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1 Abstract

We study the problem of Entity Resolution (ER) with limited information. ER
is the problem of identifying and merging records that represent the same real-
world entity. In this paper, we focus on the resolution of a single node g from
one social graph (Google+ in our case) against a second social graph (Twitter
in our case). We want to find the best match for g in Twitter, by dynamically
probing the Twitter graph (using a public API), limited by the number of API
calls that social systems allow. We propose two strategies that are designed for
limited information and can be adapted to different limits. We evaluate our
strategies against a naive one on a real dataset and show that our strategies can
provide improved accuracy with significantly fewer API calls.

2 Introduction

A social system like Facebook or Twitter lets users interact and share resources
such as photos and news articles. At the core of a social system is its social
graph or network. A node in this graph represents a user (a human or sometimes
an entity like a club or a corporation), while the links represent relationships
among users (e.g., user x is a friend of user y). Each node contains information
about the user (sometimes called profile information), such as the name of the
user and his or her interests.

A single user U may participate in more than one social system, and in
many cases it is useful to match the user’s node in one social graph to the
same user’s node in another graph. For example, say user U is represented by
node g in Google+, and the same user is represented by node t in Twitter.
Even though this is the same person, his/her profile information in each social
network may differ. For instance, in g the user’s name may be spelled one way,
while in t it may be spelled differently. Similarly, the interests listed in g may



not match exactly the interests listed in t. In some cases, U’s Google+ (g)
profile might include his Twitter handle, i.e., the identity of t. But in many
cases the connection between g and t is not explicitly stated. (We will continue
to use our Google+, Twitter example in this paper, since it will also be the
focus of our experiments.)

There are many situations in which it is important to match a node like g in
one system to its corresponding node like t in another system. For example, if
user U were a customer at a store, the store could benefit from knowing that g
and t are the same person so as to avoid duplicate marketing efforts. As another
example, an intelligence agency gathering information about terrorists may want
to combine the data in g and t to obtain a better picture of a potential terrorist.
Another possible application is identifying duplicate users (possibly spammers)
in the same network. In addition, journalists (recruiters) often aggregate data
from different social networks to gather a fuller understanding of a person of
interest (candidate). Furthermore, Wikipedia may want to merge near-duplicate
articles in the same language by exploiting similarities in their links. Going
beyond one language, identifying the same Wikipedia article across languages
is useful for extending an article of one language by translating content from
another language.

The problem of matching nodes (or records) from one system to nodes in an-
other system is called entity resolution (ER) (or deduplication or record linkage
or graph alignment) and has been well studied [25]. The traditional approach
to entity resolution involves analyzing the entire graph (all records) from both
systems, in order to find the best correspondence among all nodes. That is, to
find the best matching Twitter record for our Google+ node of interest g, we
examine many (or all) Twitter nodes, to find the one that maximizes some sim-
ilarity metric. Furthermore, we also take into account the relationships among
nodes. For example, say that g has a group of Google+ friends Fg, while a
Twitter node t has Twitter friends (or followers) Fr. If the F nodes are “sim-
ilar” to the Fr nodes, then we can be more confident that g and t refer to the
same user.

While this type of global node and relationship analysis works well, in many
situations one does not have access to the entire graphs of both networks. Real-
world networks usually limit access to their social graphs. Access to full social
network data is limited because of companies’ privacy policies and the need to
safeguard proprietary data. Twitter’s current API limitation makes collecting
its full network prohibitively expensive (time and computing resources). Other
social networks like Google+, Facebook, and LinkedIn also do not allow a user
to obtain the whole social graph.

In this paper we focus on the ER problem when constrained by limited
information. In particular, we focus on the resolution of a single node (g in
our example) against a second social graph (Twitter in our example). (This
type of single node/record resolution is sometimes called dipping.) We want to
find the best match for g in Twitter, by dynamically probing the Twitter graph
(using a public APT). For example, one possible strategy is as follows: We take
the user’s name recorded in g, and perform a search on Twitter to find users



that have similar names. For each of these Twitter users, we fetch their nodes
(profiles) and select the one that is most similar to g. Of course, there are many
other possible strategies (e.g., use g's friends F; to probe Twitter), and we will
explore a number of them in this paper.

The key challenge for dynamic probing is that the API often limits the type
and number of probes one can perform. For instance, if one has the identity
t of a Twitter node, one can request t’s profile information. One can ask for
profiles for up to 100 nodes in the same request, but only 180 such requests can
be made per time “window” (the time between operation quota resets). When
one asks for the followers of node t, one can only get 5,000 followers at a time,
and one can only submit 15 such requests per window [1, 23]. Furthermore, the
limits and API usage rules keep changing over time.

In summary, not only do we want to find a strategy that can accurately
identify g’s corresponding node in Twitter, but we also want a strategy that
consumes resources (i.e., probes) wisely. Furthermore, our strategy has to be
robust and flexible to accommodate for changes to API limits at network owner’s
whim. In this paper we will explore this accuracy-cost tradeoff in detail. For
concreteness in our discussion and experiments, we will focus on a scenario
where we start with a Google+ user, and try to find the corresponding Twitter
user. (We have also implemented and experimented with the inverse matching
problem (from Twitter to Google+) but we do not cover it here due to space
limitations.) We believe our algorithms are applicable to other scenarios and
can be extended in a straightforward fashion.

The summary of our contributions is as follows:

e We formulate the problem of social network ER with limited resources
(Section 3).

e We extend known techniques for matching graph nodes to our scenario
where only partial neighborhood knowledge may be available (Section 4).

o We experimentally study the Twitter API to determine what calls are
more effective for improving match accuracy. Based on these experiments
we develop crawling heuristics, e.g., to determine the order in which to
crawl nodes (Section 5).

e Based on our node matching techniques and on our heuristics, we propose
two algorithms (TOP and GREEDY) for dynamically crawling a network
and finding a matching node (Section 6).

e We evaluate our algorithms using a real-world dataset (Section 7).

3 Preliminaries

3.1 Model

We consider two social systems/graphs, G (Google+) and T (Twitter). We
will use lowercase letters near g (e.g., £, g, h) to refer to nodes in G, and
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Figure 1: Following Relationship

Text
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names: fullname + other names extracted from the profile

id: uniquely identifies a user and cannot be changed

locations: current_place + places extracted from the profile

descriptions: {introduction, bragging rights, tag-line, job_title, universities, organi-
zations}

urls: urls from “other profiles” attribute + urls extracted from profile de-
scriptions.  Picasa, LinkedIn, Facebook, Pinterest, and YouTube are common
urls besides Twitter. For example, Sergey Brin’s profile contains links to
his YouTube and Picasa accounts: http://www.youtube.com/user/sbrin1600/ and
http://picasaweb.google.com/sergey.brin.

twitter: Twitter screen name extracted from urls. For example, we can extract
ladygaga from https://twitter.com/ladygaga.

screen_names: possible screen names extracted from urls. For example, ladygaga is a
potential screen name extracted from https://www.facebook.com/ladygaga.

posts: up to 10 most recent posts posted by the user

Graph

1.

in: set of G users who follow g (i.e., g’s inlinks). Google+ refers to this attribute as
“have him/her in circles.”

out: set of G users that g follows (i.e., g’s outlinks). Google+ refers to this attribute
as “in his/her circles.”

indegree: |in|. Takes value 0 when either a user has no followers in G or the
information is private.

. outdegree: |out|, similar to indegree

Table 1: G Attributes [2]

lowercase letters near t to refer to nodes in 7. Note that in some systems (e.g.,
Twitter) there are two ways to identify a node: through a screen name (e.g.,
“sergeybrinn”) or through the actual user id (e.g., 50449264). As long as the
APT lets us reach the node in question, we will consider either type of identifier
to be the node’s identity.

In G and T, nodes have the profile attributes shown in Tables 1 and 2. We
will use dot notation to refer to attributes. For instance g.name is the name of
the user represented by g. Some of the attributes contain a scalar text string or
number, while some contain sets. For example, g.out is the set of G identifiers




Text

name: fullname

screen_name: uniquely identifies a user, but a user may change his/her screen_name
id: uniquely identifies a user and cannot be changed

description: free text, 160 character limit

location: free text

status: “tweet”, 140 character limit per status

url: one link to website

oot W

Graph

1. in: set of T' users who follow t (i.e., t’s inlinks). This is not part of 7" attributes
available in profiles but we will use this notation. To obtain this information, we have
to invoke API operations discussed later in Table 3.

2. out: set of T users that t follows (i.e., t’s outlinks). Twitter refers to this attribute
as friends but we will continue using out to be consistent.

3. indegree: |in|. Takes value 0 when a user has no followers in 7". This information is
available in the profile even for protected users: users whose text and graph information
is only available to followers they approved [6].

4. outdegree: |out|, similar to indegree

Table 2: T Attributes [3]

for the users that g follows while g. in is the set of G identifiers for the users that
follow g. Note that the in and out attributes encode the G graph structure.
Figure 1 shows the following relationship: g is following h (h € g.out) and g is
h’s follower (g € h.in). In this case, g consumes the information feed produced
by h.

3.2 API Operations

Next we discuss Google+ and Twitter APIs. (As we discuss in the next section,
in our problem setting where we are given a single Google+ node to match, the
critical factor is the number of Twitter APT calls, not the Google+ calls.)

Before we define the API operations, we define pagination: Pagination:
An API provider splits the results of a query into pages and an application can
issue a request to fetch one result page. On each result page, the next page
token is included. Developers can issue a request with a next page token to
retrieve the next result page. Note that an API provider has full control over
the order of the result pages returned by the API (e.g., an application cannot
skip result pages or request the last result page first).



Limit | Operations

15

1.

friendships/show: returns relationships (following, followed by) be-
tween 2 given user_ids/screen_names [7].

. followers/id: returns up to 5,000 user_ids per request of most recent

followers of a given user_id/screen_name. For users who have more than
5,000 followers, pagination can be used to retrieve all of them. For exam-
ple, if a user has 12,000 followers, an application needs to issue 3 requests
to retrieve all of them.

. friends/id: returns up to 5,000 user_ids per request of users that a

given user_id/screen_name follows (most recent). For users who follow
more than 5,000 other users, pagination can be used to retrieve all of
them.

. followers/list: returns up to 20 user profiles per request of most recent

followers of a given user_id/screen_name. For users who have more than
20 followers, pagination can be used to retrieve all of them.

. friends/list: returns up to 20 user profiles per request of users that

a given user_id/screen_name follows (most recent). For users who follow
more than 20 other users, pagination can be used to retrieve all of them.

180

. users/search: returns up to 20 user profiles per request matching query

based on relevance given “topical interest, full name, company name,
location, or other criteria”; does not support exact match searches. If
there are more than 20 user profiles relevant to the query, pagination can
be used to retrieve up to 1,000 profiles [8].

. users/lookup: returns a user profile given a user_id/screen_name. Re-

turns nil if no matching profile is found. An application may provide up
to 100 user_ids/screen_names per request (returns a list of user profiles).

Table 3: Operation Limits (Number of Requests) per 15-Minute Window [10]

3.2.1 Google+ API

Currently, Google+ only provides a simple API for fetching user profiles and
searching users [4]. For our application, two operations are relevant:

1. people/get: returns the user profile given his/her user.id. The profile

returned contains only text attributes. All graph attributes discussed in
Table 1 are not returned.

. people/search: returns user_ids and full names of users that contain
attributes matching the given text. For example, given the text “Stan-
ford University,” people/search returns profiles with full names “Stan-
ford University,” “Stamford University Bangladesh,” and “Julie Stanford.”
This example demonstrates that “matching” means partial/approximate



match since inexact matches to our query like “Stamford University Bang-
ladesh” are also returned. Marissa Mayer’s profile is also in the result
because she has indicated in her profile that she attended Stanford Uni-
versity. Each request returns up to 20 user_ids. If there are more than
20 relevant user_ids matching the given text, all user_ids are accessible
through pagination.

The problem with the current Google+ API is that the API does not support
asking for social connections (in and out). To work around this problem, we
manually crawled social connections by parsing in and out attributes of profile
pages, using a Python program. Instead of using the Google+ API, we wrote a
custom crawler that poses as a Web browser and sends requests to Google+ with
user_ids we would like to ask for social connections. The profile pages returned
meant for a Web browser include social connections. Only up to around 10,000
connections of each type (in and out) are visible on each profile page.

3.2.2 Twitter API

Table 3 summarizes the twitter API. The notation for APT calls is
operation(parameterl, parameter2, ...) where parameters are either user-id,
screen_name, or text depending on the operation. For example, users/search(name)
submits a name search to Twitter and returns user nodes matching the given
name. Retrieved user profiles contain profile attributes specified in Table 2.

3.3 Operation Costs/Limits

The Google+ API limits each application to 10,000 requests per day. This is a
universal limit for any type of API call under HTTP API (People, Activities,
and Comments) [4].

Twitter limits the number of API calls of a given type that can be made
in each time window, currently 15 minutes. The limits are shown in the first
column of Table 3. For example, in a 15 minute period, a program can at most
make 15 calls of type friends/id.

3.4 Problem Definition

Given a G node g, find a node in T that represents the same real-world user.
Assume that we have full access to G (e.g., operations in G are free) but we can
only access T through a limited API. The procedure for finding the matching
node must respect API constraints, i.e., can only make a limited number of calls
to explore parts of T'.

3.5 Running Example

We introduce a simple example for a match task in Figure 2. Nodes in G are
g, h, and i. Nodes in T are p, q, r, s, and t. g follows h and i, i.e., g.out =
{h, i}. Node h is followed by g and i, i.e., h.in = {g, i}. Potential candidates



Figure 2: Example of a Match Task

in T that match g are s and t. Potential candidates in 7" that match h are p
and g. A potential candidate in 7' that matches i is r. We will discuss how
to find these candidates in Section 3.6.2. Let F' be the fraction of g.out that
we crawl. Let C'r be the number of candidates we consider a potential match
for each of g.out. Lastly, let C'r be the number of candidates we consider a
potential match for g. We will study these thresholds in Section ?7.

3.6 Basic Functions

Many of our strategies will use common procedures (e.g., computing the simi-
larity between two nodes). Here we describe these functions.

3.6.1 Similarity Functions

e String Similarity: We first define basic similarity functions for compar-
ing two strings: StringSim(a,b) and
CosineSim(a,b). These functions are used to compute features in Table 4.

L. StringSim(a,t) = Hssllalb) Pt Distonce(e) 5

2. CosineSim(a,b) = cosine similarity of uniwords and biwords ex-
tracted from a and b weighted using term frequency—inverse docu-
ment frequency (tf-idf) with stemming and stop words removed

e Set Similarity: For comparing two sets A and B, we introduce the
commonly used Jaccard Similarity:

ANB
JaccardSim(A, B) = :ABB:



We will describe later how we adapt Jaccard Similarity to our application
when we define Overlap.

3.6.2 Common Functions

Candidates[g, T, L]: Given a G node g, finds a set of potential 7" nodes
that may match g (e.g., by doing a name search). Parameter L is the target
number of candidates desired. (As we will see, L will be set to thresholds Cg
or Or illustrated in Figure 2.) Candidates is a general concept. On T', we can
use users/search but may need multiple API calls to collect the full set of
candidates. From our running example in Figure 2, Candidates[h, T, L] =
{p, q} (assuming L is greater than 1).

Match[g, t]: Given a G node g and a T node t, returns an estimated
similarity score. The score ranges from 0 (g and t are completely different) to 1
(g and t are identical). Various features that can be used when implementing the
match function including text and graph similarities. Table 4 describes graph
similarity features we can use to compare g and t’s outlink neighborhoods (the
users that g and t follow). We use logistic regression to train the weights of
these similarity features. Our match score is defined as logistic function of a
linear combination of features using the learned weights. In other words, our
match score is the probability that g and t are the same person predicted by
the logistic regression classifier.

We define three versions of Match each suited for different resource avail-
ability: (1) MATCH_PRI, (2) MATCH_ADV, and (3) MATCH_GRDY. We will define
MATCH_ADV and MATCH_GRDY after we have defined prerequisite functions.

MATCH_PRI[g, t]: a Match function that computes features from only local
profile attributes. Local means these attributes are available as part of a user
profile and no additional API calls are needed to fetch these attributes. Let
primitive features consist of text similarity features and a position feature (rank
of the node t in Candidates[g, T, L]). Text similarity features are computed
from similarities between g and t’s names, locations, descriptions, urls, and
screen_names. These features are described in Table 4.

BEST_MATCH_PRI[g, T]: Given a G node g, returns the best match node from
Candidates[g, T, L] ranked using the MATCH PRI function. Also returns the
associated match score. For instance, say we have two candidates for g: s and
t. If MATCH PRI [g, s] = 0.1 and MATCH PRI[g, t] = 0.4, BEST MATCH PRI [g,
T] = (t, 0.4).

We will explain advanced graph features for comparing neighborhood sets
in Section 4.1.

4 Strategy

In this section we explain the motivation behind the data analysis in the next
section and provide a high-level intuition of our solution. Starting from g, we
use Candidates[g,T,L] to get a set of T' nodes that may represent the same



Primitive

Text

1. Name Similarity:

max StringSim(x,t.name)
xE€g.names

2. Location Similarity:

max  StringSim(x,t.location)
x€g.locations

3. Description Similarity:
CosineSim(g.descriptions, t.description)

4. Url Similarity: 1{t.url € g.urls}
5. Screen Name Similarity:

max StringSim(x, t.screen_name)
XE€g.screen_names

Position o
position

|Candidates|g, T,L]|

where position is the rank of t in 7" user search results

Graph

1. Weighted Jaccard Similarity (W.J):

Overlaplg,t,G,T]
|TOutlg, G, T|.scores]|
Overlap|g,t,G,T]

|t.out]

(a)

(b)

2. Known Overlap Score (s):

Overlap|g,t,G,T| + 1
|TOut[g, G, T].scores| + NotOverlaplg,t,G,T] + 1

3. Unknown Overlap Score (s,):

Overlaplg, t, G, T] + NotOverlap[t, T]| + 1
|TOut|g, G, T].scores| + |UnknownOut[t, T]| + 1

Table 4: Features for computing Match[g, t]

user. Our goal is to rank these candidates to see which is the best match.
To effectively rank a candidate t, not only do we need its profile, but we also

10



Figure 3: Exploration

need its neighborhood. Furthermore, we need to know if nodes in t’s neighbor-
hood match nodes in g’s neighborhood, since neighborhood matches increase
our confidence that g and t are good matches.

This network exploration process can be described as follows. At any given
time we have a STATE representing what we have discovered about G and
T. The STATE includes the id of the discovered nodes, but some of their
information (profile, outlinks) may be missing. At each step we must decide
what new information we want to get (through the API), e.g., a node’s profile,
its outlinks, or its potential candidates. The challenge is in deciding what new
information to fetch, since some information may be more helpful than other in
improving our ranking of g’s candidates. The heuristics we develop in Section 4
will help us make these decisions.

After we exhaust our budget we need to compute our final ranking of the
candidates, using the final state we have obtained. In Section 4.1 we discuss
how we do this ranking, taking into account that our state information is not
complete.

In summary, our process is:

e Get the potential candidates for g.

e Exploration: Explore G and T, at each step requesting the information
that we think has the best chance of improving the ranking of g’s candi-
dates. In Figure 3, we expand our knowledge of T" from (1) to (2) after an
exploration step.

e Evaluation: When our budget has been exhausted (for our K allowed
windows), we rank the candidates and select the one that seems the most
likely to represent the same user as g.

11



4.1 Scoring Candidates

In this section we explain how to compare each candidate node x in T to our
target node g (i.e., how to score each candidate x). Our scoring function de-
pends on the stage we are in (exploration vs. evaluation stages). When we are
exploring, the best candidate is the one that we should crawl to improve our
final evaluation. On the other hand, when we are evaluating, the best candidate
is the one that most likely matches g.

Recall from Section 3.6 that we have three match functions: MATCH PRI,
MATCH_ADV, and MATCH_GRDY. First, we define MATCH_ADV and MATCH_GRDY, then
we define the auxiliary functions that construct MATCH_ADV.

Figure 4: Illustration for TOut

e MATCH_ADV[g, t, explorel: a Match function that computes features
from both local profile attributes and graph features. In addition to prim-
itive features used in MATCH_PRI [g, t], we use graph features described
in Table 4. The parameter explore is a boolean flag. When explore
is false, we set the weights of s, and s, to zero. MATCH_ADV is a linear
combination of these scores.

e MATCH_GRDY[g, t, explore]: Similar to MATCH_ADV but rather than us-
ing graph features, MATCH_GRDY uses greedy features computed from the
greedy weighted bipartite matching from g.out to x.out for each can-
didate x (replacing Overlap in Table 4 with GreedyOverlap). This is a
natural extension of the state-of-the-art bipartite graph matching tech-
nique [12, 24] to apply to our scenario where we have limited API calls.
The details for MATCH_GRDY and GreedyOverlap are in Section 6 where we
describe Algorithm GRDY. A very simple but effective GreedyOverlap[g,
x] estimates the the intersection of g.out and x.out using NameMatch
(similarity between g and x’s names).

12



Next we define the auxiliary functions that construct MATCH_ADV.

e TOut[g, G, T]: Given a G node g, returns a hash table of (node, score)
pairs {BEST MATCH PRI [x, T] for x € g.out}. In other words, it returns
the best guess and the associated match score for nodes in 7' corresponding
to nodes in g.out predicted by the BEST_ MATCH_PRI function.

Recall from our running example in Figure 2 that g.out = {h, i}. From
Figure 4, MATCH_PRI [h, p] = 0.8 and MATCH PRI[h, q] = 0.2. Therefore,
our best guess for nodes in 7' corresponding to g.out are p and r with
match scores 0.8 and 1.0 respectively. TOutl[g, G, T] = {(p, 0.8), (z,
1.0)}.

Let us use the following notation for accessing elements in a hash table.
Given a hash table H of (key, value) pairs, H[k] returns a value for the given
key k. Let H.nodes be the set of all keys in H and H. scores be the list of all
values in H. In our example, TOut [g, G, T][p] =0.8, TOut[g, G, T][r]
= 1.0, TOut[g, G, T].nodes = {p, r}, and TOut[g, G, T].scores =
[0.8, 1.0].

e Overlaplg, t, G, T]: Given a G node g and a T node t, Overlap first
computes the intersection of TOut[g, G, T].nodes and t.out. Then
Overlap returns the sum of TOut scores associated with the nodes in the
intersection:

Overlaplg, t,G,T| = > TOut|[g, G, T][4]
iE€T0ut(g,G,T].nodesNt.out

We want to compute the similarity between the neighborhood sets (g.out
and t.out). Using the simple Jaccard Similarity ignores the weights for
one of the sets (namely TOut [g, G, T1). We solve this issue with Overlap.
We use Overlap to define Weighted Jaccard Similarity (WJ) described
in Table 4. Let FT be TOut[g, G, T].nodes. Intuitively, W.J(a) cap-
tures FT C t.out while WJ(b) captures t.out C FT. This is similar to
Fuzzy Jaccard Similarity [24] but we split the feature into two (W.J(a)
and W.J(b)) to let the logistic regression classifier learn the weights.

Since fully crawling T is expensive, we may not have the full set of outlinks
of t. In the next section, we will develop overlap scores that take into account
the fact that we have only partially crawled t.out.

e UnknownOut[t, T]: When we have an incomplete 7', there may exist some
outlinks of t that we do not know. Let us call this set UnknownOut [t, TJ.
Although we do not know UnknownOut [t, T], we can compute
| UnknownOut [t, T]| as follows:

|[UnknownOut[t, T]| = t.outdegree — t.out

13



e NotOverlaplg, t, G, T]: Given a G node g and a T node t, returns the
number of nodes that are in t.out but not in TOut [g, G, T].nodes (i.e.,
|t.out — TOut[g, G, T].nodes|).

Now that we have all of the necessary components, we can construct s, and
s, as shown in Table 4.

The intuition behind s; and s, is as follows. Say we are considering two
candidates to match g: s and t as in Figure 2 with outdegrees of 5 and 10
respectively. Let FT be TOut [g, G, T].nodes. Suppose the number of s and
t’s outlinks that overlap with F7 are 1 and 10 respectively. If MATCH PRI [g,
s] > MATCH_PRI[g, t], we will choose to crawl s to retrieve its outlinks. If the
first outlink returned overlaps with FT, Overlaplg, s, G, T] will be greater
than 0 and therefore Weighted Jaccard Similarity (W.J) will be positive. W.J
for t is 0 because we have not crawled t. Thus MATCH_ADV[g, s, true] will
always be greater than MATCH_ADV[g, t, truel. Based on MATCH_ADV, we will
continue to expend API calls to explore outlinks of s even if all subsequent
outlinks do not overlap. These calls would be better utilized to explore t if s
starts to look unpromising (no more overlap).

Let us summarize the desired behaviors of MATCH_ADV. At the beginning
of our match task when t has the most unknown links, we want to boost
MATCH_ADV[g, t, truel. As we explore t’s outlinks and find that all of them
overlap with F7, we want to keep MATCH_ADV[g, t, true] high so that we
will continue to favor crawling t over s. On the other hand, as we explore s’s
outlinks and find that only one of them overlaps with F7', we want to decrease
MATCH_ADV[g, s, true] and switch to crawling t instead. Next, we demon-
strate with an example that the scores s, and s, achieve all of these desired
behaviors.

Before we provide an example of Figure 5(a), let us first explain notations
used in Figure 5. We have three types of nodes: check, cross, and question
mark. Check nodes represent nodes in FT (i.e.,, TOut[g, G, T].nodes). Cross
nodes represent nodes not in 7. Question mark nodes are unknown (can be
either check or cross but we have not yet crawled it). In Figure 5(a), we have
crawled three outlinks of t and there is one unknown outlink. Two out of three
outlinks overlap with F7. The unknown outlink may or may not overlap with
FT.

Let’s work out a simple example to calculate s and s, before and after
retrieving a link. Let’s assume we know the exact mapping of each node in
g.out onto 7. In reality, we usually are not certain about the mapping and we
have to include match scores in our calculation. In Figure 5, recall that we have
three types of nodes: check, cross, and question mark. Check nodes represent
nodes in FT. Cross nodes represent nodes not in F'7. Question mark nodes
are unknown. We start from (a) and by crawling the question mark node, we
either go to (b) or (c). Case (b) is when the new link points to a check node.
Case (c) is when the new link points to a cross node. We will walk through the
calculation for all cases (a), (b), and (c).
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Figure 5: Diagram Explaining s; and s,
Case (a): There are three check nodes, translating to |TOut[g, G, T1| = 3.

t links to two check nodes, one cross node , and one question mark node. This
translates to Overlaplg, t, G, T]= 2, NotOverlaplg, t, G, T] = 1 (the

number of cross nodes in discovered t.out), and |UnknownOut[t, T]| = 1.
241
We have defined all of the components to compute s; and s,. s = ﬁ = %
_ 24141 _ 4
and s, = T = 5

Case (b): There are three check nodes, translating to |TOut[g, G, T1| = 3.
t links to three check nodes, one cross node , and no question mark nodes. This
translates to Overlaplg, t, G, Tl= 3, NotOverlap[g, t, G, T] = 1, and
| UnknownOut [t, T]| = 0. Therefore, 53, = % = % and s, = gigﬁ =1.

Case (c): There are three check nodes, translating to | TOut[g, G, T1| = 3.
t links to two check nodes, two cross nodes , and no question mark nodes. This
translates to Overlaplg, t, G, Tl= 2, NotOverlaplg, t, G, T] = 2, and
| UnknownOut [t, T]| = 0. Therefore, s;, = 3-25-%-1 =1ands, = gigﬁ =3

Let si(a) be s for (a) (and the same notation for s,). We can see that
sk(b) > sp(a) and s, (b) > s,(a) because we have discovered an additional check
node. On the other hand, si(a) > sk(c) and s,(a) > su(c) because we have
discovered an additional cross node.

Note that we add 1 to both the numerator and the denominator of s; and
Su to prevent the scores from being zero when there is no overlap or being
infinity when the denominator is zero. It is useful for the score to incorporate
how many links we have retrieved for each candidate even when there is no
overlap so that we can prioritize among which candidate to crawl next. Say we
have two candidates and we have found no overlap in either of them yet, i.e.,
Overlaplg, t, G, T] = 0. We would prefer to explore the candidate that we
have explored less (lower |KnownOut|) and that has more unknown links (higher
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| UnknownOut | ).

4.2 Exploration

We can view the budget B as a single value or a vector [b1,ba,bs, ..., b,] with
a budget value for each type of API call (e.g., by for users/search, by for
friends/list). For a single value budget, we must decide which type of calls
to make. For example, we have a budget of 10 calls, we have to split these 10
calls among all types of calls.

In our case, we focus on a vector budget because it represents the Twitter
API. For each type of API call, we must decide on which nodes we want to spend
our calls. For example from Figure 2, if we have one additional users/search
call, do we choose to find more candidates for h or for i? As another example, if
we have one additional friends/list call, do we choose to find more outlinks
for s or for t?

Our solution will be a collection of heuristics because it is too difficult for
exact answers. Based on a set of experiments, we will provide insights into how
to order nodes to make API calls. For example, through our experiments we
will learn that we should sort h and i in ascending order based on their indegree
and then make users/search calls in this order.

5 Data Analysis

We explained why we conduct our data analysis in the previous section. Here we
study the characteristics of our dataset and then provide a collection of heuristics
for our exploration algorithm. We will present our strategies in Section 6 and
then evaluation experiments in Section 7.

5.1 Dataset
5.1.1 Training Set GTR

For our training set GTR, we will use a set of Google+ users with known
matching Twitter accounts. To obtain GTR, we started by crawling Sergey
Brin’s inlinks (followers) on Google+. Sergey Brin is a co-founder of Google
who has 3.9 million inlinks on Google+ [11]. Only 9,727 inlinks are visible to
a Web browser on his profile page. We crawled these profiles and discovered
532 users who put their Twitter screen_name on their Google+ profile page
(nonempty twitter attribute). We call this initial set X.

We would like to restrict our attention to “findable” Twitter users. We
define “findable” as users for which the Twitter search interface is able to locate
the screen_name based on the user’s fullname on Google+.

To discover the findable users, we examined all X users and grouped them
into 8 buckets, as shown in Figure 6. The bucket “screen_name not on Twitter”
contains users with changed, suspended, deleted screen_names (discovered using
the lookup interface, users/lookup). For the remaining users, we searched in
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Figure 6: Number of users/search calls vs. candidates discovered for GTR

Twitter (using users/search calls) using only their fullname (if there is no
fullname, it falls in the bucket “empty fullname”). The bucket “1 call” contains
the users whose screen_name was found in the results of the first users/search
call (recall that each call could return up to 20 results). The bucket “2 calls”
contains the users whose screen_name appeared in the results of the second call.
The bucket “3 calls” and “4 calls” are analogous. The bucket “not possible
to find” contains users such that (a) we exhausted the results from the Twitter
search interface after up to 4 calls, and (b) the screen_name did not appear. The
final bucket “not found after 4 calls” contains the remaining X users. These users
might be findable with more than 4 calls or not findable at all.

Figure 6 shows the percentage of users in each bucket. We are not going to
include in our GTR the users in the buckets “not found after 4 calls,” “empty
fullname,” “screen_name not on Twitter,” and “not possible to find”, repre-
senting 114114-2+422=46% of the X users. Note that users in the bucket “not
found after 4 calls” might actually be findable with more than 4 calls but we
believe the number of such users is insignificant. Thus, the remaining 4 buckets
(1-4 calls) will make up our GTR and constitute a total of 293 users. The vast
majority of our GTR users (96.25%) can be found within one call. This fact
will be exploited by one of our heuristics.

Incidentally, although not shown in Figure 6, out of 120 users in the bucket
“not possible to find”, we know that 87.5% of them are not findable after just
one call. That is the first call returned fewer than 20 results and the matching
screen_name did not appear.

5.1.2 Testing Set GTE

For our testing set GTE, we would like a set of Google+ users with known match-
ing Twitter users. To obtain GTE, we started by crawling Google+ users listed
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Figure 7: Number of users/search calls vs. candidates discovered for GTE

on recommendedusers.com, an unofficial website (not affiliated with Google)
that recommends Google+ users to follow. The site provides various categories
based on different topics of interest. We chose to crawl the “People’s Choice”
category because the users listed are chosen by the Google+ community based
on “[sharing] the most interesting and valuable content on Google+” [16]. Fur-
thermore, these users are very diverse (photographers, writers, web celebrities,
entrepreneurs, and artists) and we would like to crawl an unbiased sample of
Google+ users. We crawled users who follow at least one “People’s Choice” user
and discovered 4,381 users who put their Twitter screen_name on their Google+
profile page (nonempty twitter attribute). We call this initial set X.

Similar to constructing GTR, we removed users that are not findable from
X. Figure 7 shows the percentage of users in each bucket. Our GTE comes from
4 buckets (1-4 calls) and constitutes a total of 2425 users. The vast majority of
our GTE users (98.97%) can be found within one call.

5.1.3 Random Testing Set GRND

Note that there is a bias in GTE in that all the nodes have a nonempty twitter
attribute. Therefore, we develop a second testing set where Google+ users are
selected at random whether they have a twitter attribute or not. Ideally, we
should select random Google+ user ids but this is not feasible because these ids
are 21-digit integers, most of which have not been taken. Instead, we randomly
sample from the 5.5 million user profiles we have collected in the process of
collecting GTR and GTE. We call this set GRND.

For each node in GRND, we manually look for a matching Twitter user.
The process involves a variety of probes to Twitter and the general Web, and a
visual comparison of various fields and images. For example, if the name is “Fred
George Smith II,” we may perform searches on Twitter for “Fred George Smith,”
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“Fred Smith,” and “Fred George.” To verify a match, we would compare the
profile attributes such as location, education, photos, links, posts, and friends.
If there is not enough information, we may further search the web for more
attributes to verify whether two profiles represent the same person.

Because manual matching is so time consuming, we use a Google+ random
set of size 100. However, as we will see, the results for GRND are consistent
with those for GTE, so we are confident that GRND is adequate. We note that
we were able to manually find matching Twitter nodes for 52% of GRND nodes.
Of the remaining 48%, about one tenth were unmatchable (by us) because they
use non-Latin characters in their names.

5.2 Caching

Since we will be frequently accessing GTR and GTE users, we decided to do
a full crawl of their Twitter network. That is for each user, we first made
users/search calls, and then we fully crawled the outlinks of each candidate
returned by users/search. We use this cached data to simulate APT calls for
our experiments so we do not have to invoke APT calls on Twitter and wait each
time we hit their rate limit.

5.3 Selectivity

Selectivity of an attribute a of graph G is defined as the fraction of nodes for
which a is not missing (and privacy settings set to public for a) over the number
of nodes in G.

5.3.1 Google+

We constructed our sample of Google+ profiles from GTE. We collected the
profiles of “People’s Choice” users and their inlinks. For each of the inlinks, we
also collected the profiles of their outlinks. As a result, we collected 5 million
Google+ user profiles.

We display the selectivity of attributes in Figure 8. We can see that the
network information is usually available (public): 84% of the sampled users are
following someone (outdegree > 0) and almost 86% of the sampled users have
at least one follower (indegree > 0). Other textual attributes are significantly
more selective: 61% for descriptions and below 40% for other attributes.
Thus, our algorithm should exploit link attributes because they are usually
available even in the absence of textual attributes. We also note on the plot
that the selectivity for twitter is only 14% which means that people typically
do not put their Twitter screen_name on their Google+ profile and that our
match task is useful.

5.3.2 Twitter

First we explain how we sampled Twitter users. For each user u in GTE, we
made a users/search call to get a set of candidates for u. For each candidate
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Figure 9: Selectivity of Twitter Attributes

t, we crawled t.out and collected their profiles. As a result, we collected 16
million Twitter user profiles. We believe that our sample size is significant
because it is 8% of 200 million, which is the number of monthly active Twitter
users [26].

We display the selectivity of Twitter attributes in Figure 9. We can see
again that the link attributes are almost always available (more than 90% of the
time). Other texual attributes like location and description are only available
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for roughly 60% of the users, and url selectivity is even lower. The difference in
selectivity between link and textual attributes suggests that we should exploit
the link information in our algorithm.

Interesting statistics about the Twitter following graph are:

e 96% of Twitter users are following someone (outdegree > 0).

e 17% of Twitter users are following from 1 to 20 people
(0 < outdegree < 21). The maximum number of profiles returned by a
friends/list call is 20.

e 36% of Twitter users are following between 1 and 100 people
(0 < outdegree < 101, five friends/list calls required).

e 1% of Twitter users are following more than 5,000 people (maximum num-
ber of ids returned by a friends/id call).

o 7% of Twitter users are protected (we cannot crawl inlinks and outlinks).

Therefore, we will exploit following connections (outlinks) on both networks
to help us resolve a match task. We will focus on crawling outlinks rather than
inlinks because people usually have lower outdegrees than indegrees. Crawling
inlinks will exhaust the Twitter limit fast. Furthermore, each node explicitly
generates the outlink connection whereas inlinks are generated from other users.

5.4 Degree Distributions

We use the same sample as in Section 5.3 to generate our degree distributions.

5.4.1 Google+

From Figure 10, both degree distributions (indegree and outdegree) follow power
law distributions with a slope of 1.76. The tail of the outdegree distribution is
cut off at around 5,000 which is the limit imposed by Google [9]. In our sample
of 5 million Google+ profiles, there are seven users with an outdegree greater
than 5,000. There is only one user with an outdegree above 10,000 and his
outdegree was 10,477 at the time of our crawl. Recall that we can collect only
up to 10,000 social connections visible to a Web browser on a profile page. This
outdegree distribution verifies that our assumption that we have the complete
following graph is mostly accurate. On the other hand, the indegree distribution
has a much longer tail. The user with the largest indegree at the time of our
crawl was Lady Gaga who had 5.6 million followers.

5.4.2 Twitter

In Figure 11, we can see that indegree and outdegree distributions follow power
law distributions with slopes of 1.63 and 1.725 respectively. The outdegree
distribution shows a huge spike at degree 2,000. This is the following limit
Twitter imposes to prevent follow spam. A user can follow more people if
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Figure 10: Google+ Degree Distribution (log-log scale)

he/she has more followers. If a user has outdegree more than 2,000, for every
10 followers he/she has, he/she can follow 11 people. For example, if you have
2,000 followers, you can follow 2,200 people [14]. We can see that the outdegree
distribution has a steeper slope than the indegree distribution. Furthermore,
the indegree distribution has a much longer tail. The user with the largest
indegree at the time of our crawl was Lady Gaga who had 37.4 million followers.
Therefore, we should focus on crawling outlinks rather than inlinks to prevent
us from quickly hitting the limit.

5.5 Heuristics

In all of our heuristic studies, we first train our strategy using GTR and then
use GTE for evaluation. Recall from Figure 2 that Cp represents the number of
candidates we obtain for matching a given target. We will set C1 to 20 because
almost 99% of our GTE users can be found within one users/search call (each
call returns up to 20 users).

5.5.1 MATCH_PRI

Our very first study is to evaluate the performance of using the primitive features
(explained in Table 4) alone. We will use precision as a metric to evaluate
MATCH_PRI. We define precision@k as the precision of a strategy at the top k
candidates. Precision in our context is defined as the fraction of the match tasks
where the the top k£ candidates returned by a strategy contain the matching
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node. The matching node for a given target node g in G, is the node that
represents the same real-world entity as g in network 7.

Figure 12 shows how precision increases as k increases. The vertical error
bars represent 95% confidence intervals [15]. Let us consider n trials with s
successes. For a 95% confidence interval, we have an error percentile « of 5%.
The confidence intervals are computed using Wald interval for Bernoulli trials:
the formula is p &+ k+/p(1 — p)/n where p = s/n and k = ®~1{1 — a/2} (!
is a probit function) [27]. This technique approximates the error distribution
using a normal distribution. We can see that it is statistically significant that
precision increases when k increases. For example, precision@3 is about 94% for
the MATCH_PRI strategy. This means that 94% of the time we ran our matching
task, the matching node was in the top 3 ranked by match score. We learn that
83% of the time, MATCH_PRI returns the matching node at the top. Therefore,
we will consider this value our baseline. Without using any graph feature, we
can achieve 83% precision@1.

In the next two sections, we assume that we have complete information about
links in network T. We will discuss a situation with an incomplete network T’
in Section 5.5.4.

5.5.2 Threshold Cp

Figure 2 shows the threshold Cr that we would like to study. Cp is the number
of candidates we consider a potential match for each of g.out. We would like to
understand how varying C'r affects the precision of our match task. This study
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will help us shape our heuristics for making APT calls (Section 6) since we have
limited resources and cannot set Cr to maximum.
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Figure 13: Renormalizing Match Scores

Let us have complete g.out and then vary Cr. We will study when we
have incomplete g.out in the next section. Recall that the threshold Cp is
the number of candidates kept for each of the outlinks of the target node. We
prune candidates based on their match scores from MATCH_PRI. Prune here means
discard candidates with lower match scores. The candidates we kept are used
to compute graph features used in MATCH_ADV. The more candidates we prune,
the fewer API calls we need.

To illustrate, say h € g.out, and we have two candidates for h: p and q
where MATCH PRI [h, p] = 0.8 and MATCH_PRI[h, q] = 0.2 (see Figure 13(a)).
When Cr = 2, we keep both candidates p and q, the two candidates with the
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highest scores. When Cr = 1, we keep only p, the single candidate with the
highest score. In Figure 13, When we prune candidate q, we have two options
for the match score of p: 1) keep the original match score as in Figure 13(b) or
2) renormalize the score so that the sum of the match scores of the candidates
for his 1 as in Figure 13(c).

To compare these options, we study them and present the results in Fig-
ure 14. Figure 14 shows how precision@l of both strategies (original match
score vs. renormalized) varies as we increase Cr. We run each strategy on
all nodes in GTE and Cr € [1,20]. For each g node, we first make Cp
users/search calls. After we have retrieved all outlinks of each candidate
(x.out for x € Candidates[g, T, L]) we rank them using MATCH_ADV and cur-
rent knowledge of T', and select the top node. The y-axis shows precision@1:
the fraction of cases where the selection was indeed the correct matching T node
for g. The vertical error bars represent 80% confidence intervals.

In Figure 14, if we keep the original match scores, precision@l starts at
90% for Cr = 1 and decreases as we increase Cr. The drop in precision as
Cr increases is counterintuitive since we expect the rise when we keep more
candidates. Recall from Figurel2 that MATCH_PRI achieves 83% precision@1 and
the improvement in precision for higher & values is marginal. Therefore, keeping
more candidates actually confuses MATCH_ADV and hurts precision. On the other
hand, if we renormalize the match scores, precision@]1 increases slightly as
we increase Cr and then stabilizes at 88.5%. It is easy to see that keeping
the original match scores consistently outperforms renormalizing them and the
highest precision is when we keep only the top candidate (i.e., Cp = 1). We
will therefore continue using Cr = 1 in all subsequent studies.
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5.5.3 Outlink crawling order

Let X be the fraction of g.out that we crawl (i.e., invoke a users/search call
to find a matching node on T'). Let us set Cr to 1 and then vary X. For
example, in Figure 2, if X = 0.5, we only crawl 50% of g.out, i.e., we crawl
either h or i. As X increases, we require more users/search calls and in most
cases we do not have enough resources to set X = 1.0.

In this section, we will discuss how to rank outlinks g.out to maximimize
precision. Figure 15 shows how precision@1 increases as F' increases when we
order g.out by indegree. When we compare descending and ascending orders,
we see that ascending order consistently outperforms descending order with 80%
confidence. Furthermore, adding graph features (using MATCH_ADV) helps boost
precision over MATCH_PRI: crawling only 5% of g. out increases precision@1 from
83% to 87%. Lastly, precision reaches 90% and stabilizes around F' = 0.3. Thus
crawling only 30% of g.out is sufficient to reach the maximum precision.

In Figure 16, we compare different schemes for ordering outlinks: by inde-
gree, outdegree, total degree, hybrid, and random, all in ascending order. Total
degree is the sum of indegree and outdegree. In the hybrid scheme, we take
half of the outlinks to crawl from the indegree-ascending outlinks and the other
half from the outdegree-ascending outlinks. Note that when we merge the two
lists of outlinks, they may overlap and we have to continue taking the next
lowest degree from each list until we obtain the desired F'. Figure 16 shows
that most ordering schemes (except for ordering by outdegree) beat random for
lower values of F. Although, for F' > 50%, all schemes converge to 90% pre-

26



Order g.out by different schemes (Ascending Order)

0.91
peSEaEEEEN
0.9 TS -
= (39 T )I/ 4 | L ! | \
& e
O 088 |7 -=-Indegree I
'§ | Outdegree
g 087 —<Total Degree |
086 ; —+Hybrid
—~-Random
0.85

005 015 025 035 045 055 065 075 085 0.95
F fraction of g.out explored
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cision, when F' < 50%, ordering g.out by indegree or total degree maximizes
precision@1. These two orderings reach 90% precision when F is only 0.3 while
random ordering requires F' = 0.7 to reach 90% precision.

Let us explain the intuition behind indegree and total degree schemes per-
forming better than the outdegree scheme. We can consider indegree (number
of followers) a good proxy for popularity. If g follows a user with low indegree
(let us call this user 1) and a popular user like Lady Gaga, we can infer that
g’s relationship is stronger with 1 than with Lady Gaga. Two random users are
more likely to both follow Lady Gaga than to both follow 1. Thus, users with
low indegrees are strong signals for distinguishing g’s true identity.

Since the outdegree scheme performs poorly and indegree is a factor of the
total degree scheme, we can conclude that the total degree performs well because
of indegree. In summary, we learn that 1) we should order outlinks by indegree
in ascending order, and 2) graph features help increase precision@1 (from 83%
to 90% for X = 0.3).

5.5.4 Incomplete Network Information for T'

In this section we study how to crawl outlinks in T' (e.g., outlinks of s and t
in Figure 2) when we have limited APT calls during the exploration phase. For
candidates x € Candidates|g,T,Cr], we have to decide the order in which to
retrieve candidate’s outlinks. Recall from Table 3 that there are two operations
for obtaining outlinks of a node: friends/list and friends/id. In order
to analyze the incremental improvement in precision, we will focus on the more
restrictive operation friends/1ist where the maximum number of outlinks per
APT call is 20. Let us set Cr and X to 1 and 1.0 respectively, i.e., fully crawl
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g.out and keep the top candidate for each based on MATCH_PRI.

We have explored several strategies to make API calls to obtain outlinks of
Candidates|g, T, Crl:

1. Random: choose a candidate at random.

2. Round Robin Rerank: first sort candidates based on MATCH_PRI, then
do a round of round robin (go through all sorted candidates, give one API
call to each) and then rerank candidates based on the new information
using MATCH_ADV. Repeat until exhaust all APT calls.

3. Round Robin Rerank Cutoff i: same as Round Robin Rerank but the
first step only keeps the top ¢ candidates ranked based on MATCH_PRI.

4. Proportional: split API calls proportionally to candidates based on
MATCH_PRI.

5. Top: first sort candidates based on MATCH_PRI (Step 1), then make one
APIT call for the top candidate (Step 2), and finally rerank based on the
new information using MATCH_ADV (Step 3). Repeat steps 2-3 until it has
exhausted all APT calls.

Figure 17 shows how precision@]1 increases as the number of API calls in-
creases for different crawling strategies. Top is clearly the best strategy be-
cause it shows a statistically significant improvement in precision over all other
strategies. For example, Top reaches 86% precision in 45 API calls while other
strategies require at least 95 API calls to reach the same precision. Proportional
and Round Robin Rerank perform roughly the same as Random.

Next we will evaluate round robin strategies with different cutoff values.
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Figure 18 shows how precision@]1 increases as we increase the number of API
calls for the Top and different Round Robin Rerank strategies. Recall from
Figure 12 that the top 3 and 5 candidates returned by MATCH_PRI contain the
matching node 94% and 96% respectively. Therefore, we will use 3 and 5 as
the cutoff values when we evaluate round robin strategies. Figure 18 shows
that smaller cutoff values (Cr) improve precision when there are limited API
calls. For example, cutoff value 3 achieves the same precision as Top when we
have fewer than 40 API calls. As the limit on API calls grows, cutoff value
3 and no cutoff converge to the same 87% precision. Cutoff value 5 achieves
lower precision than cutoff value 3 for limited API calls (up to 40 calls). As
the limit on API calls increases, cutoff value 5 achieves higher precision than
cutoff value 3. Thus we should use small cutoff values when we have limited
API calls and increase the cutoff values as the limit on API calls increases.
Top outperforms Round Robin Rerank for all cutoff values. For example, Top
reaches 87% precision in 90 API calls while Round Robin with Cutoffs require
at least 120 API calls to reach the same precision. Thus we should use strategy
Top to explore outlinks of Candidates|g, T, Cz].

6 Algorithms

We will describe 5 algorithms, 3 of them are baselines for comparison, and 2 are
our contribution. The first 2 baselines are not new (PRI and FULL); the third
baseline is a variation on one of our new algorithms (RAND). All algorithms
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Algorithm 1 GENERAL ALGORITHM(g, G, T, B, N)

Input: Target node g, known network G, limited knowledge network T, vector
of budget per round values B = [biookup, Oscarchs bout), number of rounds N
Output: t, best guess for matching node of g in 7.
C < Candidates]g, T, Cy]
FT « empty hash table
F¢ « g.out
STATE = {C,FT,F% g, T,TC}
fori=1— N do
CRAWL X[B, STATE]
end for
t < argmax;cc MATCH X[g, x, false]
if MATCH X[g, x, false| > 0 then
return t
. end if
: return “Node Not Found”

— = e

Algorithm 2 CRAWL_FULL(B, STATE)
Input: B not used, current state STATE
Output: STATE, update the current state in place.
1: for f € FY do
2 if f.twitter # nil then
3 u = users/lookup[f.twitter, T]
4 if u # nil then
5: Insert a key-value pair (u, 1.0) into FT'
6
7
8
9

Continue
end if
end if
: U = users/search[f.fullname, T]

10: # Implies using C'r = 1 below
11: (u, score) = BEST_.MATCH_PRI[f, U, T]
12:  Insert a key-value pair (u, score) into FT
13: end for
14: for c € C do
15: # Store c.out in TC
16: Obtain c.out using friends/list[c.id] calls
17: end for

except for PRI require crawling the networks. We will first describe a general
algorithm and then detail different crawling strategies.

GENERAL ALGORITHM: All of our algorithms have the structure shown
in Algorithm 1. First we find candidates using users/search calls (Line 1).
In some algorithms, we crawl the networks (Line 5-6). Then we compute the
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Algorithm 3 CRAWL_TOP(B, STATE)

Input: budget values per round B, current state STATE
Output: STATE, update the current state in place.

1: Each f € F¢ has indegree f.indegree

2: Sort F@ by indegree in ascending order

3 ‘Flgo/cup A FG

4: [rlookupa Tsearch rout] — [07 07 0}

5: while F% . # nil AND 710010 < biookup do
6: f - POp(F‘l%okup)

7: if f.twitter # nil then

8: Tlookupt = 1

9: u = users/lookup[f.twitter, T]
10: if u # nil then

11: Insert a key-value pair (u, 1.0) into FT
12: Remove f from F¢

13: end if

14: end if

15: end while

16: while F¢ 75 nil AND Tsearch < Dsearch dO
17: f + Pop(F€%)

18: Tscarch+ =1

19: U = users/search[f.fullname, T]

20: # Implies using C'r = 1 below

21:  (u, score) = BEST_MATCH PRI[f, U, T]
22: Insert a key-value pair (u, score) into F'T
23: end while

24: C' « IncompleteCandidates(C')

25: while C’ # nil AND 7, < byyr do

26: ¢ < arg max,eccr MATCH_ADV|g, x, true]

27: TouttT = 1

28: # Store c.out in T'C

29: Add to c.out friends/list[c.id] (make 1 call)
30: C' + IncompleteCandidates(C")

31: end while

match scores for the retrieved candidates (Line 8), where the third parameter of
MATCH_X (boolean flag) is the explore parameter defined in Section 4.1. MATCH_X
is a variable function that differs by strategy. Then we select the candidate t
with the maximum match score s;. If s; > 0, we return t. Otherwise there
is not enough evidence that t is the matching node, so we return “Node Not
Found” (Line 9-12). As we can see in Section 7.3, we can vary 6 to achieve
different levels of precision and recall.

Next we describe STATE in detail. FT (Line 2) is a hash table storing
mappings from g.out to T' (see TOut[g, G, T] for more details). Each entry
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Algorithm 4 CRAWL_RAND(B, STATE)

Input: budget values per round B, current state STATE
Output: STATE, update the current state in place.
Fgakup « random permutation of FY
[rlookupa Tsearchs Tout] <~ [07 0, 0}

while Flfo,wp # nil AND 700kup < biookup do

f — POp(F‘lCo;okup)
if f.twitter # nil then
rlookup+ =1
u = users/lookup[f.twitter, T]
if u £ nil then
Insert a key-value pair (u, 1.0) into FT
10: Remove f from F¢
11: end if
12: end if
13: end while
14: while FE # nil AND 7scqren < bsearch do
15: f + Pop(F%)
16: Tsearcht = 1
17: U = users/search[f.fullname, T]
18: # Implies using Cr = 1 below
19: (u, score) = BEST_MATCH_PRI[f, U, T]
20: Insert a key-value pair (u, score) into F'T
21: end while
22: C" < IncompleteCandidates(C')
23: while C’" # nil AND 1,4 < byt do
24: ¢ < random member of C’
25: Tout—" =1
26: # Store c.out in TC'
27: Add to c.out friends/list[c.id] (make 1 call)
28: C’" « IncompleteCandidates(C")
29: end while

in FT is a (u, score) pair where u is the best guess for each = € g.out in T and
score is MATCH PRI [x, u]. For example, recall Figure 4 where g.out={h, i},
we have FT = {(p, 0.8), (r, 1.0)}. FT is used in CRAWL_FULL, CRAWL_TOP,
and CRAWL_RAND. T'C is a cached copy of crawled nodes in T'.

PRI: We first describe our baseline algorithm. PRI uses CRAWL_X = null and
MATCH_X = MATCH_PRI. This strategy ranks candidates based on local informa-
tion, namely the textual attributes and the position of the candidate ranked
by Twitter. Recall from Section 5.5.1 that this baseline achieves about 83%
precision. Let us call this strategy PRI.

FULL: Next we will explain an algorithm when we have full knowledge of
all profiles in T and outlinks of each of candidate C (defined in Line 1 of
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Figure 19: Illustration of Our Strategies

Algorithm 1), i.e., we know x.out for each x € C. FULL uses CRAWL_X
= CRAWL_FULL (Algorithm 2) and MATCH_.X = MATCH_ADV. The intuition for
CRAWL_FULL is that matching nodes should not only have similar node prop-
erties but should also have similar outlinks. Of course, the outlinks on one side
point to G nodes while the others point to T nodes, so we must try to match
these “friend” nodes.

Next we look at FULL visually (see Figure 19). For a target node g and a
candidate x, FULL first crawls outlinks g.out on G and x.out on 7. Then,
it maps each g.out to a corresponding node in 7. Let FT be the set of cor-
responding nodes. FULL computes a match score based on how much F7 and
x.out overlap. This is repeated for all possible candidates x € C.

Finally, we describe CRAWL_FULL in detail. The for loop (Line 1-12) fully
constructs FT as described in the previous paragraph. Using what we have
learned in Section 5.5.2, CRAWL_FULL keeps only the top candidate for each
of g.out, i.e., Cp=1. Note that Line 15 collects c.out which MATCH_ADV needs
for computing the component
Overlaplg, c, G, TI.

Next we describe algorithms for when we have limited budget values for
operations to explore T'. Let us have budget B = [biookup; Dscarch, bout] Where
biookups bsearch, and byy are the budget values for operations users/lookup,
users/search, and friends/list respectively.

TOP: We can now extend FULL to take into account the limit of each type of
APT call. TOP uses CRAWL_X = CRAWL_TOP (Algorithm 3) and MATCH_X
= MATCH_ADV. The challenge is to (a) decide what to incrementally crawl to
improve our accuracy, and (b) effectively matching nodes when we only have
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partial information. Combining all that we have learned from our data analyses,
we developed an algorithm that exploits diversified APT calls to Twitter with
the following strategies: 1) keep only top 1 candidate for each of g.out, i.e.,
Cr=1, 2) order g.out by indegree in ascending order, and 3) iteratively choose
a candidate and crawl its outlinks using our Top strategy. Let us call this
strategy CRAWL_TOP (Algorithm 3). We first define subroutines we use in
Algorithm 3: Pop(X) and IncompleteCandidates(X). Given an ordered list
X, Pop(X) returns the first member of X and removes it from X. Given
a set of candidates X, IncompleteCandidates(X) returns a set of partially
crawled candidates whom their outlinks are not fully obtained (i.e., |x.out| <
x.outdegree). In Line 27, we assume that the correct pagination parameter is
provided to friends/list. Recall from Section 3.2 that the first friends/list
request for each node returns a next page token required for retrieving the next
result page.

Next we describe CRAWL_TOP in detail. CRAWL_TOP consists of three
while loops. The first two loops (Line 5-15 and Line 16-22) construct F7. The
first loop (Line 5-15) looks up screen_names for nodes in g.out that have their
T screen_name on their G profile page. The second loop (Line 16-22) invokes
fullname searches for each g.out that has not been identified in the previous
loop. After the users/search call, FT collects the top candidate for matching
each g.out based on MATCH_PRI. The last loop (Line 25-30) crawls outlinks on
T for candidates for eventually matching g. This loop repeats the following two
steps until we exhaust the budget: 1) ranking the best candidate to crawl next,
and 2) crawling the best candidate (Line 26 and Line 28 respectively). Recall
that MATCH_ADV uses graph features computed from the weighted intersection of
FT and x.out (Overlap).

RAND: In order to understand the value of our TOP link ordering strategy,
we also consider an algorithm RAND that randomizes the crawl order for F¢
and C. RAND uses CRAWL X = CRAWL_RAND (Algorithm 4) and MATCH_X
= MATCH_ADV. CRAWL_RAND is very similar to CRAWL_TOP except for two
differences. The first difference is in Lines 1-2 where instead of sorting F'¢ by
indegree in ascending order, CRAWL_RAND places in F¢ a random permu-
tation of the outlinks (g.out). The second difference is in Line 26 where we
choose the top candidate to crawl its outlinks: here CRAWL_RAND selects a
random candidate.

GRDY: Finally, we developed a greedy algorithm that exploits only one type
of API call: friends/list. GRDY uses CRAWL_X = CRAWL_GRDY (Algo-
rithm 5) and MATCH_X = MATCH_GRDY. Line 2-7 of CRAWL_GRDY is similar to
the last loop of CRAWL_TOP (Line 25-30) because it also crawls outlinks on T’
for candidates for g.

We also look at GRDY visually (see Figure 19). For a target node g and
a candidate x, CRAWL_GRDY first crawls outlinks g.out on G and x.out on
T. Then, MATCH_GRDY computes a match score based on how much g.out and
x.out overlap.

Next we explain in detail GreedyOverlap and MATCH_GRDY.
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Algorithm 5 CRAWL_GRDY (B, STATE)

Input: budget values per round B, current state STATE
Output: STATE, update the current state in place.

1
2

3:

4
5
6:
7
8

. C" + IncompleteCandidates(C)

. while C’ # nil AND 744 < boyr do

¢ < arg max,cc MATCH_.GRDY[g, x, true]

Toutt =1

# Store c.out in TC'

Add to c.out friends/list[c.id] (make 1 call)
C' + IncompleteCandidates(C")

. end while

Algorithm 6 GreedyOverlap(g, t, G, T)

Input: Target node g, candidate node t for matching g, known network G,
limited knowledge network T’
Output: score, the total score that estimates the intersection of g.out and

t.

10:
11:
12:
13:
14:
15:
16:
17:
18:

1
2
3
4
5:
6
7
8
9

out.
: L < empty list
: for i € g.out do
for j € t.out do
Insert triple (i, j, NameMatchl[i, j]) into L
end for
: end for
: Each [ € L is a triple (nodel, node2, score)
. Sort L by score in descending order
. M < empty set
total_score < 0
for l € L do
(i, 4, score) =1
ifi¢g M AND j ¢ M then
M=MuU/{ij}
total _score+ = score
end if
end for
return total_score

e GreedyOverlapl[g, t] (Algorithm 6): Given a G node g and a T node t,
GreedyOverlap estimates the the intersection of g.out and t.out using
NameMatch (similarity between g and t’s names). Line 1-6 generates a list
L of triples (nodel, node2, score) where the score is the name similarity
between nodel and node2. After sorting L by score in descending order in
Line 8, the final loop (Line 11-17) goes through all triples in L and greedily
matches each node pair if neither of them has been matched with any
other node. This process is essentially doing weighted bipartite matching
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Greedy

1. Weighted Jaccard Similarity:

GreedyQOverlaplg,t,G,T|

(a)

|g.out]|
GreedyOverlap|g, t,G,T]
|t.out|

(0)

2. Known Greedy Overlap Score (sgg):

GreedyOverlap[g, t,G,T] + 1
|g.out| + [t.out| + 1

3. Unknown Greedy Overlap Score (sy4):

GreedyOverlap[g,t,G, T] + |UnknownOut[t, T]| + 1
|g.out| 4 |UnknownOut[t, T]| + 1

7

Table 5: Greedy Features for computing MATCH_GRDY

greedily rather than maximally. For a given bipartite graph (bigraph)
BG = ((X,Y), E) where X and Y are two disjoint sets of nodes (V = X U
Y), and E is set of weighted edges connecting nodes in X to Y. Maximum
weighted bipartite matching [12, 24] finds the mapping from X to Y that
yields the highest sum of the weights out of all possible matchings and it
requires O(|V|?|E|). In our case, X is g.out, Y is t.out, and F is name
similarity scores between all node pairs (|E| = |X||Y|). The cost of sorting
list L (O(|E|lg|E])) in Line 8 dominates GreedyOverlap. Therefore, our

VI’|E V[? X|+|Y])?
greedy strategy saves O(%) = O(W) = O(%) over the

maximal strategy.

e MATCH.GRDY[g, t, explore]: a Match function that computes features

from both local profile attributes and greedy features described in Table 5.
It is almost identical to MATCH_ADV but MATCH_GRDY replaces Overlap with
GreedyOverlap and changes the denominators of the scores appropriately.
MATCH_GRDY is a linear combination of these scores.

Evaluation Experiments

The goal of these experiments is to compare exploration strategies PRI, FULL,
TOP, RAND, and GRDY applied to a real dataset while subject to real-world
constraints. We want to see how TOP and RAND improve precision over the
baseline PRI. We also want to see how close they are to the upper bound preci-
sion that FULL achieves. Furthermore, we would like to verify that the ordering
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Figure 20: Comparing All Strategies, 15-min windows, 80% Confidence

in TOP improves precision over RAND given the same time constraint. Lastly,
we would like to verify that TOP improves precision over GRDY that only
exploits one type of API call.

7.1 Experimental Setup

We first use dataset GTR to train MATCH PRI, MATCH_ADV, and MATCH_GRDY and
then use datasets GTE and GRND for evaluation. We have three budget values
per round B = [bjookup; bsearch, Dout]. For each node in GTE (same for GRND)
g in G, given g’s profile and g.out, our task is to find the same user g in T' by
exploring T using limited budget B. Recall from Section 5.1.2 that most GTE
users (99%) can be found within one users/search call. Therefore, we only
make one users/search call to retrieve Candidates[g, T, 20].

7.2 Evaluation of Crawling Strategies

In this section, we evaluate different crawling strategies (CRAWL_X). We will
drop the prefix CRAWL in this section to save space. Different crawlers collect
different versions of the network cache T'C'. We want to evaluate the output
of the crawlers. To do this, we take the output T'C, score the candidates
based on the appropriate MATCH_X, and select the top candidate. Our metric
is precision@]1: looking at the top candidate t, what fraction of the cases, t
indeed matches g. Given this type of evaluation, we use GTE because a match
always exist in the candidate set of each node.

We first present results for the actual Twitter API settings [10] as of August
1st, 2014 where the resetting window size is 15 minutes and B = [18000, 180, 15].
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A resetting window is the time between the operation quota resets. The budget
is restored for each new window. This maps nicely to our strategies where we
have B budget values per round and N number of rounds (i.e., one round is one
window). Recall from Table 3 that bjooku,=180 and each request can batch up
to 100 screen_names, implying that the total bjookwup is 18000. Figure 20 shows
how precision@1 increases with time (in 15 minute increments) for different
strategies. Note that at time 0 (first window) we receive the first set of budget
values. We run different crawling strategies on each of the 2,425 nodes in GTE.
For each g node, after we exhaust the budget of a window we rank Twitter
nodes using the appropriate MATCH X and current knowledge of T' (T'C'), and
select the top node. Recall that the y-axis shows precision@1: the fraction of
cases where the selection was indeed the correct matching 7" node for g.

Our baseline, PRI achieves 83% precision. PRI uses only local information
(MATCH_PRI) and does not need to make API calls to crawl T, thus the curve for
PRI is flat. Our upper bound, FULL achieves 90% precision (see Figure 20).
Recall from Section 6 and Algorithm 2 that FULL fully constructs F7 and x. out
for each candidate x € C' at time 0. Thus the precision for FULL is constant
at all time values. FULL does not reach 100% precision for three reasons: 1)
we only make one users/search call to obtain C, 2) some users have multiple
Twitter accounts but we only accept our ground truth (the account on Google+
profile) as the correct answer, and 3) FULL uses MATCH_ADV which is based on
a logistic regression and may make mistakes.

TOP: Let us first describe the performance of TOP as compared to the base-
lines. At time O (first window) when we receive the first set of budget values,
TOP achieves 2% higher precision than the baseline PRI while RAND achieves
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82% precision (1% below PRI). At 30 minutes (third window), TOP reaches
87.5% precision while RAND only starts to beat PRI. As time progresses, TOP
continues to achieve higher precision and at 135 minutes stabilizes at 88.6%.
This result shows that spending more than two hours (120 minutes) for a match
task will increase precision only marginally. The difference in precision between
TOP and RAND is significant from 0 to 90 minutes (where error bars do not
overlap).

RAND: Next we describe the performance of RAND as compared to TOP
and the baselines. At time 0, RAND achieves about 1% lower precision than
PRI because crawling the wrong friend (g.out) and candidate actually confuses
MATCH_ADV. For example, if RAND randomly chooses Lady Gaga from g.out to
find a match on Twitter (and successfully finds her using BEST_MATCH_PRI) and
randomly crawls a candidate who happens to follow Lady Gaga. RAND will
score this candidate higher because Overlap will be positive.

GRDY: Next we describe the performance of GRDY as compared to other
strategies. At time 0 (first window), GRDY achieves about 1.1% higher preci-
sion than PRI. GRDY reaches its maximum precision at 45 minutes at about
85.4% and declines slightly thereafter (statistically insignificant). Surprisingly,
as we crawl more of outlinks of candidates (x.out), it is harder to match g.out
correctly using our greedy strategy (recall Figure 19). TOP beat GRDY at all
times while RAND only starts to beat GRDY at 60 minutes.

Next we present results for the more fine-grained settings where the resetting
window size is 1 minute and B = [1200, 12, 1] (divide the original budget values
for the 15-minute window size by 15). We are studying this hypothetical setting
to see what would change if Twitter changes a key parameter of its API.

Figure 21 shows that RAND takes longer to beat PRI and GRDY. This is
because the budget is delayed, i.e., rather than receiving all of the budget every
15 minutes in the 15-min window case, the budget is divided equally and is
given to us every minute in the 1-min window case. For example, in the 15-
min window case, we receive all B = [18000, 180, 15] at time 0 (first window);
to accumulate the same budget values in the 1-min window case, we have to
wait until time 14 (15th window). TOP starts to beat PRI at 2 minutes while
RAND starts to beat PRI only at 35 minutes (RAND requires 94% more time
than TOP to reach the same 83.3% precision). At time 0, TOP, RAND, and
GRDY achieve slightly lower precision than PRI because of the same reason
given in the 15-min case. TOP beats GRDY at all times while RAND only
starts to beat GRDY at 75 minutes. Therefore, the best strategy is TOP.

From both experiments, we conclude that TOP is generally the most effective
strategy and the improvement over RAND and GRDY is statistically significant.
To reach baseline precision of PRI, TOP saves 30 and 33 minutes over RAND for
the 15-min and 1-min window experiments respectively. For the 15-min window
case, TOP saves 405 minutes over RAND to reach the highest precision value
of 88.6%. And this precision value is only 1.6% below the precision of FULL.
For the 1-min window case, however, TOP is still the most effective.

We also studied varying the maximum number of g.out to compute
GreedyOverlap. Let us call this threshold a. We first sort each f in g.out by
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Figure 22: GRDY, precision@Q1, 80% Confidence

f.indegree in ascending order based on results in Section ??7. For threshold
a = 20, we select the top 20 outlinks of g to be used to compute GreedyOverlap.
In other words, rather than using all outlinks from g.out, we only choose the
top 20 least popular outlinks as a proxy of g.out to compute GreedyOverlap.
Setting a@ = oo is equivalent to using all g.out. Figure 22(a) shows that when
we have low limits o <= 100, choosing the smallest « (i.e., & = 20) achieves
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the highest precision but the difference is not statistically significant. However,
the precision is lower than PRI. For higher limits o > 100, Figure 22(b) shows
that higher o achieves higher precision. GRDY starts to beat PRI at o = 400.
Threshold o >= 600 achieve similar precision. Threshold a >= oo achieves the
highest precision at 84.95%.

We have also studied precision@k (for £ > 1) and the results are analogous
(see Figures 23 - 24). For precision@Q2 (Figure 23), TOP achieves 95% precision
while PRI and FULL achieve 91% and 95.5% respectively. For precision@3
(Figure 24), TOP and RAND achieves 96.5% precision while PRI and FULL
achieve 94% and 96.7% respectively. Figures 20 - 24 show that as k increases,
the precision improvement of TOP over RAND decreases. Furthermore, as k
increases, TOP and RAND require more time to reach the precision that PRI
achieves.

Although the objective of our experiments is to match Google+ nodes to
Twitter nodes, we believe our strategies can be applied directly to other social
networks with limited API access (e.g., Flickr and Instagram) because Twitter
set the standard for social network APIs. The inverse matching problem (from
Twitter to Google+) is work in progress.

7.3 Evaluation of Whole Strategies

Next we evaluate our full algorithms (Algorithm 1 with particular CRAWL_X
and MATCH X selected). We use GRND and use the metrics precision and recall
(defined below) because it is appropriate for studying whole strategies. Recall
that for GRND, there may not be a match in the candidate set of each node.
We use the same Twitter API settings as in the beginning of Section 7.2 (15-
min windows). For algorithms whose performance varies over time, we use the
time limit one hour because one hour is enough for our algorithms to deliver
high-accuracy results.

Next we explain possible outcomes for each node in GRND. All 5 possible
outcomes are shown in Figure 25. First there are two cases for the output of
the algorithm: node found or not found (either no candidate or all candidates
score below the threshold #). Second there are two cases for the manual finding;:
match exists or no match. Finally, if both the algorithm and the manual finding
report a match, there are two possible outcomes: they agree (correct) or disagree
(incorrect).

Based on the outcomes, we can define precision and recall in various ways.
Here we define precision and recall as follows: precz’sizm:ﬁ and recallzﬁ.
Precision is defined as the fraction of cases where the selection was indeed the
correct matching 7" node for g. Increasing the match score threshold 6 increases
precision but decreases recall.

Figure 26 summarizes our results. To obtain Figure 26, first we select a
desired recall (DR). Then we select 6 that maximizes the achieved precision
while keeping recall at least DR. Finally, we plot precision (x-axis) vs. DR
(y-axis).
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Figure 23: Comparing All Strategies, precision@2, 80% Confidence

Figure 26 shows that TOP is the best strategy overall. For example, when
DR is 40%, TOP, RAND, and FULL achieve over 71% precision whereas GRDY
and PRI achieve below 47% precision. TOP, RAND, and FULL achieve almost
the same precision for most DR levels. Therefore, one hour is enough for TOP
and RAND to catch up with FULL. The precision improvement of TOP over
PRI is significant (up to 30% increase). GRDY performs about the same as
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Figure 24: Comparing All Strategies, precision@3, 80% Confidence

PRI because it greedily matches outlinks of the target node to outlinks of the
candidate. Thus GRDY is biased in favor of candidates with high outdegrees.
It is worth noting that the highest possible recall we can achieve is 75%.
This is because for some nodes in GRND, a match exists (findable by a human
with a lot of additional work and data) but the matching node is not in our
limited candidate set. TOP, RAND, and FULL are able to achieve 63.5% recall
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(at least 4% higher than other algorithms). However, at this level of recall, the
best precision is only about 42%.

8 Related Work

Entity Resolution (ER) has been well studied (see [25] for a recent survey). The
problem we address here is a type of ER where users are the entities and the
graph nodes are the records to be resolved. However, in our setting we have
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limited information and we can only discover records (nodes) at a limited rate.
As far as we know, this type of ER has not been studied earlier.

There are a number of other areas that are also related to our work: web
crawling (see [21] for a recent survey), social networks, and de-anonymization.
Recently, there has been a vast amount of work done on analyzing social graphs
(see [13] for a recent book). For example, Schidberg et al.[22] crawled over 95%
of Google+ profiles at the birth of Google+ (Sep-Oct 2011) and presented the
characteristics of Google+. Magno et al.[19] conducted a similar study in Dec
2011 by crawling 27M Google+ profiles and 580M links. Kwak et al.[18] crawled
the whole Twitter graph in July 2009: 42M profiles and 1.5B links. We have
not seen any work on matching Google+ users to their Twitter accounts.

Recently, there have been several works on de-anonymization (or network
alignment). Korula et al. and Narayanan et al. summarized the recent literature
in [17, 20]. In addition, they proposed a greedy seed propagation algorithm for
large-scale de-anonymization in social networks. They used a network overlap
technique similar to ours but they used only the network structure and ignored
profile attributes. Also, they assumed that all links in the target graph are
available.

The closest related work to ours is Cui et. al. [12], which finds email cor-
respondents in Facebook using profile attributes and graph matching together.
Their strategy is to iteratively update the similarity matrix using maximum
weighted bipartite matching based on the assumption that two nodes are sim-
ilar if their friends are similar. They also assumed that all links in both the
email and Facebook graphs are available.

All work that we know of assumes we have the full graph. To the best of
our knowledge, we are the first to consider the scenario of limited API calls.
Algorithms in preexisting literature (referenced in our paper) were designed
assuming the accessibility of the full social graph. We modified and improved
several existing algorithms to make them applicable to the real-world constraints
of limited API calls. We also developed new ideas like known and unknown
overlap scores.

9 Conclusion

We have studied the problem of ER with limited information. We have pro-
posed two heuristic exploration algorithms: TOP and GRDY. Algorithm GRDY
slightly beats our baseline Algorithm PRI for the GTE dataset but performs
slightly worse for the GRND dataset because it does not exploit other API calls.
Algorithm TOP is the best strategy for both GTE and GRND datasets because
it efficiently explores the network and achieves high precision quickly. In some
cases, the gains in precision that Algorithm TOP achieves are signficant: we
can go from 45% precision (Algorithm PRI) to about 75% precision (Algorithm
TOP) in one hour while keeping the desired recall at 40% for GRND. In other
cases, the gains in precision are relatively modest. For example, we can go from
83% precision (Algorithm PRI) to about 88% precision (Algorithm TOP) in a
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couple of hours for GTE.

For some applications, the 5% increase in precision (for GTE) may or may
not be worth the effort of crawling Twitter. For instance, if we want to send
advertisements to Twitter users, then the 83% precision is probably enough.
However, we believe that are also important applications where the delays are
tolerable and the improved precision is significant. For instance, in an intelli-
gence application we may be identifying “dangerous individuals” so the extra
precision is critical.

Although the objective of our experiments is to match Google+ nodes to
Twitter nodes, we believe our strategies can be applied directly (using the same
algorithms and tuning the weights) to other social networks with limited API
access (e.g., Flickr and Instagram). One reason we can generalize is because
Twitter set the standard interface for social network APIs (i.e., other APIs
have the same operations such as searching for a specific user and collecting
user relationships). Another reason is that our concepts (e.g., exploration and
evaluation, approximate neighborhood matching) are applicable to other scenar-
ios. Our preliminary study and implementation of the inverse matching problem
(from Twitter to Google+) uses very similar code and also shows analogous re-
sults.
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