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Introduction
We consider the problem of optimally filtering (or rating)
a set of items based on predicates (or scoring) requiring hu-
man evaluation. Filtering and rating are ubiquitous problems
across crowdsourcing applications. We consider the setting
where we are given a set of items and a set of worker re-
sponses for each item: yes/no in the case of filtering and
an integer value in the case of rating. We assume that items
have a true inherent value that is unknown, and workers draw
their responses from a common, but hidden, error distribu-
tion. Our goal is to simultaneously assign a ground truth to
the item-set and estimate the worker error distribution. Pre-
vious work in this area (Raykar and Yu; Whitehill et al.)
has focused on heuristics such as Expectation Maximization
(EM), providing only a local optima guarantee, while we
have developed a general framework that finds a maximum
likelihood solution. Our approach extends to a number of
variations on the filtering and rating problems.

Overview of our Approach
We are given a set of items I and a worker response matrix
M , where M(I) is the set of worker responses given to an
item I ∈ I. We assume that all workers draw their responses
from a common (discrete) error distribution, p, where p(i, j)
is the probability that a worker responds i to an item with
true value j. In the filtering case, i, j ∈ {0, 1} while for
a rating problem with R buckets, i, j ∈ {1, 2, . . . , R}. Al-
though filtering can be treated as a special case of rating, we
consider it separately, as its analysis yields useful insights
we build upon for the more difficult rating problem.

Our goal is to simultaneously estimate the true values of
each item as well as the worker error distribution p, such
that the probability of seeing the response matrix M un-
der these assignments is maximized. Consider the filtering
problem. We can compute the likelihood of any mapping of
values to items f : I → {0, 1} and a worker error distri-
bution p, P (M |f, p), given the response matrix M . Thus,
our goal is to find argmaxf,p P (M |f, p). A naive solution
would be to look at every possible mapping f ′, compute
p′ = argmaxp P (M |f ′, p) and P (M |f ′, p′), and choose
the f ′ maximizing this likelihood value. The number of
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such mappings, 2|I|, is however exponentially large. Our al-
gorithm, based on two simple insights, greatly prunes this
search space, making an exhaustive evaluation on the re-
maining mappings possible.

First, we are assuming (for now) that individual workers
are indistinguishable, so we observe that items with the exact
same set of worker responses are also indistinguishable. This
allows us to bucket items based on their observed response
set. For the filtering problem, suppose there are m worker re-
sponses for each item. Then we have m+1 buckets, starting
from m “yes” (or 1) and zero “no” (or 0) responses, down to
zero yes and m no responses. We prune the set of item-value
mappings by only considering those mappings that give the
same value to all items in a common bucket.

Second, we observe that buckets have an inherent order-
ing. If workers are better than random, we intuitively ex-
pect items with more yes responses to be more likely to
have actual value 1 than items with fewer yes responses.
Ordering buckets by the number of yes responses, we have
(m, 0)→ (m− 1, 1)→ . . .→ (1,m− 1)→ (0,m), where
bucket (m− j, j) contains all items that received m− j yes
responses and j no responses. We eliminate all mappings
that give a value of 1 to a bucket on the right while assign-
ing a value of 0 to a bucket on the left. We formalize this
intuition as a dominance relation, or ordering on buckets,
(m, 0) > (m − 1, 1) > . . . > (1,m − 1) > (0,m), and
only consider mappings where dominating buckets receive a
value not lower than any of their dominated buckets.

We consider the space of mappings satisfying our above
bucketizing and dominance constraints, and call them
dominance-consistent mappings. It is easy to see that in our
filtering problem we have just m + 2 dominance-consistent
mappings. We have two trivial dominance-consistent map-
pings, corresponding to giving every item the same value
of either 1 or 0. There are exactly m other dominance-
consistent mappings, each corresponding to choosing a cut-
point 1 ≤ j ≤ m, and giving all items in buckets
{(m, 0), (m−1, 1), . . . , (m−j+1, j−1)} a value of 1 and
items in buckets {(m−j, j), (m−j−1, j+1), . . . , (0,m)} a
value 0. We can prove that the maximum likelihood mapping
from this small set of mappings is in fact a global maximum
likelihood mapping across the space of all possible “reason-
able” mappings: mappings corresponding to better than ran-
dom worker behaviour. This result, while intuitive, involves
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Figure 1: Dominance-DAG for 3 workers and scores in
{1, 2, 3}

a fairly complex and lengthy proof. Our theorem states that
if D is the space of bucketized, dominance-consistent map-
pings, and F is the space of all reasonable mappings, then
maxf∈D P (M |f) = maxf∈F P (M |f).

We now generalize our idea of bucketized, dominance-
consistent mappings to the rating problem. The primary dif-
ference is that instead of a strictly ordered chain of buckets,
we have a partial order describing the dominance constraint.
We explain the generalization with the help of Figure 1. The
figure shows the dominance DAG corresponding to the par-
tial ordering among buckets when 3 independent workers re-
spond to every item, each with a score from {1, 2, 3}. In the
DAG, a node (i, j, k) represents the bucket corresponding to
items where i workers give a score of 3, j workers give a
score of 2 and k workers give a score of 1. Since we have 3
responses per item, i+ j+k = 3. We naturally expect items
in bucket (3, 0, 0) to receive the highest rating across buck-
ets. Similarly, we expect bucket (1, 2, 0) to receive at least as
high a rating as bucket (1, 1, 1), although it cannot directly
be compared against bucket (2, 0, 1), and so on. As with the
filtering problem, we can prove that an exhaustive search of
the dominance-consistent mappings under this dominance
DAG constraint gives us a global maximum likelihood map-
ping across a much larger space of reasonable mappings.

Contributions and Future Work
We have developed a simple, intuitive algorithm to solve for
the maximum likelihood estimate of item-value mappings
and worker error distributions. Although in the previous sec-
tion we only discussed simple versions of filtering and rat-
ing, our framework generalizes to harder variants of similar
problems, such as settings where different workers have dif-
ferent error distributions, or different items receive different
number of worker responses.

While our algorithm guarantees optimal likelihood map-
pings, we are also interested in other metrics that measure
the quality of our predicted item assignments and worker
error distributions. To explore these aspects further, we ran
extensive simulations with randomly-generated worker er-
ror distributions and responses, comparing the quality of

Figure 2: EMD-based score for Filtering (lower is better)

our output against heuristics for different metrics. For in-
stance, we compared the accuracy of predicted values us-
ing a distance-weighted metric, and we also measured how
close our predicted worker error distribution was to the ac-
tual worker error distribution used to generate the data.

In our experiments, we plot the respective metrics (y-
axis) against m, the number of worker responses per item
(x-axis). Each data point is generated by averaging over
1000 different problem instances with randomly generated
worker distributions and random responses to items drawn
from these distributions. We show one representative plot
in Figure 2, where we compare our algorithm OPT against
the standard EM algorithm by measuring the EMD (Earth
Movers Distance) between their predicted worker error dis-
tributions and the true worker distribution. We consider mul-
tiple instances of EM with a spread of different initializa-
tions (EM(1), EM(2), EM(3)). EM [∗] is a consolidated
algorithm that runs each of the three instances and picks the
most likely one for every given dataset. In this experiment
our algorithm performs as well as the best EM approach,
while also guaranteeing maximum likelihood.

As ongoing and future work, we are coping with the fact
that our algorithm can be quite expensive: the number of
dominance-consistent mappings can still be quite large for
some problem instances. However, even in cases where our
algorithm is not efficient, it provides a way to prune the
search space of potential item-value mappings. A next step is
to explore algorithms that use this pruned space to find max-
imum likelihood solutions efficiently. Also, while we have
run extensive simulations, running experiments with with
real human workers would likely provide additional insights.
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