetches similarly to how language values were obtained.
Once the MinTuples constraint is met, the result tuples are returned to the client.

Reverse Query Plan

Suppose the predicate language=‘Spanish’ is very selective, that is, most tuples
have a different language value. If we use the basic query plan in Figure 3.1,
even obtaining a single answer could be expensive in terms of monetary cost and
latency, because we are likely to end up fetching many countries and languages
that do not satisfy the predicate. Figure 3.2 shows an alternative query plan
that uses the “reverse” fetch rule language ⇒ country underneath the Resolve
operator. Note the only change from Figure 3.1 is operator 8a, so at a high level
the behavior of the reverse plan is similar to the behavior of the basic plan in
Figure 3.1. However, whenever Resolve operator 6 needs an additional country
value, Fetch operator 8a invokes the fetch rule language⇒ country with Spanish
as the language value. (The association of predicate language=‘Spanish’ with the

CHAPTER 3. QUERY EXECUTION IN DECO 28

DLOJoin[co]

Resolve[maj3]

Resolve[maj3]

Scan
[CtryD2]

Scan
[CtryD1]

Fetch
[coàla,ca]

Resolve[dupeli]

Scan
[CtryA]

Fetch
[Φàco]

7

6

10

9

12

13

5

8 11a

MinTuples[8]

Project[co,ca]

DLOJoin[co]

Filter[la=’Spanish’]

1

2

3

4

Figure 3.3: Combined query plan

Fetch operator is made when this query plan is built.) When completed, this
fetch rule invocation obtains a country that is Spanish-speaking according to one
worker, rather than a random country. Although the country may still turn out
to be not Spanish-speaking after resolving its language value through additional
fetches, it is more likely to pass the predicate, avoiding unnecessary fetches.

Combined Query Plan

It may be less expensive to use a fetch rule that gathers multiple dependent at-
tributes at the same time, rather than fetching attributes separately. For the ex-
ample query, we can use the “combined” fetch rule country⇒ language,capital in-
stead of the two fetch rules country⇒ language and country⇒ capital. Figure 3.3
shows a query plan that uses this approach. Note that Figure 3.3 differs from
Figure 3.1 only in operator 11a and the absence of operator 14. Both Resolve
operators 9 and 12 ask Fetch operator 11a when they need more tuples. (Fetch
operators keep track of outstanding fetches to ensure that redundant fetches are

CHAPTER 3. QUERY EXECUTION IN DECO 29

DLOJoin[co]

Resolve[maj3]

Resolve[maj3]

Scan
[CtryD2]

Scan
[CtryD1]

Fetch
[coàla,ca]

Resolve[dupeli]

Scan
[CtryA]

Fetch
[laàco,ca]

7

6

10

9

12

13

5

8b 11a

MinTuples[8]

Project[co,ca]

DLOJoin[co]

Filter[la=’Spanish’]

1

2

3

4

Figure 3.4: Hybrid query plan

not invoked.) As motivated briefly in Section 3.1.5, there are complexities in-
volved when using combined fetch rules. We will see in Section 3.3.3 in detail
how Deco’s execution engine handles this plan.

Hybrid Query Plan

Since the reverse and combined query plans described above improve upon the
basic plan in two complimentary ways, we can take a “hybrid” approach where
a single query plan contains a reverse fetch rule as well as a combined fetch rule.
Figure 3.4 shows a query plan that uses this approach, employing two fetch rules
language⇒ country,capital and country⇒ language,capital. Note the only change
from Figure 3.3 is operator 8b. In this query plan, each of the two fetch rules
provides a pair of (country, language) values to raw table CountryD1 and a pair
of (country, capital) values to raw table CountryD2. Given the resolution func-
tion majority-of-3 for both language and capital, producing one result tuple only

CHAPTER 3. QUERY EXECUTION IN DECO 30

requires one instance of each fetch rule to be completed with correct worker an-
swers. We will walk through this scenario in more detail in Section 3.3.4. Note
a query plan with fetch rules language⇒ country and country⇒ language,capital
would have been slightly less efficient: Obtaining two pairs of (country, capital)
values using fetch rule country⇒ language,capital produces three pairs of (coun-
try, language) values including a pair from fetch rule language⇒ country, so the
third language value may be wasted.

3.3 Query Execution with No Existing Data

In this section, we describe in detail how we execute a Deco query plan starting
with empty raw tables. Under this assumption, the “current” query result com-
puted in the materialization phase (recall Section 3.1.1) is always empty and thus
does not satisfy the “MinTuples n” constraint. Therefore, we focus on the accretion
phase, which fetches new data to obtain n result tuples. Section 3.4 addresses the
general case when there is existing raw data.

Query operators communicate with each other by exchanging three kinds of
messages: bind messages pull more tuples from child operators, and add and re-
move messages push incremental changes to parent operators. Each query op-
erator has a queue that stores messages received from other operators, and runs
on its own thread that dequeues and processes one message at a time. Process-
ing a message typically involves changing the operator’s local state as well as
sending messages to its parent or child operators. For some operators, the local
state includes a buffer that stores all input tuples to the operator. (Note DLOJoin
and DepJoin have two local buffers, one for input tuples from the outer child
and another for input tuples from the inner child.) These buffers are needed to
determine the incremental changes to be propagated up the plan.

Since our operators must deal with asynchrony and handle both push and
pull requests, their details differ significantly from their iterator model counter-
parts [27]. Table 3.1 summarizes the behavior of our operators for the case of
initially empty raw tables. The entries in the tables will be explained in the next
subsections.

CHAPTER 3. QUERY EXECUTION IN DECO 31

Operator On receiving bind[t]
(from parent)

On receiving add[t] or remove[t] (from child)

MinTuples – For add[t], add t to buffer. For remove[t], remove t
from buffer. If the MinTuples constraint is met, ter-
minate execution and return all non-NULL tuples
in the buffer to the client.

Project Forward bind[t] to
child.

Forward add/remove[ΠA(t)] to parent.

Filter Forward bind[t] to
child.
(For our space of
plans, t=∅ always.)

For add[t], if p(t) is true (where p denotes the fil-
ter’s predicate), forward add[t] to parent; if p(t) is
false, send bind[∅] to child. For remove[t], if p(t)
is true, forward remove[t] to parent.

DLOJoin Forward bind[t] to
outer child.

For add[t], add t to outer or inner buffer. Forremove[t], remove t from outer or inner buffer.
Propagate any changes to outerjoin result to par-
ent using add/remove. For add[t], suppose t is
from outer and has no matching tuple in inner
buffer. If the join values ΠA(t) are being seen
for the first time, send bind[ΠB(t)] to inner child
(where A denotes the joining anchor attributes
from outer, and B denotes all anchor attributes
from outer).

DepJoin Forward bind[t] to
outer child.
(For our space of
plans, t=∅ always.)

If the join values in t contain one or more NULLs,
do nothing and return. For add[t], add t to outer
or inner buffer. For remove[t], remove t from
outer or inner buffer. Propagate any changes to
join result to parent using add/remove. For add[t],
suppose t is from outer and has no matching tuple
in inner buffer. If the join values ΠA(t) are being
seen for the first time, send bind[ΠA(t)] to inner
child (where A denotes outer attributes in the join
predicates). Otherwise, if bind[ΠA(t)] has failed
to obtain matching inner tuples, send bind[∅] to
outer child. For add[t], if t is from inner and has
no matching outer tuples, send bind[∅] to outer
child.

Resolve Forward bind[t] to
child Fetch operator.

Add ΠL∪R(t) to buffer (where L → R denotes the
resolution rule). Propagate any changes to resolu-
tion result to parent using add/remove. If the res-
olution function indicates that more input tuples
are needed to produce an output, send bind[t] to
child Fetch operator.

CHAPTER 3. QUERY EXECUTION IN DECO 32

Operator On receiving bind[t]
(from parent)

On receiving add[t] or remove[t] (from child)

Scan – Insert ΠA(t) into raw table (where A denotes at-
tributes in the raw table), and send add[t] to par-
ent.

Fetch Invoke the fetch
rule L ⇒ R with
argument ΠL(t||c)
as left-hand side,
where || denotes
tuple concatenation,
and c is a tuple
consisting of con-
stant value v’s in
all Where clause
predicates of form
S.A=v.

When the fetch completes, send add[t] to corre-
sponding Scan operators.
(See dotted arrows in Figures 3.1, 3.2, and 3.3.)

Table 3.1: Message exchanges during the accretion phase (empty raw tables)

3.3.1 Basic Query Plan

Consider the basic query plan in Figure 3.1, which we described at a high level
in Section 3.2.2. We now explain in detail how Deco’s engine executes the plan.
We first explain how Deco invokes initial fetches. We then describe how Deco
populates the result based on newly fetched data, and invokes more fetches as
needed. Finally, we explain how Deco manages termination once the MinTuples
constraint is met.

Initial Fetches: In every Deco plan, initially the MinTuples operator sends n
bind[∅] messages to its child operator, where n is the MinTuples constraint, and
∅ denotes an empty tuple. When an operator receives a bind message, its job is
to produce at least one output tuple for its parent. Under the assumption that
query execution starts with empty raw tables, all operators except Fetch simply
pass the responsibility (i.e., the bind message) on to a child (the outer child for
DLOJoin/DepJoin and Fetch child for Resolve), and Fetch operators invoke their
fetch rules to obtain tuples from the crowd.

CHAPTER 3. QUERY EXECUTION IN DECO 33

In our example plan, MinTuples operator 1 initiates eight bind messages, and
these bind messages propagate down to Fetch operator 8, which invokes eight
instances of its fetch rule ∅⇒ country in parallel. At this point, there are eight
outstanding fetches in parallel.

Populating Result: When an outstanding fetch completes, the Fetch operator
sends an addmessage with the new tuple to its corresponding Scan operator. The
Scan operator inserts the tuple into its raw table, then the change is propagated up
the plan via add and remove messages, similar to incremental view maintenance.
(In Sections 3.3.2 and 3.3.3 we will see that a single fetch can actually result in
multiple changes.)

In addition to bind messages from the MinTuples root, some operators may
initiate additional bind messages based on the tuples propagating up, in the fol-
lowing two cases:

• DLOJoin and DepJoin operators send bind messages to their inner children
when they receive outer tuples that need to be matched.

• Filter and Resolve operators may initiate an additional bind message if an
input tuple does not produce a new output tuple to propagate up.

We will discuss in Section 3.4.3 how the right degree of parallelism (based on the
two parallelism objectives in Section 3.1.3) is maintained at all times through the
additional bind messages.

Continuing our example, suppose an outstanding fetch ∅ ⇒ country com-
pletes with answer Peru. First, Fetch operator 8 sends an add message with tuple
(Peru) to Scan operator 7. The Scan inserts the tuple into its raw table CountryA
and forwards the add message to its parent. Then, Resolve operator 6 (duplicate
elimination) forwards the add to its parent because its buffer contains no other
(Peru) tuples. Upon receiving this add from the outer child, DLOJoin operator
5 sends add with NULL-padded tuple (Peru,NULL) to its parent because there
are no matching tuples in its inner buffer. (Even though pushing padded tuples
may seem unnecessary for this plan, in general all query operators must push all
output tuples to their parents because they have no global view of the plan they
belong to.) Filter operator 4 does not forward the padded tuple further because
the tuple does not satisfy predicate language=‘Spanish’.

CHAPTER 3. QUERY EXECUTION IN DECO 34

In addition to pushing new data up the plan, DLOJoin operator 5 sends a
bind message with Peru to its inner child to obtain a language value for Peru.
The job of Resolve operator 9 is to ultimately pass up an add message with tuple
(Peru,X), where X is a resolved language value for Peru. It does so by sending
two bind messages to Fetch operator 11, which invokes two instances of fetch
rule Peru⇒ language in parallel. At this point, we have many fetches going on
in parallel: some to fetch more countries, and some to fetch languages for given
countries.

Now suppose both outstanding fetches Peru ⇒ language complete with an-
swer Spanish. For each completed fetch, Fetch operator 11 sends an add message
with (Peru,Spanish) to Scan operator 10, which extends its raw table CountryD1
and forwards the add to the parent. Once Resolve operator 9 receives both adds
with (Peru,Spanish), it sends add with (Peru,Spanish) to its parent.

Next, DLOJoin operator 5 modifies its output tuple (Peru,NULL) to (Peru,Spanish)
using a remove and an add message. The new tuple passes through Filter opera-
tor 4 and reaches DLOJoin operator 3, which pushes a padded tuple (Peru,Spanish,
NULL) up the plan. Also, DLOJoin operator 3 sends a bind message with Peru to
its inner child. Once receiving an add message with (Peru,Y) from Resolve opera-
tor 12, the DLOJoin incorporates Y into the partial result by modifying its output
tuple (Peru,Spanish,NULL) to (Peru,Spanish,Y).

As a final example, suppose an outstanding fetch ∅⇒ country completes with
answer Korea. Then, similarly to how Peru is processed, two instances of Ko-
rea⇒ language are invoked in parallel. When both instances complete with the
same answer Korean, DLOJoin operator 5 sends its parent a removemessage with
(Korea,NULL) and an add message with (Korea,Korean). At this point, Filter oper-
ator 4 finds out that the new input tuple does not pass its predicate, so it initiates
a bind message to obtain another country-language pair. This bind message prop-
agates down the plan and invokes another instance of fetch rule ∅ ⇒ country.
(Note that Filter operator 4 does not initiate bind messages for input tuples with
NULL language values: an additional bind message is initiated only if the predi-
cate is evaluated as “false” in a three-valued logic [27].)

CHAPTER 3. QUERY EXECUTION IN DECO 35

Signaling Termination: Once the partial result at the root operator satisfies the
MinTuples constraint, all query operators are terminated, and the operator buffers
are cleaned up. We will see later that in the general case, outstanding fetches
may need to be canceled, but in the special case of empty raw tables, there cannot
be outstanding fetches. Finally, all non-NULL result tuples in the buffer at the
MinTuples operator are returned to the client (through the Deco API, recall Figure
2.1), and query execution terminates.

3.3.2 Reverse Query Plan

Recall from Section 3.2.2 that the only change from the basic plan in Figure 3.1 to
the reverse plan in Figure 3.2 is Fetch operator 8a. Thus we focus on execution
details in the reverse plan that differ from the basic plan.

To start with, MinTuples operator 1 initiates eight bindmessages as in the basic
plan. When Fetch operator 8a receives the bind messages propagated down from
the root operator, it invokes eight instances of the fetch rule language⇒ country
with Spanish as the language value. When one of the fetch rule invocations com-
pletes with a new country name Z, it adds tuples to both CountryA and CountryD1
via Scan operators 7 and 10, and the two added tuples propagate up the plan
separately. Assuming the country name Z is not a duplicate, Resolve operator 6
pushes Z up to DLOJoin operator 5, which sends a bind message to its inner child
to complete the language of Z. Meanwhile, Scan operator 10 pushes (Z,Spanish) to
Resolve operator 9. Since the Resolve already has one raw language value for Z,
it asks for one additional language value using the fetch rule country⇒ language
(Fetch operator 11) to compute a resolved language value for Z. (In contrast, the
basic plan would have asked for two language values using the same fetch rule
because the fetch rule ∅⇒ country does not provide a language value. Once one
of the two country⇒ language fetch rules invoked by the basic plan is answered
as Spanish, its execution state is effectively identical to the reverse plan with the
country Z just obtained.) The rest of plan execution proceeds as in the basic plan.

CHAPTER 3. QUERY EXECUTION IN DECO 36

3.3.3 Combined Query Plan

We now consider the combined plan in Figure 3.3. One unique aspect of the
combined plan is the fact that Fetch operator 11a has two parent operators: Re-
solve operators 9 and 12. Both of the Resolve operators send bind messages to
Fetch operator 11a when they need more input tuples. Once an outstanding fetch
for country⇒ language,capital completes, Fetch operator 11a sends add messages
to both Scan operators 10 and 13. As in the reverse plan, those add messages
propagate up the plan separately.

To illustrate a more interesting scenario, let us consider the query plan in
Figure 3.3 but with majority-of-5 as the resolution function for capital in Resolve
operator 12 (with shortcutting, so three matching values are needed). Suppose
an outstanding fetch ∅⇒ country completes with answer Bolivia. DLOJoin op-
erator 5 initiates a bind message, and Fetch operator 11a invokes two instances
of Bolivia⇒ language,capital in parallel. Suppose both fetches complete with the
same answer (Spanish,La Paz). Then, a new output tuple (Bolivia,Spanish) reaches
DLOJoin operator 3, and a partial result tuple (Bolivia,NULL) is stored at MinTu-
ples operator 1. At the same time, another instance of Bolivia⇒ language,capital
is invoked to obtain another capital value. Upon receiving (Quechua,Sucre) as the
third answer, the same fetch rule is invoked again. Suppose the fourth answer is
(Aymara,La Paz). While Resolve operator 12 finally produces La Paz as the resolved
capital value, Resolve operator 9 no longer has a majority for the language of Bo-
livia. Thus it sends a remove message with (Bolivia,Spanish) to its parent, which
propagates up and eventually invalidates the partial result tuple (Bolivia,NULL).
More bind messages are initiated until resolved values for country and capital are
sufficient to produce the query result.

3.3.4 Hybrid Query Plan

Finally, consider the hybrid plan in Figure 3.4. As in the other plans, this plan
starts with eight instances of the fetch rule obtaining country names, which is
Spanish ⇒ country,capital (Fetch operator 8b) in this case. Suppose one of the
outstanding fetches completes with answer (Argentina,Buenos Aires). Based on

CHAPTER 3. QUERY EXECUTION IN DECO 37

this answer, tuples are added to all three raw tables CountryA, CountryD1, and
CountryD2 via Scan operators 7, 10, and 13, respectively. As in the reverse plan,
Resolve operator 9 asks for an additional language value using the fetch rule Ar-
gentina⇒ language,capital (Fetch operator 11a). Resolve operator 12 also asks for
an additional capital value to produce a resolved capital value for Argentina, but
Fetch operator 11a recognizes the redundant outstanding fetch and does not in-
vokes its fetch rule again. Now suppose fetch rule Argentina⇒ language,capital
completes with answer (Spanish,Buenos Aires). This time tuples are added to de-
pendent tables CountryD1 and CountryD2 via Scan operators 10 and 13. Once
these tuples propagate up the plan, resolved language and capital values for Ar-
gentina are produced, and the root operator eventually gets a result tuple (Ar-
gentina,Buenos Aires).

3.3.5 Join of Conceptual Relations

Although our example query from Section 3.2.2 contains only one conceptual rela-
tion Country in its From clause, Deco’s query execution engine also supports join-
ing conceptual relations using the DepJoin operator (recall Section 3.2.1). While
DLOJoin handles outerjoins between anchor and dependent tables according to
Deco’s data model semantics, DepJoin handles join predicates explicitly specified
in Where clauses. Both join operators are variants of dependent join, so they
send bind messages with join values extracted from outer tuples to their inner
children to receive matching inner tuples. However, DepJoin is somewhat more
complex than DLOJoin. By definition, DLOJoin is always an equijoin over anchor
attributes, whose values are fixed by the time a bind message is issued to the in-
ner child, i.e., no additional fetches or resolution functions are applied for these
anchor values. On the other hand, DepJoin predicates can be over any attributes
(although restricted to equijoins; non-equijoins are handled as filters). When a
DepJoin sends a bind message with join attribute values to the inner child, due
to the behavior of resolution functions, it cannot be assured that the inner tuple
returned will have matching join values. If the values do not match, additional
bind messages must be sent to produce the needed join result tuple.

CHAPTER 3. QUERY EXECUTION IN DECO 38

3.4 Query Execution with Existing Data

Now we describe how Deco queries are executed in the general case where there
may be existing data in raw tables. As discussed in Section 3.1, this general case
is significantly more difficult to handle than the special case of empty raw tables,
in terms of minimizing monetary cost and reducing latency. We first describe
how an initial query result is computed in the materialization phase, then how
the accretion phase differs from the special case described in Section 3.3.

3.4.1 Materialization Phase

The materialization phase computes an initial query result based on the existing
contents of the raw tables, and as a side effect populates operator buffers. Starting
from Scan operators at the bottom, each operator in the plan pushes its initial
output tuples to its parent using populate messages, then sends a shift message
to the parent indicating the end of the initial output tuples at the operator (thus
“shifting” to the accretion phase, if needed). Table 3.2 summarizes the behavior of
operators for materialization. When the root MinTuples operator receives a shift
message, its buffer contains the initial partial result. If the partial result satisfies
the MinTuples constraint, execution terminates. Otherwise, execution continues to
the accretion phase.

Although our current approach for computing the initial result is fairly naive,
we could easily incorporate many conventional techniques into the materializa-
tion phase to improve performance. For example, we could cache the resolved
versions of the raw tables across queries so that Scan operators do not have to
send all raw tuples again for each query. In this case, the materialization phase
starts from Resolve operators, and Scan operators do not participate. We could
also incorporate a more traditional iterator model for the materialization phase, as
long as it is properly extended to populate the operator buffers. Note that unless
we have sufficient raw data, the bulk of query execution time is spent waiting for
human answers, so latency improvement from speeding up the materialization
phase is marginal.

As an example, consider again the basic query plan in Figure 3.1, and suppose

CHAPTER 3. QUERY EXECUTION IN DECO 39

Operator On receiving populate[t]
(from child)

On receiving shift (from child)

MinTuples Add t to buffer. If the “MinTuples n” constraint is met, ter-
minate execution and return all non-NULL
tuples in the buffer to the client. Otherwise,
proceed to the accretion phase.

Project Forward populate[ΠA(t)]
to parent.

Forward shift to parent.

Filter If p(t) is true (where p
denotes the filter’s predi-
cate), forward populate[t]
to parent.

Forward shift to parent.

DLOJoin Add t to outer or inner
buffer.

Send the left outerjoin of the two buffers to
parent using populate messages. Then sendshift to parent.

DepJoin If all join attribute values
are non-NULL, add t to
outer or inner buffer.

Send the join of the two buffers to parent us-
ing populate messages. Then send shift to
parent.

Resolve Add t to buffer. Group all tuples in buffer by the left-hand
side attributes of the resolution rule, apply
the resolution function for each group, and
send the resolved tuples to parent using pop-ulate messages. Then send shift to parent.

Scan At the start of the materialization phase, for each t in the raw table,
send populate[t] to parent. Then send shift to parent.

Table 3.2: Message exchanges for materialization

we have the following initial contents for the raw tables:

CountryA
country
Chile
Italy
Korea
Peru
Spain
Spain

CountryD1
country language
Chile Spanish
Chile Spanish
Chile English
Italy Italian
Italy Italian
Peru Spanish
Spain Spanish
Spain Spanish

CountryD2
country capital
Italy Rome
Korea Seoul
Spain Madrid
Spain Barcelona
Spain Madrid

Recall the resolution function for both language and capital is majority-of-3, with

CHAPTER 3. QUERY EXECUTION IN DECO 40

shortcutting. During the materialization phase, DLOJoin operator 5 accumulates
the following input tuples in its buffers:

Outer buffer
country
Chile
Italy
Korea
Peru
Spain

Inner buffer
country language
Chile Spanish
Italy Italian
Spain Spanish

Among the five output tuples of the DLOJoin, three of them do not pass Filter
operator 4: (Italy,Italian), (Korea,NULL), and (Peru,NULL). Thus, DLOJoin operator
3 accumulates the following input tuples in its buffers:

Outer buffer
country language
Chile Spanish
Spain Spanish

Inner buffer
country capital
Spain Madrid

The initial partial result at MinTuples operator 1 contains (Chile,NULL) and (Spain,
Madrid).

3.4.2 Accretion Phase

Similarly to how the special case of empty raw tables proceeds (Section 3.3), the
accretion phase first invokes some initial fetches to get started. Then, it extends
result based on newly fetched data, possibly invokes more fetches as necessary,
and finally signals termination once the MinTuples constraint is met.

Initial Fetches: Table 3.3 shows initial message exchanges that start the accretion
phase, in the general case of non-empty raw tables. As seen in the table, initial
bind messages are generated for two distinct purposes:

• Gathering Completely New Tuples: The MinTuples operator initiates k bind
messages, where k is the minimum number of additional partial result tuples
needed to satisfy the MinTuples constraint (based on the partial result after
materialization).

CHAPTER 3. QUERY EXECUTION IN DECO 41

Operator At the start of accretion phase
MinTuples Send max(n−m, 0) bind[∅] messages to the child, where n is the MinTu-ples constraint, and m is the number of tuples in the buffer.
DLOJoin For each set of values ΠA(t) in outer buffer with no matching inner

tuples, send bind[ΠB(t)] to inner child (where A denotes the joining
anchor attributes from outer, and B denotes all anchor attributes from
outer).

DepJoin For each set of values ΠA(t) in outer buffer with no matching inner
tuples, send bind[ΠA(t)] to inner child (where A denotes outer attributes
in the join predicates).

Table 3.3: Message exchanges to start accretion phase

• Joining Existing Tuples with New Tuples: The other method of increasing
the size of the result is to attempt to join existing outer tuples with new
inner tuples. (For DLOJoin, this means replacing NULL values with actual
values.) The bind messages to do so are generated by the DLOJoin and
DepJoin operators. Each DLOJoin or DepJoin operator sends a bind message
to its inner child for each join attribute values in its outer buffer with no
matching tuples in its inner buffer.

Note that in the special case of empty raw tables, Table 3.3 says for MinTuples to
initiate n binds, and none from joins, consistent with Section 3.3.

For most operators, behavior in the general case is the same as for the special
case (Table 3.1). However, for Filter and DepJoin, the behavior upon receiving a
bind message differs from the special case: These operators might be able to pro-
duce an output tuple without passing the bind message on to their child because
of existing data. As mentioned above, DLOJoin operators initiate bind messages
to replace NULL values with actual values. If a NULL is replaced with a value
that satisfies the predicate of a Filter (or DepJoin) higher up in the plan, the Filter
(or DepJoin) produces an output tuple spontaneously. In Section 3.4.3, we will
further argue that Filter and DepJoin operators propagate bind messages down
the plan in a manner that satisfies the two parallelism objectives from Section
3.1.3.

Continuing our example from the end of Section 3.4.1, the accretion phase
proceeds as follows:

CHAPTER 3. QUERY EXECUTION IN DECO 42

• MinTuples operator 1 needs at least eight result tuples, but its buffer contains
only two partial result tuples. To obtain six more partial result tuples, it sends
six bind messages to its child. Among these six binds, Filter operator 4 stops
two binds because two input tuples may pass the predicate once their actual
language values replace NULLs: (Korea,NULL) and (Peru,NULL). Eventually,
four bindmessages reach Fetch operator 8 and invoke fetch rule ∅⇒ country
four times.

• DLOJoin operator 3 scans its outer buffer and finds one tuple (Chile,Spanish)
that does not match any inner tuples. Thus, it sends a bind message to its
inner child to complete the capital value of Chile. This message reaches Fetch
operator 14, which invokes two instances of Chile⇒ capital in parallel.

• Similarly, DLOJoin operator 5 sends two bind messages to its inner child to
complete the language values for Korea and Peru. Fetch operator 11 invokes
two instances of Korea⇒ language and one instance of Peru⇒ language.

Once these initial fetches are invoked, the query execution engine handles each
completed fetch similarly to the examples from Section 3.3, possibly invoking
additional fetches until eight result tuples are produced.

3.4.3 Meeting Parallelism Objectives

Now we discuss in detail how Deco’s query execution meets the two parallelism
objectives laid out in Section 3.1.3:

• Objective #1: Never parallelize accesses to the crowd if it might increase the
monetary cost.

• Objective #2: Always parallelize accesses to the crowd if it cannot increase
the monetary cost.

To meet the objectives, Deco’s execution engine should only invoke fetches that
are definitely needed to satisfy the MinTuples constraint, and should always in-
voke those fetches as early as possible. To do so, each query operator sends bind
messages to its child as soon as it is known that the required number of output
tuples cannot be produced without those additional bind messages. We consider
each operator:

CHAPTER 3. QUERY EXECUTION IN DECO 43

• The MinTuples operator initiates the minimum number of bind messages
needed to satisfy the MinTuples constraint at the start of the accretion phase.

• Each Project operator simply forwards received bind messages to its child
operator.

• Each Filter operator keeps track in local variables of how many bindmessages
have been received from its parent and how many tuples might be generated
from below (as NULL values are replaced with actual values, or due to bind
messages sent). It sends bindmessages based on the difference between these
quantities.

• Each DepJoin operator also keeps track of how many bind messages have
been received from its parent and how many tuples might be generated from
below, taking into account its buffers of tuples received from its outer and
inner children. Similarly to Filter, it sends bind messages to its outer child
based on the difference between these quantities. We will discuss momentar-
ily bind messages sent from a DepJoin to its inner child.

• Each DLOJoin operator forwards bind messages received from its parent to
its outer child operator. Again we will discuss momentarily bind messages
sent from a DLOJoin to its inner child.

• Each Resolve operator buffers all input tuples grouped by the values corre-
sponding to the left-hand side of its resolution rule. It essentially treats those
groups separately, keeping track of the number of existing raw tuples and the
number of raw tuples being fetched, per group. It first initiates one or more
bind messages to obtain the minimum number of input values needed for its
resolution function to produce an output; additional bind messages are sent
if the resolution function indicates more input values are needed.

• Each Fetch operator keeps track of all outstanding fetches it has invoked
along with the parent Resolve operators that initiated those fetches, so that
redundant fetches across different parents can be coalesced.

Note Scan operators neither receive nor send bind messages.
Finally let us consider bind messages sent from DLOJoin and DepJoin opera-

tors to their inner children. For this case, it may appear that DLOJoin and DepJoin

CHAPTER 3. QUERY EXECUTION IN DECO 44

clearly violate Objective #1, since the number of binds they issue depends only on
the number of non-joining tuples (which could be very large), and not on the
“MinTuples n” constraint (Tables 3.1 and 3.3). Our approach to this specific case
relies on two features:

• prioritizing outstanding fetches, so the ones most likely produce useful data
are returned first

• canceling outstanding fetches (without incurring cost) once sufficient data has
been obtained

(Both of these capabilities are dependent on the crowdsourcing platform; we dis-
cuss Amazon Mechanical Turk specifically in Section 3.5.4.) Given the limited
information at each DLOJoin and DepJoin operator, it is impossible for those
operators to choose exactly the right number of bind messages to maximize par-
allelism while minimizing cost. Thus, we allow DLOJoin and DepJoin to issue
bind messages to their inner children for all non-matching outer tuples, but we
carefully prioritize the resulting fetches, and cancel any that are outstanding once
the MinTuples constraint is met. The prioritization problem turns out to be quite
interesting in our setting, so it is discussed in detail in the next section.

3.5 Fetch Prioritization

We now explain how we prioritize fetching data from the crowd, in order to
minimize cost. Recall that all fetches are the result of bind messages passed down
the plan until they reach Fetch operators. After a fetch rule has been invoked
and before it returns, we refer to that instance as an “outstanding fetch.” As
discussed in Sections 3.3 and 3.4, at any given time there may be a large number
of outstanding fetches executing in parallel; our goal is to influence the order
in which these outstanding fetches are handled, so the more “profitable” (to be
defined) ones are likely to execute first. To separate our optimization goal from
the details in crowdsourcing platforms, we assign scores to each outstanding fetch,
reflecting our prioritization. How the scores result in actual fetch prioritization is
platform-specific.

CHAPTER 3. QUERY EXECUTION IN DECO 45

Based on our discussion in the previous section, all outstanding fetches have
one of two purposes:

(1) To create new partial result tuples. These fetches may be a result of bind
messages originating from MinTuples, DepJoin, or DLOJoin operators.

(2) To fill in NULL values in the partial result. These fetches are always a result
of binds originating from DLOJoin operators.

For a “MinTuples n” constraint, our overall prioritization strategy is to first create
at least n partial result tuples (purpose 1), then fill in NULL values (purpose
2) until we have n result tuples. Although this strategy may not be optimal in
all cases, intuitively we must have n partial result tuples regardless in order to
produce a query result. Thus, we focus our optimization on filling in NULL
values in a fashion that minimizes cost. As future work, we could consider the
more difficult problem of globally optimizing purposes 1 and 2 together, which
will undoubtedly depend in complex ways on the query plan itself.

To find the optimal set of fetches that can fill in enough NULL values to gen-
erate the query result, there are several important factors to consider:

• Our goal is to generate tuples with no NULL values, so we may prefer to fill
in NULL values for tuples that are “nearly” complete.

• Sometimes a single fetch can fill in multiple NULL values.

• Since resolution rules often require multiple input values in order to produce
one output value, multiple fetches may be needed to fill in one NULL value.

We first formalize our fetch prioritization problem and show that it is NP-hard.
We then propose two heuristic scoring functions and describe their implementa-
tion in the context of Deco’s query execution engine. Lastly we describe how fetch
prioritization is implemented in one crowdsourcing platform, Amazon Mechani-
cal Turk.

3.5.1 Formal Problem Definition

Suppose we have m partial result tuples for a query plan with “MinTuples n”. We
are interested in the case where m ≥ n, but fewer than n tuples are non-NULL.
The query processor creates a set of outstanding fetches, each one associated with

CHAPTER 3. QUERY EXECUTION IN DECO 46

one or more NULLs in the partial result. (For formalizing the problem, we assume
resolution functions require a fixed number of input tuples, however we will see
that our heuristics allow us to drop this assumption.) Our goal is to select a subset
of the outstanding fetches that completes the result at minimum cost.

Finding the optimal solution for our fetch prioritization problem turns out to
be NP-hard in the data size and the number of desired result tuples. (A proof by
another author using a reduction from the three-dimensional matching problem
is given in [44].) Thus, we use a heuristic approach, described in Section 3.5.2.
Here we formulate the fetch prioritization problem as a polynomial zero-one pro-
gram [33] to motivate our heuristics. (In fact, the fetch prioritization problem can
be posed as an integer linear program, making it NP-complete; however, we use
the polynomial zero-one program for ease of exposition.)

Let NULLi1, . . . , NULLipi denote the pi NULL values of the i-th partial result
tuple (pi ≥ 0). To fill in NULLij, q(i, j) identical outstanding fetches fg(i,j)1, . . . , fg(i,j)q(i,j)

must complete. (Note that an outstanding fetch fhk contributes to all NULLij’s
with g(i, j) = h and q(i, j) ≥ k.) Finally, let xhk be an indicator variable specifying
if fetch fhk is chosen. Then, the fetch prioritization problem is directly translated
to the following:

minimize ∑
h

∑
k

xhk subject to
m

∑
i=1

pi

∏
j=1

q(i,j)

∏
k=1

xg(i,j)k ≥ n

xhk = 0, 1 ∀h, k

The objective function is the number of chosen fetches. The inequality constraint
says that at least n tuples have to be completed.

Example: Consider the following raw tables for the Country and City relations
from the example introduced in Section 2.1. Recall that the City relation contains
two anchor attributes city and country, and one dependent attribute population.
Also recall that the resolution functions for the language, capital, and population
attributes are majority-of-3, majority-of-3, and average-of-2, respectively.

CHAPTER 3. QUERY EXECUTION IN DECO 47

CityA
city country

Istanbul Turkey
Venice Italy
Trento Italy

CityD1
city country population
Venice Italy 270660

CountryA
country
Turkey
Italy

CountryD1
country language
Italy Italian

CountryD2
country capital
Turkey Istanbul

Suppose we are processing a query that asks for any two cities along with their
population and language:

SELECT city, country, population, language
FROM City, Country
WHERE City.country = Country.country
MINTUPLES 2

Further suppose that we use a query plan with the following five fetch rules.
(Note for each resolution rule A1 → A2 for City and Country, there is a corre-
sponding fetch rule A1 ⇒ A2, as in the basic query plan in Figure 3.1.)

• [Country] ∅⇒ country
• [Country] country⇒ language
• [Country] country⇒ capital
• [City] ∅⇒ city,country
• [City] city,country⇒ population

Based on the current contents of the raw tables above, we get the following partial
result at the end of the materialization phase:

city country population language
Istanbul Turkey NULL NULL
Venice Italy NULL NULL
Trento Italy NULL NULL

CHAPTER 3. QUERY EXECUTION IN DECO 48

At the start of the accretion phase (recall Section 3.4.2), the bindmessages initiated
by DLOJoin operators to fill in NULL values propagate down the plan and invoke
the following ten fetches:

• f11, f12: (Istanbul,Turkey)⇒ population
• f21: (Venice,Italy)⇒ population
• f31, f32: (Trento,Italy)⇒ population
• f41, f42, f43: Turkey⇒ language
• f51, f52: Italy⇒ language

Note that the MinTuples and DepJoin operators do not initiate any bind messages
based on Table 3.3.

Formulating this case as a polynomial zero-one program, we get:

minimize x11 + x12 + x21 + x31 + x32 + x41 + x42 + x43 + x51 + x52

subject to x11x12x41x42x43 + x21x51x52 + x31x32x51x52 ≥ 2

xhk = 0, 1 ∀h, k

Recall the objective is to minimize the number of chosen fetches out of all fhk’s.
Each term in the constraint indicates if its corresponding partial result tuple is
completed; for example, x21x51x52 corresponds to the second partial result tuple
for (Venice,Italy). The optimal solution is

x21=x31=x32=x51=x52=1, x11=x12=x41=x42=x43=0

which translates to actual outstanding fetches (Venice,Italy)⇒ population, (Trento,
Italy)⇒ population, and Italy⇒ language.

Note that the number of outstanding fetches q(i, j) required to fill in a NULL
value may not be fixed as in our formulation, depending on the resolution func-
tion. Even in our simple running example, majority-of-3 can stop after obtaining
two raw values if they agree with each other. We will see in the next section that
our heuristic approach accommodates variable values for q(i, j).

CHAPTER 3. QUERY EXECUTION IN DECO 49

3.5.2 Heuristic Algorithm

Our practical solution to the NP-hard prioritization problem is based on assign-
ing scores to outstanding fetches. The scores can then be used by the crowd-
sourcing platform to influence which fetches are most likely to complete (Section
3.5.4). Initial scores are assigned to outstanding fetches at the start of the ac-
cretion phase based on a heuristic solution to the problem formalized in Section
3.5.1. As fetches complete and the partial result changes, scores for the remaining
outstanding fetches may be adjusted. We will see in Section 3.6 that performance
with our online heuristic approach can be close to optimal. We present two scor-
ing functions. The first one assumes that only one fetch is needed to complete
each NULL value, i.e., q(i, j) = 1. The second scoring function takes the reso-
lution function into account and therefore multiple fetches may be needed, i.e.,
q(i, j) ≥ 1.

Our first scoring function, score1, is expressed in terms of pi, the number of
remaining NULL values in each partial result tuple. Specifically, we regard the
contribution of fhk to the i-th partial result tuple as 1/pi (if fhk contributes to the
tuple at all):

score1(fhk) =
m

∑
i=1

([∃j : g(i, j) = h]× 1
pi
)

In our example in Section 3.5.1, we have pi=2 for i=1, 2, 3, so score1(fhk) depends
on the number of partial result tuples to which fhk contributes. Thus, we have
score1(fhk)=1/2 for h=1, 2, 3, 4 and score1(f5k)=1.

Our second scoring function, score2, is expressed in terms of the number of
remaining fetches to complete each partial result tuple, ∑

pi
j=1 q(i, j). The contribu-

tion of fhk to the i-th partial result tuple is 1/ ∑
pi
j=1 q(i, j):

score2(fhk) =
m

∑
i=1

([∃j : g(i, j) = h]× 1

∑
pi
j=1 q(i, j)

)

In our example in Section 3.5.1, we have ∑
pi
j=1 q(i, j)=5, 3, 4 for i=1, 2, 3, respec-

tively. Since each of f1k, . . . , f4k contributes to a single partial result tuple, we
get score2(f1k)=score2(f4k)=1/5, score2(f2k)=1/3, and score2(f3k)=1/4. Since f5k

CHAPTER 3. QUERY EXECUTION IN DECO 50

contributes to two partial result tuples, we get score2(f5k)=1/3+1/4. Notice the
top-5 initial score2 values correspond to the optimal solution.

3.5.3 Query Execution Engine Extension

We now explain how we have extended Deco’s query execution engine to compute
scoring function score1 or score2 for each outstanding fetch. Actual prioritization
of fetches based on the scores depends on fetch procedures and crowd interfaces.
For Amazon Mechanical Turk, our fetch procedure always presents the outstand-
ing fetch with the highest score whenever a worker arrives (see Section 3.5.4).

Since score1 relies on the entire set of current partial result tuples, the MinTu-
ples operator is responsible for computing it. However, computing score1 incurs
little overhead due to the nature of the execution model: the MinTuples operator
can incrementally maintain the scores as partial result tuples are updated by add
and remove messages from its child operator. Specifically, when a partial result
tuple t is added or removed, the MinTuples operator can adjust score1(f) for each
outstanding fetch f that can fill in NULL values in the tuple t.

Our approach requires us to track all outstanding fetches that can fill in a
NULL value in a given partial result tuple t. To do so, we assign a unique identi-
fier for each outstanding fetch f and embed the identifier in the NULL values that
f can fill in. DLOJoin and Fetch operators cooperate to perform this embedding.

For score2, we can use the same overall approach as for score1 except we need
to manage q, the number of remaining fetches to complete each NULL value.
Resolve operators calculate q based on the numbers of required input tuples for
the resolution function, and the tuples currently in its buffer. Resolve operators
must propagate calculated q values up to the MinTuples operator so that score2 can
reflect up-to-date q values. In this case, simply embedding q in its corresponding
NULL value is not enough: Whenever q changes, Resolve operators must modify
the q part of the NULL value using a remove plus an add message. When these
messages reach the MinTuples operator, the score2 values can be updated without
affecting the partial result. Due to the additional computation and messages,
computing score2 is somewhat more expensive than computing score1; however,

CHAPTER 3. QUERY EXECUTION IN DECO 51

we will see in Section 3.6 that score2 is a better heuristic.

3.5.4 Amazon Mechanical Turk Support

We now describe how Deco’s generic Amazon Mechanical Turk (MTurk) fetch
procedure supports fetch prioritization based on scoring as described in the pre-
vious subsection. The MTurk fetch procedure translates fetch rule invocations
from the query execution engine into HITs (Human Intelligence Tasks, unit tasks
on MTurk) so that workers can answer them. For prioritization, the goal of the
MTurk fetch procedure is to present the outstanding fetch with the highest score
whenever a worker “accepts” one of the HITs. To do so, the MTurk fetch proce-
dure works together with a dedicated Deco form server, which hosts HTML forms
that the workers fill in, and keeps track of scores for outstanding fetches. (In
Deco’s architecture shown in Figure 2.1, the MTurk component contains the form
server and the MTurk service side-by-side: both the MTurk fetch procedure and
the workers communicate with the MTurk service as well as the form server.)

More specifically, when the MTurk fetch procedure is invoked by a Fetch op-
erator, the procedure instantiates a form template for the fetch rule, sends the
HTML form and its score to the form server using a web service API, and creates
a HIT that points to the form server. The MTurk fetch procedure also forwards
any changes in scores for outstanding fetches from the query execution engine
to the form server. When a worker accepts any of the HITs, the worker’s web
browser loads the address of the form server, which then chooses the HTML
form with the highest score and serves it to the worker. Typically MTurk workers
accept a series of HITs within their chosen HIT type, presented by MTurk in ran-
dom order. Overall, our approach replaces random scheduling with score-based
prioritization using our form server to delay the binding of HTML forms to HITs.

CHAPTER 3. QUERY EXECUTION IN DECO 52

3.6 Experimental Evaluation

In this section we present our experimental evaluation of Deco’s query execu-
tion engine. We first present an experiment comparing performance of alter-
native query plans with different fetch rules, using Amazon Mechanical Turk.
Then we evaluate the Deco execution model focusing on the interactions among
parallelism, cost, and latency. Finally, we evaluate the effectiveness of our fetch
prioritization scheme, compared against optimal prioritization and random pri-
oritization.

3.6.1 Performance of Different Query Plans

Experiment 1: Varying Fetch Rule Configurations: In our first experiment, we
evaluated how different fetch rule configurations affect query performance, to
study the usefulness of the flexibility of Deco fetch rules. We used our example
query from Section 3.2.2 that finds eight Spanish-speaking countries and their
capitals:

SELECT country, capital
FROM Country
WHERE language=‘Spanish’
MINTUPLES 8

We report performance of three example query plans described in Section 3.2.2:
the basic plan (Figure 3.1), the reverse plan (Figure 3.2), and the hybrid plan
(Figure 3.4). Recall that these query plans employ the following fetch rules:

• Basic plan: ∅⇒ country, country⇒ language, and country⇒ capital
• Reverse plan: language⇒ country, country⇒ language, and country⇒ capital
• Hybrid plan: language⇒ country,capital and country⇒ language,capital

We ended up excluding the combined plan (Figure 3.3) from this experiment.
As we will see shortly from the performance of the basic plan, the fetch rule
∅ ⇒ country was not effective in obtaining Spanish-speaking countries, caus-
ing very poor performance. Since the basic and combined plans obtain Spanish-
speaking countries in the same way, the cost of the combined plan would have

CHAPTER 3. QUERY EXECUTION IN DECO 53

��

��

��

��

��

��

��

��

��

��

�� �� ��� ��� ���

�
��

�
�
��

�
�
�
��

�
��

��
��

�
�
��
�

��������������

�����
�����

�������
�������
������
������

(a) Query completion rate

��

���

���

���

���

���

���

���

���

���

�� �� ��� ��� ���

�
��

��
��
��
�
�
��
��
�

��������������

�����
�����

�������
�������
������
������

(b) Worker answer rate

Figure 3.5: Performance of different query plans

been very similar to the cost of the basic plan: although the combined plan may
avoid additional fetches for capital values, the effect is negligible against the over-
whelming cost of fetching countries.

On Amazon Mechanical Turk, we paid a fixed amount of five cents per HIT
(i.e., per fetch rule invocation) as compensation for completed work. For attributes
country and capital, workers were allowed to enter free text, but our form server
validated this input to ensure that the text had no leading or trailing whitespaces
and that all letters were uppercase. For language, workers were allowed to select
one language from a drop-down list of about 90 languages. All experiments were
conducted on weekends in February 2012.

For each query plan, we ran the query twice starting with empty raw tables,
and noted similar results. Both runs are included in our graphs. Figure 3.5a
depicts the number of non-NULL result tuples obtained over time. Since our
query specified MinTuples 8, reaching eight output tuples signifies the completion
of the query. In addition, Figure 3.5b shows the number of HITs submitted by
workers over time. Note that the monetary cost of a query is proportional to the
total number of HITs submitted.

Using the hybrid plan, the query took 10.5 minutes and cost $1.35 for 27
worker answers on average (across two runs). Using the reverse plan, the query

CHAPTER 3. QUERY EXECUTION IN DECO 54

took 15 minutes and cost $2.30 for 46 worker answers on average. In comparison,
the basic plan performed very poorly: the query took two hours overall and cost
around $12.05. (We ended up collecting 64 countries and their languages.) Thus,
we find that it is important to consider a variety of query plans, and the decisions
of the query optimizer (Chapter 4) can significantly impact query performance in
terms of latency and total monetary cost. In terms of quality, the results were
clean and correct except one typo that persisted (“Ddominican Republic”). Not
surprisingly, individual worker answers had several errors that were not exposed
in the result.

3.6.2 Parallelism, Cost, and Latency

For the next experiment we report, and two additional experiments in Section
3.6.3, we built a crowd simulator, which enables a large number of experiments
without significant latency and dollar cost. (Note that repeating these experiments
on a real crowdsourcing platform would either be extremely costly, or would
mean far fewer trials.) The simulator responds to fetch requests by selecting
values from a predetermined set; we can either set our simulator to always give
“correct” answers (e.g., it always returns Lima as the capital of Peru), or specify a
fixed probability for each fetch rule that incorrect answers are given.

Experiment 2: Varying Degrees of Parallelism Our second experiment explores
whether Deco’s query execution engine accomplishes its optimization goal of
minimizing monetary cost and reducing latency when executing a given query
plan, by choosing the right degree of parallelism based on the two objectives in
Section 3.1.3. To do so, we compared monetary cost and latency of executing the
same query plan with varying degrees of parallelism, using the basic (Figure 3.1)
and reverse (Figure 3.2) query plans for our example query from Section 3.2.2:

SELECT country, capital
FROM Country
WHERE language=‘Spanish’
MINTUPLES 8

CHAPTER 3. QUERY EXECUTION IN DECO 55

��

��

��

��

��

�� �� �� ��� ���
��

���

���

���

���

�
�
�
�
��
��
��
�
��
��
�
�

�
��
�
�
��
��
��
��

���������������������

����
�������

(a) Reverse plan, correct answers

��

��

��

��

��

�� �� �� ��� ���
��

���

���

���

����

�
�
�
�
��
��
��
�
��
��
�
�

�
��
�
�
��
��
��
��

���������������������

����
�������

(b) Reverse plan, erroneous answers

��

��

���

���

���

�� �� ��� ��� ���
��

���

����

����

����

�
�

�
�

��
��

��
�

��
��

�
�

�
��

�
�

��
��

��
��

���������������������

����
�������

(c) Basic plan, correct answers

Figure 3.6: Interactions among parallelism, cost, and latency

For this experiment we start with empty raw tables. Thus, Deco begins by in-
voking eight anchor-value fetches in parallel, so the crowd can contribute to all
eight (potential) result tuples at the same time. Additional fetches are invoked as
needed when some of the original eight complete, but never more fetches than
would contribute to eight result tuples. In our graphs, the x-axis corresponds
to the degree of parallelism d, defined as the maximum number of result tuples
being produced in parallel. Thus, Deco’s behavior for our example query is at
d=8.

Figure 3.6a shows the monetary cost and latency of executing the reverse
plan for d=1..15, with our crowd simulator configured to always give correct

CHAPTER 3. QUERY EXECUTION IN DECO 56

answers. We assume each fetch takes 5 seconds and costs $0.05, for all fetch rules.
Since each result tuple needs three rounds of answers (e.g., Spanish⇒ Peru, Peru
⇒ Spanish, and two instances of Peru⇒ Lima in parallel), the minimum cost and
latency are 8× 4× $0.05 = $1.6 and 3× 5s = 15s, respectively. In fact, Deco’s
behavior (d=8) minimizes both monetary cost and latency. As we motivated in-
formally in Section 3.1.3, too much parallelism (d>8) increases monetary cost,
while too little (d<8) increases latency. Compared to no parallelism (d=1, equiva-
lent to the traditional iterator model), Deco reduced latency dramatically without
increasing the cost.

Figure 3.6b shows the cost and latency of executing the reverse plan, with
our simulator configured to give incorrect answers with 25% chance. Each data
point reported is the average of 50 trials. Due to incorrect answers, Deco often
ends up invoking fetch rule language ⇒ country more than eight times, so the
cost remains at the minimum until d=9, which is the best degree of parallelism.
Although Deco did not quite achieve the minimum, latency is still very close to
the minimum across d=1..9.

Figure 3.6c shows the cost and latency of executing the basic plan, with our
simulator set to always give correct answers. Since cost and latency of executing
this plan depend on the order in which countries are obtained, we picked a ran-
dom order and used the same order for all data points. As in Figure 3.6a, Deco
found the best degree of parallelism (d=8), reducing latency as much as possible
while minimizing cost. (As a side note, the non-monotonicity of cost increase for
d>8 is related to the positions Spanish-speaking countries appear in the random
order of countries obtained.)

3.6.3 Effectiveness of Fetch Prioritization

Now we present two experiments evaluating the effectiveness of fetch prioritiza-
tion. Experiment 3 evaluates our two scoring functions for varying amounts of
existing data in the raw tables, while Experiment 4 evaluates the scoring functions
for different data distributions. In both experiments, we compare our scoring

CHAPTER 3. QUERY EXECUTION IN DECO 57

functions against the optimal prioritization computed using a brute-force enu-
meration, and against random prioritization (i.e., equal scores).

For both experiments, we use the following fetch rules:

• [Country] country⇒ language and country⇒ capital
• [City] city,country⇒ population

Recall the resolution functions for the language, capital, and population attributes
are majority-of-3, majority-of-3, and average-of-2. Also, we set our simulator to al-
ways give correct answers, so that comparison against the optimal case makes
sense. Each data point in the figures is the average of ten trials, which had little
variance.

Experiment 3: Varying Amount of Existing Data We use the following simple
query:

SELECT country, language, capital
FROM Country
MINTUPLES X

We seed anchor table CountryA with 100 different country names. In this setting,
each outstanding fetch contributes to only one NULL value (either language or
capital for a particular country), so the partial result tuples are independent from
each other. We can achieve the optimal prioritization by completing first those
partial result tuples requiring fewer overall fetches to fill in. In fact, score2 behaves
exactly that way in this experiment: For a partial result tuple requiring k fetches
to fill in, each of those k fetches has a score2 of 1/k. On the other hand, score1 first
completes partial result tuples with fewer NULLs, ignoring the effect of resolution
functions on number of overall fetches.

Figure 3.7a shows the number of fetches completed to obtain X result tuples
using score1 and score2, starting with empty dependent tables. Because our simu-
lator gives correct answers only, we always need 400 fetches (two fetches for each
NULL value) to obtain 100 result tuples. We observe that prioritization based
on score1 and score2 needed 22% and 34% fewer fetches on average than random
prioritization. As expected, score2 achieves the optimal prioritization for this par-
ticular experiment.

CHAPTER 3. QUERY EXECUTION IN DECO 58

��

����

����

����

����

�� ��� ��� ��� ��� ����

�
�
�
��
�
�
�

�����������������������

������
������
������
�������

(a) Empty dependent tables

��

���

����

����

����

�� ��� ��� ��� ��� ����

�
�
�
��
�
�
�

�����������������������

������
������
������
�������

(b) 100 tuples in dependent tables

��

���

����

����

����

�� ��� ��� ��� ��� ����

�
�
�
��
�
�
�

�����������������������

������
������
������
�������

(c) 200 tuples in dependent tables

Figure 3.7: Effectiveness of fetch prioritization (Experiment 3)

In Figures 3.7b and 3.7c, we start the query with 100 and 200 tuples, respec-
tively, in the two dependent tables combined. These tuples are randomly chosen
from 400 correct tuples that would fill in all NULL values. In Figure 3.7b, the
overall trends are similar to Figure 3.7a: prioritization based on score1 and score2

needed 28% and 41% fewer fetches on average than random prioritization. In
Figure 3.7c, prioritization based on score1 and score2 needed 32% and 39% fewer
fetches on average than random prioritization. In Figure 3.7c the difference be-
tween score1 and score2 is much smaller because the simplifying assumption be-
hind score1 holds more often: As we seed more tuples in the dependent tables,
more NULL values can be filled in by completing one outstanding fetch.

CHAPTER 3. QUERY EXECUTION IN DECO 59

Experiment 4: Different Data Distributions For this experiment we use the
following join query:

SELECT city, country, population, language
FROM Country, City
WHERE City.country = Country.country
MINTUPLES X

Anchor tables CountryA and CityA are already populated with a varying number
and distribution of values. In this query, some outstanding fetches for language
might complete multiple NULL values in the partial result, depending on the
distribution of city-country pairs. Because the previous experiment showed that
existing data has little impact on the overall trends, we start with empty depen-
dent tables.

Figures 3.8a and 3.8b show the number of fetches to obtain X result tuples for
two real datasets: the 100 largest European cities and the 200 largest cities in the
world. Each country in the European and world city dataset has 4.3 and 2.9 cities
on average, respectively. The European city dataset contains eight countries (out
of 23) with only one city, while the world city dataset contains a long tail of 39
countries (out of 69) with only one city. In Figure 3.8a, score2-based and optimal
prioritization needed 34% and 40% fewer fetches on average than random priori-
tization. In Figure 3.8b, score2-based and optimal prioritization needed 37% and
42% fewer fetches on average than random prioritization. Overall, prioritization
based on score2 is quite close to the optimal across the entire range of X.

For Figure 3.8c, we deliberately generated a synthetic set of 100 city-country
pairs to make our score2-based prioritization work as poorly as possible: all lan-
guage values must be completed before any population values. Considering the
resolution functions majority-of-3 and average-of-2, score2 for country ⇒ language
can be as low as k/5 where k is the number of cities for the country value. Since
score2 for city,country⇒ population can be as high as 1/2 in this scenario, k should
be at least 3 for all countries. Thus, the worst-case dataset contains 32 countries
with three cities and one country with four cities. In Figure 3.8c, score2-based
prioritization and the optimal schedule needed 19% and 35% fewer fetches on
average than random prioritization.

CHAPTER 3. QUERY EXECUTION IN DECO 60

��

���

����

����

����

����

����

�� ��� ��� ��� ��� ����

�
�

�
��

�
�

�

�����������������������

������
������
������

�������

(a) 100 European cities

��

����

����

����

����

����

����

�� ��� ���� ���� ����

�
�
�
��
�
�
�

�����������������������

������
������
������
�������

(b) 200 World cities

��

���

����

����

����

����

����

�� ��� ��� ��� ��� ����

�
�

�
��

�
�

�

�����������������������

������
������
������

�������

(c) 100 Synthetic cities (worst case)

Figure 3.8: Effectiveness of fetch prioritization (Experiment 4)

3.7 Related Work

Among prior work in the general area of query processing, WSQ-DSQ [28] and
incremental view maintenance [12] are most relevant to Deco’s approach to query
execution. WSQ-DSQ enables an iterator execution model to concurrently access
high-latency data sources, in the context of integrating web search results into a
relational database. However, the WSQ-DSQ “placeholder” solution does not ap-
ply to Deco because of Deco’s flexible fetch and resolution rules. Parallel database
systems [21] also access data sources in parallel. However, they typically rely on

CHAPTER 3. QUERY EXECUTION IN DECO 61

static data partitioning and operator replication, so their approach is not appli-
cable to Deco, where arbitrary and dynamically adjustable degrees of parallelism
must be supported. View maintenance algorithms (e.g., [12]) propagate base table
updates to a materialized view. Deco’s query execution engine similarly applies
given base (raw) table changes to a partial query result, but in Deco base-data
changes also influence further query execution.

3.8 Conclusion

We presented the query execution component of Deco’s query processor. To im-
plement Deco’s data model and query semantics we introduced several Deco-
specific query operators, and we developed a novel query plan execution strategy
inspired in part by incremental view maintenance. To achieve our optimization
goals of minimizing monetary cost and reducing latency when executing a given
query plan, we incorporated several novel techniques into the execution engine,
including two-phase query execution, a hybrid execution model, and dynamic
fetch prioritization. The hybrid execution model enables the query execution en-
gine to carefully control parallel access to the crowd, with the right degree of
parallelism based on two key parallelism objectives: Never parallelize accesses if
it might increase the monetary cost, and always parallelize accesses if it cannot in-
crease the monetary cost. We validated experimentally that different query plans
have different performance characteristics, and that it is worthwhile to support
Deco’s flexible fetch rules in the execution engine. Moreover, our experiments
showed that the hybrid execution model and fetch prioritization are effective in
achieving our optimization goals.

Chapter 4

Query Optimization in Deco

We now consider Deco’s cost-based query optimizer. Given a query Q in Deco’s
query language, the function of the query optimizer is to find the best query
plan to answer Q, where “best” means the least estimated monetary cost across
all possible query plans. The query plan chosen by the query optimizer will
be executed by the query execution engine as described in Chapter 3, so that
Deco’s query processor as a whole can achieve the primary and secondary goals of
minimizing cost, then reducing latency. As we saw in Section 3.6.1, total monetary
cost incurred by fetches during query execution does vary significantly across
different query plans; therefore, plan selection by the query optimizer plays a
critical role in accomplishing our primary goal of minimizing monetary cost when
executing a query.

In this chapter, we present details of the query optimizer, which enumerates
valid query plans in a search space, estimates monetary costs of executing those
plans, and ultimately chooses the estimated best one among the plans.1 In Sec-
tion 4.1, we explain the overall steps involved in query optimization, then discuss
several new challenges in Deco’s query optimization, along with our approach to
tackling them. In Section 4.2, we describe how Deco estimates the monetary cost
of executing a given query plan. In Section 4.3, we describe the search space of
alternative valid plans for a query. In Section 4.4, we present Deco’s plan enumer-
ation algorithm, which explores the search space and applies the cost estimation

1The material presented in this chapter first appeared in [45].

62

CHAPTER 4. QUERY OPTIMIZATION IN DECO 63

algorithm. Section 4.5 describes our experimental evaluation of Deco’s query op-
timizer, Section 4.6 covers related work, and we conclude in Section 4.7.

4.1 Challenges and Approach

The query optimizer in a traditional database system typically consists of three
components [15]: First, a cost estimation algorithm is used to produce the estimated
cost of executing a given query plan. Second, a search space defines a set of valid
query plans to be considered by the query optimizer. Lastly, a plan enumeration
algorithm generates query plans in the search space, applies the cost estimation
algorithm to each query plan, and outputs the plan with the least estimated cost.

Estimating the cost of a query plan typically involves cardinality estimation,
which computes the expected number of output tuples for each component (sub-
plan) of the plan [27]. Cardinality estimation is considered a key component
of cost estimation, because the overall execution cost typically depends heavily
on the cardinality. Traditional database systems maintain statistics that concisely
capture distributions of underlying data [16], so that cardinality can be estimated
based on the statistics, without consulting the full data.

In standard database systems, cardinality does not depend on execution de-
tails in query plans such as access methods and join algorithms. Thus, many
different query plans may share exactly the same cardinality. Plan enumeration
typically invokes cardinality estimation only once for all query plans correspond-
ing to the same algebraic representation of the query (often called a logical plan),
to avoid redundant work and speed up the entire process.

Although Deco’s query optimizer has similar overall structure to a traditional
query optimizer, Deco’s query semantics and approach to plan execution give us
several unique challenges in cost estimation and plan enumeration. In this section
we motivate those challenges and discuss how Deco’s query optimizer addresses
them.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 64

4.1.1 Cost and Cardinality Estimation

Recall Deco’s valid-instance query semantics from Section 2.2: The answer to a
Deco query must represent the result of evaluating the query over some valid
instance of the database obtained by a Fetch-Resolve-Join sequence, starting with
the current contents of the database. Thus, a query result must reflect all existing
data in the database, and Deco obtains new data from the crowd while insert-
ing the new data into the database until a sufficient number of result tuples are
present. Since existing data is “free” and new data is not, Deco’s cost model
must distinguish between existing data and new data to estimate monetary cost
properly. We will see in Section 4.2.1 how Resolve and Fetch operators in Deco
query plans (Section 3.2.2) take into account the amount of relevant existing data
to estimate the amount of new data required to produce the result. Moreover, car-
dinality estimation must be based on some estimated final database state; thus,
Deco’s cardinality estimation algorithm estimates cardinality and the final state
of database simultaneously.

4.1.2 Statistics

To estimate cardinality in Deco query plans, we require some statistical informa-
tion about both existing data and new data. For existing data, we use the statis-
tical information maintained by the back-end RDBMS storing raw tables (recall
Section 2.1.2). For data obtained from the crowd, we primarily rely on infor-
mation provided by the schema designer and/or end-user (recall Section 2.1.1).
Specifically we require a selectivity factor to be provided by the schema designer
for each resolution function (further discussed below). For predicates, we also
allow the end-user to provide a selectivity factor (below); if none is provided we
resort to heuristic default values based on predicate types, also known as “magic
numbers” [16].

A selectivity factor of σ for a predicate p says that the predicate p has a σ

chance of being satisfied on a given data item. For example, the selectivity of
predicate language=‘Spanish’ may be around 0.1 in the Country relation, because
there are about 20 Spanish-speaking countries out of about 200 countries in the

CHAPTER 4. QUERY OPTIMIZATION IN DECO 65

world. For resolution functions, the selectivity factor estimates how many output
tuples are produced on average by each input tuple. For example, the selectivity
factor of resolution function majority-of-3 with shortcutting depends on how often
shortcutting is expected to happen, ranging from 1/3 (when the first two values
are never expected to agree) to 1/2 (when the first two values are always expected
to agree).

4.1.3 Plan Enumeration

As we will see in Section 4.3, Deco’s query plans are based on a join tree that
becomes an algebraic representation of the query, followed by fetch rule selec-
tions. Unlike in traditional database systems, different fetch rule selection for the
same algebraic plan may produce query results based on different valid instances
of the database, resulting in different cardinality. Thus, in comparison with tra-
ditional plan enumeration, there are far fewer opportunities to reuse cardinality
estimates across alternative query plans, or prune inferior subplans early. Deco’s
plan enumeration does reuse computations to the extent possible, achieving better
efficiency than a fully naive plan enumeration.

4.2 Cost Estimation

We describe how Deco’s query optimizer estimates the cost of executing a given
query plan. We will see in Section 4.4 that Deco’s plan enumeration algorithm
invokes cost estimation for each query plan in the search space, to determine the
best overall query plan. Recall that our optimization metric is the total monetary
cost incurred by fetches. Thus, Deco’s cost estimation algorithm takes as input a
query plan and statistics about data (both existing data and crowdsourced data),
and produces as output the estimated cost in dollars. In a sense our cost model
estimates resource consumption in a similar fashion to traditional database sys-
tems [27], except the resource is money instead of CPU, I/O, and communication
costs.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 66

Recall from Chapter 3 that a Deco query plan is a rooted DAG of query oper-
ators. Figure 4.1 repeats three of our example query plans from Section 3.2.2 for
the following query:

SELECT country, capital
FROM Country
WHERE language=‘Spanish’
MINTUPLES 8

Recall from Section 2.1.3 that there is a fixed monetary cost associated with each
fetch rule, and this cost is specified by the schema designer. For example, referring
back to our running example introduced in Chapter 2, fetch rules country⇒ lan-
guage and country⇒ capital may cost $0.03 and $0.05 per fetch, respectively. Al-
though costs may differ across fetch rules, we assume the cost-per-fetch of one
rule A1 ⇒ A2 does not depend on the specific values for A1 (even though, con-
ceivably, the level of difficulty to answer such questions may vary based on the
values for A1).

It turns out we can reduce the monetary cost estimation problem to the car-
dinality estimation problem. However, the notion of cardinality from traditional
databases [27] has to be adjusted, since Deco inserts new tuples into raw tables
during query execution. In Deco, we estimate cardinality of a subplan as the total
number of output tuples expected in order to obtain a query result with a suffi-
cient number of tuples. Since no Deco query operators except Fetch cost money,
we have the following formula for estimated monetary cost:

monetary cost = ∑
Fetch operatorF

F.cost-per- f etch× F.card (4.1)

where F.cost-per- f etch and F.card denote the cost-per-fetch and estimated cardi-
nality of Fetch operator F, respectively.

Because the schema designer specifies F.cost-per- f etch, estimating the mon-
etary cost amounts to estimating F.card, the cardinality of each Fetch operator
F. We will see that to estimate the cardinality of each Fetch operator, we need
to estimate cardinality for other parts of the plan as well. Section 4.2.1 specifies

CHAPTER 4. QUERY OPTIMIZATION IN DECO 67

MinTuples[8]

Project[co,ca]

DLOJoin[co]

DLOJoin[co]

Resolve[dupeli] Resolve[maj3]

Resolve[maj3]Filter[la=’Spanish’]

Scan
[CtryA]

Fetch
[Φàco]

Scan
[CtryD2]

Fetch
[coàca]

Scan
[CtryD1]

Fetch
[coàla]

1

2

3

4 12

5 13

96

7 8 10 11

14

(a) Basic query plan

MinTuples[8]

Project[co,ca]

DLOJoin[co]

DLOJoin[co]

Resolve[dupeli] Resolve[maj3]

Resolve[maj3]Filter[la=’Spanish’]

Scan
[CtryA]

Fetch
[laàco]

Scan
[CtryD2]

Fetch
[coàca]

Scan
[CtryD1]

Fetch
[coàla]

1

2

3

4 12

5 13

96

7 8a 10 11

14

(b) Reverse query plan

DLOJoin[co]

Resolve[maj3]

Resolve[maj3]

Scan
[CtryD2]

Scan
[CtryD1]

Fetch
[coàla,ca]

Resolve[dupeli]

Scan
[CtryA]

Fetch
[laàco,ca]

7

6

10

9

12

13

5

8b 11a

MinTuples[8]

Project[co,ca]

DLOJoin[co]

Filter[la=’Spanish’]

1

2

3

4

(c) Hybrid query plan

Figure 4.1: Example query plans

CHAPTER 4. QUERY OPTIMIZATION IN DECO 68

our cardinality estimation algorithm. Section 4.2.2 provides cardinality and cost
estimation examples.

4.2.1 Cardinality Estimation Algorithm

We describe a procedure EstimateCard that estimates cardinality for each operator
op in a query plan. Specifically, we estimate the total number of output tuples
from the subplan rooted in op that are needed in order to produce the required
number of result tuples for the entire plan. Procedure EstimateCard is specialized
for each operator type and takes two parameters:

• preds: an array of k predicates (with their selectivities)

• target: a target number of output tuples (at operator op) satisfying all of the
predicates in preds

Using these two parameters, operator op receives from its parent operator the re-
quirement for obtaining a sufficient number of overall result tuples, confined to
the subplan rooted at op: operator op must produce at least target output tuples
satisfying all predicates in preds. To estimate cardinality, operator op recursively
calls the EstimateCard procedure on its children with appropriate parameters.
Before the EstimateCard procedure on operator op returns, the output of the pro-
cedure is stored at operator op using the following three member variables:

• op.card: estimated cardinality of operator op.

• op.cards: an array of 2k elements representing the breakdown of op.card by
possible evaluation results of the k predicates in preds.
• op.distincts: an array containing the number of estimated distinct values for

each attribute in op’s output tuples.

These three outputs of the EstimateCard procedure are stored rather than sim-
ply returned to the caller for two reasons: First, we need to gather card values
of all Fetch operators at the end of the process to compute the total monetary
cost. Second, a card value of a Fetch operator may be updated when the Estimate-
Card procedure is called again through another parent. (Thus, except for Fetch
operators, technically these outputs could be returned to the caller.) To initiate
cardinality estimation for a plan, we call root.EstimateCard(0,∅).

CHAPTER 4. QUERY OPTIMIZATION IN DECO 69

We digress briefly to explain some implementation considerations of these
outputs. To define op.cards[i] (0 ≤ i < 2k) precisely, let b0, b1, . . . , bk−1 denote the
binary representation of i (i.e., i = ∑k−1

j=0 bj2k−j−1 and bj∈{0, 1}). The binary value
bj encodes whether predicate preds[j] is satisfied (bj=1) or not. Thus, op.cards[i]
is the estimated cardinality corresponding to the combination of predicate evalu-
ation results encoded by the index i. The following equation holds by definition:
op.card = ∑0≤i≤2k−1 op.cards[i]. Note that the default cards array is exponential
in size, i.e., 2k. If k is expected to be large, the implementation could always
assume independence of the k predicates and represent cards by a set of arrays
of size k, each of which captures different distributions under the independence
assumption, resulting in reduced space complexity for storing cards. We have not
implemented this approach, but it is a simple modification to our system. For
op.distincts, no array element can be larger than op.card. Note cardinality esti-
mation of a given query plan only uses certain elements in the op.distincts array
based on join predicates, although our notation is defined for all attributes in the
schema.

Having defined the signature of the EstimateCard procedure, we now go through
the actual implementation for each operator type. Recall from Section 3.2.1 that
our operators are MinTuples, Project, Filter, DLOJoin, Resolve, Fetch, DepJoin,
and Scan. Note Scan operators do not explicitly participate in cardinality estima-
tion.

MinTuples.EstimateCard(target, preds)
1 child.EstimateCard(this.minTuples, ∅)
2 this.card← child.card
3 this.cards← child.cards
4 this.distincts← child.distincts

Since the root of every Deco query plan is a MinTuples operator, MinTuples.Estimate-
Card is the entry point of our cardinality estimation algorithm as a whole. It calls
EstimateCard recursively on its child, with parameter target set to the number
of tuples in the MinTuples clause, and no predicates for parameter preds. (Note
that output tuples of the child operator of the root are guaranteed to satisfy all

CHAPTER 4. QUERY OPTIMIZATION IN DECO 70

predicates in the query.) When the recursive call returns, the cardinality estima-
tion algorithm terminates, and each F.card stores estimated cardinality for Fetch
operator F, from which we calculate the estimated monetary cost using Equation
(4.1).

Project.EstimateCard(target, preds)
1 child.EstimateCard(target, preds)
2 this.card← child.card
3 this.cards← child.cards
4 this.distincts← Π child.distincts

For the Project operator, the EstimateCard procedure simply continues the recur-
sion because the cardinality does not change at all.

Filter.EstimateCard(target, preds)
1 child.EstimateCard(target, preds ∪ {this.pred})
2 this.card← 0
3 this.cards← {0, . . . , 0}
4 for i = 0 to 2len(preds)−1 do
5 this.card← this.card + child.cards[2i+1]
6 this.cards[i]← child.cards[2i+1]
7 end for
8 this.distincts← minelementwise(child.distincts, {this.card, . . . , this.card})

The Filter operator recursively calls EstimateCard on its child operator with its
own predicate as well as the k predicates received from its parent operator. When
the recursive call returns, child.cards contains 2k+1 elements. Then, the Filter
computes its estimated cardinality by summing up the 2k elements whose indexes
indicate that its own predicate is satisfied.

DLOJoin.EstimateCard(target, preds)
1 outer.EstimateCard(target, preds)
2 d← outer.distincts[this.pred.left]
3 if outer.cards[2len(preds)−1] > target then
4 inner.EstimateCard(α × target × d / outer.card + (1− α) × d, ∅)
5 else
6 inner.EstimateCard(d, ∅)

CHAPTER 4. QUERY OPTIMIZATION IN DECO 71

7 end if
8 this.card← outer.card
9 this.cards← outer.cards

10 this.distincts← outer.distincts ∪ inner.distincts
For the DLOJoin operator, we first call EstimateCard on the outer child opera-
tor. We intentionally pass all predicates in preds to the outer, even though some
dependent attributes are obtained from the inner. (We will see shortly how Re-
solve and Fetch operators use these predicates to estimate the number of required
anchor values.) Note that we do not pass the left outerjoin predicate, which is
always satisfied by definition.

Once the recursive call on the outer returns, we call EstimateCard on the in-
ner child to eventually estimate the number of new dependent values required to
produce a query result. Without considering dynamic fetch prioritization (Section
3.5), parameter target would simply be d = outer.distincts[this.pred.left]. How-
ever, when there are more anchor values than needed due to existing data, fetch
prioritization takes effect. Deco prioritizes those fetches filling in dependent at-
tributes so that a sufficient number of result tuples are produced as soon as pos-
sible. As a result, some anchor values are not expected ever to be joined.

Since it is very difficult to predict the exact outcome of fetch prioritization
due to its heuristic approach, we discount parameter target using a configurable
weight 0≤ α≤ 1. With α = 0, we overestimate the number of new dependent
values, because joining all d anchor values may eventually produce far more result
tuples than needed. On the other hand, with α = 1, we assume optimal fetch
prioritization as well as no unfavorable correlations in the existing data, so we
underestimate the number of dependent values. In Section 4.5.1 (Experiment 2),
we empirically determine a good range for α.

Resolve.EstimateCard(target, preds)
1 compute this.card, this.cards and this.distincts based on the existing data in

the resolved raw tables (using the back-end RDBMS)
2 t← this.cards[2len(preds)−1]
3 fetch.EstimateCard(max(0, target - t), preds ∪ {this.resolution_function})
4 card← 0
5 for i = 0 to 2len(preds)−1 do

CHAPTER 4. QUERY OPTIMIZATION IN DECO 72

6 card← card + fetch.cards[2i+1]
7 this.card← this.card + fetch.cards[2i+1]
8 this.cards[i]← this.cards[i] + fetch.cards[2i+1]
9 end for

10 this.distincts← this.distincts + {card, . . . , card}

The Resolve operator first computes card, cards, and distincts based on the exist-
ing data in the resolved raw tables, without considering parameter target. Our
approach is to exploit the available statistics provided by the back-end RDBMS.
Once card, cards, and distincts are computed based on the existing data, the Re-
solve operator calls the EstimateCard procedure on its child Fetch operator to es-
timate the cardinality of required new data. Since existing data contributes to
t = cards[2len(preds)−1] output tuples satisfying all predicates in preds, parameter
target is set to max(0, target−t). Also, the Resolve operator passes the selectivity
of its resolution function as part of parameter preds.
Fetch.EstimateCard(target, preds)

1 card← target
2 for each pred ∈ preds do
3 if pred.left /∈ this.lhs_attrs then
4 card← card / pred.selectivity
5 end if
6 end for
7 if this.card < card then
8 this.card← card
9 this.cards← {card, . . . , card}

10 for i = 0 to 2len(preds)−1 do
11 for j = 0 to len(preds)−1 do
12 if preds[j].left ∈ this.lhs_attrs then
13 selectivity← 1.0
14 else
15 selectivity← preds[j].selectivity
16 end if
17 if i & 2len(preds)−1−j == 0 then
18 this.cards[i]← this.cards[i] × (1−selectivity)
19 else
20 this.cards[i]← this.cards[i] × selectivity
21 end if
22 end for

CHAPTER 4. QUERY OPTIMIZATION IN DECO 73

23 end for
24 end if

As a base case of our recursive process, the Fetch operator estimates its cardinality
based on its associated fetch rule and the parameters target and preds. We assume
that new data obtained by the Fetch operator always satisfies those predicates in
preds that are used to instantiate the left-hand side of the fetch rule. (For exam-
ple, in Figure 3.2, new countries obtained by Fetch operator 8a satisfy predicate
language=‘Spanish’.) Moreover, we assume the other predicates in preds are inde-
pendent for the new data: the probability of a new tuple satisfying a predicate p
is the selectivity of p.

Unlike all other operator types, a Fetch operator may have more than one
parent operator, when the right-hand side of its fetch rule contains dependent
attributes spanning multiple raw tables and no anchor attributes. (Fetch operator
11a in Figure 3.4 is one such example.) In this case, the EstimateCard procedure
is called on the Fetch operator as many times as the number of its parent Resolve
operators. Since the distribution of new data remains the same, the Fetch operator
simply retains the maximum estimated cardinality across all calls.

DepJoin.EstimateCard(target, preds)
1 outer.EstimateCard(target, preds ∪ {this.pred})
2 inner.EstimateCard(outer.distincts[this.pred.left], ∅)
3 this.card← 0
4 this.cards← {0, . . . , 0}
5 for i = 0 to 2len(preds)−1 do
6 this.card← this.card + outer.cards[2i+1]
7 this.cards[i]← outer.cards[2i+1]
8 end for
9 this.distincts← minelementwise(outer.distincts ∪ inner.distincts, {this.card, . . . , this.card})

Roughly, our implementation of EstimateCard for DepJoin combines EstimateCard
of DLOJoin and Filter. One simplifying assumption we make is that new outer tu-
ples produced by the crowd do not match existing inner tuples. This assumption
will hold if queries typically join the same combinations of conceptual relations,

CHAPTER 4. QUERY OPTIMIZATION IN DECO 74

since past queries will tend to have materialized either both or neither of a joining
pair of tuples. Of course this assumption may not always hold. For example, if
the inner relation is queried more frequently than the outer, the assumption can
be violated to a large degree, resulting in large error. Note in the case where
we have a bound on the number of distinct values for a join attribute, we could
potentially remove this assumption.

4.2.2 Cost Estimation Examples

Let us walk through two simple example runs of our cost estimation algorithm.
Suppose we execute the example query from Section 3.2.2:

SELECT country, capital
FROM Country
WHERE language=‘Spanish’
MINTUPLES 8

We consider two plans for this query: the basic plan (Figure 4.1a) and the reverse
plan (Figure 4.1b). For both examples we start with the following resolved raw
tables:

CountryA
country
Chile
Korea
Peru
Spain

CountryD1
country language
Korea Korean
Peru Spanish
Spain Spanish

CountryD2
country capital
Korea Seoul
Spain Madrid

We assume the selectivity factor of predicate language=‘Spanish’ is 0.1. Also, we
assume the selectivity factors of resolution functions dupElim and majority-of-3 are
1.0 and 0.4, respectively. Finally we assume each fetch costs $0.05, for all fetch
rules.

Basic plan: Figure 4.2a shows a trace of our cardinality estimation algorithm
for the basic plan. Starting with calling EstimateCard(0, ∅) on the MinTuples
operator 1, we recursively call EstimateCard until we reach Resolve operator 6. At

CHAPTER 4. QUERY OPTIMIZATION IN DECO 75

MinTuples-1.EstimateCard(0, ∅)
DLOJoin-3.EstimateCard(8, ∅)

Filter-4.EstimateCard(8, ∅)
DLOJoin-5.EstimateCard(8, {Spanish})

Resolve-6.EstimateCard(8, {Spanish})
Fetch-8.EstimateCard(5.9, {Spanish, dupElim})card=59, cards={0, 53.1, 0, 5.9}
card=63, cards={55, 8}

Resolve-9.EstimateCard(63, ∅)
Fetch-11.EstimateCard(60, {majority-of-3})card=150, cards={90, 60}
card=63card=63, cards={55, 8}

card=8
Resolve-12.EstimateCard(8, ∅)

Fetch-14.EstimateCard(7, {majority-of-3})card=17.5, cards={10.5, 7}
card=8

(a) Basic plan

MinTuples-1.EstimateCard(0, ∅)
DLOJoin-3.EstimateCard(8, ∅)

Filter-4.EstimateCard(8, ∅)
DLOJoin-5.EstimateCard(8, {Spanish})

Resolve-6.EstimateCard(8, {Spanish})
Fetch-8a.EstimateCard(5.9, {Spanish, dupElim})card=5.9, cards={0, 0, 0, 5.9}
card=9.9, cards={1.9, 8}

Resolve-9.EstimateCard(9.9, ∅)
Fetch-11.EstimateCard(6.9, {majority-of-3})card=17.25, cards={10.35, 6.9}
card=9.9card=9.9, cards={1.9, 8}

card=8
Resolve-12.EstimateCard(8, ∅)

Fetch-14.EstimateCard(7, {majority-of-3})card=17.5, cards={10.5, 7}
card=8

(b) Reverse plan

Figure 4.2: Trace of EstimateCard

CHAPTER 4. QUERY OPTIMIZATION IN DECO 76

this point, target = 8, and preds has predicate language=‘Spanish’. Considering
existing data in resolved CountryA and CountryD1, there are two tuples satisfying
the predicate (Peru and Spain), one tuple not satisfying the predicate (Korea),
and one tuple unknown (Chile). Since the unknown tuple has 10% chance of
satisfying the predicate, we have card = 4 and cards = {1.9, 2.1}. To produce
eight tuples satisfying the predicate, we need 8− 2.1 = 5.9 more tuples, so Resolve
operator 6 calls EstimateCard(5.9, {language=‘Spanish’, dupElim}) on Fetch operator
8. Since the fetch rule of operator 8 is ∅⇒ country, we have card = 59 and cards
= {0, 53.1, 0, 5.9} at Fetch operator 8.

As the recursion unwinds, Resolve operator 6 and DLOJoin operator 5 have
estimated cardinality of 63. Since resolved CountryD1 has three existing tuples,
Resolve operator 9 needs to produce 63− 3 = 60 more tuples, and Fetch operator
11 has estimated cardinality of 60/0.4 = 150. Similarly, Filter operator 4 has
estimated cardinality of eight, and Resolve operator 12 needs to produce 8− 1 = 7
more tuples. (Note only the Spain tuple in resolved CountryD2 is “relevant” at
this point.) Thus, Fetch operator 14 has estimated cardinality of 7/0.4 = 17.5. The
final estimated monetary cost is $0.05× (59 + 150 + 17.5) = $11.325.

Reverse plan: Figure 4.2b shows a trace of our cardinality estimation algorithm
for the same query but using the reverse plan. Notice that the trace is exactly
same until we reach Fetch operator 8a with target of 5.9 and preds being {lan-
guage=‘Spanish’, dupElim}. Since the fetch rule of operator 8a is language⇒ coun-
try, we assume all new tuples satisfy predicate language=‘Spanish’. Thus, we have
card = 5.9 and cards = {0, 0, 0, 5.9} at Fetch operator 8a. As recursion unwinds,
Resolve operator 6 and DLOJoin operator 5 have estimated cardinality of 9.9. Thus
Resolve operator 9 needs to produce 9.9− 3 = 6.9 more tuples, and Fetch operator
11 has estimated cardinality of 6.9/0.4 = 17.25. The rest of the trace is the same as
above, and the estimated monetary cost is $0.05× (5.9 + 17.25 + 17.5) = $2.0325.

Our cost estimation indicates that the basic plan is expected to be about six
times as expensive as the reverse plan for this setting.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 77

4.3 Search Space and Plan Generation

Next we define the search space of alternative plans that Deco’s query optimizer
considers, then we describe how to generate all plans in the search space given
a query. Deco’s Fetch-Resolve-Join semantics (Section 2.1.5) enables interesting
plan alternatives. It turns out we can obtain all possible query plans for a given
query by considering all possible “join trees”, and considering all possible sets of
fetch rules for each join tree. (Later we will discuss how Deco reduces the search
space by excluding some of these plans.)

(1) Join tree: A join tree is a binary expression tree whose operators (internal
nodes) are either cross-products or left outerjoins, and whose operands (leaf
nodes) are resolved raw tables.

(2) Fetch rules: For each raw table, a Deco query plan requires one fetch rule
assigned to obtain additional tuples for the raw table.

Specifically we obtain all query plans for a given query Q in the following four
steps: First, we find all join trees for Q based on Q’s From clause. Second, we
transform each join tree into an algebraic representation of Q by placing predicates
in Q’s Where clause. Third, for each algebraic representation, we generate all
possible combinations of fetch rules from the set of available fetch rules. Finally,
for each algebraic representation and combination of fetch rules, we construct the
corresponding complete query plan for Q.

Given our example query from Section 4.2, this strategy will generate many
query plans including the three example plans in Figure 4.1 (assuming all fetch
rules in the example plans are available). As it happens, all three plans correspond
to the same join tree and the same algebraic representation; however, different
fetch rules were chosen for each plan.

In the remainder of this section we describe the four steps in detail. Section
4.4 addresses how to explore the search space and find the best plan using the
cost estimation algorithm from Section 4.2.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 78

4.3.1 Join Tree

Given a Deco query Q over one or more conceptual relations, our goal is to find all
join trees over raw tables that evaluate the cross product of all conceptual relations
in the From clause of the query Q. We first describe several transformations that
give us alternative join trees, then we identify a set of properties characterizing
all valid join trees.

Let us first consider a Deco query containing only one conceptual relation R
in its From clause. Here we are interested in finding all join trees equivalent to
the following left-deep tree:

R = ((A ./ D1) ./ D2) ./ · · · ./ Dk

where A and D1, . . . , Dk denote the resolved anchor table and dependent tables
for R, respectively. Although left outerjoins do not commute in general, we can
reorder them using the following equation when neither outerjoin predicates are
between Y and Z [49]:

(X ./ Y) ./ Z = (X ./ Z) ./ Y (4.2)

By repeatedly applying Equation (4.2) to the left-deep join tree above, we obtain
all k! left-deep join trees with A as the first (left-most) operand and D1, . . . , Dk in
any order after that.

Now consider the general case where a query Q contains n conceptual rela-
tions R1, . . . , Rn in its From clause. The goal is to find all join trees equivalent to
the following default tree:

R1× · · · × Rn = (((A1 ./ D11) ./ D12) ./ · · · ./ D1k1)× · · ·
× (((An ./ Dn1) ./ Dn2) ./ · · · ./ Dnkn) (4.3)

where Ai and Di1, . . . , Diki (ki ≥ 0) denote the resolved anchor table and de-
pendent tables for Ri, respectively. In addition to Equation (4.2), the following

CHAPTER 4. QUERY OPTIMIZATION IN DECO 79

equation holds when the outerjoin predicate is between Y and Z [49]:

X× (Y ./ Z) = (X×Y) ./ Z (4.4)

This equation allows us to “interleave” resolved raw tables from different concep-
tual relations in a join tree, opening up more opportunities to push down predi-
cates. (We will see in Section 4.3.2 that evaluating predicates early can eliminate
unnecessary fetches to obtain inner tuples at some joins, thus reducing monetary
cost.)

Finally we can use the commutativity and associativity of cross-products:

X×Y = Y× X, X× (Y× Z) = (X×Y)× Z (4.5)

Now we are interested in every join tree derived by repeatedly applying Equa-
tions (4.2), (4.4), or (4.5) to the default join tree. The following theorem exactly
characterizes our valid join trees, proving that the space of join trees we obtain sat-
isfies certain properties, and furthermore any join tree satisfying those properties
is equivalent to the default tree.

Theorem: Set S of join trees derived by repeatedly applying Equations (4.2), (4.4),
or (4.5) to the default join tree in Equation (4.3) is equal to set T of join trees
satisfying the following properties:

• All raw tables appear in the leaf nodes exactly once.

• Each outerjoin node has some dependent table Dij as its right child and the
corresponding anchor table Ai in its left subtree.

• Each dependent table Dij is the right child of some outerjoin node.

Proof: We first show S ⊆ T, then show T ⊆ S.
It is straightforward to show S ⊆ T. First, the default join tree satisfies all

three properties. Since the properties are invariant under Equations (4.2), (4.4),
and (4.5), any join tree derived by the equations also satisfies the properties. Thus,
we have S ⊆ T.

We show T ⊆ S using mathematical induction on n, the number of conceptual
relations. For n=1, a join tree t ∈ T is always a left-deep tree with A1 as the first

CHAPTER 4. QUERY OPTIMIZATION IN DECO 80

(((A1 ./ D11) ./ D12)× A2) ./ D21 ((A1 ./ D11) ./ D12)× (A2 ./ D21)
(((A1 ./ D11)× A2) ./ D12) ./ D21 (((A1 ./ D11)× A2) ./ D21) ./ D12
((A1 ./ D11)× (A2 ./ D21)) ./ D12 (((A1 ./ D12)× A2) ./ D11) ./ D21
(((A1 ./ D12)× A2) ./ D21) ./ D11 ((A1 ./ D12)× (A2 ./ D21)) ./ D11
(((A1 ./ D12) ./ D11)× A2) ./ D21 ((A1 ./ D12) ./ D11)× (A2 ./ D21)
(((A1 × A2) ./ D11) ./ D12) ./ D21 (((A1 × A2) ./ D11) ./ D21) ./ D12
(((A1 × A2) ./ D12) ./ D11) ./ D21 (((A1 × A2) ./ D12) ./ D21) ./ D11
(((A1 × A2) ./ D21) ./ D11) ./ D12 ((A1 × (A2 ./ D21)) ./ D11) ./ D12
(((A1 × A2) ./ D21) ./ D12) ./ D11 ((A1 × (A2 ./ D21)) ./ D12) ./ D11
(((A2 × A1) ./ D11) ./ D12) ./ D21 ((A2 × (A1 ./ D11)) ./ D12) ./ D21
(A2 × ((A1 ./ D11) ./ D12)) ./ D21 (((A2 × A1) ./ D11) ./ D21) ./ D12
((A2 × (A1 ./ D11)) ./ D21) ./ D12 (((A2 × A1) ./ D12) ./ D11) ./ D21
((A2 × (A1 ./ D12)) ./ D11) ./ D21 (A2 × ((A1 ./ D12) ./ D11)) ./ D21
(((A2 × A1) ./ D12) ./ D21) ./ D11 ((A2 × (A1 ./ D12)) ./ D21) ./ D11
(((A2 × A1) ./ D21) ./ D11) ./ D12 (((A2 × A1) ./ D21) ./ D12) ./ D11
(((A2 ./ D21)× A1) ./ D11) ./ D12 ((A2 ./ D21)× (A1 ./ D11)) ./ D12
(A2 ./ D21)× ((A1 ./ D11) ./ D12) (((A2 ./ D21)× A1) ./ D12) ./ D11
((A2 ./ D21)× (A1 ./ D12)) ./ D11 (A2 ./ D21)× ((A1 ./ D12) ./ D11)

Figure 4.3: Example join trees

operand. Based on Equation (4.2), we have t ∈ S, so T ⊆ S holds for n=1.
Now suppose T ⊆ S holds for n=1, . . . , k (k≥1). For n=k+1, consider a join

tree t ∈ T. Since the three properties imply one-to-one correspondence between
outerjoin nodes and dependent tables, t contains n−1=k cross-product nodes. At
least one of the k cross-product nodes is on the path from the root operator to
the first operand, so we can pick the cross-product node γ closest to the root. (If
there is no cross-product on the path, we have n=1, which is a contradiction.)
Then, we transform t to t′ = t′L × t′R by pushing down all outerjoin nodes above
γ (if any) using Equation (4.4). Using the induction hypothesis, the left and right
subtrees t′L and t′R can be derived by applying Equations (4.2), (4.4), or (4.5) to
their corresponding default trees. Finally, Equation (4.5) gives us t′ ∈ S and t ∈ S.
Therefore, T ⊆ S holds for n=k+1. �

As an example, suppose that a query Q contains two relations Country (=R1)

and City (=R2) from Section 2.1.1 in its From clause. Recall that the raw schema
for Country and City includes three and two raw tables, respectively. In this case
there are 36 possible join trees for Q, shown in Figure 4.3 as algebraic expressions.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 81

So far we defined the entire space of join trees that are equivalent to the default
tree. To reduce the search space somewhat, we heuristically prune some join trees
when a query contains three or more conceptual relations in its From clause.
Specifically, we prohibit a cross-product node from having another cross-product
in its right subtree. This restriction is analogous to considering left-deep join trees
only in traditional optimizers, and makes sense in our setting of dependent joins:
we do not want to invoke fetches based on inner values that do not necessarily
pass join predicates.

4.3.2 Algebraic Representation

Based on the set of all join trees for the query Q, we next construct complete
algebraic representations for Q by adding Q’s join and local predicates. Be-
cause we aim to minimize monetary cost, the only sensible algebraic represen-
tation for a given join tree is the one that evaluates all predicates as early as
possible. Otherwise there exists at least one join in the join tree that receives
more outer tuples than needed, and the corresponding query plan would in-
voke unnecessary fetches to obtain inner tuples. As an example, given a join
tree (CountryA ./CountryD1) ./CountryD2 for our example query from Section 4.2,
the algebraic representation that evaluates predicate language=‘Spanish’ as early
as possible is σSpanish(CountryA ./CountryD1) ./CountryD2. Note the other op-
tion σSpanish((CountryA ./CountryD1) ./CountryD2) would fetch capital values for
non-Spanish speaking countries. Thus, each join tree is converted to exactly one
algebraic representation for Q.

4.3.3 Fetch Rule Selection

Given the set of all algebraic representations corresponding to the query Q, the
next step is to generate all possible combinations of fetch rules for the raw tables in
each algebraic representation. For each algebraic representation, we first compute
a set of candidate fetch rules for each raw table, described shortly. Then, selection
of one fetch rule each from all candidate sets yields one combination of fetch
rules.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 82

Depending on the algebraic representation and set of available fetch rules,
some raw tables may have an empty set of candidate fetch rules; in this case
there are no possible combinations of fetch rules corresponding to the algebraic
representation, so we discard the algebraic representation. (If every algebraic
representation is discarded, the database does not include enough fetch rules to
execute the query Q.)

Let us consider constructing a Fetch operator F to be a child of Resolve oper-
ator R, whose Scan child is associated with raw table T. (We will see in Section
4.3.4 that each raw table in the algebraic representation corresponds to a Resolve-
Scan-Fetch operator triple in complete query plans.) Consider the set of candidate
fetch rules for Fetch operator F. In Deco’s query execution engine, Resolve oper-
ator R requests tuples from Fetch operator F to feed its resolution function. To
make this mechanism work, the fetch rule A1 ⇒ A2 deployed in Fetch operator F
must satisfy the following conditions:

• Condition 1: Each attribute in A1 is instantiated by either a value from an
outer tuple passed to Fetch operator F by a join, or a constant value in a local
Where clause predicate.

• Condition 2: The attributes in A1 ∪ A2 cover all attributes in raw table T, and
some attributes in A2 are attributes of T.

The first condition allows Fetch operator F to invoke the fetch rule by instantiating
all attributes in A1. The second condition allows new tuples obtained using the
fetch rule to be inserted into T and passed up to Resolve operator R.

Note the first condition is specific to the given algebraic representation, while
the second one is not. Thus one possible algorithm to compute a candidate set
would first find the available fetch rules satisfying the second condition, then
discard those violating the first condition.

4.3.4 Complete Query Plan

Given an algebraic representation corresponding to the query Q and a combina-
tion of fetch rules for the algebraic representation, we finally construct a complete
query plan. First, any Deco query plan contains a MinTuples operator at its root

CHAPTER 4. QUERY OPTIMIZATION IN DECO 83

and a Project operator right below the root. These two operators are constructed
based on the MINTUPLES and SELECT clauses of the query. Second, selections, left
outerjoins, and inner joins in the algebraic representation are directly mapped
to Filter, DLOJoin, and DepJoin operators, placed below the Project operator.
Lastly, each raw table T in the algebraic representation is mapped to a Resolve-
Scan-Fetch operator triple, with the fetch rule for T from the given combination
of fetch rules.

Continuing our example, Figure 4.1 shows three different plans expanded
from the same algebraic representation σSpanish(CountryA ./CountryD1) ./CountryD2.
It can be easily verified (and is intuitive) that the two conditions from Section 4.3.3
are satisfied for the selected fetch rules. The search space for the example query
includes many more query plans deploying different combinations of fetch rules,
such as a combination of fetch rules ∅⇒ country and country⇒ language,capital
(Figure 3.3), or a combination of fetch rules language ⇒ country,capital, coun-
try⇒ language and country⇒ capital.

4.4 Enumeration Algorithm

We now consider how to efficiently enumerate query plans in the search space
and apply the cost estimation algorithm to find the predicted best query plan.
As briefly discussed in Sections 4.1.1 and 4.1.3, Deco’s specific setting invalidates
some key assumptions behind enumeration in traditional query optimizers:

• In Deco, different query plans corresponding to the same algebraic represen-
tation may produce different query results: the fetch rules selected in a query
plan determine the valid instance over which the query result is evaluated.
Thus, estimated cardinality is a property of individual query plans rather
than algebraic representations, violating a typical assumption exploited by
extensible query optimizers such as Volcano [30] and Cascades [29].

• Deco’s cardinality estimation is holistic: the cardinality and cost of a subplan
depend in part on the rest of the plan. Thus, a bottom-up enumeration and
cost-estimation strategy as in the System R optimizer [51] is not applicable to
Deco.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 84

Procedure 1 FindBestPlanNaive(ast)
1 bestPlan← NULL
2 minCost← ∞
3 for each joinTree do
4 for each fetchRuleSelection do
5 plan← BuildPlan(ast, joinTree, fetchRuleSelection)
6 if plan.isValid() then
7 plan.EstimateCard(0, ∅)
8 cost← plan.EstimateCost()
9 if cost < minCost then

10 bestPlan← plan
11 end if
12 end if
13 end for
14 end for
15 return bestPlan
Given these constraints, we needed to devise a plan enumeration algorithm for
Deco that generates complete physical plans in the search space while maximizing
reuse of common subplans. This strategy makes Deco’s query optimizer slower
than traditional query optimizers for queries with similar complexity; however,
we will see in Section 4.5 that the optimization time tends to be insignificant
compared to typical query execution time in Deco.

In this section we first describe a naive exhaustive enumeration, then we de-
scribe a more efficient version of the same strategy. In Section 4.5.2 we compare
the performance of the more efficient enumeration against the naive one.

4.4.1 Naive Enumeration

In its simplest form, Deco’s plan enumeration algorithm generates all query plans
in the search space and applies the cost estimation algorithm to each plan to find
the predicted best plan. The simple FindBestPlanNaive procedure in Procedure 1
illustrates the entire query optimization process at a high level.

To enumerate all possible join trees (line 3), we use a straightforward recursive
algorithm based on the properties of join trees from Section 4.3.1. Given a join

CHAPTER 4. QUERY OPTIMIZATION IN DECO 85

tree, we build a plan with each possible fetch rule selection satisfying Condition
2 in Section 4.3.3 (lines 4–5). In this step, The BuildPlan procedure places the
query’s predicates so that they are evaluated as early as possible (recall Section
4.3.2). Finally, we retain those plans satisfying Condition 1 in Section 4.3.3 (line
6), and choose the plan with the least estimated cost (lines 7–11).

4.4.2 Efficient Enumeration

The FindBestPlanNaive procedure in Procedure 1 handles each alternative plan
independently, so it may perform some redundant computation across iterations
of the inner loop (lines 5–12). Specifically, the EstimateCard procedure in Section
4.2.1 may be called multiple times on the same subplans with the same arguments
for target and preds. Since those calls produce the same result (card and cards),
we “memo-ize” [30]: the first call computes and stores the result, and subsequent
calls reuse it. (Even if the order of predicates in parameter preds in a subse-
quent call is different from the original order of predicates used to compute the
stored result, we can reuse the result by shuffling cards appropriately; recall the
definitions of preds and cards in Section 4.2.1.)

It turns out that we can maximize reuse of common subplans by storing only
one plan at a time (with its cardinality estimates), if we iterate over the alternative
plans in a particular order. This order is determined based on two properties.
First, given a left (outer) subplan S, all complete plans containing the subplan S
must appear consecutively in the order, so that we can reuse the subplan S and
its estimated cardinality. Moreover, we further order those plans containing the
subplan S by the first raw table T joining with S so that the Resolve operator cor-
responding to T can reuse the estimated cardinality of the relevant existing data.
Note that these properties apply recursively to different layers of subplans. As a
result, we enumerate physical plans by alternately selecting raw tables and their
corresponding fetch rules. Note in contrast the naive enumeration first selects a
join tree and then selects a fetch rule for each raw table in the tree.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 86

4.5 Experimental Evaluation

In this section we present our experimental evaluation of Deco’s query optimizer.
We first evaluate the accuracy of our cost estimation algorithm in a variety of
settings. Then, we evaluate the efficiency of our plan enumeration algorithm.

4.5.1 Accuracy of Cost Estimation

To evaluate the accuracy of Deco’s cost model, we compare estimated costs against
actual costs for three different scenarios: no existing data in the raw tables (Ex-
periment 1), existing data with fetch prioritization (Experiment 2), and existing
data with little effect of fetch prioritization (Experiment 3). We use a variety of
queries and plans, explained as we describe each experiment.

Experiment 1: No Existing Data For this experiment we considered the actual
costs of executing our most common example query using Amazon Mechanical
Turk:

SELECT country, capital
FROM Country
WHERE language=‘Spanish’
MINTUPLES 8

Recall from the experiment reported in Section 3.6.1 that starting with empty raw
tables, the actual costs of the basic plan, the reverse plan, and the hybrid plan
(Figure 4.1) were $12.05, $2.30, and $1.35, respectively, when the cost of each fetch
was set to $0.05 for all fetch rules.

For cost estimation, we set the selectivity factor of predicate language=‘Spanish’
to 0.1. Also, we set the selectivity factors of resolution functions dupElim and
majority-of-3 to 1.0 and 0.4, respectively. Given these settings, Deco’s cost estima-
tion algorithm produces estimated costs of $15.00, $2.40, and $1.40 for the basic,
reverse, and hybrid plans, respectively. Figure 4.4 shows the estimated and actual
costs for the three query plans. The different portions of the bars show the costs
incurred by the different fetch rules in each setting. Even though our overall es-
timated costs were reasonably close to the actual costs with a mean percentage

CHAPTER 4. QUERY OPTIMIZATION IN DECO 87

��

��

���

���

���� ������

�
�
�
�
��
��
��
�
��
��
�
�

�������
������

(a) Basic plan

��

��

��

��

���� ������
�
�
�
�
��
��
��
�
��
��
�
�

������
������

(b) Reverse plan

��

��

��

��

���� ������

�
�
�
�
��
��
��
�
��
��
�
�

���������
���������

(c) Hybrid plan

Figure 4.4: Accuracy of cost estimation (Experiment 1)

error of 11%, estimated costs for individual Fetch operators were less accurate.
We now explain why.

First, our selectivity factor settings were not accurate enough. Using the basic
plan, for example, resolution function majority-of-3 did not need the third input
value as often as expected, and we observed an actual selectivity factor of 0.47.
Also, we ended up collecting 64 distinct countries with 87 answers, translating
to actual selectivity factors of 0.74 and 0.125 for resolution function dupElim and
predicate language=‘Spanish’, respectively. In general, selectivity factors for the
different operators in a particular plan have different impact on the accuracy of
estimated cost. As an example, the cost of the reverse plan is most sensitive to the
selectivity of majority-of-3: a difference of 0.1 in the selectivity translates to about
20% error in the estimated cost.

Second, our cardinality estimation algorithm makes some simplifying assump-
tions when handling reverse fetch rules. For example, we assume new countries
obtained using language ⇒ country satisfy predicate language=‘Spanish’, but in
reality workers may return values that do not satisfy this predicate. We could
remove this assumption from the Fetch.EstimateCard procedure, if we are given
a “selectivity factor” for the fetch rule. In addition, a reverse fetch rule inserts
new tuples into some dependent tables, thus effectively decreasing the additional
number of required values to resolve the dependent attributes. To address this

CHAPTER 4. QUERY OPTIMIZATION IN DECO 88

problem, we could adjust the selectivity factors of those resolution functions that
have interactions with reverse fetch rules.

Experiment 2: Existing Data, Fetch Prioritization For this experiment we con-
sidered two queries with different initial states of the raw tables so that fetch
prioritization takes effect. First, Figure 4.5 shows the estimated and actual costs
of obtaining X result tuples for the following simple query, varying X on the
x-axis.

SELECT country, language, capital
FROM Country
MINTUPLES X

We seeded anchor table CountryA with 100 different country names, and the two
dependent tables CountryD1 and CountryD2 with 0, 100, and 200 randomly chosen
tuples (across both tables) for Figures 4.5a, 4.5b, and 4.5c, respectively. Missing
language and capital values in the partial result were completed using fetch rules
country⇒ language and country⇒ capital, respectively.

We used the actual costs reported in Experiment 3 in Section 3.6.3, obtained
using our less sophisticated heuristics for fetch prioritization (recall score1 from
Section 3.5.2). Note those actual costs were obtained using our crowd simulator,
which responds to fetch requests by selecting values from a predetermined set.
Since each data point was the average of ten trials, experiments using human
workers would have incurred significant latency and dollar cost.

For estimated costs, recall from Section 4.2.1 that our cost model includes a
configurable weight α to emulate the effectiveness of fetch prioritization, with a
larger α indicating better prioritization. We computed the estimated costs using
α values of 0.6, 0.75, and 0.9, to empirically determine a good value for α. In ad-
dition, we assume that statistics about the existing data available in the back-end
RDBMS are accurate, so that we can evaluate Deco’s cost model in isolation. Over-
all, our cost estimates are reasonably close to the actual costs: With α=0.75, we
observed mean absolute percentage errors of 6.7%, 12.4%, and 44.4%, for Figures
4.5a, 4.5b, and 4.5c, respectively. Note the large error for Figure 4.5c is mainly due
to the 100% error for the X ≤ 30 data points.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 89

��

��

��

���

���

���

�� ��� ��� ��� ��� ����

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
����������
����������

������

(a) Empty dependent tables

��

��

��

��

���

���

�� ��� ��� ��� ��� ����

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
����������
����������

������

(b) 100 tuples in dependent tables

��

��

��

��

��

���

�� ��� ��� ��� ��� ����

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
����������
����������

������

(c) 200 tuples in dependent tables

Figure 4.5: Accuracy of cost estimation (Experiment 2, part 1)

Now we consider a second query. Figure 4.6 shows the actual and estimated
costs of obtaining X result tuples for the following join query:

SELECT city, country, population, language
FROM Country, City
WHERE City.country = Country.country
MINTUPLES X

For Figures 4.6a and 4.6b, we seeded anchor tables CountryA and CityA with two
real datasets: the 100 largest European cities and the 200 largest cities in the
world. For Figure 4.6c, we seeded the anchor tables with a synthetic dataset

CHAPTER 4. QUERY OPTIMIZATION IN DECO 90

��

��

��

��

���

���

�� ��� ��� ��� ��� ����

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
����������
����������

������

(a) 100 European cities

��

��

���

���

���

���

�� ��� ���� ���� ����

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
����������
����������

������

(b) 200 World cities

��

��

��

��

���

���

�� ��� ��� ��� ��� ����

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
����������
����������

������

(c) 100 Synthetic cities (worst case)

Figure 4.6: Accuracy of cost estimation (Experiment 2, part 2)

to demonstrate the worst case. All dependent tables were initially empty and
populated on-demand using fetch rules country ⇒ language (for relation Coun-
try) and city,country ⇒ population (for relation City). Again we used the actual
costs reported in Experiment 4 in Section 3.6.3 that were obtained using our less
sophisticated heuristics, from the crowd simulator.

In Figures 4.6a and 4.6b, our cost estimates are reasonably accurate as in Figure
4.5: With α=0.75, the mean absolute percentage errors are 4.8% and 11.1% for
Figures 4.6a and 4.6b, respectively. In Figure 4.6c, we deliberately generated a
synthetic dataset to make fetch prioritization work as poorly as possible. Hence,
the estimated costs (even with α of 0.6) are smaller than the actual costs for the

CHAPTER 4. QUERY OPTIMIZATION IN DECO 91

��

��

��

��

�� �� �� �� �� ���

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

������������
��������������

�����������
�������������

(a) Existing data state 1

��

��

��

��

�� �� �� �� �� ���

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

������������
��������������

�����������
�������������

(b) Existing data state 2

��

��

��

��

�� �� �� �� �� ���

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

������������
��������������

�����������
�������������

(c) Existing data state 3

Figure 4.7: Accuracy of cost estimation (Experiment 3, part 1)

entire range of X. This result is consistent with the definition of α in Section 4.2.1:
a smaller α means less effective prioritization.

Based on our experiments, we believe by setting α=0.75 as a rule of thumb,
our cost model will produce acceptable estimates for many cases. Note that the
best value for α depends on the heuristic approach for fetch prioritization; we
would need to use a larger α for some more sophisticated heuristics described in
Section 3.5.

Experiment 3: Existing Data, No Fetch Prioritization Now we consider a sim-
ilar scenario but without fetch prioritization. Figure 4.7 shows the actual and
estimated costs of obtaining X result tuples for the following query.

CHAPTER 4. QUERY OPTIMIZATION IN DECO 92

SELECT country, capital
FROM Country
WHERE language=‘Spanish’
MINTUPLES X

We started the query with three different initial states of the raw tables, resulting
in the three graphs in Figure 4.7. For each initial state, we measured the actual
costs of executing the reverse and hybrid plans, with our crowd simulator set
to correspond to the selectivities observed using Amazon Mechanical Turk in
Experiment 1. (Note the simulator flips a coin to produce data, and we report the
average of ten trials.)

For cost estimation, we used the same selectivity setting as in Experiment 1.
Overall, our estimated costs were reasonably accurate across all three initial states
and both plans, with a mean absolute percentage error of 18.6%. This result is
comparable to Experiment 1 (no existing data) and implies that our cost model is
able to distinguish between existing data versus new data.

We consider a second query. Figure 4.8 shows the actual and estimated costs
of obtaining X result tuples for the following query:

SELECT capital, population, language
FROM Country, City
WHERE City.country = Country.country AND City.city = Country.capital
MINTUPLES X

Again we started the query with three different initial states of the raw tables,
resulting in the three graphs in Figure 4.8. For each initial state, we executed two
query plans corresponding to the following join trees:

• Plan 1: (((CountryA ./ CountryD2) ./ CityA) × CountryD1) ./ CityD1
• Plan 2: (((CityA × CountryA) ./ CountryD2) ./ CountryD1) ./ CityD1

Both plans uses the following set of fetch rules:

• [Country] ∅⇒ country, country⇒ language, and country⇒ capital
• [City] ∅⇒ city,country and city,country⇒ population

Note despite the simplicity of the original query, these plans are 5-way joins over
the raw tables. For Plan 2, we set the crowd simulator to produce capital cities

CHAPTER 4. QUERY OPTIMIZATION IN DECO 93

��

��

��

��

�� �� �� �� �� ���

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
������������
����������

������������

(a) Existing data state 1

��

��

��

��

�� �� �� �� �� ���

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
������������
����������

������������

(b) Existing data state 2

��

��

��

��

�� �� �� �� �� ���

�
�
�
�
��
��
��
�
��
��
�
�

�����������������������

����������
������������
����������

������������

(c) Existing data state 3

Figure 4.8: Accuracy of cost estimation (Experiment 3, part 2)

with a probability of 0.3 (for fetch rule ∅ ⇒ city,country), and also used the cor-
responding selectivity setting for cost estimation.

In Figures 4.8a and 4.8b, our cost estimates are reasonably close to the actual
costs with a mean absolute percentage error of 20.3%. Figure 4.8c illustrates a case
where our cost model often fails to predict the better plan: We populated relation
City only with capital cities, resulting in a large discrepancy between the actual
selectivity of join predicate City.city=Country.capital and the provided selectivity
setting.

Summary In Experiments 1–3 we evaluated the accuracy of Deco’s cost esti-
mation by comparing estimated costs against actual costs for a wide variety of

CHAPTER 4. QUERY OPTIMIZATION IN DECO 94

�����

����

��

���

����

�� �� �� �� �� ��

�
�
��
�
��
��
��
�
��
��

�
��
��

�����������

�����
��������

Figure 4.9: Efficiency of plan enumeration

scenarios. Overall we observed that the estimated costs were fairly close to the
actual costs, with mean absolute percentage errors of 20% or less in most cases
we considered. We can safely conclude that a query plan chosen by Deco’s query
optimizer will be relatively inexpensive, if not the cheapest plan, for a given query.

4.5.2 Efficiency of Plan Enumeration

To evaluate the efficiency of plan enumeration, we compare the efficient enumera-
tion from Section 4.4.2 against the naive enumeration from Section 4.4.1, in terms
of the overall optimization time, i.e., time taken to find the predicted best plan
given a query.

Experiment 4 Because the size of the search space depends heavily on the num-
ber of raw tables m, we generated queries with a varying number of raw tables
based on their From clauses. For each query, we created a set of fetch rules so
that each raw table has exactly one candidate fetch rule. (Here we used a conser-
vative setting: more fetch rules make the efficient enumeration even faster than
the naive one.) Figure 4.9 shows the optimization times for the naive and effi-
cient enumeration in logarithmic scale, for m=2..7. Not surprisingly the efficient
enumeration performs better than the naive enumeration for the entire range of
m values. Moreover, the percent improvement tends to increase as m increases,
because the amount of redundant computation also increases. With m=7, the

CHAPTER 4. QUERY OPTIMIZATION IN DECO 95

efficient enumeration is 2.35 times faster than the naive enumeration.

4.6 Related Work

There has been a large body of previous work addressing query optimization
in traditional database systems [15]. Sections 4.1 and 4.4 elaborated on several
key differences between traditional query optimizers and Deco’s query optimizer
in plan costing and enumeration. Since Deco’s cost model exploits the available
statistics in the back-end RDBMS to estimate cardinality of relevant existing data,
Deco can of course benefit from any sophisticated techniques for improved statis-
tics management and cardinality estimation [14, 16, 48].

Also related is prior work on query optimization over diverse data sources
in the context of heterogeneous or federated database systems [18, 23, 32]. In
some sense, Deco’s overall architecture is analogous to federated database sys-
tems: Deco’s query processor, fetch procedures, and the crowd correspond to a
mediator, wrappers, and data sources, respectively. However, as far as the query
optimization problem is concerned, all of the fundamental differences between
Deco and traditional database systems that we have described in this chapter also
apply when comparing Deco and federated database systems.

4.7 Conclusion

We presented Deco’s query optimizer that finds the best plan to answer a query
in terms of estimated monetary cost. To reflect Deco’s query semantics and plan
execution strategies, we incorporated several novel techniques into the query op-
timizer:

• Estimating the cost of executing a given query plan requires us to distinguish
between free existing data versus paid new data. Our cost model takes into
account the amount of relevant existing data to estimate the amount of new
data required to produce the result.

• Deco’s cardinality estimation needs to cope with changes to the database

CHAPTER 4. QUERY OPTIMIZATION IN DECO 96

state during query execution. To do so, our cardinality estimation algorithm
simultaneously estimates cardinality and the final state of the database using
a top-down recursive process.

• To find the best plan efficiently, plan enumeration must avoid redundant
computation across different query plans in our search space, which is chal-
lenging in Deco’s specific setting. Our plan enumeration algorithm maxi-
mizes reuse of common subplans to the extent possible.

Experiments showed that estimated costs produced by our cost estimation algo-
rithm are accurate enough to successfully find inexpensive query plans for a wide
variety of settings. We also validated that our more sophisticated plan enumera-
tion algorithm performs much better than naive enumeration.

Coupled with Deco’s query execution engine described in Chapter 3, Deco’s
query processor as a whole provides a complete solution for answering a Deco
query while minimizing monetary cost and reducing latency.

Chapter 5

Design and Implementation of
CrowdFill

We now present our CrowdFill system, a separate system from Deco (Chapters
2–4) that implements the table-filling approach introduced in Chapter 1. Recall
that the table-filling approach enables all participating workers to collaboratively
complete a partially-filled table by filling in empty cells and voting on data en-
tered by other workers. Our goal is to collect high-quality data from the crowd,
while adhering to constraints on the collected data, capping total monetary cost,
and keeping latency low. CrowdFill addresses the data quality, monetary cost,
and latency objectives primarily with its voting scheme, compensation scheme,
and real-time synchronization scheme, respectively, all of which are covered in
this chapter.1

In Section 5.1, we describe a formal model for CrowdFill that defines table
states, primitive operations on tables, and constraints on the collected data. In
Section 5.2, we describe CrowdFill’s overall architecture, then explain its compo-
nents. In Section 5.3, we describe how CrowdFill guides workers toward a final
table satisfying prespecified constraints while providing an intuitive data-entry
interface. In Section 5.4, we describe how CrowdFill distributes total monetary

1The material presented in this chapter first appeared in [46, 47].

97

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 98

budget across the workers who participated in data collection. Section 5.5 de-
scribes our experimental evaluation, Section 5.6 covers related work, and we con-
clude in Section 5.7.

5.1 Formal Model

We begin in Sections 5.1.1 and 5.1.2 by defining CrowdFill’s model for tables and
primitive operations on tables. We specify the notion of a partially-filled candidate
table during data collection, the operations that can be performed on candidate
tables, and how a final table is computed from a candidate table. In Section 5.1.3 we
add constraints to the model, so CrowdFill users can provide a minimum required
number of rows, and can specify restrictions on the collected data values. Finally,
in Section 5.1.4 we cover issues related to the fact that workers operate on a table
concurrently. We explain how worker actions are transmitted via messages to
a central server and other workers, and how conflicts are handled. We prove a
strong convergence theorem, stating that when all work ceases, all copies of the
candidate and final tables are guaranteed to have the same value.

5.1.1 Table Specification

Recall from Section 1.1 that we consider the relational data model, which repre-
sents structured data as a two-dimensional table: each row in the table typically
corresponds to a data element or a fact, while each column is a property or at-
tribute of the element or fact. Also, throughout the chapter we say “user” to
denote the entity (human or application) wishing to perform data collection, as
distinct from a crowdsourced “worker”, who performs tasks contributing to the
data collection goal.

Table schema: To collect data, a CrowdFill user must first provide a table schema
consisting of:

• Column definitions: A column name, data type, and optionally a domain
(set of allowed values) for each column.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 99

• Primary key: One or more key columns that together should uniquely iden-
tify each row in the final table. By default, all columns together are a key, i.e.,
there should be no duplicate rows in the final table.

As a running example, suppose we are interested in collecting information
about soccer players who appeared at least 80 times in international matches
(“caps”). We use the following schema:

SoccerPlayer(name, nationality, position, caps, goals)
Columns name and nationality together are the primary key.

Scoring function: To ensure the quality of collected data, our model allows work-
ers to provide upvotes and downvotes on data in each row. To aggregate votes,
the user provides a scoring function f (ur, dr) where ur and dr denote an upvote
count and a downvote count, respectively, for a given row r. The intention is for
a higher score to indicate that the row is more likely to be correct. Specifically, we
take the meaning of score ranges as follows:

• A positive score suggests the row is acceptable.

• A negative score suggests the row is not acceptable.

• A zero score suggests more votes are needed to determine whether the row
is acceptable or not.

Without any votes, a row must always have a zero score, i.e., we require f (0, 0) =
0. Also, we require that f (u, d) is a monotonically increasing function of u, and a
monotonically decreasing function of d, i.e., u1 ≤ u2 implies f (u1, d) ≤ f (u2, d),
and d1 ≤ d2 implies f (u, d1) ≥ f (u, d2). As a default, if the user does not provide
a function then f (ur, dr) = ur − dr.

For our running example, we’ll use a scoring function that implements a “ma-
jority of three or more” voting scheme, with shortcutting:

f (ur, dr) =

ur − dr, if ur + dr ≥ 2

0, otherwise

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 100

5.1.2 Table State and Primitive Operations

In a table, every row can be empty, partial, or complete:

• Empty row: a row with no values

• Partial row: a row with one or more values

• Complete row: a row without empty values

Note a complete row is also a partial row by definition.

Candidate table: A candidate table R is a set of rows, where each row r is anno-
tated with its upvote count ur and downvote count dr. The candidate table can be
modified by performing one of the following primitive operations:

• insert(r): Insert a new empty row r into R, with ur = dr = 0.

• fill(r,A,v): Fill in an empty column A in row r ∈ R to have value v.

• upvote(r): Upvote a complete row r ∈ R. Increment uq for each row q ∈ R
whose value is equal to the value of row r.

• downvote(r): Downvote a partial row r ∈ R. Increment dq for each row q ∈ R
whose value is equal to or a superset of the value of row r.

Note upvoting an incomplete row r is not allowed: Filling in more columns in
row r could invalidate the intention of the upvote, since we do not know whether
the new combination of values is acceptable. On the other hand, downvoting an
incomplete row r is allowed: Filling in more columns does not invalidate that the
subset combination of values was unacceptable. Since upvote and downvote oper-
ations semantically approve or disapprove of the values in row r (or a part of the
row) rather than row r itself, we automatically propagate each vote to all other
rows as specified above. We will see in Sections 5.2 and 5.3 that worker actions
correspond to fill, upvote, and downvote operations, while insert operations are
issued only by the system, to control the number of empty rows in the table.

In our example SoccerPlayer table, here is one possible candidate table. Sym-
bols ↑ and ↓ indicate upvote and downvote counts, respectively. Note in particular
that candidate tables need not have unique rows with a given primary key; keys
are enforced in the final table, defined next.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 101

name nationality position caps goals ↑ ↓
Lionel Messi Argentina FW 83 37 2 0
Ronaldinho Brazil MF 97 33 3 0
Ronaldinho Brazil FW 97 33 2 1
Iker Casillas Spain GK 150 0 2 0
David Beckham England MF 115 17 1 0
Neymar Brazil FW 0 1

Zinedine Zidane 0 0
France DF 0 0

0 0
0 0

Final table: A final table S derived from a candidate table R contains each com-
plete row r ∈ R such that f (ur, dr) > 0, and f (ur, dr) is the highest score of any
row with the same primary key as r. Ties are broken arbitrarily, and groups of
rows with no positive scores do not contribute to the result. Note a final table
respects the primary key constraint by definition.

Based on our example candidate table above and majority-of-three-or-more
scoring function (Section 5.1.1), we obtain the following final table:

name nationality position caps goals
Lionel Messi Argentina FW 83 37
Ronaldinho Brazil MF 97 33
Iker Casillas Spain GK 150 0

Note the five incomplete rows in the candidate table are omitted, while Beckham
is omitted because the score for the row is zero.

5.1.3 Constraints

We now describe constraints, which enable CrowdFill users to specify restrictions
on the final table of collected data. Cardinality constraints specify that the final
table must contain a minimum number of rows. Values constraints specify that
rows with certain values or combinations of values must be present in the final
table. Predicates constraints, not yet implemented in the CrowdFill system, specify
that values in the final table must satisfy certain conditions. We will see that

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 102

cardinality constraints can be considered a special case of values constraints, and
values constraints are a special case of predicates constraints. Nevertheless, from
both a user and system perspective, it is useful to distinguish the three concepts.

In the remainder of the chapter, we sometimes need to distinguish the iden-
tifier of a row r from its value. In such cases, we use r to denote the identifier
and r to denote its value. More generally, we use v to denote a vector of values
corresponding to a subset of the columns in the schema.

Cardinality constraint: A cardinality constraint with nonnegative integer n simply
states that the final table S must contain at least n ≥ 0 rows. Since CrowdFill aims
to keep latency and cost as low as possible, typically the final table will contain
exactly n rows.

Values constraint: In many cases a user or application may wish to start with a
partially-filled table, using the crowd to complete the missing data. A common
example is to have a set of values for the keys (soccer player names and nation-
alities, for example), and use the crowd to fill in missing values (position, caps,
goals). Another case is when the table has a set of rows, but the user wishes to
crowdsource additional rows. For this type of scenario, the user can specify a
set T of “initial” rows, which we refer as template rows. Template rows can be
complete, meaning they should also be present in the final table; they can be par-
tial, with workers expected to fill in missing values; and they can be empty, in
which case they are specifying how many additional rows are needed. Given the
latter case, we see that cardinality constraints are in fact a special case of values
constraints.

Thus, our goal is to obtain a final table S that satisfies the following values
constraint with template T:

For each row t ∈ T, there exists a unique row s ∈ S such that s ⊇ t,
i.e., the values in row s are equal to or a superset of the values in row
t.

We assume that there does exist a final table that satisfies the values constraint—
for example, we are not given a template that has multiple rows with the same
key, or incorrect partial data.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 103

In our running example, if we wish to collect a forward from any country and
any player from Brazil and Spain, we would specify the following template:

name nationality position caps goals
FW

Brazil
Spain

Note the final table in Section 5.1.2 satisfies the values constraint with this tem-
plate.

Predicates constraint: Instead of specific values, we might want to specify tem-
plate entries that are predicates, indicating that the collected values must satisfy
the corresponding predicates. Note that predicates constraints subsume values
constraints, since a value v in a template row is equivalent to the predicate “=v”.
The generalization of values constraints says that our goal is to obtain a final table
S that satisfies the following predicates constraint with template T:

For each template row t ∈ T, there exists a unique row s ∈ S such that
s ⊇∗ t, where s ⊇∗ t states that each value in s satisfies the correspond-
ing predicate in t, if one is present.

As with the values constraint, we assume that there does exist a final table that
satisfies the predicates constraint.

In our running example, if we wish to further refine our template from the val-
ues constraint so the forward and Brazilian player must have ≥30 goals, and the
Spanish player must have ≥100 caps, we would specify the following template:

name nationality position caps goals
=‘FW’ ≥30

=‘Brazil’ ≥30
=‘Spain’ ≥100

Note the final table in Section 5.1.2 satisfies the predicates constraint with this
template.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 104

5.1.4 Concurrent Operations

As briefly described in Section 1.1.2, CrowdFill shows an up-to-date version of
the evolving table to each participating worker. The workers make changes to the
table using the primitive operations defined in Section 5.1.2. In this section, we
first explain the client-server structure of the system, and specify a “vote history”
that is needed to maintain consistency. Then we explain how operations at one
client are propagated to other versions of the table, and how they are applied
when they arrive. Lastly, we show formally that our execution model handles
concurrency elegantly: We prove a theorem stating that when the system quiesces,
all copies of the table are identical.

Execution overview: The CrowdFill system consists of clients (the workers’ web
browsers) and a server to which all clients are connected. We assume that message
deliveries between the server and clients are reliable and in-order. The server has
a master copy of the candidate table, and each client has its own copy, which is
initially identical to the master copy. Suppose the worker at client C performs
an operation op. Client C applies op to its own copy of the table, then sends a
corresponding message m to the server. Once the server receives message m from
client C, it first processes m on the master table, then forwards m to all clients
except C. Finally all clients except C receive m and process m on their copies of
the table. Details of message generation, and the application of operations and
messages to a table, are covered momentarily.

Vote history: To help maintain consistency across the server and all clients, we
define data structures UH and DH (for “upvote history” and “downvote history”),
mapping value-vectors to numbers of upvotes and downvotes, respectively. We
use UH[v] and DH[v] to represent the numbers of upvotes and downvotes, respec-
tively, that have been cast for a specific value-vector v. Similarly to the candidate
table, the server and each client maintain their own upvote and downvote histo-
ries (according to the specification below).

Applying locally-generated operations: Suppose the worker at client C performs
a primitive operation op. Let RC denote C’s local copy of the candidate table.
Also, let UHC and DHC denote C’s upvote and downvote histories, respectively.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 105

For each operation type, client C applies op locally and sends a corresponding
message m to the server as follows:

• insert(r): Insert a new empty row r into RC, with ur=dr=0. Send message
insert(r) to the server.

• fill(r,A,v): Delete row r ∈ RC from RC. Construct a new row q whose value
q is the same as r but with column A filled in with value v. Insert row q into
RC. If row q is now a complete row, set uq=UHC[q]; otherwise, set uq=0. Set
dq=∑w⊆qDHC[w]. Send message replace(r,q,q) to the server.

• upvote(r): Increment uq for each row q ∈ RC whose value q is the same as r.
Increment UHC[r]. Send message upvote(r) to the server.

• downvote(r): Increment dq for each row q ∈ RC such that q ⊇ r. Increment
DHC[r]. Send message downvote(r) to the server.

We assume that insert and fill operations generate globally-unique row identifiers
for their newly-constructed rows.

Processing received messages: Now suppose the server S receives a message m
from client C. Let RS denote the master copy of the candidate table. Also, let UHS

and DHS denote the upvote and downvote histories at S. For each message type,
the server processes message m as follows:

• insert(r): Insert an empty row r into RS, with ur=dr=0.

• replace(r,q,v): If row r is present in RS, delete r from RS. Construct row q
whose value q is the same as v. Insert row q into RS. If row q is a complete
row, set uq=UHS[v]; otherwise, set uq=0. Set dq=∑w⊆qDHS[w].

• upvote(v): Increment uq for each row q ∈ RS whose value q is the same as v.
Increment UHS[v].

• downvote(v): Increment dq for each row q ∈ RS such that q ⊇ v. Increment
DHS[v].

In addition, the server forwards message m to all clients except C. When client
C′(6= C) receives message m, C′ processes m in exactly the same fashion as the
server, as specified above.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 106

How the Model Supports Concurrency

Our model was designed carefully so workers can operate independently, per-
forming operations on copies of the same table with conflicts resolved in an in-
tuitive and seamless fashion. It is easy to see (and formally proven below) that
insert and voting operations can be performed on independent copies and prop-
agate to the other clients without conflict. Thus, the only source of potential
conflict is when two different workers fill in empty values in the same row at the
same time—either for the same column or for different columns.

Suppose client C performs a fill(r,A,v) operation. According to our formal
model, in C’s copy of the table, row r is replaced by a newly-constructed row
q, instead of adding value v in place to row r. This replacement propagates via
replace messages to the server and then all other clients. Generating a new row
for each new column value, instead of filling the value into the existing row, turns
out to be the key ingredient to enabling concurrency.

Suppose another client C′ performs a fill(r,A′,v′) operation at the same time. If
A = A′, i.e., they fill in the same column, eventually all clients have two copies
of the original row for the two, possibly different, values. If one of the values
is correct and the other isn’t, further completion of the better row and voting
should eventually yield the correct answer. If neither value is correct, neither row
should be completed or upvoted. If both values are correct, one unnecessary row
is created, but will not affect final correctness.

Now suppose A 6= A′, i.e., the clients fill in two different columns. If the
two new values are incompatible, again eventually the correct row (if any) should
emerge. If the two values are compatible, we rely on workers to eventually com-
bine (by copying) the correct values into a single row. The alternative approach
of always placing both new values in the same row would be advantageous when
the values are compatible, but significantly disadvantageous when the values are
incompatible, since the entire row would eventually be downvoted.

As an example when A 6= A′, suppose the candidate table currently contains
the following row r:

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 107

name nationality position caps goals ↑ ↓
Lionel Messi Brazil FW 0 0

If two operations, fill(r,name,Lionel Messi) and fill(r,nationality,Brazil), are performed
by two different clients concurrently, we will ultimately get the following candi-
date table with rows q1 and q2:

name nationality position caps goals ↑ ↓
Lionel Messi FW 0 0

Brazil FW 0 0
Note had the two values been added in place to row r, the result would have been
a row that neither client intended, and that is incorrect.

Convergence

In the specifications above, applying a locally-generated operation at client C is
equivalent to processing its corresponding message m, as if C received m from
the server. Thus, in the rest of this section, we use applying an operation and
processing its corresponding message interchangeably.

When clients concurrently generate and process messages according to the
specifications above, the server and all clients process each generated message
once and only once. However, the server and each client may process the mes-
sages in a different order. Despite this difference, our convergence theorem guar-
antees that the server and all clients always have the same candidate table when-
ever the system “quiesces” (i.e., all generated messages are propagated and pro-
cessed).

Theorem: Suppose the server and all clients initially have an identical candidate
table R0 (both data rows and vote counts) as well as identical upvote and down-
vote histories, without any outstanding messages that need further processing.
Suppose the clients together generate a set M of messages. If the system qui-
esces again after processing all messages in M, the server and all clients have an
identical candidate table R f , as well as identical upvote and downvote histories.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 108

Proof: The proof proceeds in two parts. In part 1, we show that the set of rows in
every copy of the candidate table converges, ignoring upvotes and downvotes. In
part 2, we show that the upvote and downvote histories are identical across the
server and all clients, and consequently the upvote and downvote counts for each
row converge. We first introduce two lemmas and prove part 1; then we introduce
another lemma and prove part 2.

Lemma 1: Associated with every row identifier r is a value r. Every copy of the
table containing row r at any time always has the same value r for r.

Proof of Lemma 1: Processing an insert message always creates an empty row.
Based on the specification of processing replace messages, modifying value r for
row r also assigns a new row identifier. Thus row identifier r cannot be associated
with more than one value r.

Lemma 2: For any row r, if there are two messages m1 and m2 in M such that
m1=insert(r) or replace(p,r,r), and m2=replace(r,q,q), then message m1 is pro-
cessed before message m2 at the server as well as at each client.

Proof of Lemma 2: If both m1 and m2 are generated at a single client Ci, m1

obviously precedes m2 at Ci. By in-order message delivery and processing, m1

precedes m2 at the server and at any other client Cj (j 6= i).
Otherwise, suppose m1 and m2 are generated at client Ci and Cj (j 6= i), re-

spectively. Before Cj generates m2, the server must have received and processed
m1 from Ci (and forwarded it to Cj), because m2 refers to row identifier r. Thus
m1 precedes m2 at Ci, Cj, and the server. By in-order message delivery and pro-
cessing, m1 precedes m2 at any other client Ck (k 6= i, j).

Proof of convergence theorem (part 1): In this part we show that the server and
all clients have the same set of rows in their candidate tables (ignoring upvotes
and downvotes) after all messages in M have been processed. Notice that we only
need to consider insert and replace messages, because upvote and downvote mes-
sages do not change the rows themselves.

Let RA and RB denote the sets of rows in candidate tables at two different
locations (either two clients, or the server and one client), after processing all
messages in M on the initial table R0. By Lemma 1, to prove RA=RB, it suffices to

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 109

show that there is no r ∈ RA such that r /∈ RB. Suppose, for sake of contradiction,
that there exists r ∈ RA such that r /∈ RB.

We first show that row r cannot be in R0. If r is in R0, by r /∈ RB, M must
include a message m such that m=replace(r,q,q). Once m is processed on RA, we
have r /∈ RA, which contradicts our assumption r ∈ RA.

From r /∈ R0 and r ∈ RA, there exists a message m1 ∈ M such that m1=insert(r)
or replace(p,r,r). RB does not contain row r despite message m1, so there must
be another message m2 ∈ M (following m1 at B) such that m2=replace(r,q,q).
To satisfy r ∈ RA, m2 must precede m1 at A; however, this processing order
contradicts Lemma 2. Therefore, RA and RB are identical, which means the set of
rows in the candidate tables converge across the server and all clients.

Lemma 3: The following invariants hold for each r ∈ R at the server and each
client:

ur = UH[r] dr = ∑
v⊆r

DH[v]

where UH[v]=0 if v is never upvoted, and DH[v]=0 if v is never downvoted.

Proof of Lemma 3: Based on the specifications for processing insert and re-
placemessages, when a new row r is created by processing either type of message,
both ur and dr are initialized according to the invariants. Examining the specifica-
tions for processing upvote and downvote messages indicates that the invariants
are maintained for all rows.

Proof of convergence theorem (part 2): Since the server and all clients process
the same set of upvote and downvote messages in M, they all end up with the
same UH and DH. Therefore, by Lemma 3, they all have the same upvote and
downvote counts after all messages in M are processed. �

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 110

Front-end Server

Back-end Server

Database

Worker
Client

Web Interface

Crowdsourcing
Marketplace

task
acceptance

task setup,
payment

results collectiontable specs, payment

Execution
Server

Central
Client

Worker
Client

Worker
Client

Worker
Client

data
entry

Figure 5.1: CrowdFill architecture

5.2 System Overview

We have implemented a fully-functional prototype of the CrowdFill system. The
system is based on the formal model of Section 5.1, although as expected a num-
ber of additional system-oriented details were needed. This section provides
an overview of the CrowdFill system. Some of the most complicated aspects—
constraint-satisfaction and worker compensation—are covered in detail in Sec-
tions 5.3 and 5.4.

5.2.1 Architecture

Figure 5.1 shows the overall architecture of the CrowdFill system. It consists of
several major components: a web interface for users, a front-end server, a back-
end server, and one or more worker clients. It also connects with one or more
crowdsourcing marketplaces (only one is shown in our diagram), and a database.
In the course of data collection, these components interact with each other as

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 111

Figure 5.2: Table schema editor

follows:

1. Using the web interface, a user sends a table specification to the front-end
server to launch data collection. Figure 5.2 shows CrowdFill’s table schema
editor.

2. The front-end server creates one or more tasks in the crowdsourcing market-
place. (The number of tasks is marketplace dependent. So far we have used
Amazon Mechanical Turk [1] exclusively.)

3. Each worker accepting a task is redirected to the back-end server and estab-
lishes a bidirectional persistent connection to the back-end server.

4. Workers perform actions through their data entry interfaces (see Figure 5.3),
until the back-end server determines that enough data has been collected.

5. Using the web interface, the user retrieves collected data from the front-end
server and pays workers through the crowdsourcing marketplace.

Next we describe the front-end server, back-end server, and worker client in more
detail.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 112

Figure 5.3: Data entry interface

5.2.2 Front-end Server

The CrowdFill server logically consists of a front-end server interacting with ap-
plications, and a back-end server interacting with workers. The front-end server
provides applications with the CrowdFill REST API, which supports creating, up-
dating, and deleting table specifications (including table schemas, scoring func-
tions, and constraint templates), controlling the actual data collection, and re-
trieving collected data. Using the CrowdFill API, we built a web-based graphical
user interface. The server stores all metadata and collected structured data in a
MongoDB [5] database.

The front-end server communicates with one or more crowdsourcing market-
places to attract workers (to the back-end server) and to pay those workers once
enough data is collected. Although we have only used Amazon Mechanical Turk
for the marketplace, additional marketplaces can easily be added, as long as those
marketplaces allow us to host questions “externally” and make “bonus” payments
to workers, similar to Amazon Mechanical Turk [1].

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 113

5.2.3 Back-end Server

The back-end server corresponds to the server in CrowdFill’s formal model de-
scribed in Section 5.1.4: It maintains the master copy of the candidate table and
broadcasts each incoming message to all clients except the one originating the
message. We built the server using Node.js [8]; for connections between the
back-end server and clients, we chose the Socket.IO library [9] so that most web
browsers could participate as worker clients.

In addition to the basic functionality described as part of the formal model,
the back-end server is responsible for populating a candidate table, determining
the amount of monetary compensation for each worker, and storing a complete
trace of worker actions for bookkeeping. We will discuss these aspects in Sections
5.3 and 5.4.

5.2.4 Worker Client

Each worker client provides its worker with a data entry interface running in a
web browser. Through this interface, workers can perform three kinds of actions:
fill, upvote, and downvote. These actions correspond to the primitive operations
from Section 5.1 with the same names, with some restrictions on vote operations
mentioned below. Note worker clients never generate insert operations. For now
suppose that there are enough incomplete rows in the candidate table; we will
discuss this issue further in Section 5.3.

Fill action: As shown in Figure 5.3, the main part of this interface is an HTML
table. This table shows an up-to-date local copy of the candidate table, and it
allows workers to fill in empty cells in-place. (In this regard, this interface bears
much similarity to online spreadsheets such as Google Docs [4] spreadsheet.)
Filling in an empty cell generates a fill operation as described in Section 5.1.4. To
encourage workers to fill in different parts of the table, each client randomizes the
order of rows in the local copy of the table presented to the worker.

Upvote and downvote actions: The rightmost column in the HTML table contains
thumb-up and thumb-down icons for each row. Clicking these icons generates
upvote and downvote operations, respectively, on the corresponding row.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 114

Although the formal model in Section 5.1 does not prevent a single worker
from contributing multiple upvotes and/or downvotes to the same row, the Crowd-
Fill data entry interface intentionally prohibits this behavior: each worker may
provide, directly or indirectly, at most one vote for each row. (Implementing this
behavior requires maintaining a log of worker identifiers and votes.) Thus, upvote
and downvote counts represent the number of different workers who approve or
disapprove of a given set of values. To further enforce this semantics, when a
worker provides the last value that completes a row, that worker automatically
upvotes the row, without additional payment. Also, a single worker may not up-
vote more than one row with the same primary key. Finally, CrowdFill provides
a feature allowing users to set a maximum number of votes per row, to prevent
excessive voting.

5.3 Satisfying the Constraints

Recall from Section 5.1.3 that our overall goal is to obtain a final table satisfying
the cardinality and values constraints. Also recall that cardinality constraints are a
special case of values constraints: we can include in the values constraint template
T additional empty rows when the original template rows are fewer than the
cardinality constraint. In the rest of this section, we assume cardinality constraints
are absorbed by the values constraint in this fashion. As a reminder, a values
constraint with template T says: for each template row t ∈ T, there exists a
unique row s in the final table such that s ⊇ t.

To guide the final table towards the template, and to minimize wasted work,
the CrowdFill system only allows new rows to be inserted into the candidate table
by a special client, which we call CC (for “Central Client”), in the back-end server
(Figure 5.1). With this approach, workers never need to add rows, and they need
not be aware of the constraints, allowing them to simply fill in empty values in
existing rows, and cast votes.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 115

5.3.1 Probable Rows Invariant

The overall objective of the special client CC, as it adds rows to the candidate
table, is to keep the table in a state where filling in empty values might produce
a final table satisfying the constraint. We first define the notion of a row being
probable—informally, given the current state of the candidate table, a probable
row may eventually contribute to the final table. Based on the derivation of a
final table from a candidate table as defined in Section 5.1.2, we say that row r is
probable if it satisfies one of the following conditions:

1. Row r contains empty values for some primary key columns and has a zero
score from its upvote and downvote counts. (Recall from Section 5.1.1 the
score is computed by f (ur, dr).)

2. Row r contains no empty values for the primary key columns and has a zero
score, but no other row with the same primary key has a positive score.

3. Row r is a complete row with a positive score, and no other row with the
same primary key has a greater score. If there are other rows with the same
primary key and an equal score, only one row in the group is probable, and
we assume ties are broken deterministically.

Through special client CC, the CrowdFill system maintains the following invariant
at all times, based on the values constraint.

Probable Rows Invariant (PRI): Each template row t corresponds to a
unique probable row r in the candidate table such that r ⊇ t.

Note there may be probable rows that do not correspond to any template rows. By
the definition of probable rows and the values constraint, we have the following
theorem.

Theorem: Suppose we have a candidate table R and a values constraint with a
set T of template rows. Further suppose the PRI holds. Let P′ ⊆ R be the set of
probable rows in the correspondence of the PRI. If every p ∈ P′ is a complete row,
then the final table S derived from R satisfies the values constraint.

Proof: By the third condition in the definition of probable rows above, along with
the final table derivation from Section 5.1.2, every complete probable row in R is

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 116

in S. Since every p ∈ P′ is a complete row, we have P′ ⊆ S. By PRI on R and T,
each t ∈ T corresponds to a unique p ∈ P′ such that p ⊇ t. From P′ ⊆ S, each
t ∈ T corresponds to a unique s ∈ S such that s ⊇ t. Therefore, the final table
satisfies the values constraint. �

5.3.2 Maintaining the Invariant

We now explain how the CrowdFill system maintains the PRI. Initially client CC
populates its candidate table R with the set T of template rows. In addition,
client CC upvotes all complete template rows, as if those rows were completed
by workers (recall Section 5.2.4). CC’s initialization operations—as well as later
operations—are propagated to the server and all other clients, as if CC were a
worker client.

After initialization, all rows in R have nonnegative scores since no downvotes
have been cast. In addition, recall from Section 5.1.3 that there does exist a final
table satisfying the values constraint; this assumption implies that no two rows in
T with complete values for the primary key columns have the same key. Thus, all
rows in R are probable, and the PRI trivially holds.

To discuss subsequent states, we model relations between template rows and
probable rows with a bipartite graph G. Let P denote the set of probable rows
in R. The vertices are all template rows in T and all rows in P. There is an edge
between t ∈ T and p ∈ P whenever p ⊇ t. (For implementation, graph G is
simply stored as extra attributes in the candidate table.) In the context of graph
G, the PRI is equivalent to this statement: A maximum bipartite matching for G,
i.e., a largest set of edges where no two edges share a vertex, contains exactly |T|
edges.

As workers perform actions, graph G changes as the set P of probable rows
changes. Client CC incrementally computes a maximum bipartite matching for G
after each change in G. Whenever a change in G makes the size of a maximum
bipartite matching for G smaller than |T|, client CC inserts probable rows into R so
that the maximum bipartite matching contains exactly |T| edges, as follows. When
a template row t ∈ T becomes “free” (i.e., does not appear in the matching), client

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 117

CC performs a breadth-first search from t to a free probable row in P to find an
augmenting path (i.e., a path between two free nodes where edges are alternately
in and out of the matching). In the worst case, this BFS takes O(|P||T|) time;
however, if no probable rows can be connected to two or more template rows
with distinct values (e.g., the template has only empty rows, or all primary keys
are completely filled in), it takes O(|P|) time.

By Berge’s theorem [11], if an augmenting path is found, we can increase the
size of the bipartite matching back to |T|. Otherwise, maintaining the PRI requires
inserting another row q into R. Usually we can use t for the value of the new row
q, in which case an edge between t and q is added to the matching. However,
inserting row q with value t does not always make q probable. Let us see what
can go wrong. First, value t might have been downvoted by several workers,
giving potential row q a negative score. This case usually indicates the template
row t has incorrect values. Second, value t may have all primary key columns
filled in, while there is already a probable row with the same primary key and
a higher score. In either case, client CC first attempts to shuffle the matching
so that another template row t′ ∈ T becomes free. If CC cannot find another
probable template row t′, to maintain the PRI CC has no option but to remove
t from T, perhaps violating the user’s original intention. When this case occurs,
our system continues data collection with the reduced template; it might instead
be appropriate to raise an error and abort data collection, depending on the user’s
preference.

5.3.3 Probable Rows Invariant Maintenance Example

Suppose we have a values constraint with the template T from Section 5.1.3, which
we repeat here labeling the template rows a, b, and c:

name nationality position caps goals
a FW
b Brazil
c Spain

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 118

4
3
2
1

c

b

a

(a)

4

3

1

c

b

a

(b)

4

3

1

c

b

a

(c)

4

3

1

c

b

a

(d)

3

1

c

b

a

(e)

5

3

1

c

b

a

(f)

Figure 5.4: Bipartite graph representation of the PRI maintenance

Further suppose the candidate table R currently contains the following four rows,
labeled 1, 2, 3, and 4:

name nationality position caps goals ↑ ↓
1 Neymar Brazil FW 0 0
2 Ronaldinho Brazil FW 0 1
3 Spain 0 0
4 Messi FW 0 0

Recall from Section 5.1.1 that the scoring function f (ur, dr) for our example is
ur − dr if ur + dr ≥ 2, and 0 otherwise. Thus all four rows above are probable,
i.e., P = {1, 2, 3, 4}. Figure 5.4a shows the bipartite graph G corresponding to P
and T. The maximum bipartite matching incrementally maintained by client CC
is denoted by the thick edges in the graph—three edges in Figure 5.4a.

Now suppose row 2 is downvoted by one more worker, so its score becomes
-2. Figure 5.4b shows graph G after row 2 is removed from P. Since the tem-
plate row b is now free, client CC starts a breadth-first search from row b and
finds an augmenting path b–1–a–4 (Figure 5.4c). Based on this path, CC updates
the matching to include 4–a, 1–b, and 3–c (Figure 5.4d). In this case, the PRI is
maintained without inserting an additional row into R.

Now suppose a worker fills in Messi’s caps as 82, replacing row 4 with row
4’ shown below. Further suppose row 4’ is downvoted by two workers, so it is
removed from P (Figure 5.4e). Although the template row a is free, there is no

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 119

augmenting path starting from row a. Thus CC inserts the value of row a into
R as row 5, adding 5–a to the maximum bipartite matching (Figure 5.4f). The
resulting candidate table is now:

name nationality position caps goals ↑ ↓
1 Neymar Brazil FW 0 0
2 Ronaldinho Brazil FW 0 2
3 Spain 0 0
4’ Messi FW 82 0 2
5 FW 0 0

5.4 Compensating Workers

So far we have described the machinery for obtaining a final table satisfying the
constraints, assuming there are workers willing to perform the necessary actions.
In this section, we present CrowdFill’s compensation scheme, to motivate workers
to perform “useful” actions. We first discuss several challenges in designing an
effective compensation scheme, and our overall approach to tackling them. Then,
we describe how CrowdFill determines monetary compensation for each worker,
based on the final table. Lastly, we describe how CrowdFill provides workers
with estimated incremental compensation, to keep them engaged during data
collection.

5.4.1 Challenges and Approach

In paid crowdsourcing, workers are motivated by monetary compensation, and
typically have a desire to maximize their total earnings. On the user side, our
challenge is an example of the cost-latency-quality tradeoffs discussed in [58]: We
want to exploit workers’ desire to earn money in order to obtain a final table
of high quality, without too much cost or latency. We describe how CrowdFill’s
compensation scheme addresses this challenge.

Roughly, our overall scheme is based on compensating workers for those data

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 120

entries that actually contribute to the final table, directly or indirectly.2 Under
this scheme (combined with row-wise voting), a worker entering correct value
has a much better chance of getting paid than one entering incorrect data. Since
populating a candidate table as described in Section 5.3 minimizes wasted work,
this scheme does not penalize “good” workers. Moreover, this scheme makes the
overall monetary cost more predictable.

CrowdFill allows a user to simply specify a total monetary budget. When the
table is complete, the system calculates the final compensation for each worker
based on how and when they contributed to the table. Our approach also can
take into account variability in the difficulty of providing values for different
columns, and the fact that entering new key values can get progressively more
difficult as the table fills up. In addition to final payment, it is necessary during
data collection to provide estimated monetary value for each action. Although we
use a relatively simple approach, experimentally our simple approach produces
estimates that are reasonably close to the actual compensation for each worker;
see Section 5.5.

We first detail how final compensation is calculated after the table is complete
in Section 5.4.2. Compensation estimation during data collection is covered in
Section 5.4.3.

5.4.2 Allocating Total Budget to Workers

Suppose the user specified a total monetary budget B, and CrowdFill has obtained
a final table S satisfying the constraints. The back-end server stores a complete
trace of worker actions in terms of a set M of messages received from all worker
clients (as in Section 5.1.4), where each message in M is uniquely timestamped
and annotated with the worker identifier originating the message. Note messages
from special client CC (Section 5.3) are not included in M. Our goal is to deter-
mine overall compensation for each worker who participated in data collection,

2Note that rejecting “incorrect” answers in Amazon Mechanical Turk has been problematic,
since doing so lowers workers’ approval rates, which may affect their qualifications to work on
other tasks. Since CrowdFill makes “bonus” payments to workers rather than using the default
per-task payments, workers’ approval rates are not affected by our scheme.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 121

given B and M.
Our overall strategy proceeds as follows. Let C denote the set of cells in S

whose values have been entered by workers. (Recall some cell values in S are
from template rows and entered by client CC.)

1. For each cell c ∈ C, we find exactly one replace message in M that directly
contributed to c, and at most one replace message in M that indirectly con-
tributed to c. We will formalize these concepts below.

2. We compute U, the set of upvote messages in M that contributed to a row in
S.

3. We compute D, the set of downvote messages in M that (indirectly) con-
tributed to the final table S.

4. We distribute the total budget B across all cells in C, all upvote messages in
U, and all downvote messages in D.

5. For each cell c ∈ C, we allocate the portion of B assigned to c to the one or
two replace messages contributing to c.

6. We calculate overall compensation for each worker by summing compensa-
tions from Steps 4 and 5 for their messages.

We elaborate Steps 1–5 below. Step 6 is straightforward.

Defining the Notion of Contribution

We specify which messages in M contributed to the final table S. Recall from
Sections 5.1.4 and 5.2.4 that worker clients send three types of messages to the
back-end server:

• replace(r,q,q), generated by a fill(r,A,v) operation

• upvote(r), generated by an upvote(r) operation

• downvote(r), generated by a downvote(r) operation

We now discuss four classes of contribution: direct and indirect for replace, plus
upvote and downvote.
Direct contribution of replace: Consider a cell c ∈ C that corresponds to column
A of row s ∈ S, hereafter called s.A. The replace(r,q,q) message in M that directly

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 122

contributes to cell c is the one that filled in the A value in the row that eventually
became row s. Formally, replace(r,q,q), generated by a fill(r,A,v) operation, directly
contributes to a cell c ∈ C for s.A if there exists a series of k ≥ 1 messages,
replace(r0,r1,r̄1), replace(r1,r2,r̄2),..., replace(rk−1,rk,r̄k) in M, such that r0 = r, r1 =

q, and rk = s.
Given a cell c ∈ C, there is exactly one message in M directly contributing to c:

Having no directly contributing replace message contradicts c ∈ C, while having
two or more contributing replace messages contradicts the fact that fill operations
generate globally-unique row identifiers.

Indirect contribution of replace: Consider the case where a worker enters a “cor-
rect” value v for a column A, creating a partial row q with value q. Suppose row
q does not evolve through additional fill operations to be part of the final table,
yet value q is a subset of a final row. If the worker was the first to enter value
v for column A, we should give some compensation for that indirect contribu-
tion. More formally, replace(r,q,q), generated by a fill(r,A,v) operation, indirectly
contributes to a cell c ∈ C for s.A if q ⊆ s holds, and there is no replace(p,o,o)
in M that is generated by a fill(p,A,v) operation and has a timestamp older than
replace(r,q,q).

Given a cell c ∈ C for s.A, whose value is v, there is no message indirectly
contributing to c if v is from a template row (in which case client CC was the
first to provide value v), or the first replace(r,q,q) to enter value v to column A
does not satisfy q ⊆ s. Otherwise, there is exactly one message in M indirectly
contributing to c. Note a single replace message may contribute to c both directly
and indirectly: if it was the first to enter value v, and the row eventually became
row s.

Contribution of upvote: An upvote(r) message in M directly contributes to a
given row s ∈ S if it increased the upvote count of row s, i.e., r = s. One exception
is the case when the upvote message was automatically sent by a fill action that
completed a row by providing the last value (Section 5.2.4), which we do not
count as a separate contribution. Note each upvote message can contribute to at
most one row in S, since S does not have duplicate rows due to the primary key
constraint.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 123

Contribution of downvote: A downvote(r) message contributes to the final table
S if it is consistent with all rows in S, i.e., if there is no row s ∈ S such that s ⊇ r.

Allocation Schemes

We now present three schemes with different levels of sophistication that dis-
tribute the total budget B across all cells in C and all messages in U ∪ D. Recall
U and D are the sets of upvote and downvote messages in M, respectively, that
contributed to the final table S.

Uniform allocation: As a simple baseline, we allocate the budget B uniformly
across all cells in C and all messages in U ∪ D. In this case, compensation for
each cell in C and each message in U ∪ D is b = B

|C|+|U|+|D| .

Column-weighted allocation: We now take into account the possibility that some
columns are inherently more difficult to fill in than others, and that upvoting
and downvoting may not have equal difficulty nor difficulty similar to filling in
values. We assign weights to each column, and to upvoting and downvoting. We
will explain how to choose these weights shortly.

The column-weighted allocation scheme allocates the budget B to all cells in C
and all messages in U∪D proportionally to their corresponding weights. Suppose
column Ai (1 ≤ i ≤ m) has weight yi, and upvote and downvote have weights
y↑ and y↓, respectively. Let Ci denote a set of cells in C for column Ai, and let
Y denote the sum of weights across all cells in C and all messages in U ∪ D, i.e.,
Y = ∑m

j=1 yj|Cj|+ y↑|U|+ y↓|D|. Compensation for each c ∈ C for column Ai is
yiB/Y, and compensation for each upvote and downvote are y↑B/Y and y↓B/Y,
respectively. Note our uniform allocation scheme is a special case of column-
weighted allocation where all weights are equal.

There are many possible ways to determine the weights, including asking the
user to designate weights as part of the table specification. In our system, we au-
tomatically choose the weights using the trace of worker actions stored in M. Our
goal is to set yi (1 ≤ i ≤ m), y↑, and y↓ to the median times taken for workers to
generate replace messages for filling in Ai, upvote messages, and downvote mes-
sages, respectively, that contribute to the final table. (Using medians rather than

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 124

averages makes the weights more resilient to outliers.) We use the difference of
timestamps in two consecutive messages from the same worker as the time taken
for generating the second message, but we are aware of its flaws; to address this
limitation, we need to incorporate a more sophisticated mechanism into the client
side.

Dual-weighted allocation: Column-weighted allocation assumes that filling in a
particular column in different rows is equally difficult. However, for the case of
primary key columns in particular, entering new values tends to get progressively
more difficult as the table fills up. In this case, the column-weighted allocation
scheme overcompensates primary key values completed earlier and undercom-
pensates primary key values completed later.

The dual-weighted allocation scheme addresses this problem by assigning pro-
gressively higher weights to the cells for the primary key columns. Specifically, for
each primary key column Ai, we assign linearly increasing weights from (1− zi)yi

to (1 + zi)yi, to all cells in Ci in the order that their values first appeared in col-
umn Ai of the candidate table: Compensation for the cell containing the k-th
value in key column Ai is bk = (1 + 2zi

|Ci|−1(k−
|Ci|+1

2))yiB/Y. Compensation for
the other cells, upvotes, and downvotes remains the same as in column-weighted
allocation.

Again there are many possible ways to determine parameter zi. To minimize
user intervention, our goal is to estimate a reasonable zi value from M. To do so,
we fit bk to the times taken to complete k-th value (k = 1, . . . , |Ci|), using linear
least squares regression. Since we require each zi to be nonnegative and less than
1, we override a negative zi with 0, and zi greater than 1 with 1.

Splitting Cell Compensation

We allocate the portion of B assigned to each cell c ∈ C to the one or two re-
place messages contributing to c. Given a cell c ∈ C, let bc denote the portion of
B assigned to c. Let hc be a “splitting factor” between 0 and 1, discussed momen-
tarily. We allocate hcbc to the message directly contributing to c, and (1− hc)bc to
the message indirectly contributing to c, if any. (Note as discussed above some

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 125

cells may not have any indirectly contributing messages, so this scheme does not
necessarily exhaust B.)

To determine default values for hc, for now we use an ad-hoc scheme based
primarily on intuition. For cell c in a primary key column, our intuition says that
the indirect contribution is most important, because it increases the number of
distinct keys. Thus we set hc = 0.25 by default, giving the directly contributing
message 0.25bc and the indirectly contributing message (if any) 0.75bc. For cell c
in a non-key column, the indirect contribution is not as valuable as in the case of
a primary key column since we are not looking for unique values; however, it is
still (at least) as valuable as the direct contribution. In this case we set hc = 0.5
by default, giving each of the directly and indirectly contributing messages 0.5bc.
We allow the user to override this scheme by setting hc for each column, and we
plan to investigate more complex schemes as future work.

5.4.3 Estimating Compensation

As described in Section 5.4.2, CrowdFill pays workers who participate in data
collection based on their contribution to the final table S. Now consider the
worker perspective. To keep workers engaged during data collection, it is nec-
essary to provide estimated monetary compensation for each action. This esti-
mation problem is quite challenging on its own, and a complete exploration is
beyond the scope of this thesis. Here we describe our intuitive initial approach,
which we evaluate empirically in Section 5.5. Note our approach treats all work-
ers as equally likely to perform useful actions; if we kept track of worker’s past
performance we could adjust our estimates accordingly.

In our system, estimated compensation is provided based on the following
two assumptions. First, we calculate the estimated compensation for each action
assuming that the action will eventually contribute to S. Second, the estimated
compensation for a fill action assumes both direct and indirect contribution. Thus,
filling in a value for a column when the same value is already present elsewhere
in the column may result in smaller compensation than estimated.

Now we describe how CrowdFill estimates compensation for each action, for

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 126

the three allocation schemes specified in Section 5.4.2.

Uniform allocation: Recall that compensation for each cell in C and each message
in U ∪ D is b = B

|C|+|U|+|D| . Thus we need to estimate |C|, |U|, and |D|. For |C|,
we use the number of empty values in the template T, which is accurate in most
cases. For |U|, we start with (umin − 1)× |T|, where umin is the smallest number
such that f (umin, 0) > 0, then increase the estimate as probable rows in R get more
upvotes. Lastly, for |D|, we use the number of downvotes that are consistent with
all currently probable rows.

Column-weighted allocation: In column-weighted allocation, we need to esti-
mate weights y1, . . . , ym, y↑, and y↓, in addition to |C|, |U|, and |D| as described
above. We begin with the same simple estimates as uniform allocation, which
may be far off. Then, whenever new latency information is accumulated based on
worker actions, we update y1, . . . , ym, y↑, and y↓ to the median times taken to gen-
erate replacemessages for filling in Ai, upvotemessages, and downvotemessages,
respectively, that contribute to the current set of probable rows. Thus, estimates
get more accurate over time, eventually converging to the actual weights used for
calculating final compensation.

Dual-weighted allocation: We need to estimate zi for each primary key column
Ai, in addition to all parameters needed in column-weighted allocation. Again
we initially assume uniform column weights, and we further assume that all zi’s
are zero. Whenever a primary key column Ai is filled in, we first fit zi to the
times taken to complete the k-th value in the current probable rows, using linear
regression. Then we update yi, taking zi into account since latencies to be ob-
served would be higher than latencies already observed. For all other columns
and votes, the column weights along with |C|, |U|, and |D| are calculated as in
column-weighted allocation.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 127

5.5 Experimental Evaluation

In this section we present our experimental evaluation of the CrowdFill system.
First, we briefly describe and assess the overall effectiveness of CrowdFill’s table-
filling approach for a data-collection task. Then we focus on our compensation
schemes, comparing the three allocation schemes from Section 5.4.2, as well as
measuring the accuracy of estimated compensation from Section 5.4.3.

Experimental setup: For our experiments we used Amazon Mechanical Turk’s
developer sandbox, a non-production environment for testing crowdsourcing ap-
plications [2]. Human workers were recruited locally and worked on our data
collection tasks exclusively. All workers were volunteers: although compensation
amounts were calculated, the workers were not actually compensated. Although
this setup does not exactly reflect crowdsourcing scenarios in practice, it enabled
us to control the number of concurrent workers and run many rounds of experi-
ments without delay or escalating monetary costs.

We deployed the CrowdFill front-end and back-end servers on Nodejitsu [7],
a Node.js [8] hosting platform in the cloud; CrowdFill ran on a single “drone”
(an individual unit of computing power). CrowdFill’s database was hosted on
MongoLab [6], a database-as-a-service provider for MongoDB [5].

Schema and constraints: We used the running example SoccerPlayer schema from
Section 5.1, with an additional date-of-birth (dob) column:

SoccerPlayer(name, nationality, position, caps, goals, dob)
Recall from Section 5.1.1 that our scoring function implements a “majority of three
or more” voting scheme.

Our goal was to collect information about 20 soccer players with caps between
80 and 99 inclusive, starting from an empty table. (Players with caps ≥ 100 were
excluded because their information is readily available from the FIFA Century
Club [3].)

Overall effectiveness: We report results for a representative run that collected
data using five human workers. Note that results may vary significantly based
on the workers participating in an experiment; drawing meaningful conclusions

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 128

would require a large number of trials using different sets of workers. In our
representative run it took 10 minutes 44 seconds to obtain a final SoccerPlayer
table with 20 complete rows. At completion, the candidate table contained 23
rows; two rows were downvoted twice or more, and one extra row was added by
a conflict. In this run, all 20 final rows were accurate, although we occasionally
observed inaccurate rows in other runs.

Worker compensation: Continuing with our representative run, we set our total
monetary budget to $10, and we used our most sophisticated allocation scheme:
dual-weighted allocation. Under this scheme, the five workers had a wide range
of compensation: $0.51, $1.68, $2.08, $2.24, and $3.49. The worker who earned
$3.49 performed 54 actions (fill, upvote, and downvote combined), while the worker
who earned $0.51 performed only 9 actions. The significant variation in compen-
sation demonstrates that our approach does reward those workers who contribute
more to the final table.

Although we used dual-weighted allocation, in our runs CrowdFill did not
observe that it took progressively longer to obtain new primary keys, one of the
bases for the allocation scheme. The lack of “slowdown” is probably because we
were collecting data for only 20 players, while we estimate there are more than
200 players whose caps value is in the desired range (making it easy to come up
with 20). Thus, the compensation amounts would have been exactly the same
using column-weighted allocation.

Accuracy of estimated compensation: Now we evaluate whether workers earned
what they expected, based on the estimates CrowdFill provided during data col-
lection. Figure 5.5 shows actual and estimated compensation in our representative
run for each of the five workers. The middle bar for each worker represents the
sum of estimates shown when actions were performed. These raw estimates were
reasonably close to the actual compensation across all five workers, with a mean
absolute percentage error of 16.1%.

As discussed in Section 5.4.3, the estimated compensation for each action is
calculated assuming the action will eventually contribute to the final table. If a
worker consistently provides incorrect values, the estimation error can be arbitrar-
ily large. The rightmost bar for each worker shows the sum of estimates only for

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 129

��

��

��

��

��

� � � � �

�
�
��
��
�
��
�
��
��
��
�

�������

������
�������������

���������

Figure 5.5: Accuracy of estimated compensation

those actions that contributed to the final table. Using these corrected estimates,
we observed a mean absolute percentage error of 9.9%.

In general, we observed that accuracy of estimated compensation largely de-
pended on the allocation scheme. With uniform, column-weighted, and dual-
weighted allocation schemes, we observed mean absolute percentage errors of
about 3%, 16%, and 25%, respectively, across many experiments using different
schemas and workloads. It’s not surprising that the more complex schemes are
more difficult to estimate; improving our estimates for the more complex schemes
is an important area for future work.

Comparing allocation schemes: If we had used uniform allocation (and ignoring
the fact that workers may have behaved differently under a different scheme),
the five workers would have earned $0.59, $2.01, $1.54, $2.38, and $3.48. Notice
that some, but not all, values are quite different from the previous calculation.
For the third worker, the difference is more than 25%. It turns out that the third
worker never carried out upvote or downvote actions; since in this run voting was
considered easier than filling in most columns, the worker was penalized by the
uniform allocation scheme.

Another comparison we can make across compensation schemes is “stability,”
i.e., whether workers earn at a steady rate throughout the table-filling task. Figure

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 130

��

���

���

���

����

�� ���� ����

�
��
�
�
�
��
��
�
��
��
�
��
��
��
�

����������

�������
��������

��

���

���

���

����

�� ���� ����

�
��
�
�
�
��
��
�
��
��
�
��
��
��
�

����������

�������
��������

Figure 5.6: Earning rates for uniform and weighted allocation, two workers

5.6 shows earning rates of two representative workers during our representative
run. The x-axis represents elapsed time from the start of data collection, while
the y-axis represents accumulated earning as percentage of the eventual total.
Thus, the slope of a line in the graph corresponds to the earning rate. We plot the
actual earning rates using dual-weighted allocation (which, recall, is equivalent to
column-weighted allocation in this run), along with what the earning rates would
have been under uniform allocation. We can see in this experiment that weighted
allocation appears to be somewhat more stable than uniform allocation in terms
of earning rate. More extensive experiments would be needed to fully understand
earning rates in a wide variety of settings.

5.6 Related Work

Real-time cooperative editing systems [4, 24, 57] allow multiple clients to con-
currently edit the same evolving document. Like CrowdFill, these systems have
a notion of convergence, and of intention preservation; they incorporate a tech-
nique called “operational transformation” to maintain those properties. Crowd-
Fill’s specific setting of structured data, and potentially inconsistent data entries,
led us to the formal model in Section 5.1, which handles potentially-conflicting
operations intuitively and seamlessly.

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 131

There has been a large body of prior work on various aspects of monetary com-
pensation in crowdsourcing environments. Many papers, e.g., [39, 50, 52], have
studied specific compensation schemes to elicit desired behaviors from workers.
Reference [52] compared several different compensation schemes in terms of ac-
curacy of worker answers; CrowdFill’s compensation scheme is most analogous to
“reward-agreement”, which rewards workers for answers agreeing with the ma-
jority. Another important problem in crowdsourcing marketplaces is task pricing.
While reference [35] describes a method for estimating a worker’s reservation
wage (i.e., the lowest wage a worker is willing to accept), more recent studies
[53, 54] propose an alternative approach where workers indicate their desired
wage by submitting a bid. Pursuing these directions may allow CrowdFill to
improve its allocation scheme, with an aim of minimizing total monetary cost
without a prespecified budget.

5.7 Conclusion

We presented CrowdFill, a system for collecting structured data from the crowd,
using the table-filling approach. CrowdFill explores a quite different approach
from Deco, which is microtask-based and was covered in Chapters 2–4. Crowd-
Fill’s formal model defines a concise set of primitive operations as workers con-
tribute values and votes on a shared table, and it seamlessly resolves conflicts
caused by concurrent operations while providing data consistency across clients.
CrowdFill allows the specification of value and cardinality constraints on the col-
lected data, and guides data collection towards the constraints while providing
an intuitive data-entry interface. CrowdFill’s compensation scheme distributes a
specified monetary budget to workers in a way that rewards those worker opera-
tions that contribute to the final result, while encouraging useful work along the
way by providing estimated compensation. Our experiments show that Crowd-
Fill’s table-filling approach provides an effective means of collecting structured
data from the crowd. We also validated that CrowdFill’s compensation scheme

CHAPTER 5. DESIGN AND IMPLEMENTATION OF CROWDFILL 132

provides final compensation commensurate with workers’ efforts, and offers rea-
sonably accurate estimated compensation during data collection. In the next chap-
ter, we will summarize key differences and tradeoffs between CrowdFill’s table-
filling approach and the microtask-based approach of Deco and other systems
[26, 38].

Chapter 6

Summary and Future Work

6.1 Summary of Contributions

This thesis studied the problem of crowdsourcing structured data. We explored
two complimentary approaches to the problem, and for each approach we de-
veloped a complete prototype system designed and implemented in a principled
manner. We summarize the main contributions of the thesis:

• Foundations of Deco. In Chapter 2 we provided an overview of Deco, a sys-
tem for “declarative crowdsourcing” that uses the microtask-based approach
for data collection. After describing the Deco data model and the syntax and
semantics of Deco’s query language, we explained Deco’s overall architecture
and major components.

• Query Execution in Deco. In Chapter 3 we presented Deco’s query execution
engine, explaining in detail how our approach to query execution minimizes
monetary cost and reduces latency when executing a given query plan. To
answer Deco queries correctly and efficiently, we developed a hybrid execu-
tion model, which respects Deco semantics while enabling parallel access to
the crowd. Query execution using this hybrid model bears as much similar-
ity to incremental view maintenance as to a traditional iterator model. The
query execution engine also uses a sophisticated prioritization scheme for
fetching data from the crowd, to minimize monetary cost.

133

CHAPTER 6. SUMMARY AND FUTURE WORK 134

• Query Optimization in Deco. In Chapter 4 we presented Deco’s query opti-
mizer, which finds the best plan to answer a query in terms of estimated mon-
etary cost. To reflect Deco’s query semantics and plan execution strategies,
we developed a cost model distinguishing between free existing data versus
paid new data, a cardinality estimation algorithm coping with changes to the
database state during query execution, and a plan enumeration algorithm
maximizing reuse of common subplans. Coupled with Deco’s query execu-
tion engine, Deco’s query processor as a whole provides a complete solution
for answering a Deco query that minimizes monetary cost, then reduces la-
tency.

• Design and Implementation of CrowdFill. In Chapter 5 we presented Crowd-
Fill, an alternative system for crowdsourcing structured data that uses the
table-filling approach. CrowdFill implements a formal model that enables
real-time collaboration among workers, and that resolves conflicts in an intu-
itive fashion. CrowdFill allows the specification of constraints on the collected
data, and guides data collection towards the constraints while providing an
intuitive data-entry interface. CrowdFill’s compensation scheme distributes
a specified monetary budget to workers in a way that rewards those worker
operations that contribute to the final result, while encouraging useful work
along the way.

6.2 Contrasting Our Two Approaches

As discussed in Section 1.1.3, each of our two approaches has advantages and dis-
advantages. The microtask-based approach is more naturally scalable, and more
suitable for combining humans and computers, than the table-filling approach.
On the other hand, the table-filling approach enables workers to enter data in a
more transparent, active, and flexible manner than the microtask-based approach.

In addition to the general differences discussed above and in Section 1.1.3,
there are a number of practical differences between Deco and CrowdFill:

CHAPTER 6. SUMMARY AND FUTURE WORK 135

• To express data collection goals, Deco users pose SQL queries, while Crowd-
Fill users rely on constraint templates.

• In terms of compensation, Deco users specify a fixed monetary cost for each
fetch rule, and Deco attempts to minimize total monetary cost; CrowdFill
users specify total monetary budget, which the system distributes across
workers.

• To keep latency low, Deco relies on maximizing parallelism to the extent pos-
sible, while CrowdFill supports real-time collaboration that bypasses crowd-
sourcing marketplaces.

• Although both Deco and CrowdFill specify minimum thresholds for data
quality (using resolution functions and scoring functions, respectively), Deco
primarily relies on asking redundant questions while CrowdFill uses its row-
wise voting scheme.

6.3 Future Work

We first discuss some areas of future work for Deco and CrowdFill in Sections
6.3.1 and 6.3.2, respectively. Then in Section 6.3.3 we conclude with future direc-
tions in the general area of crowdsourcing structured data.

6.3.1 Deco

We see the following three major directions for Deco:

• More general SQL constructs. Although Deco’s data model and query
language as defined in Chapter 2 are general enough to support any SQL
queries, the current Deco system only supports Select-Project-Join queries. A
natural next step is to extend the system to support more general SQL queries
beyond Select-Project-Join; for example, order-by and group-by are certainly
useful SQL constructs in any environment.

• Alternatives to MinTuples. Deco’s functionality would be enhanced by sup-
porting alternatives toMinTuples, such asMaxCost andMaxTime, as described

CHAPTER 6. SUMMARY AND FUTURE WORK 136

in Section 2.2. These alternatives enable end-users to maximize the number of
result tuples subject to the specified monetary or time budget. Since MaxCost
and MaxTime do not specify a desired property of valid instances explicitly,
our query execution and optimization strategies developed aroundMinTuples
would need to be revisited.

• Adaptive query processing techniques. Another important avenue of future
work is to incorporate adaptive query processing techniques [37] into the
Deco prototype. Due to the simplified statistical information about crowd-
sourced data and the long-running nature of Deco queries, the “optimize-
then-execute” paradigm [19] may not always yield the best possible execution
strategy in our setting.

6.3.2 CrowdFill

We see the following four major directions for CrowdFill:

• More general constraints. While the cardinality and values constraints in
the current CrowdFill system are sufficient for many scenarios, the predicates
constraint defined in Section 5.1.3 would add significant power in specifying
restrictions on final tables.

• More sophisticated compensation schemes. Although we have shown em-
pirically that our current compensation scheme works reasonably well, much
of it is ad-hoc based on intuition; further study is needed to fully understand
and refine the current scheme.

• Protection against spammers. An extremely important area of investigation
is the potential effect of spammers in our system, i.e., workers trying to obtain
payment for insincere work. Our compensation scheme discourages incorrect
answers, but the transparent nature of our table-filling approach may enable
spammers to hinder data collection, both individually and collectively, and
to steal credit by copying potentially correct answers from other workers. A
full understanding of the potential for such actions in CrowdFill, and how to
inhibit or eliminate them through modifications to the compensation scheme

CHAPTER 6. SUMMARY AND FUTURE WORK 137

and/or data-entry interface, is a significant challenge for the future.

• More comprehensive experimental evaluation. Our experimental evaluation
reported in Section 5.5 is preliminary; more comprehensive evaluation might
provide valuable insights into the CrowdFill system and the table-filling ap-
proach in general. As a first step, larger-scale evaluations would be valuable,
including larger table sizes, more concurrent workers, and a variety of data
domains. Unfortunately, as with much work in crowdsourcing, the process
of conducting large-scale empirical evaluations in a realistic setting can be
expensive and time-consuming.

6.3.3 Crowdsourcing Structured Data

In this thesis we focused on the microtask-based approach and the table-filling ap-
proach individually, and provided one specific implementation for each approach.
Given that we now have fully-functional prototypes of Deco and CrowdFill, we
can envision a thorough comparison of the two approaches, largely through em-
pirical studies, considering all three axes of cost, latency, and quality. Finally, as
crowdsourcing marketplaces and platforms mature and offer more functionality,
we anticipate that other complementary or improved approaches and implemen-
tations for crowdsourcing structured data may emerge in the future.

Bibliography

[1] Amazon Mechanical Turk. http://mturk.com/ .

[2] Amazon Mechanical Turk Developer Sandbox. https://requestersandbox.mturk.
com/ .

[3] FIFA century club (men). http://www.fifa.com/mm/document/fifafacts/
stats-centclub/52/00/59/centuryclub100314_neutral.pdf .

[4] Google Docs. http://docs.google.com/ .

[5] MongoDB. http://www.mongodb.org/ .

[6] Mongolab. http://www.mongolab.com/ .

[7] Nodejitsu. http://www.nodejitsu.com/ .

[8] Node.js. http://www.nodejs.org/ .

[9] Socket.IO. http://socket.io/ .

[10] O. Alonso, D. E. Rose, and B. Stewart. Crowdsourcing for relevance evalua-
tion. SIGIR Forum, 42, 2008.

[11] C. Berge. Two theorems in graph theory. Proceedings of the National Academy
of Sciences of the United States of America, 43(9):842–844, 1957.

[12] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently updating materialized
views. In SIGMOD, 1986.

138

http://mturk.com/
https://requestersandbox.mturk.com/
https://requestersandbox.mturk.com/
http://www.fifa.com/mm/document/fifafacts/stats-centclub/52/00/59/centuryclub100314_neutral.pdf
http://www.fifa.com/mm/document/fifafacts/stats-centclub/52/00/59/centuryclub100314_neutral.pdf
http://docs.google.com/
http://www.mongodb.org/
http://www.mongolab.com/
http://www.nodejitsu.com/
http://www.nodejs.org/
http://socket.io/

BIBLIOGRAPHY 139

[13] A. Bozzon, M. Brambilla, and S. Ceri. Answering search queries with crowd-
searcher. In WWW, 2012.

[14] N. Bruno and S. Chaudhuri. Exploiting statistics on query expressions for
optimization. In SIGMOD, 2002.

[15] S. Chaudhuri. An overview of query optimization in relational systems. In
PODS, 1998.

[16] S. Chaudhuri and V. R. Narasayya. Automating statistics management for
query optimizers. In ICDE, 2000.

[17] E. F. Codd. A relational model of data for large shared data banks. Commu-
nications of the ACM, 13(6):377–387, 1970.

[18] A. Deshpande and J. M. Hellerstein. Decoupled query optimization for fed-
erated database systems. In ICDE, 2002.

[19] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing. Foun-
dations and Trends in Databases, 1(1):1–140, 2007.

[20] D. Deutch, O. Greenshpan, B. Kostenko, and T. Milo. Declarative platform
for data sourcing games. In WWW, 2012.

[21] D. J. Dewitt and J. Gray. Parallel database systems: the future of high perfor-
mance database systems. Communications of the ACM, 35(6):85–98, 1992.

[22] A. Doan, R. Ramakrishnan, and A. Halevy. Crowdsourcing systems on the
world-wide web. Communications of the ACM, 54(4):86–96, 2011.

[23] W. Du, R. Krishnamurthy, and M.-C. Shan. Query optimization in a hetero-
geneous dbms. In VLDB, 1992.

[24] C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In
SIGMOD, 1989.

[25] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query optimization in the
presence of limited access patterns. In SIGMOD, 1999.

BIBLIOGRAPHY 140

[26] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. CrowdDB:
Answering queries with crowdsourcing. In SIGMOD, 2011.

[27] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems: The Complete
Book. Pearson Education, 2009.

[28] R. Goldman and J. Widom. WSQ/DSQ: A practical approach for combined
querying of databases and the web. In SIGMOD, 2000.

[29] G. Graefe. The cascades framework for query optimization. IEEE Data Engi-
neering Bulletin, 18(3):19–29, 1995.

[30] G. Graefe and W. J. McKenna. The volcano optimizer generator: Extensibility
and efficient search. In ICDE, 1993.

[31] S. Guo, A. Parameswaran, and H. Garcia-Molina. So who won? dynamic
max discovery with the crowd. In SIGMOD, 2012.

[32] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang. Optimizing queries
across diverse data sources. In VLDB, 1997.

[33] P. Hansen. Methods of nonlinear 0-1 programming. Annals of Discrete Math-
ematics, 5:53–70, 1979.

[34] J. Hellerstein and J. Naughton. Query execution techniques for caching ex-
pensive methods. In SIGMOD, 1996.

[35] J. Horton and L. Chilton. The labor economics of paid crowdsourcing. In EC,
2010.

[36] S. R. Jeffery, L. Sun, M. DeLand, N. Pendar, R. Barber, and A. Galdi. Arnold:
Declarative crowd-machine data integration. In CIDR, 2013.

[37] N. Kabra and D. J. DeWitt. Efficient mid-query re-optimization of sub-
optimal query execution plans. In SIGMOD, 1998.

[38] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-powered
sorts and joins. PVLDB, 5(1):13–24, 2011.

BIBLIOGRAPHY 141

[39] W. Mason and D. J. Watts. Financial incentives and the “performance of
crowds”. In HCOMP, 2009.

[40] A. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and
J. Widom. Crowdscreen: Algorithms for filtering data with humans. In
SIGMOD, 2012.

[41] A. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and J. Widom.
Deco: Declarative crowdsourcing. In CIKM, 2012.

[42] H. Park, R. Pang, A. Parameswaran, H. Garcia-Molina, N. Polyzotis, and
J. Widom. Deco: A system for declarative crowdsourcing. PVLDB,
5(12):1990–1993, 2012.

[43] H. Park, R. Pang, A. Parameswaran, H. Garcia-Molina, N. Polyzotis, and
J. Widom. An overview of the deco system: data model and query language;
query processing and optimization. SIGMOD Record, 41(4):22–27, 2012.

[44] H. Park, A. Parameswaran, and J. Widom. Query processing over crowd-
sourced data, http://ilpubs.stanford.edu:8090/1052/. Technical report, Stan-
ford InfoLab, 2012.

[45] H. Park and J. Widom. Query optimization over crowdsourced data. PVLDB,
6(10):781–792, 2013.

[46] H. Park and J. Widom. CrowdFill: A system for collecting structured data
from the crowd. In WWW, 2014.

[47] H. Park and J. Widom. CrowdFill: Collecting structured data from the crowd.
In SIGMOD, 2014.

[48] V. Poosala and Y. E. Ioannidis. Selectivity estimation without the attribute
value independence assumption. In VLDB, 1997.

[49] A. Rosenthal and C. Galindo-Legaria. Query graphs, implementing trees,
and freely-reorderable outerjoins. In SIGMOD, 1990.

http://ilpubs.stanford.edu:8090/1052/

BIBLIOGRAPHY 142

[50] O. Scekic, H. L. Truong, and S. Dustdar. Incentives and rewarding in social
computing. Communications of the ACM, 56(6):72–82, 2013.

[51] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system. In
SIGMOD, 1979.

[52] A. D. Shaw, J. J. Horton, and D. L. Chen. Designing incentives for inexpert
human raters. In CSCW, 2011.

[53] Y. Singer and M. Mittal. Pricing mechanisms for crowdsourcing markets. In
WWW, 2013.

[54] A. Singla and A. Krause. Truthful incentives in crowdsourcing tasks using
regret minimization mechanisms. In WWW, 2013.

[55] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng. Cheap and fast - but is
it good? evaluating non-expert annotations for natural language tasks. In
EMNLP, 2008.

[56] A. Sorokin and D. Forsyth. Utility data annotation with amazon mechanical
turk. In CVPRW, 2008.

[57] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence,
causality preservation, and intention preservation in real-time cooperative
editing systems. ACM Transactions on Computer-Human Interaction, 5(1):63–
108, 1998.

[58] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max algorithms in
crowdsourcing environments. In WWW, 2012.

[59] L. von Ahn and L. Dabbish. Labeling images with a computer game. In CHI,
2004.

[60] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER: Crowdsourcing
entity resolution. PVLDB, 5(11):1483–1494, 2012.

BIBLIOGRAPHY 143

[61] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive
relations for crowdsourced joins. In SIGMOD, 2013.

[62] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection for crowd
entity resolution. PVLDB, 6(6):349–360, 2013.

	Abstract
	Introduction
	Approaches for Crowdsourcing Structured Data
	Microtask-based Approach
	Table-filling Approach
	Comparison of the Two Approaches

	Overview of Contributions
	Deco
	CrowdFill

	Summary

	Foundations of Deco
	Data Model
	Conceptual Relation
	Raw Schema
	Fetch Rules
	Resolution Rules
	Data Model Semantics

	Query Language and Semantics
	System Overview
	Related Work

	Query Execution in Deco
	Challenges and Approach
	Executing Queries in Two Phases
	Enabling Parallelism Using Asynchronous Pull
	Choosing Right Degree of Parallelism
	Initiating Good Fetches
	Changing Result Incrementally

	Query Operators and Execution Plans
	Query Operators
	Query Plans

	Query Execution with No Existing Data
	Basic Query Plan
	Reverse Query Plan
	Combined Query Plan
	Hybrid Query Plan
	Join of Conceptual Relations

	Query Execution with Existing Data
	Materialization Phase
	Accretion Phase
	Meeting Parallelism Objectives

	Fetch Prioritization
	Formal Problem Definition
	Heuristic Algorithm
	Query Execution Engine Extension
	Amazon Mechanical Turk Support

	Experimental Evaluation
	Performance of Different Query Plans
	Parallelism, Cost, and Latency
	Effectiveness of Fetch Prioritization

	Related Work
	Conclusion

	Query Optimization in Deco
	Challenges and Approach
	Cost and Cardinality Estimation
	Statistics
	Plan Enumeration

	Cost Estimation
	Cardinality Estimation Algorithm
	Cost Estimation Examples

	Search Space and Plan Generation
	Join Tree
	Algebraic Representation
	Fetch Rule Selection
	Complete Query Plan

	Enumeration Algorithm
	Naive Enumeration
	Efficient Enumeration

	Experimental Evaluation
	Accuracy of Cost Estimation
	Efficiency of Plan Enumeration

	Related Work
	Conclusion

	Design and Implementation of CrowdFill
	Formal Model
	Table Specification
	Table State and Primitive Operations
	Constraints
	Concurrent Operations

	System Overview
	Architecture
	Front-end Server
	Back-end Server
	Worker Client

	Satisfying the Constraints
	Probable Rows Invariant
	Maintaining the Invariant
	Probable Rows Invariant Maintenance Example

	Compensating Workers
	Challenges and Approach
	Allocating Total Budget to Workers
	Estimating Compensation

	Experimental Evaluation
	Related Work
	Conclusion

	Summary and Future Work
	Summary of Contributions
	Contrasting Our Two Approaches
	Future Work
	Deco
	CrowdFill
	Crowdsourcing Structured Data

	Bibliography

