Waldo: An Adaptive Human Interface for Crowd Entity
Resolution

Vasilis Verroios
Stanford University

verroios@stanford.edu

ABSTRACT

In Entity Resolution, the objective is to find which records
of a dataset refer to the same real-world entity. Crowd En-
tity Resolution uses humans, in addition to machine algo-
rithms, to improve the quality of the outcome. We study an
approach that combines two common interfaces for human
tasks in Crowd Entity Resolution, taking into account some
key observations about the advantages and disadvantages
of the two interfaces. We give a formal definition to the
problem of human tasks’ selection and we derive algorithms
with strong optimality guarantees. Our experiments with
three real-world datasets show that our approach gives an
improvement of 50% to 300% in the crowd cost to resolve a
dataset, compared to using only tasks of the same interface.

1. INTRODUCTION

In entity resolution, we are given a set of records and our
objective is to find which records refer to the same real-world
entity. Hence, the final outcome is a clustering of records,
where in each cluster we have all the records that refer to the
same entity. In many cases, humans are much better than
machine algorithms in detecting matches (record pairs re-
ferring to the same entity) in a set of records (e.g., customer
records that include the customer’s photograph). This ob-
servation drives the idea of crowd entity resolution, where
machine algorithms and humans are combined to perform
entity resolution.

Crowd entity resolution is a topic studied by a number of
papers over the last few years
. Moreover, crowd entity resolution has received a lot
of attention in the industrial level as well. Major companies
such as Google, Bing, and Facebook are using this approach
to create summary records of entities in web search or to
remove duplicate entries on their maps, while startups like
Tamr @ are curating large datasets by involving humans in
the loop.

The typical workflow for crowd entity resolution is de-
picted in Figure[I] A first stage produces similarity values

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

Yannis Papakonstantinou
UC San Diego

yannis@cs.ucsd.edu

Machine
Algorithms

Initial | | Answers

First Stage

Second Stage

Task
Selection

Final | | Outcome

Figure 1: Crowd entity resolution workflow.

+ Person A
Person B
Person C
Person D
Person E
Person F

Person A 5

PersonB &

Person F ¢

Figure 2: Multi-item interface.

for all pairs of records, using machine algorithms. In a sec-
ond stage, a task selection algorithm selects tasks to ask
humans, gets back the answers, and selects new tasks based
on the answers and the machine similarity values. Usually,
the second stage loop goes on until we run out of the time
or money available for the overall entity resolution task.

A key design choice for human tasks is the number of
records per task. There are two options: including just two
records in each task (pairwise interface, e.g., papers
138]) or including more than two records (multi-
item interface, e.g., paper) In a pairwise task, a human
provides a YES/NO (match/non-match) answer, for the two
records in the task, typically, via a radio button. In a multi-
item (or k-item) task, the human assigns a label/color to
each record: the human indicates that pairs of records with
the same label are matches while the pairs with different la-
bels are non-matches. For instance, in Figure 2} the human
assigns labels/colors in a 6-item task. To allow humans to
provide fast answers, all records in the multi-item interface
initially have different labels, so by simply pressing the “sub-

mit” button, a human indicates that there are no matches
in a given task.

Each of the two interfaces has its own advantages and
disadvantages. The multi-item interface, allows humans to
provide answers for many pairs of records with a few clicks.
For example, in Figure |2} a human just assigns the same la-
bel to the images on the upper left and upper right corners,
to provide answers for all (g) = 15 pairs of records; one YES
and 14 NOs. On the other hand, the pairwise interface is
simpler and allows humans to answer questions more accu-
rately since they can focus on two specific records each time.
We quantify this trade-off between accuracy and efficiency
in terms of cost and time, in Section

A task selection algorithm that attempts to take advan-
tage of both multi-item and pairwise tasks, needs to answer
three main questions: a) how many pairwise and how many
multi-item tasks should be used in each loop iteration? b)
which records are more appropriate for pairwise tasks and
which records for multi-item tasks? ¢) which records should
be grouped together in each multi-item and pairwise task?

Recent studies in crowd entity resolution use only one
of the two interfaces: papers like |17, [21} 32 |34, |36, 38|
use the pairwise interface for humans and reason about the
most useful questions to ask in each step of the second stage
loop. Another paper [35], chooses the multi-item interface,
instead. In order to simplify the reasoning for which tasks to
use humans for, the authors in 35| assume that humans are
always right and, thus, entity resolution can be performed
in a single step by just covering with human tasks all “am-
biguous” record pairs.

In this paper, we propose the Waldo approach (based on
the popular 80’s book series “Where’s Waldo?”) that com-
bines the two interfaces to perform crowd entity resolution.
Our approach detects “difficult” pairs of records that are re-
solved more efficiently using pairwise tasks and resolves the
rest of the pairs using multi-item tasks (hence, answering
question b above). Moreover, we study the problem of opti-
mal grouping of records into pairwise and multi-item tasks
given an available budget for each task selection step. The
solution to this problem is the set of pairwise and multi-
item tasks that maximize the number of “useful” questions
for pairs of records and has an overall cost that does not
exceed the available budget. Hence, via this solution we an-
swer questions a and c above. We formally define the notion
of difficult pairs, useful questions and the optimal grouping
problem in Sections [f] and [6]

The main contributions of our paper are the following:

1. We present the key observations that drive Waldo, in
Section In particular, we observe that there is a
trade-off between cost and accuracy for the multi-item
and pairwise interfaces. Moreover, this trade-off is dif-
ferent for different pairs of records, as the error rate in
human answers varies significantly among pairs, espe-
cially when the multi-item interface is used.

2. We present an overview of Waldo, in Section

3. We discuss how human answers are used to resolve a
pair of records as a match or non-match, in Section

4. We discuss Waldo’s approach in detecting difficult pairs
of records, in Section [5] Through difficult pair detec-
tion, we answer question b.

5. We give a formal definition for the Optimal Grouping
Problem, in Section@ We present two approximation

algorithms for this problem: a) a constant approxima-
tion ratio algorithm that has a O(n*) time complex-
ity, for k records included in a multi-item task and n
records in the dataset and b) a k-approximation algo-
rithm with a O(n*logn) time complexity. In addition,
we propose a lightweight heuristic that works very well
in practice. The solution to the Optimal Grouping
Problem provides the answer to questions a and c.

6. We compare Waldo and the different algorithms we
propose to baselines and alternatives proposed recently
that make use of a single interface, using three real
datasets, in Section[7] We find that our algorithms for
selecting which records to include in each multi-item
task give a 18x improvement in cost over the random
approach (that randomly picks which records to place
in each multi-item task). In addition, we find that a)
the improvement of our overall approach compared to
using only pairwise tasks can reach up to a factor of 2
in datasets with few “difficult” pairs and b) can reach
up to a factor of 3 in datasets with many “difficult”
pairs, compared to using only multi-item tasks.

2. BASIC INTERFACE COMPARISON

In this section, we compare the pairwise and multi-item
interfaces and illustrate the trade-off between accuracy and
cost as we increase the number of records we include in a
task for humans, via a number of experiments with images
of athletes. Our experiments point out that there is not a
single optimal task size (in terms of number of records): for
some pairs of records it is better to have a task involving
just the two records, while for other pairs it is more efficient
to include them in tasks with additional records.

The human tasks use the interface of Figure 2] Initially,
all images in a task have different labels. Hence, the hu-
man assigned the task can indicate that all images refer to
different athletes, by simply clicking a “submit” button for
the task. If the human sees one or more images showing
the same athlete, she “assigns” the same label to all those
images through the drop-down list of each image. (Another
alternative would be to use an empty default label for each
image and “force” humans to manually assign labels to all
images, before submitting a task.) Our design choice of hav-
ing different labels for each record as a default, is motivated
by the fact that, in most real-world datasets, the number
of pairs of records that refer to the same entity is far less
than the pairs referring to different entities. Thus, we ex-
pect that this design choice significantly reduces the amount
of work for humans, compared to forcing humans to provide
an explicit label for every single record in each task. (In
platforms like Amazon Mturk, the spammers’ percentage,
which would exploit the “direct” submit function, is negligi-
ble when worker requirements, like “percentage of approved
tasks”, are set.)

The dataset [1] used in the experiments of this section,
consists of images of athletes (each image is focused on a
single athlete) from ten different sports. In the first experi-
ment, we measure the error rate as we increase the number
of athlete images included in a task. Each task is gener-
ated based on three parameters: the number k of images
per task, a number of entities N, and a number of images
for each such entity S. For example, for k = 4, N = 1, and
S = 2 we would generate a task with one pair of images be-
ing a match and the other two images referring to different

0.5

w
o

n 25 4]

_8 0.4 = 20 ‘© 25

© &L Q- 20

o 0.3 15 e

o) *FN ° 10 5 15

g 0.2 8 O 10

w 0.1 +FP o 5 &) 5
< - - - = IF

0 H* 0 0 - -
0 5 10 15 01020304 0506070809 1 0.1 02 03 04 05 0.6 0.7 0.8 0.9 1

#Records in each task

(a) False Negative/False Positive Rates (b) #Pairs per FN rate - 9-item tasks

Error Rate (False Negatives)

Error Rate (False Negatives)

(c) #Pairs per FN rate - 2-item tasks

Figure 3: Error rates and distribution of error rates for different task sizes.

Seconds per Pair
= = N
o w o v o

o

5 10 15
#Records in each task

Figure 4: Time per record pair answer.

athletes. We generate ten such tasks for each combination
of k, N and S. We repeat the same task generation for each
sport in the dataset, and we assign each generated task to
ten workers. (The experimental setting details for the ex-
periments in this section can be found in Appendix) In
Figure the x-axis shows the number of images, k, in-
cluded in a task and the y-axis shows the error rate: one
curve refers to the false negative (FN) rate (i.e., the per-
centage of answers that give a different label to two records
that show the same athlete) and the other curve to the false
positive (FP) rate. One can see that as we increase the num-
ber of items in the multi-item interface the FN rate steeply
increases. On the other hand, the FP rate slightly decreases
from two to four records and stays even for more records in
a task.

The explanation for the steep increase in the FN rate is
simple: when multiple items are presented at the same time
to a crowd worker, it is more likely for her to miss some
matches. In addition to the limits in human attention, in the
multi-item interface we have to use smaller-size images so
that the overall area covered by all images in a task is within
space limits. (We discuss in detail the space limits trade-
offs for images and relational tuples in Appendix . On
the contrary, the FP rate’s slight decrease from two to more
records per task, is due to two factors: a) there are more
pairs of records that are obvious non-matches (than pairs
that are obvious matches) and are easy to “spot” even when
presented in a task with 12 images. b) having a different
label per image as a default, biases humans to “leaving” a
different label for most images; at least for pairs of images
that are not obvious matches.

In the same experiment, we also observe that in tasks with
fewer items, the worker effort per record pair is higher. In
Figure[4 the x-axis is the same as before, and on the y-axis
we plot the amount of time needed per record pair answer.
For example, if a worker needs one minute for a 6-item task,
the time per record pair is 4 seconds: 60 seconds divided by
the (S) = 15 pairs of records included in the task. The time
per record pair decreases steeply from two to four records
and halves from four to six records.

Deciding between which interface to use becomes more
complicated as we realize that the cost-accuracy tradeoff,
illustrated in Figures and is different for different
pairs of records. In particular, the FN and FP rates are not
the same for all pairs of records: for some pairs of records

we have to spend far less multi-item tasks to reach to a fi-
nal match/non-match answer, compared to other “difficult”
pairs where we get “mixed” answers from humans. For ex-
ample, we get mixed answers when two athletes have sim-
ilar characteristics (e.g., hair color) and their faces are not
clearly visible in the images, like the athletes in the lower
left and lower right images, in Figure This effect for
multi-item tasks is more pronounced for the FN rate.

To illustrate, we plot in Figure the FN rate on the
x-axis and the number of record pairs for which we get a
specific FN rate on the y-axis, when we include them in 9-
item tasks. For example, for an x value of 0.4, there are 16
pairs of images, for which 4 out of 10 answers are wrong.
We see that there is an almost uniform distribution on FN
rates between 0.0 and 0.5. On the contrary, in the same plot
for 2-item tasks, in Figure we see that almost all pairs
have an FN rate less than 0.1. This observation indicates
that combining the two interfaces can be beneficial, since it
may be more cost-effective to use the pairwise interface for
the pairs with high error rates and for the rest of the pairs
to use the multi-item interface.

In particular, the approach we propose in this paper starts
by using multi-item tasks to get “fast” answers for a large
number of record pairs. Still, for the “difficult” record pairs,
we get mixed answers from the multi-item tasks. Waldo
identifies those pairs (in Section [5| we formally define the
term “difficult pair” and we describe how to detect such
pairs) and employs pairwise tasks in order to increase the
chances of reaching to a correct final answer, on each such
pair. In the next section, we present an overview of our
approach and we discuss further how to combine pairwise
and multi-item tasks.

3. APPROACH OVERVIEW

Waldo’s task selection algorithm is applied in a loop, where,
in each iteration, the algorithm selects tasks for humans to
answer, based on initial machine answers and human an-
swers from previous iterations.

Initially, machine algorithms generate answers for all pairs
of records: each answer is a single number expressing the
probability of the corresponding pair being a match. For
example, consider two customer records, ri, re, with the
first and last name of each customer. A logistic regression
classifier can use the first and last names in 71, r2, and
classify the two records as a match with a probability of 0.9.

Each iteration starts with the “Resolve Pairs” stage (Fig-
ure(5)). The input to this stage is the initial machine answers
along with the answers from multi-item and pairwise tasks,
from all previous iterations. The output is a classification of
all pairs of records into “Resolved” and “UnResolved” ones.
A pair is resolved when the probability of being a match
(or a non-match), given all answers for that pair, is greater

Machine

i Budget per Multi-item
Algorithms

Round: B Size: k

) D
se
Pairs .
D‘el.“ect Non Opti m,al Humans
Difficult I» Grouping
Pairs Pairs
J

Answers
Figure 5: Approach Overview.

than a threshold. In the end of this stage, an entity resolu-
tion algorithm (ERA) is applied. The ERA can change the
label of an UnResolved pair to Resolved. For example, an
ERA that applies the transitive relation may infer that an
UnResolved pair (a,c) is a match, if pairs (a,b) and (b, c)
are resolved as matches. We discuss in detail this stage, in
Section [l

The unresolved pairs and human answers from previous
iterations, are the input to the “Detect Difficult Pairs” stage.
The output is a classification of the unresolved pairs into
“Difficult” and “NonDifficult” pairs. This classification is
based on the expected (monetary) cost to resolve a pair
via the pairwise interface and via the multi-item interface.
Difficult pairs are the ones with a higher expected cost via
the multi-item interface, i.e., for a difficult pair it is more
cost-effective to use pairwise tasks. We focus on difficult
pairs detection, in Section

The “Optimal Grouping” stage selects a set of multi-item
and pairwise tasks using the label difficult/non-difficult for
each unresolved pair along with the human answers from
previous iterations. Difficult pairs are included in pairwise
tasks and non-difficult pairs in multi-item tasks (although a
few difficult pairs may get unintentionally included in multi-
item tasks). All multi-item tasks have a fixed size of k
records, which is given as input (k = 6 in Figure [2). Set-
ting the same size for all multi-item tasks is sufficient: for
each dataset, there is an optimal multi-item task size for
“regular” (NonDifficult) pairs, while for Difficult pairs we
must rely on pairwise tasks. (The optimal multi-item task
size can be found using experiments like the ones in Sec-
tion) The overall monetary cost of the selected tasks is
constrained by a budget B, also given as input. (In prac-
tice, a value for B can be computed using techniques like
the ones proposed in papers [33] and [22].) Due to the
budget constraint, not all of the unresolved (difficult and
non-difficult) pairs are included in pairwise and multi-item
tasks. Hence, the Optimal Grouping stage evaluates the
feasible sets of pairwise and multi-item tasks using a util-
ity function, and selects the set of tasks with the maximum
utility. This utility-maximization objective under the bud-
get constraint formulates the Optimal Grouping Problem,
discussed in Section

4. RESOLVE PAIRS

Pair resolution is performed via direct resolution (Sec-
tion or via an ERA (Section . The notation used is
as follows:

e m (T): the event of two records being a (non) match, i.e.,

(not) referring to the same entity.

e priors[p|: the prior probability of being a match, for a
pair of records p; given by the respective machine answer.

o AM[p] = (x,y): the multi-item answers collected for a
pair of records p. That is, for all the multi-item tasks
that include both of those records, we count the number
of times the two records got the same label (YES answers),
y, and the number of times they got a different label (NO
answers), . For answers from the pairwise interface on a
pair p, we use the notation AF[p] = (z,7).

e Py probability threshold for resolving a pair.

4.1 Direct Resolution

INPUT

AM AP pipr, priors

ouTPUT

Each pair is labeled as resolved (match/non-match) or un-
resolved.

Pairs resolution is based on the following rule:

Pair Resolution Rule

A pair p is resolved when Pr(m|I) > Dithr
(match) or Pr(m|Z) > pwmr (non-match), where
T = {AM[p], AT [p], priors[p]} denotes all evidence for
pair p.

That is, a pair is resolved once the probability of being a
match (non-match) given the answers from multi-item and
pairwise tasks is greater than the probability threshold p¢p,.

The main technical difficulty in pairs resolution, is the
lack of the exact error rate for humans. As we illustrated
in Section 2] different pairs have different error rates. Thus,
we need to use the answers so far, for a specific pair, to
infer the probability of each error rate for that pair and
then integrate over all possible error rates, to compute the
probability of the pair being a match. This is a significant
difference compared to previous work in crowd entity reso-
lution (e.g., papers |32} [36} |38]). However, this is not the
main technical contribution of the paper and we decided to
move this discussion in Appendix[A] Here, we just illustrate
pair resolution via a simple example where the error rates
for a pair are known:

EXAMPLE 1. Consider a pair p, and assume piyr = 98%
and priors[p] = 50%. We consider a simple scenario here
where we only have multi-item task answers. Consider the
case where AM[p] = (0,2), i.e., there are only two YES an-
swers for pair p. In addition, the false negative and positive
rates, e, and ewm respectively, are e, = em = 0.1. In this
case, Pr(m|AM[p]) = 0.9878 > 0.98 and, hence, pair p is
resolved as a match.

4.2 ERA Resolution

In each iteration, after direct resolution, we apply an ERA
that may resolve additional pairs of records. For example,
an ERA that applies the transitive relation, will infer that
records a and c are a match, when pairs (a,b) and (b, c) are
resolved as matches via direct resolution. On the other hand,
if a pair (a, b) has been resolved as a match but a pair (b, ¢)
has been resolved as a non-match, the transitive-relation
ERA will infer that (a,c) is also a non-match. Another
possibility for a transitive-relation ERA is to apply only the
“positive” transitive relation that infers matches, but avoid
to infer a non-match (i.e., in the second case above, the

ERA would not infer (a,c) as a non-match). Yet another
possibility is to take into account all answers between, say,
a pair resolved as a match, (a,b), and a second pair also
resolved as a match, (c,d), to infer if all 4 records refer to
the same entity (e.g., see SCC [32]).

Waldo considers the ERA as a blackbox: any algorithm
can be plugged in and resolve additional pairs. Hence, in
the main technical problem, discussed in Section @, we do
not include ERA details. The reason for this decision is sim-
ple: we wanted to focus on the most general and interesting
version of the problem of combining multi-item and pairwise
tasks to perform entity resolution.

5. DETECT DIFFICULT PAIRS

Before discussing our definition of difficult pairs let us give
the motivation and intuition behind this definition. First,
consider a simple heuristic rule for detecting difficult pairs:
if after 6 answers for a pair via the multi-item interface, the
majority is less than, say, 5, the pair is considered difficult
and we should switch to the pairwise interface for that pair.
For example, if for a pair p; we had 4 NOs and 2 YESes,
we would switch to the pairwise interface. Would that be a
good decision? It mainly depends on the cost of a pairwise
task compared to the cost of a multi-item task. If the cost of
a pairwise task was relatively low, switching to the pairwise
interface for pi, would be a good decision. On the other
hand, if the pairwise task cost was high, then we may want to
wait for more answers for p1. Hence, such a simple heuristic
rule would not suffice: we need a method that takes into
account the cost of each type of task.

We extend our notation with the parameters for the (mon-
etary) cost of tasks:

e M: the (monetary) cost of a single multi-item task.
e c": the (monetary) cost of a single pairwise task.

The input and output of this stage are as follows:

INPUT
AM AR pue, priors, M, cF
ouTPUT

Each (unresolved) pair is labeled as difficult or non-difficult.

The definition for difficult pairs is given by:

Difficult Pair Rule
A pair is identified as difficult when C™ > CF.

We denote by CM the expected cost to resolve a specific
pair using multi-item tasks and by CF the expected cost to
resolve the same pair using pairwise tasks.

Just like in the pair resolution stage, the main technical
difficulty for computing the expected costs, is the lack of
the exact human error rate, for each pair of records. Again,
we have to infer the probability of each error rate, for a
pair, to compute the expected cost to resolve the pair, us-
ing multi-item or pairwise tasks. We discuss the details in

Appendix

6. OPTIMAL GROUPING PROBLEM

In this section, we define the Optimal Grouping Prob-
lem and we propose three algorithms for this problem. We
first give the motivation for the problem formulation, in Sec-
tion [6.1] In Section [6.2] we describe the problem formula-
tion and provide the details for the utility function used in

Figure 6: Intuition behind the utility function.

this formulation. In Sections [6.3] and [6.4] we give two sim-
ple algorithms for the Optimal Grouping Problem that have
strong optimality guarantees. To arrive to these approx-
imation algorithms and prove their optimality guarantees,
we show that the utility function is submodular and then
use standard tools for submodular optimization along with
a number of key insights that are specific to our problem.
Finally, in Section [6.5] we describe a simple heuristic, which
is a greedy adaptation of the constant-factor approximation
algorithm of Section and works very well in practice (as
our experiments indicate).

6.1 Intuition and Motivation

Each set of multi-item and pairwise tasks that can be
selected in each iteration, has a “utility”. We define utility
as the expected number of “useful” questions between the
pairs of records included in a set of tasks, where “useful” are
the questions that help us identify matches. Before formally
defining utility (Section , we give the intuition and
motivation via the following example:

EXAMPLE 2. Consider the four records, a, b, ¢, and d, de-
picted by corresponding nodes in Figure[8 All pairs except
(a,b) and (c,d) have been resolved as non-matches. Given
the evidence so far, pair (a,b) is a match with probability 0.9
and is considered non-difficult. Pair (c,d) has a 0.7 match
probability and is considered difficult. Unresolved pairs are
depicted by edges, where the weight of each edge is the match
probability of the corresponding pair. Next, consider the
multi-item tasks Th, T2, Ts, of size k = 3, depicted by trian-
gular shapes enclosing the records included in the task. The
utility of each multi-item and pairwise task depends on the
weight of the edges enclosed in the task: the more unresolved
pairs within the task and the higher the weights on those
pairs, the higher the utility of the task. For instance, the
utility of Th depends on the weight between a and b, which
is the only unresolved pair enclosed in Ti. Moreover, the
utilities of tasks T and T» are not independent because both
tasks share pair (a,b). For instance, the answer to Ty may be
enough to resolve (a,b), and, hence, the answer to T would
be redundant. When multiple tasks share the same pairs, the
utility of each task decreases based on the probability of the
answers on those pairs becoming redundant once other tasks
provide the answers. As for the utility of task Ts, it is zero,
because the only unresolved pair (c,d) included in T3, is a
difficult pair: the weight of difficult pairs contributes only to
the utility of pairwise tasks.

As Example 2 illustrates, the utility of a set of tasks has
three properties: (i) the more matches that can be detected,
the higher the utility, (ii) the utility decreases as more pairs
are being shared by the tasks, and (iii) difficult pairs con-
tribute only to the utility of pairwise tasks.

The importance of property (ii) is obvious, while prop-
erty (iii) is motivated by our decision to resolve difficult
pairs via pairwise tasks. Regarding property (i), finding
matches early accelerates the entity resolution process, since

an ERA can infer the relationship between additional pairs
of records, using the matches detected already, without ask-
ing the crowd (e.g., papers [36] and [34]).
6.2 Problem Definition

The input and output of the Optimal Grouping stage are:

INPUT

D, E, AM, AY pu,, priors, M, ¥, B

OuUTPUT

A set of multi-item tasks 7 = {T1,...T:} and a set of pair-
wise tasks P = {Pi,... Py}, to be issued to humans.

where D are the difficult pairs and £ the non-difficult ones,
from the difficult pair detection stage, and B is the budget
for the current task selection round.

The selection of tasks 7 and P is based on the following
problem formulation:

PROBLEM 1. Optimal Grouping Problem

e EU(P,T) (1)
st. |PlxcF +|T|*M<B (2)

Equation [2] states that the sum of costs from pairwise
and multi-item tasks should not exceed the budget for the
current round. Next, we formally define the utility function
EU (Expected Useful questions) of Equation

6.2.1 Utility Function EU

Each T; € T is a set of k records and each P; € P is a
set of 2 records. Note that both sets 7 and P are actually
multisets, since each set T; and P; can be included multiple
times in 7 and P, respectively.

We refer to the pairwise tasks P; € P as questions. The
multi-item tasks T; € T also imply a multiset of (pairwise)
questions:

DEFINITION 1. Question multiset Q(7) of multi-item
tasks T

Q(T) - {(7"177"2) : ElTZ S T, rL € TZ /\7‘2 c Tl}

Each question g € Q(T) is assigned with a sequence num-
ber, g.seq: if the multiplicity of ¢ is, say, 3 (i.e., the same pair
of records appears three times in Q(7)), then the first in-
stance of ¢ has ¢g.seq = 1, the second instance has ¢g.seq = 2,
and the third q.seq = 3; without assuming a specific order of
the different instances. Each question g € P is also assigned
with a sequence number based on ¢’s multiplicity in P, the
same way as in Q(T).

EXAMPLE 3. Consider again the four records, a, b, c, d
and the multi-item tasks T = {T1,T>} = {{a,b,c},{a,b,d}},
from Ezample 2. Then, Q(T) = {(a,b), (b,0),(a,c),(a,b),
(b,d), (a,d)}. Moreover, there are two instances of question
(a,b), denoted by g1 and g2. Their sequence numbers are:
q1-seq = 1 and q2.seq = 2.

The objective in Equation [I] states that we want to find
the tasks that maximize the expected number of “useful”
questions:

DEFINITION 2. Useful Question: A question ¢ € P U
Q(T) is useful when: (a) the pair of records in q is a match,
(b) the pair in q has not been resolved by the answers in
previous rounds and the answers to questions for the same
pasr with a smaller sequence number than q.seq, and (c) q
is detected as difficult in case ¢ € P and q is detected as
non-difficult in case ¢ € Q(T).

Note that the three conditions in Definition 2 match the
three properties discussed in Section [6.1] To illustrate fur-
ther, consider the following example:

EXAMPLE 4. Consider again the parameters from Exam-
ple 1 and questions q1, g2, for pair (a,b), from Ezample 3.
In addition, assume that (a,b) is identified as non-difficult
and that we have a single YES multi-item task answer, from
previous rounds. For question q1 to be useful, it suffices pair
(a,b) to be a match. For question g2 to be useful, (a,b) must
be a match and the answer to q1 should be NO. (Otherwise,
pair (a,b) would have been already resolved by g1 based on
the parameters used in Example 1.)

In our formulation, we use the indicator random variable
Ug, which is 1, if ¢ € PUQ(T) is useful, and 0 otherwise.
The objective function in the Optimal Grouping Problem
is denoted by EU(P,T) (expected number of useful ques-
tions):

UPT)=E{ > U}
qeEPUQ(T)
The next two lemmas simplify the computation of EU.
LEMMA 1.

EUMPP,T)= Y.

qEPUQ(T)

Pr(U, =1)

PROOF: The proof is based on linearity of expectation and
can be found in Appendix
O
LEMMA 2.

Vg e Q(T), Pr(Us=1) = Pr(mq|AM[q])* Z
(z,y)EW (q)

where a) mq is the event of the pair in ¢ being a match,
b) pm(z,y) is the probability of reaching point (z,y), i.e.,
z NO answers and y YES answers, given that the pair is
a match, ¢) F is the set of (z,y) points where the pair in
q is resolved (see Appendix [Al for the formal definition of
pm(z,y) and F'), and d) the set of points W(q) is defined
as:

W(g) ={(z,y) :x+y=|A"[q]| + q.5eg — 1 A (z,y) € F} (3)
PROOF :

The details of the proof are given in Appendix Here,
we just provide the intuition. Based on Definition 2,

Pr(Us =1)=Pr(U, = 1|mq,AM[q]) * Pr(mq|AM[qD

(In Appendix we discuss how Pr(mgq|AM[q]) can be
computed.) Next, we focus on Pr(U, = 1|mgq, AM[q]), i.e.,
the probability that question ¢ is useful given that the pair
in ¢ is a match and the multi-item answers for that pair from
previous rounds. Given that the record pair in a question
q is a match, ¢ will be useful only if we cannot resolve the
pair using the answers from previous rounds, AM[g], and the
answers to all questions ¢ € Q(7) that refer to the same
pair and have a sequence number smaller than q.seq. Thus,
we need to examine all possible answers for all such questions
q¢ € Q(T). The sets of answers on those questions that are
not sufficient for resolving the pair, are captured by the set
of points W (q). In Example 4, |AM[g2]| = 1, since we have a
single answer from previous rounds, and W (q2) = {(1,1)}.

pm(2,y)

Note that Lemma 2 refers to the case where ¢ € Q(T).
In case g € P, the same lemma applies with the equivalent
definition for the sets of points F' and W(q).

EXAMPLE 5. Consider again Examples 1 and 4. As Lemma 2
states, Pr(Ug, = 1|mg,, AM[q2]) = pm(1,1). (As we dis-
cussed above, W(q2) = {(1,1)}.) Based on the parameters
we assumed in Example 1, the probability of reaching (1,1),
from the current point (0,1), is 0.1, i.e., the probability of
receiving a NO answer given that the pair (a,b) is a match.
Hence, Pr(Uy, = 1jmg,, AM[gz2]) = 0.1.

An important property of the EU function is submodu-
larity: we prove this property in Theorem 1. The submodu-
larity property drives the Greedy algorithm described next.

6.3 Greedy Algorithm

In this section, we present an algorithm that uses the sub-
modularity of the FU function. The most well-known result
for submodular functions is the typical greedy algorithm [27]
that gives a (1 — 1) approximation guarantee. This approx-
imation guarantee holds only when all items to be selected
have the same cost. However, in our problem, pairwise and
multi-item tasks have a different cost. The Optimal Group-
ing Problem falls into the category of increasing submodular
function maximization, under a cost constraint, when the
items to be selected have different costs. There is a modi-
fied greedy algorithm [24] for this Category of problems, but
it gives a lower approximation ratio of (1 — 1).

The greedy algorithm presented here takes into account
the special structure of the Optimal Groupmg Problem and
gives an approximation guarantee of (1 — g) i.e., twice the
ratio of the general case algorithm [24]. We call this algo-
rithm Greedy. The key insight of Greedy is that it generates
one solution with only multi-item tasks and one solution
with only pairwise tasks and, then, it combines the two solu-
tions, to achieve the improved approximation ratio. Hence,
Greedy runs in two stages: Stage 1 deals with multi-item
tasks and Stage 2 deals with pairwise tasks and the combi-
nation of the two solutions.

In Stage 1, Greedy generates a list of multi-item tasks,
such that the aggregate cost of all the tasks in the list does
not exceed budget B. To generate this list, Greedy appends
to the list the multi-item task that increases the overall util-
ity the most, in each step, taking into account the tasks
appended in previous steps. To find that task, Greedy ex-
amines all possible (Z) tasks, in each step, where n is the
overall number of records. In Stage 2, Greedy first generates
a fixed number of pairwise questions for each difficult pair.
Then, it sorts the questions in descending order based on
Pr(Uq = 1), i.e., the probability of a question being useful.
In the last step of Stage 2, the list of multi-item tasks from
Stage 1 is “combined” with the sorted list of pairwise ques-
tions, to produce the final outcome: Greedy selects a prefix
of the multi-item list and a prefix of the pairwise list, so that
the utility of all tasks in the two prefixes is maximized and
the total cost is within budget B. The formal description of
the two stages is given in Appendix [C]

The time complexity of Greedy is O(LC%J * n*). Note
that finding the best multi-item task to append in each step
of Stage 1, is, by itself, an NP-hard problem; by reduction
from the Densest k-Subgraph [12]. While the value for k will
always be small (due to the human attention limitations),
the time complexity can be prohibitive in large datasets;
where n is large. Fortunately, there are very effective par-
titioning methods that can split a dataset into smaller sets
of records: usually, machine answers in real datasets are
sufficient to identify buckets of records, where there are no

matches between buckets. We discuss such a partitioning
method in Appendix Furthermore, examining the (Z)
tasks in each iteration can be performed in parallel. The
theoretical results for Greedy are summarized in the two
following theorems:

THEOREM 1. Consider a sequence of budgets

(Bj=jxcM|jezt)
For any i € [1,|Larl]
EU(®, Lar[0:) > (1 - %)EU(@vTEm)

where Lar is the outcome of Stage 1 (Lgrl0 : i] are the first
i multi-item tasks in the list) and T3, the set of multi-item
tasks that mazimizes EU for a budget constraint B;.

PROOF:

We show that EU is a submodular function and we use
a well-known result for submodular optimization [27]. The
details are discussed in Appendix

O

THEOREM 2. Greedy is a (1 — 7) -approzimation algorithm

for the Optimal Grouping Problem. That is,

EU(Pgr,Tcr) > (1 — *)EU(P T")

where Par, Tar are the tasks returned by Stage 2 and P*, T*
is the optimal solution to the Optimal Grouping Problem.

PROOF:

The proof is based on Theorem 1 and the way we combine
multi-item with pairwise tasks in Stage 2. The details are
discussed in Appendix[D]

O

6.4 Edges Algorithm

Our second approximation algorithm for the Optimal Group-
ing Problem, named Edges, is a more lightweight algorithm
compared to Greedy. Let us illustrate Edges key insight,
using a simple example. Assume k = 4 and a budget B
enough for only one multi-item task. Edges will first select
the two most useful questions (i.e., highest Pr(U, = 1)), be-
tween, say, pair (a,b) and pair (c,d). Then, it will generate
a multi-item task, Ty, with records a,b,c, and d. Let us
assume that Pr(Ug = 1) = Umae for both questions between
(a,b) and (c,d). In the worst case, a) all pairs between
a, b, c, and d are resolved, except pairs (a,b) and (c,d), i.e
Pr(U,; = 1) = 0 for all other pairs in Tz and b) there is an
optimal multi-item task T where for all pairs between the
records in T, there is a question with Pr(U; = 1) = Umaz.
Hence, in the worst case, the overall utility of Tg iS 2 * Umaz,
while the overall utility of 7™ is 6 * tmaez. That is, the utility
of Tg is the % = ﬁ of the utility of T.

Edges also runs in two stages, where the second stage
is identical to the second stage of Greedy. In Stage 1,
Edges starts by generating a vector of values for each non-
difficult pair p: in position ¢ of the vector, the value stored is
Pr(Uq = 1), for a question ¢ on p with g.seq = 4. Then, all
vectors are merged into one list which gets sorted in descend-
ing order. In successive steps, Edges generates multi-items
tasks until the cost of all tasks generated exceeds budget B.
In particular, in each step, Edges removes from the sorted
list, the | %] entries with the highest Pr(U, = 1), to create a
multi-item task with the records referenced by the selected
entries (if less than k records are referenced, we randomly
add records to the task). (The algorithmic description of
Stage 1 of Edges can be found in Appendix)

The time complexity of Edges is O(n?logn), where n is the
overall number of records, while the approximation ratio of
Edges is % Using Edges key insight and the way multi-
item and pairwise tasks are combined in Stage 2 of Edges,
we prove the i approximation ratio in the following two

k

theorems.

THEOREM 3. Consider a sequence of budgets

(Bj=jxc" | jezh)
For any i € [1,|Lg|]
. 1 "
U((D, LE[O : 7,]) Z EEU(Q)’ 7—}31)

where Lg is the outcome of Edges Stage 1 (Lg|0 : t] de-
notes the first i multi-item tasks in the list) and Tg, the set of
multi-item tasks that mazimizes EU for a budget constraint
B;.

PROOF:

The proof is based on the fact that the multi-item task ap-

pended in each step, contains the pairs referring to the high-
est Pr(U, = 1). The details are discussed in Appendix [D]
O

THEOREM 4. Fdges is a %—appro:m‘mation algorithm for the

Optimal Grouping Problem. That is,

BU(Pe, o) > 1 BU(P", T")

where Pg, Te are the tasks returned by Stage 2 and P*,T*
is the optimal solution to the Optimal Grouping Problem.
PROOF :
The proof is based on Theorem 3; we discuss the details

in Appendix

6.5 2Greedy Algorithm

Our third algorithm, 2Greedy (“too Greedy”), is the greedy
adaptation of Greedy: instead of examining all () possible
k-item tasks, in each step, 2Greedy greedily constructs a k-
item task. In particular, 2Greedy starts by adding to the
task the pair, say, (a, b), referring to the highest Pr(U,; = 1).
Then, it finds and adds the record c that increases the over-
all utility the most, based on pairs (a,c) and (b,c). The
same greedy rule is applied to add records, until k records
are added in the current task. Stage 2 remains the same as
in Greedy. (The algorithmic description of 2Greedy is given
in Appendix)

2Greedy does not come with theoretical guarantees. Nev-
ertheless, one of our key findings in the experimental eval-
uation is that 2Greedy is very effective in practice, due to
the structure of real datasets: in most cases, 2Greedy is just
slightly worse than Greedy.

7. EXPERIMENTAL EVALUATION

In our experiments, we compare Waldo with the two gen-
eral approaches studied in previous research on crowd entity
resolution: using only multi-item or pairwise tasks. In fact,
for the only-pairwise approach, we use the strategy proposed
in [36], adjusted to handle human errors. (Paper also
proposes a similar strategy.) We also compare Waldo with
two approaches that combine multi-item and pairwise tasks
in a “static” way (e.g., using half of the budget for multi-
item tasks and the other half for pairwise tasks). In addition,
we compare algorithms Greedy, Edges, and 2Greedy, with
the naive algorithm that randomly selects which records to

eigenface 0 eigenface 1 elgeniace 2 eigenface 3

cigenface 4 cigenface 5 elgenface a elgenface 7

'.
-

elgenfa:e 8 eigenface 9
—

eigenface 10

eigenface 11

(b) Eigenfaces

Figure 7: Face landmarks and eigenfaces in the All-
Sports dataset.

P
(a) Landmarks

include in each multi-item task. We run our experiments on
three datasets also used in related work (e.g., papers

38]).
7.1 Datasets, Parameters and ERA

7.1.1 Datasets

In our experiments, we used the AllSports dataset , the
Products dataset , and the Cora dataset :

AllSports: the dataset consists of images of athletes from
ten different sports. Performing entity resolution using only
image processing algorithms in this dataset is particularly
difficult. We tried Google Photos for this dataset, to find
out that only a small portion of the images where clustered
into entities (low recall), while for most clusters there were
photos referring to many different entities (low precision).
The initial machine answers are generated using two image
processing methods for face comparison: face landmarks and
eigenfaces. The face landmarks are key points detected on
a face image (e.g., nose tip). We used Face++ to detect
the faces on each image and to detect the landmarks of each
face (Figure depicts an example of landmark detection
by Face++). Using the detected landmarks, we extracted
features for each image (e.g., ratio of eye centers’ distance
to mouth width). The eigenfaces approach generates a low-
dimensional representation of face images using Principal
Component Analysis (PCA). We used the LFW dataset [23]
as the training set for PCA. Flgure depicts the first 12
eigenfaces produced by PCA. Machine answers are gener-
ated using logistic regression, the eigenfaces and landmarks
feature representation, and a subset of 67 athlete images
from AllSports as a training set. In particular, we used a
subset of LFW for eigenfaces, by excluding all persons with
less than 10 images in the dataset. Furthermore, in PCA,
we used the first 25 components. We extracted 15 distances
between face landmarks in each image and we used the (125)
ratios as features. The training examples for the logistic re-
gression classifier were the (627) matches/non-matches image
pairs from the subset of the 67 athlete images. The final
match probability in each machine answer is the value of
the trained logistic function for the corresponding pair of
images. Since Face++ did not manage to detect the face in
a significant portion of images, we used our training set of
67 images to compute an estimate for the matches percent-
age in each sport: for pairs containing an image where the
face is not detected, we used the corresponding percentage

Name Description Default

B budget in each task selection iteration 40 cents
s — that such conclusions also hold in a more realistic scenario.
c cost of a multi-item task 5 cents N h 1 , . h ionifi

oF cost of a pairwise task 3 cents (Qte that real answers .experlmentb ave a blggl capt cost,
T number of records in a multi-item task G so it would not be practical to run every scenario using real
CPM percentage of confusing pairs in matches 30% answers. For example, in our case, we had to issue 20000
CPnM | percentage of confusing pairs in non-matches | 15% multi-item tasks; see below.)

EnC error rate for non-confusing pairs 0.1 In human answer emulation, there are five parameters
ECk error rate for confusing pairs in k-item tasks | 0.5 controlling the emulation. Pairs of records are split into
ECp error rate for confusing pairs in pairwise tasks | 0.2 “confusing” and “non-confusing”. Confusing pairs are those

Table 1: Parameters used in experiments.

estimate to compute an initial machine answer.

Products: the dataset consists of product records. The
machine answers are generated using a histogram approach
(see paper [38|), where the similarity value for each pair is
the average between a) the Jaro distance [40| of the product
names and b) the ratio of the lowest to highest price. In the
histogram approach, pairs of records from a training set are
placed into buckets based on the similarity value for each
pair. In each bucket, we compute the percentage of pairs
that are matches. This percentage gives the probability of
a pair with a given similarity value to be a match.

Cora: the dataset consists of paper publications with
three main fields: the title and authors of the paper, and
the conference/journal where the paper was published. The
initial machine answers are generated using a histogram ap-
proach, where the similarity value for each pair of records is
the average Jaro distance of all fields. In particular, for each
pair of records, we compute the Jaro distance of the title,
the authors, the publication venues, and the average Jaro
distance of all other common fields in the two records. The
final similarity value is the average of the four distances.

To be able to compare the results from the three datasets,
in the experiments included in the paper, we used subsets of
the Products and Cora datasets, so that the total number
of records is the same for all datasets; around 200 records
(20000 potential pairs). Although datasets are typically
much larger than 200 records, in practice, datasets are split
into small buckets (e.g., one bucket for Rolex watches in
Amazon) and entity resolution is performed independently
in each bucket. The smaller dataset size also allowed us
to explore a wider range of parameters and more scenar-
ios. We did try some of those scenarios using larger dataset
sizes, to find out that the same findings hold. (In fact, in
some cases the gains from applying Waldo compared to us-
ing other alternatives increase when there are more records
in the dataset.) All the data used in our experiments can
be found under url [3].

7.1.2 Parameters

Table [I] summarizes the parameters of the experimental
setting. In the experiments presented here, in each iteration,
we spend a budget B of 40 cents. We also tried other values
for budget B, but we did not notice any significant differ-
ences regarding our key findings. In addition, the cost ¢™ of
any multi-item task (independently of its size k) is 5 cents
and the cost ¢” of a pairwise task is 2 cents. (By keeping
the same cost ¢™ for any size k, we examine different values
for the normalized cost-per-pair, i.e., cost ¢ /(%).)

In our experiments, we used both emulated human an-
swers (on real datasets) and real answers from mTurk (again,
on real data). With answer emulation we have more control
over the experimental setting and we are able to explore
and draw conclusions about the behavior of the different
approaches in different scenarios. Real answers let us verify

with a high error rate, while non-confusing have a low er-
ror rate. (Depending also on the cost parameters and size
k, confusing pairs usually end up being detected as diffi-
cult.) The error rate for non-confusing pairs is the same for
pairwise and multi-item tasks and is given by the Error-non-
Confusing (EnC) parameter. (For example, for EnC = 0.1
we synthetically generate each non-confusing-pair answer
with a 0.1 probability the generated answer to be wrong.)
The error rate for confusing pairs is given by the ECk pa-
rameter, in case of k-item tasks, and the ECp parameter,
in case of pairwise tasks. The last two parameters are the
Confusing-Percent-Matches (CPM) parameter, which gives

the percentage of confusing pairs for matches, and the Confusing-

Percent-non-Matches (CPnM) parameter, which gives the
percentage of confusing pairs for non-matches. (For exam-
ple, a CPM = 30% means that 30% of the pairs that are
matches, are confusing.)

Note that the default values for the answer emulation pa-
rameters are consistent with the results in Section 2 For
example, for the default CPM, EnC, ECk and k values of
Table [1] the expected false negative (FN) rate for 6-item
tasks is 0.5+ 30% + 0.1 % 70% = 0.22. As Figure [3(a)] shows,
the FN rate for k = 6 is exactly 0.22.

In our real human answers’ experiments, we focused on
the AllSports dataset. In order to be able to replicate the
real answers’ experiments, we created a cache of answers
for multi-item tasks and we used a pre-existing cache for
pairwise tasks [1]. The cache for multi-item tasks is created
from 2000 tasks, each one assigned to ten workers. In case a
multi-item task issued is not contained in the cache, we em-
ulate a human answer taking into account how many times
the images in that task are assigned the same or different
colors in other tasks, in the cache. In particular, for each
such task, we assign colors to the records of the task in a
random order. For each record we count the percentage of
times it was assigned the same color with each record al-
ready assigned a color in the task, in the other tasks of the
cache. Based on those percentages, we flip a coin and based
on the outcome, we pick a color for the record. The cache
for pairwise tasks consists of ten YES/NO answers, for each
pair of images in the dataset.

7.1.3 Entity Resolution Algorithm

In the experiments presented here, we used a simple tran-
sitive relation algorithm (the same one with papers [34}
306]). This algorithm applies the transitive relation both for
matches and non-matches. For example, if pair (a,b) is a
match and pair (b,c¢) is also a match, the algorithm infers
that (a,c) is a match as well. On the other hand, if (a,b) is
a match and (b, ¢) is a non-match, the algorithm infers that
(a,c) is a non-match.

7.2 Experiments

In the first experiment presented here, we compare Greedy,
Edges, 2Greedy, and Random. The Random approach ran-

=Greedy Q200 =, % g :
«2Greedy 2 150 =Greedy S =Waldo
--Edges '% 122 - 2Greedy ”|V|L.J|tl.
—Random @ o ~Edges - *Pairwise
1 51 101 151 201 251 = 4 6 9 1 1 101 201 301
Iterations Multi-task size - k Iterations
(a) k=6 (b) k € {4,6,9,12} (¢) Products - CPM = 30%
g
=Waldo =Waldo § =Waldo
--Multi --Multi N --Multi
«+Pairwise ««Pairwise «+Pairwise
1 100 201 301 1 101 201 301 1 51 101 151
Iterations Iterations Iterations

(d) AllSports - CPM = 30%

(e) AllSports - CPM = 50%

(f) Cora - CPM = 50%

Figure 8: Comparison of (i) Greedy, Edges, and 2Greedy, and (ii) Waldo, Multi, and Pairwise.

domly selects the records to include in each multi-item task
and uses the same second stage with the other three, to
select a number of pairwise tasks for difficult pairs. The
experiment is run on the AllSports dataset using answer
emulation, with the default parameter values besides CPM,
which is set to 10%, and CPnM, which is set to 5%. In this
first experiment, we use lower values than the default for
CPM and CPnM (i.e., assume lower percentages of confus-
ing pairs) because the main focus is on the multi-item task
selection (which is even more critical when the percentage of
confusing pairs is low), when comparing these 4 approaches.

The results are depicted in Figure the y-axis shows
the F1 score after each task selection iteration (x-axis). F1
is given by 2;_’:_*:, where p is the precision and r is the recall.

Greedy is the most effective algorithm and 2Greedy is very
slightly worse. The cost of reaching an F1 score of 0.9 via
Greedy and 2Greedy is half the cost of reaching an F1 of 0.9
via Edges: Greedy and 2Greedy need around 100 iterations
to reach 0.9 while Edges needs 200 iterations. Even more
impressive is the improvement over the naive Random algo-
rithm: Random needs around 1700 iterations to reach 0.9
(not shown in Figure , hence, there is a 17x improve-
ment when using Greedy or 2Greedy and a 8x improvement
when using Edges.

We also compared Greedy, Edges, and 2Greedy, for differ-
ent values of k. The results are depicted in Figure The
y-axis shows the number of iterations needed to reach an F1
score of 0.9, for each k value (x-axis). There are two inter-
esting findings from the experiments of Figure First,
2Greedy is as cost-effective as Greedy, except for one case:
for k = 4, 2Greedy needs around 20 percent more iterations
than Greedy. Incidentally, in this case where k is small,
the computational cost of Greedy is not prohibitive and the
choice of Greedy over 2Greedy may be preferable, when the
number of records is not very large. Second, Edges needs al-
most twice as many iterations as Greedy and 2Greedy do, for
k greater or equal to 6. This points out that the constant
approximation factor of Greedy makes a 2x difference in
practice, compared to the k approximation factor of Edges.
Since 2Greedy has a very similar performance to Greedy,
and is also a more lightweight algorithm, we use 2Greedy in
the experiments that follow.

10

Next, we compare Waldo (task selection is performed by
2Greedy) with using only multi-item tasks (Multi) or using
only pairwise tasks (Pairwise). (That is, in Multi we con-
sider all pairs as non-difficult while in Pairwise we consider
all pairs as difficult.) The experiment is run on the AllSports
dataset with the default parameter values.

The results are depicted in Figure There is a sub-
stantial improvement when using Waldo compared to Multi
and Pairwise: a 1.5x improvement over Multi and a 2x im-
provement over Pairwise, for the cost of reaching an F1 of
0.8. In addition, Waldo converges to a much higher F'1 score
compared to Multi: Waldo reaches to an F1 close to 1.0 after
200 iterations, while Multi converges to an F1 just above 0.8
as the confusing pairs cannot be resolved using multi-item
tasks. Of course, the size of the gap between Waldo and
Pairwise or Waldo and Multi can grow if one of the inter-
faces becomes less effective (higher expenses or more errors)
compared to the other. Waldo can dynamically adapt to
each scenario, and use the interface that is most effective in
each case, for each pair.

Next we examine an extreme case with a large percentage
of confusing pairs: we increase CPM to 50% and CPnM
to 25%. The results are depicted in Figure Since the
confusing pairs mostly affect the multi-item tasks (ECk is
0.5 while ECp is 0.2), Multi becomes much worse than Pair-
wise and cannot reach an F1 higher than 0.65. Nevertheless,
Waldo remains robust to the large percentage of confusing
pairs and shows an important 1.6x improvement over Pair-
wise for the cost of reaching an F1 of 0.8. In addition, the
improvement of Waldo over Multi increases greatly: the cost
for reaching an F'1 of 0.6 with Multi is now three times more
than the cost with Waldo.

The effect of the confusing pairs also depends on the
dataset and, in particular, the number/distribution of records
per entity, as we illustrate in the next two experiments.

In the experiment of Figure we use the Products
dataset and the default parameter values. That is, CPM
is set to 30% and CPnM to 15%, just like in Figure @
Nevertheless, we observe that the plot in Figure ooks
more like the plot of Figurethan the plot of Figure
with the Pairwise curve being close to the Waldo curve and
Multi converging to a low F1 score, below 0.6. This can

400

o -
© 300
2
0 200 e =Waldo
S100 ¥ Half-Half
)
C oo +Fixed
Q
d 10% 30% 50%
CPM

Figure 9: Waldo vs Half-Half and Fixed.

be explained by the number of records per entity: in the
Products dataset there are exactly two records that refer to
the same entity/product for the vast majority of entities,
while in the AllSports dataset for the vast majority of enti-
ties there are more than two records. Having more records
per entity can be beneficial: the ERA can infer matches
through the transitive relation for confusing pairs without
asking humans a single question for such pairs.

In the experiment of Figure we use the Cora dataset
and try the same stress test with Figure by increas-
ing CPM to 50% and CPnM to 25%. Quite surprisingly,
the results are very different from the ones in Figure
and all three approaches show almost the same, high, cost-
effectiveness. The reason is the power-law distribution for
the number of records per entity in the Cora dataset, that
causes the vast majority of matches to refer to a very small
number of entities.

As the experiments of Figures to indicate, there
is a clear advantage of combining multi-item with pairwise
tasks, compared to using just one of the two types of tasks.
In the next experiment, we investigate further to see if a
“static” approach for combining multi-item and pairwise
tasks can be just as effective as the sophisticated task se-
lection method of Waldo. In fact, we compare Waldo to two
static approaches: one that uses half of the budget B in each
iteration for multi-item tasks and the rest for pairwise tasks
(Half-Half) and one that switches to the pairwise interface
for a pair of records only when a fixed limit of questions is
reached for that pair (Fixed). We run the experiment on
the AllSports dataset and we vary CPM from 10% to 50%.
Percentage CPnlM is always set to CPM /2.

The results are depicted in Figure [0} where the x-axis
shows the CPM and the y-axis the number of iterations
needed to reach an F1 score of 0.9. As the results indicate,
Waldo gives a substantial improvement over Half-Half and
Fixed, which increases as CPM increases: Half-Half and
Fixed require 30% more iterations to reach 0.9 for CPM =
10%, 35% more iterations to reach 0.9 for CPM = 30%, and
65% more iterations to reach 0.9 for CPM = 50%.

As our experiments so far show, Waldo dynamically uses
the most effective interface and shows cost savings in many
cases. Furthermore, Waldo never does worse (only in Fig-
uredid we see Waldo slightly underperform). Regarding
our 3 algorithms Greedy, 2Greedy, and Edges, they give a
vast 17x improvement (8x in case of Edges) over the naive
Random approach. In addition, the performance of Greedy
and Edges is aligned with their theoretical guarantees, while
2Greedy, which does not have theoretical guarantees, proves
to be almost as effective as Greedy, in practice.

7.2.1 mTurk Answers

We now switch from answer emulation to real answers, to
examine if the improvement of Waldo over Multi and Pair-

11

0.8
S 06
Q- =Waldo
Zo04 Multi
I 0.2 e
«Pairwise
0
1 51 101 151
Iterations

Figure 10: Experiments with mTurk answers.

wise holds in an actual mTurk scenario as well. Figure
depicts the results on the AllSports dataset for k = 6. Waldo
is considerably better than Pairwise: Pairwise needs 50%
more iterations to reach an F1 score of 0.8 and, hence, it
requires a monetary cost 50% higher than Waldo. Multi is
substantially worse than Waldo and Pairwise, as it can not
reach an F1 higher than 0.7.

Let us now compare the results of Figure with the
results from the corresponding answers’ emulation experi-
ment: the experiment of Figure (The results in Sec-
tion [2| are on the AllSports dataset and, as discussed in

Section | the default parameter values used in Fig-
ure [8(d)| are aligned with the error rates observed in Sec-
tion |2}) When comparing the results of Figure [10| with the

results of Figure it is interesting to observe that while
Waldo and Pairwise show an improved performance in the
real-answers setting, Multi converges to a much lower F1
score. The reason for Multi performing worse in the real-
answers setting, is that the “confusing” pairs can be “clus-
tered”, in practice. For example, consider the image of a
soccer player with her head down so that her face is not
entirely visible, but with her player number being visible.
This image will form a confusing pair with all other images
of the same player where the player number is not visible.
Waldo intelligently chooses to use pairwise tasks that are
more effective for such confusing pairs and is not affected by
such a potential “clustering”.

7.2.2 Key Findings

e 2(Greedy does not provide any theoretical guarantees and
can fail arbitrarily bad in theory. Nevertheless, in real
datasets, 2Greedy is as effective as Greedy in most cases,
while being more lightweight.

e In cases where there are few confusing pairs in a dataset,
using multi-item tasks is more cost-effective than using
pairwise tasks. On the contrary, when there are many
confusing pairs using pairwise tasks is a better option.
Waldo proves to be substantially better than using only
multi-item or pairwise tasks in all cases.

e Naively combining multi-item and pairwise tasks (like Half-
Half and Fixed do), is not sufficient to reach Waldo’s cost-
effectiveness: Half-Half and Fixed require 30 to 65 percent
more iterations than Waldo to reach an F1 of 0.9, in the
experiments discussed here.

e Our experiments prove that our problem formulation ac-
curately captures the right objectives, as the following
findings indicate: a) the constant factor approximation
algorithm Greedy is 17 times better than the random ap-
proach, while the %—factor approximation algorithm Fdges
is 8x times better. b) when compared to Multi and Pair-
wise, Waldo is the most cost-effective approach in all cases

and it is considerable better than the second best in many

cases. ¢) Waldo’s budget allocation (driven by the objec-
tive function of the Optimal Grouping problem formula-
tion) is substantially more cost-effective than the static
allocations of Half-Half and Fixed.

8. RELATED WORK

Over the last few years, crowdsourcing has become an
important tool for data cleansing and integration. Many
recent studies have proposed systems and frameworks [9,
10, (11} |18} |14} |37} 42| 44} |31] that combine algorithms and
humans to perform data cleansing and integration.

One of the most critical tasks in data integration is entity
resolution (8] |13, |16l |20, 28] [30} |40, [39]. In crowd entity
resolution, most studies assume the use of the pairwise in-
terface (7} |15, 17, [21} [34} |32, |38| 36l |43]. Very related to
our paper are the studies in papers |17} [34] |36], where the
approaches proposed use only pairwise tasks and the key in-
sight is that finding matches first (before non-matches) ac-
celerates the entity resolution process. Our Optimal Group-
ing problem formulation also uses this insight. The two
important differences of our work with the studies |17, |34,
36] are: a) we do mot assume that humans always give a
correct answer and b) we combine pairwise with multi-item
tasks. In fact, one of the fundamental observations driving
our approach, is that the error rates of humans are different
for different pairs of records: using the multi-item tasks for
low error-rate pairs and using the pairwise tasks for high
error-rate pairs is one of the key insights of Waldo.

Approaches using only pairwise tasks that take into ac-
count human errors have also been proposed [21} [32, [43].
One of the main objectives in these studies is the resolution
of entities taking into account all (possibly erroneous) hu-
man answers. On the contrary, in our study, we combine
multi-item and pairwise tasks and we focus on the selection
of the set of tasks that best utilizes the available budget.

The use of the multi-item interface has also been stud-
ied in crowd entity resolution papers 26| 35]. Paper [26]
compares the use of the multi-item interface to batching
multiple pairwise YES/NO comparisons in the same task
for humans. Another paper [35] uses only the multi-item
interface, assumes humans do not make mistakes, and oper-
ates in a single step by selecting a set of tasks that cover all
ambiguous (based on machine evidence) pairs. On the other
hand, we observe that although the multi-item interface is
more cost-effective for many pairs of records, there are also
pairs where the pairwise interface is more effective, and we
study the optimal way to combine the two interfaces.

Finally, the multi-item interface has also been proposed

in |19 for the slightly different problem of crowd-clustering [19,

25, |41], where the items to be placed in the same cluster do
not have to refer to the same entity, but just be “similar”
under human-decidable criteria.

9. CONCLUSION

We studied an approach of combining pairwise and multi-
item tasks for Crowd Entity Resolution. Our key insight is
that the available resources can be best utilized when certain
“difficult” pairs of records are included in pairwise tasks
while the rest of the pairs are resolved via multi-item tasks.
We provided a formal definition for the problem of selecting
the optimal set of multi-item and pairwise tasks within a
budget constraint and we derived two algorithms with strong

12

theoretical guarantees and one lightweight heuristic which is
very effective in practice.

In our experimental evaluation, our Waldo approach proved
to be the most cost-effective alternative in all scenarios ex-
amined. When compared to using only pairwise tasks, Waldo
gave a substantial speedup in resolution in scenarios where
there are few difficult pairs and when compared to using
only multi-item tasks, Waldo showed a substantial improve-
ment in scenarios where there are many difficult pairs. Our
experiments have also shown that an important factor crit-
ically affecting performance, is the way the difficult pairs
are distributed across a dataset. In practice, the difficulty
of each pair of records for a human and how difficult pairs
are distributed in a dataset cannot be known in advance.
Waldo is able to timely and accurately estimate the diffi-
culty of each pair and best utilize the resources through a
sophisticated task selection.

10. REFERENCES

[1] Allsports.
stanford.edu/~verroios/datasets/allsports.zip.

[2] Cora dataset.
people.cs.umass.edu/~mccallum/data/cora-refs.tar.gzl

3] Datasets. stanford.edu/~verroios/datasets/extended.

4] Face++. http://www.faceplusplus.com/.

5] Products. http://dbs.uni-leipzig.de/file/Abt-Buy.zip,

6] Tamr. http://www.tamr.com/.

7] A. Abboura, S. Sahrl, M. Ouziri, and S. Benbernou.
Crowdmd: Crowdsourcing-based approach for
deduplication. In Big Data (Big Data), 2015 IEEE
International Conference on, 2015.

[8] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra.
Progressive approach to relational entity resolution.
PVLDB, 7(11):999-1010, 2014.

9] A. Arasu, M. Gé6tz, and R. Kaushik. On active learning of

record matching packages. In SIGMOD, 2010.

K. Bellare, S. Iyengar, A. G. Parameswaran, and

V. Rastogi. Active sampling for entity matching. In KDD,

2012.

M. Bergman, T. Milo, S. Novgorodov, and W.-C. Tan.

Query-oriented data cleaning with oracles. In SIGMOD,

2015.

A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and

A. Vijayaraghavan. Detecting high log-densities: an

(11]

(12]

O(n1/4) approximation for densest k-subgraph. In STOC,
2010.

I. Bhattacharya and L. Getoor. Collective entity resolution
in relational data. ACM Trans. Knowl. Discov. Data, 2007.
X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti,

N. Tang, and Y. Ye. Katara: A data cleaning system
powered by knowledge bases and crowdsourcing. In
SIGMOD, 2015.

S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the
crowd for top-k and group-by queries. In ICDT, 2013.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.
Data Eng., 19(1):1-16, 2007.

D. Firmani, B. Saha, and D. Srivastava. Online entity
resolution using an oracle. PVLDB, 9(5):384-395, 2016.

C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,
J. Shavlik, and X. Zhu. Corleone: Hands-off crowdsourcing
for entity matching. In SIGMOD, 2014.

R. Gomes, P. Welinder, A. Krause, and P. Perona.
Crowdclustering. In NIPS, 2011.

A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental
record linkage. PVLDB, 7(9):697-708, 2014.

(13]

14]

(15]

(16]

(17]

(18]

(19]

20]

stanford.edu/~verroios/datasets/allsports.zip
people.cs.umass.edu/~mccallum/data/cora-refs.tar.gz
stanford.edu/~verroios/datasets/extended
http://dbs.uni-leipzig.de/file/Abt-Buy.zip

[21] A. Gruenheid, B. Nushi, T. Kraska, W. Gatterbauer, and
D. Kossmann. Fault-tolerant entity resolution with the
crowd. CoRR, 2015.

D. Haas, J. Wang, E. Wu, and M. J. Franklin. Clamshell:
Speeding up crowds for low-latency data labeling. PVLDB,
9(4):372-383, 2015.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical
Report 07-49, University of Massachusetts, Amherst,
October 2007.

A. Krause and C. Guestrin. A note on the budgeted
maximization of submodular functions. Technical report,
CMU, CMU-CALD-05-103, 2005.

J. Lee, H. Cho, J.-W. Park, Y.-R. Cha, S.-W. Hwang,

Z. Nie, and J.-R. Wen. Hybrid entity clustering using

(22]

(23]

[24]

25]

crowds and data. The VLDB Journal, 22(5):711-726, 2013.

[26] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
Human-powered sorts and joins. PVLDB, 2011.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An
analysis of approximations for maximizing submodular set
functions. Mathematical Programming, 1978.

T. Papenbrock, A. Heise, and F. Naumann. Progressive
duplicate detection. Knowledge and Data Engineering,
IEEE Transactions on, 27(5):1316-1329, 2015.

A. G. Parameswaran, H. Garcia-Molina, H. Park,

N. Polyzotis, A. Ramesh, and J. Widom. Crowdscreen:
Algorithms for filtering data with humans. In SIGMOD,
2012.

V. Rastogi, N. Dalvi, and M. Garofalakis. Large-scale
collective entity matching. PVLDB, 4(4):208-218, 2011.
Y. Tong, C. Cao, C. Zhang, Y. Li, and L. Chen.
Crowdcleaner: Data cleaning for multi-version data on the
web via crowdsourcing. In ICDE, 2014.

V. Verroios and H. Garcia-Molina. Entity resolution with
crowd errors. In ICDE, 2015.

V. Verroios, P. Lofgren, and H. Garcia-Molina. tdp: An
optimal-latency budget allocation strategy for
crowdsourced MAXIMUM operations. In SIGMOD, 2015.
N. Vesdapunt, K. Bellare, and N. Dalvi. Crowdsourcing
algorithms for entity resolution. In VLDB, 2014.

J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. In VLDB, 2012.

J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, 2013.

S. Wang, X. Xiao, and C.-H. Lee. Crowd-based
deduplication: An adaptive approach. In SIGMOD, 2015.
S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question
selection for crowd entity resolution. In VLDB, 2013.

S. E. Whang, D. Marmaros, and H. Garcia-Molina.
Pay-as-you-go entity resolution. IEEE Trans. on Knowl.
and Data Eng., 25(5):1111-1124, 2013.

W. Winkler. Overview of record linkage and current
research directions. Technical report, Statistical Research
Division, U.S. Bureau of the Census, Washington, DC,
2006.

J. Yi, R. Jin, S. Jain, T. Yang, and A. K. Jain.
Semi-crowdsourced clustering: Generalizing crowd labeling
by robust distance metric learning. In NIPS, 2012.

C. Zhang, L. Chen, Y. Tong, and Z. Liu. Cleaning
uncertain data with a noisy crowd. In ICDE, 2015.

C. Zhang, R. Meng, L. Chen, and F. Zhu. Crowdlink: An
error-tolerant model for linking complex records. In
Workshop on Exploratory Search in Databases and the
Web (EzploreDB), 2015.

C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao.
Reducing uncertainty of schema matching via
crowdsourcing. PVLDB, 6(9):757-768, 2013.

27]

28]

(29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]

(37]
(38]

(39]

[40]

[41]

42]

(43]

[44]

13

APPENDIX
A. PROBABILITIES’ COMPUTATION

In this section, we describe how to compute the proba-
bility of a pair being a (non) match given the answers for
that pair, and the probability of reaching x NO and y YES
answers for a specific pair of records.

Each pair of records has a different false negative/positive
rate, e, or em. We start by assuming that we know the
exact false negative/positive rate for each pair of records
and we then generalize into the case where the error rates
need to be estimated. Moreover, we first focus in the case
where we only have multi-item answers for the pair and we
then discuss what changes when we have multi and pairwise
answers.

When we are aware of the error rates e, and em for a
given pair p of records, we can compute the probability of
the two records referring to the same entity, given the multi-
item answers for that pair:

Pr(AM|m, e,,) Pr(m)

Pr(m|AM, €m s E77)

(To avoid clutter, we will be using AM, AT and Pr(m),
instead of AM[p], AP[p], and priors[p].)

For example, if AM = (1,1) and e,, = 0.1, then P?”(AM|m7 em) =

0.9 ¥ 0.1 = 0.09. The probability Pr(m|AM, em, em) is de-
fined equivalently.

Let us now define the points (z,y), where after z NO and
y YES multi-item answers, we resolve the pair:

Fd = {(l‘,y) : Pr(m|AMU(;r,y)) > Pthr V Pr(m|AMU(;r,y)) > pt}w'}

For some pairs of records it is possible that they will never
get resolved, no matter how many questions are asked for
them: there are pairs that, even humans, cannot recognize if
they are a match or not. For such pairs we will keep getting
mixed answers, even when using the pairwise interface, and
the probability threshold pu,,, required to resolve a pair,
will never be reached. This is why Waldo uses two upper
thresholds fM and fF, for the maximum number of times
a pair can be included in a multi-item and a pairwise task,
respectively:

e fM: the maximum number of times we can include a
specific pair of records in a k-item task (a pair can still
get unintentionally included in a k-item task even if the
™ limit has been reached).

o fF: the maximum number of times we can include a
specific pair of records in a pairwise task.

Next, we define the set of points (z,y) where we stop
asking multi-item questions for a pair of records, because
we reached threshold fM:

Fo={(z,y) - [AY |+ +y =" A

Pr(m|AM U (z,y)) < pmr A Pr(m|AM U (z,y)) < pm}

EXAMPLE 6. Consider again the case in Example 1.
In addition, assume that fM = 5. Based on the values
of the parameters in this example, a pair p is resolved via
multi-item tasks, if we get a) 2 YES and 0 NO answers,

= Pr(AMm, e,) Pr(m) + Pr(AM[m, ex) Pr(im)

#YESes

(1,3 (23
— @@

(02) ®

(20)

#NOs

Figure 11: Grid of answers to illustrate sets F; and
F,.

b) & YES and 1 NO answers, ¢) 0 YES and 2 NO an-
swers, d) 1 YES and 3 NO answers. (In the first two cases,
Pr(m|AM[p]) = 0.9878 > 0.98 and in _the last two cases
Pr(m|AM[p]) = 0.9878 > 0.98.) Figure 11| depicts the four
cases on a grid with the number of YES answers on the y-
azis and the number of NO answers on the z-azis (this visu-
alization is introduced in [29]). Set Fy consists of those four
points (green and red points). In addition, set F, consists of
the blue points, (3,2), (2,3).

We denote by F' the union of Fy and F,.

To avoid clutter in the definitions of F; and F,, we used
Pr(m|AMU(z,y)) instead of Pr(m|AMU(z,y), em, em); how-
ever, we did assume fixed error rates e, and em.

The probability of reaching to x NOs and y YESes, is
computed using the following two functions:

e pn(z,y) is the probability that we reach to point (z,y)
given that the pair is a match; and AM and e,,.

e pm(z,y) is the probability that we reach to point (z,y)
given that the pair is non-match; and AM and er.

Functions pm,(z,y) and pm(z,y) are computed using the
recursive formulas in Figure

Let us now generalize to the case where we do not know
the exact error rates e,,, em. Past answers, AM, for a pair
of records, define one distribution for e;,:

Pr(AM|e., m) Pr(em|m)

M —
Pr(em|A™,m) = Pr(AM[m)

(4)

and one distribution for em:

Pr(AM|em, m) Pr(ew|m)

— M m —
Pr(em|A™,m) = Pr(AM[m)

()

Pr(em|m) and Pr(em|m) are the prior distributions for
the error rates and can be computed by using a training
set of matches for Pr(en|m) and a training set of non-
matches for Pr(em|m). (We would count the portion of
(non) matches for each error rate in an experimental setting
similar to the one used in Section ??.) Moreover, in or-
der to compute Pr(AM|m) (appearing in the denominator
of Equation , we need to integrate over e,,:

Pr(AMm) = /0 Pr(AM|ep, m)Pr(em|m)den (6)

and to compute Pr(AM|m) (appearing in the denominator
of Equation , we need to integrate over em:

14

1
Pr(AMm) = / Pr(AM |em, M) Pr(em|m)dem (7)
0
Based on the computed distributions for e,, and em, we
can extend functions pm,(z,ylen) and pm(z,ylem), for the
general case where e, and em are not known:

1
pon(,) = / P, ylem) % Pr(em|m, AM)der, (8)
0

and

(9)

We complete the discussion on the probability of reaching
a point (z,y), by extending to the case where we have multi-
item and pairwise answers for a pair of records. In practice,
this happens when we detect that a pair of records is dif-
ficult and switch to the pairwise interface for this pair. In
this case, multi-item answers are used to compute the prior
match probability for that pair, using Equations [6] and [7]
and:

1
pen(,y) = / P, ylem) * Pr(em|mt, AM)den
0

My Pr(AM|m)Pr(m)
PrimlA™) = B a5 m) Pr(m) + Pr(AM[m) Pr(im)

(10)

— 1AMy _ P’“(AM|m)P7’(m)
PrimlA™) = 5 a5Tm) Pr(m) + Pr(AM[m) Pr(m)

(11)

Therefore, once we switch to the pairwise interface for a
pair of records, we a) “replace” the machine answer prior
Pr(m), with the priors from Equations [10| and |11} and b)
use the exact same computations (Equationsto 9) with the
multi-item only answers case, but we use only the pairwise
ar;swers AF instead of the multi-item answers A™; initially
AT =0.

B. EXPECTED COSTS’ COMPUTATION

Here, we describe how to compute the expected cost of
resolving a pair of records (i.e., determining if the pair is
a match or a non-match) via pairwise or multi-item tasks.
Again, we start from the simple case where the error rates,
em and ey, are known for the pair.

To give the intuition before discussing the technical de-
tails, let us use a simple example illustrating how to com-
pute the expected cost to resolution via multi-item tasks, in
a simple case where the error rates are known:

EXAMPLE 7. Consider again the case in Example 6. In
addition, assume that k = 6, f¥ =1, ¢¥ = 10 cents, and
M = 15 cents. Consider also the cost-per-pair for a multi-
item task, i.e., ™ divided by the number of pairs in a multi-
item task, (};) The cost-per-pair in this case is 15/ =1
cent. The cost if points (0,2) or (2,0), in Figure are
reached is two cents (i.e., two times the cost-per-pair) and
the cost in case points (1,3) or (3,1) are reached is four
cents. Moreover, there is also the possibility of not resolv-
ing the pair via multi-item tasks, in case we reach the blue
points (2,3) and (3,2). In that case, we will also have to
issue an single pairwise task for this pair (f° =1). Hence,
the cost will be 5 + 10 = 15 cents if one of the blue points

pm(@,y = D(L = em) +pm(z = Lylen :(x,y—1)¢FA(x—1y) ¢ F
pm(m,y—l)(l—em) (m,y—1)¢F/\(x—1,y)EF

pm(amy): pm(xflvy)em (xvyfl)eF/\(xflvy)¢F
0 (z,y—1) e FA(z—1,y) € F

1 r=0Ay=0
pm(z—1L,y)(1 —em) +pm(z,y — Vem :(v,y—1)¢EFA(z -1y ¢F

pm(z,y — 1em (myy—1)¢ FA(zx—1,y) € F

pm(@,y) = § pm(@ —1y)(1 — em) t(@y—1)eFA@@—1y ¢F
i(z,y—1)e FA(z—1,y) € F

r=0Ay=0

Figure 12: Recursive computation of p,,(z,y) and pm(z,y).

is reached. To compute the expected cost to resolution via
multi-item tasks, CM, we also need to compute the proba-
bility of reaching each of these points (for this computation
see Figure n Appendix. In this case, that we assumed
em = em = 0.1 and priors[p] = 0.5, the probability of reach-
ing (0,2) is 0.41 (same for (2,0)), the probability of reach-
ing (1,3) is 0.0738 (same for (3,1)), and the probability of
reaching (2,3) is 0.0162 (same for (3,2)). Hence, the ex-
pected cost CM is 2.7164 cents.

Unlike the structure of the previous section, we start here
from the computation of the expected cost to resolution via
the pairwise interface and we then discuss the computation
of the expected cost via the multi-item interface.

A pair is resolved when it reaches a point in Fj; or when it
reaches a point in F,, in case of pairwise answers. In case we
reach a point in F, with pairwise answers, it means that this
(difficult) pair cannot be identified as a match or non-match
even when using the pairwise interface; and there is no point
in spending more money in trying to resolve it. (In case we
reach a point in F, with multi-item answers, we switch to
the pairwise interface to try to resolve the pair.)

For pairwise answers, the expected cost to reach to a point
in Fy given that the pair is a match, is:

Calemm) =3 % (@ +y) * pm(z,ylem)

(z,y)EFy

(12)

while the expected cost to reach to a point in Fy given
that the pair is a non-match, is:

Calemm) = 3 & x (@ +y) wpmlaylem) (13)

(z,y)EFg

Similarly, we can compute the expected cost to reach to
a point in F, given that the pair is a match:

Colemsm) = 3" " % (@+y) ¥ pmlz.ylen) (14)
(z,y)E€F,
or given that the pair is a non-match:
Colemr,m) = > " x (x+y) * pm(=, ylem) (15)
(z,y)€F,

15

Overall, the estimated cost for a specific pair that has
switched to the pairwise interface, given that the pair is a
match, pairwise answers AF and a fixed error rate e, is:

Cl(em, m) = Cd(enu m) 4+ Co(em, m) (16)
and given that the pair is a non-match:
C(em,m) = Cq(em, m) + Co(em, M))

Using the error rates’ distributions of Equations E| and
and the cost formulas for fixed error rates from Equations|[I6]
and we can compute the general estimated cost, given
that the pair is a match:

C(m):/o C(em, m)Pren| AT, m)de,, (18)

and the general estimated cost given that the pair is not
a match:

1
C(m) = / C (e,) Pr(em] AT, 1) dens (19)
0
The overall cost is given by the following formula:
C” = C(m)Pr(m|A") + C(m) Pr(m|A") (20)

where Pr(m|AT) and Pr(m|A") are computed using Equa-
tions [0 and [l

In case of multi-item answers, the expected cost to reso-
lution, CM, is computed the same way, using Equations
to The only difference is with the cost computation for
the case we reach a point in F,. In particular, Equations
and [I5] become:

Colemm) = > €+« (@ 4+)] % pm(z,ylem) (21)

(z,y)€F,

and
Colemmm) = 3 [C7 + &)« (2 4 y)] * prle, ylem) (22)
(z,y)EF,

k
where ¢(3) is the cost-per-pair for a multi-item task, i.e.,

ela) = M/ (5).

That is, if we reach a point f in F,, we will pay the cost
of reaching that point from the current point, c(g) * (z+1vy),
plus the expected cost for resolving the pair using pairwise
questions, C¥, from point f. Note that the expected cost
CP depends on which point in F, we reached, as different
points define different priors, Pr(m|AM), for the resolution
using pairwise questions. (For example, if Pr(m|AM) is very
high, we can expect that a few pairwise questions will suffice
to determine that the pair is a match.)

C. ALGORITHMS

We give the algorithmic description of the second stage
shared by Greedy, Edges, and 2Greedy, in Algorithm (We
use Greedy for the first stage in Algorithm [I]) Then we
describe Stage 1 of Greedy, in Algorithm[2] Stage 1 of Edges,
in Algorithm [2] and Stage 1 of 2Greedy, in Algorithm[2] To
simplify the description of the algorithms, we assume that
the budget B is a multiple of the multi-item cost ¢™.

Algorithm 1 Stage 2

Lgr := Greedy(€E, B)
Lp:=10
for each ¢ € D do
for each seq € [1, fF] do
g.seq := seq
compute Pr(U,; = 1) using Lemma 2
append q to Lp
end for
end for
. sort Lp based on Pr(Ugs = 1), in desc order
. for each i € [0,|Lgr|] do
L/GR := remove the last ¢ tasks from Lggr

13: =20

14: L', := the first j tasks in Lp

15: if EU(L),Lgg) > EU(Pgr,Tar) then
16: Pcr, Tar 1= LDvL/GR

17: end if

18: end for

19: return Pgr, Tar

In Line 1 of Algorithm [1} the first stage of Greedy (or
Edges or 2Greedy) is invoked, which produces a sorted list
of multi-item tasks. In Lines 2 to 10, a sorted list of pairwise
tasks is generated. The last part of the algorithm (Lines 11
to 19) selects a subset of the produced multi-item tasks and
a subset of the pairwise tasks, so that the budget constraint
is not violated and the overall utility is maximized.

Algorithm 2 Greedy - Stage 1

1: n := the number of all records in the dataset
2: Lgr := 0

3: while |Lgr| * M < B do

4. for each T out of all possible (2) tasks do
5: if EUW,LcrUT) > EU(®, Lar U Tra:) then
6: Traz =T

7 end if

8: end for

9: append Ty to Lgr
10: end while
11: return Lggr

The first stage of Greedy is given in Algorithm The
algorithm mainly consists of a loop (Lines 4 to 8), that ex-
amines, in each step, all possible combinations of records to
a single k-item task, i.e., all possible ways to select k records.
The k-item task that increases the most the value of the ob-
jective function, EU, is appended to the list of tasks selected

16

so far (Line 9). Once the cost of the selected tasks reaches
budget B, the algorithm terminates and outputs the list of
selected tasks.

The first stage of Edges is given in Algorithm Algo-
rithm [3| first generates all possible questions for non-difficult
pairs in Lines 1 to 8, then sorts them based on Pr(Us = 1)
(Line 9), and, in Lines 10 to 15, groups the questions with
the highest Pr(U; = 1) into multi-item tasks. Intuitively,
Edges assures that the | £ | out of the (k) questions in each

2 2
k-item task selected, have a high Pr(U; = 1).

Algorithm 3 FEdges - Stage 1

L:=0
for each ¢ € £ do
for each seq € [1, fM] do
q.seq := seq
compute Pr(Ugs = 1)
append ¢ in L
end for
end for
sort L based on Pr(Ug = 1), in asc order
. Lg = 0
: while |Lg| * ™ < B do
E := remove the last | £] questions from L
T := create a task with all the records referenced in E
append T to Lg
. end while
. return Ly

The first stage of 2Greedy is given in Algorithm [i] The
Lines 14 to 22 in Algorithm [refer to the Lines 4 to 8 in Al-
gorithm [2} 2Greedy constructs multi-item tasks by greedily
adding records, instead of exhaustively searching the best
tasks over all (Z) possible tasks.

Algorithm 4 2Greedy - Stage 1

1: Recs := the set of all records
2: L:=90

3: for each ¢ € £ do

4: for each seq € [1, fM] do
5: g.seq := seq

6 compute Pr(Ug, = 1)

g append ¢ in L

: end for
9: end for
10: sort L based on Pr(U, = 1), in asc order
11: LQG = @
12: while |Log| * M < B do
13: Qmaz := remove the last question from L
14: T := the two records in qmaz
15: while |T'| < k do
16: for each r € Recs \ T do
17: if EU(0,Lag U{TUr}) > EUD, Lag U{T U Tz })
then
18: Tmaz ‘=T
19: end if
20: end for
21: append Tyee to T
22: end while
23: append T to Lag
24: update L by removing the questions covered by T
25: end while

. return Lag

The last algorithm described in the appendix is a parti-
tioning method, useful when the dataset consists of a large
number of records (see Section . The input to the algo-
rithm is a weighted graph (the nodes refer to the records),
where the weight on each edge is the probability of the two
records being a match, and a threshold for the maximum
partition size. The output is a set of partitions, each of
them having a size smaller than the threshold.

In the loop in Lines 3 to 15 of Algorithm|[5] the remaining
edge with the maximum weight is selected, in each step.
Then, Algorithm [5] examines if the partitions for the two
endpoints of the selected edge, will end up in a partition
larger than the threshold, if merged. If yes, the merge does
not take place and the largest of the two partitions becomes
part of the output. If no, the two partitions are merged.
The loop ends when there is only one partition left. The last
partition also becomes part of the output and the algorithm
terminates.

Algorithm 5 ThresholdPartitioning

Input: G(V, E): weighted graph of V nodes and E edges.
Input: s,,4,: maximum allowed partition size.
Output: Prt: set of partitions

1: Prt:=0

2: tmpPrt := one partition per record

3: while |[tmpPrt| > 1 do

4: (a, b) := edge with the maximum weight

5: P, := partition of record a in tmpPrt

6: Py, := partition of record b in tmpPrt

7. if |Py| + |Py| > Smaz then

8: append to Prt the largest of P,, Py

9: remove the appended partition from tmpPrt
10: remove the edges with at least one endpoint in the ap-

pended partition

11: else
12: merge P, and P
13: remove the edges between P, and P,
14: end if

15: end while
. append to Prt the last partition in tmpPrt
17: return Prt

—
=2

D. PROOFS
LEMMA 1.

EUMPP,T)= Y.
qEPUQ(T)
PROOF: Because of linearity of expectation

E{ Z Ug} = Z

q€PUQ(T) q€PUQ(T)

E{U,}

in addition,

E{Us} =1%Pr(U;=1)+ 0% Pr(U; =0) = Pr(U; =1)

Hence,
E{ Z Ugt = Z Pr(Us =1)
gePUQ(T) gePUQ(T)
O
LEMMA 2.
Vg € Q(T), Pr(Us =1) = Pr(mg|AM[g)x Y pm(z,9)

(z,y)EW (q)

where a) mq is the event of the two records in g referring
to the same entity, b) F' is the set of points where the pair
in q is resolved (e.g., the green and red points in Figure,
and ¢) the set of points W (q) is defined as:

W(q) = {(z,y) : x +y = |A"[g]| + g.seq — 1A (2,y) & F} (23)

PROOF: Based on Definition 2,

Pr(Us=1)=Pr(U, = 1|mq,AM[q]) * Pr(mq|AM[qD

In each point in W(q), the pair in ¢ is not yet resolved.
Given that this pair is a match, g is useful if and only if we
reach one of the points in W(g). (When we reach a point
in W(q), the next answer to consider is the answer to g,
based on the sequence numbers of questions.) Moreover,
the events of reaching each of those points are disjoint: we
can only reach to one of the points. Hence, the probability
of ¢ being useful given that the pair in ¢ is a match, is the
sum of the probabilities of reaching each of the points in
Wi(q):

Pr(Uq = l\mq,AM[qD = Z
(z,y)EW (q)

pm(z,y)

THEOREM 1. Consider a sequence of budgets

(Bj=jxc"|jer’)
For any i € [1,|Larl]

EU®, Lar[0 : i) > (1— E)EU(QJ,TB?Z)

where Lar is the outcome of Stage 1 of Greedy (Lar[0 :
i] denotes the first i multi-item tasks in the list) and Tg,
the set of multi-item tasks that mazimizes EU for a budget
constraint B;.

PROOF:

We first prove that EU is an increasing submodular func-
tion via Lemmas 3, 4, and 5. Then, we use a result [27]
about greedy algorithms and the maximization of increas-
ing submodular functions, to complete the proof.

LEMMA 3. Consider two questions, q,q' € Q(T), on the
same pair of records, with q.seq > q'.seq. Then, .

P’I’(Uq/ = l\mq/,A) > PT(Uq = 1|mq,A)

where A = AM[q] = AM[¢/], since both ¢ and ¢’ refer to
the same pair of records.

Proof: Consider the sets of points W (q) and W(q'), based
on Equation Note that any path to any point in W(q)
goes through a point in W (q'). Hence, the event of reaching
any point in W(q) entails the event of reaching a point in
W(q'). Now, as discussed in the proof of Lemma 2, the
events of reaching the points in W(q) (W(q')) are disjoint,
and

Pr(U; = 1mg, A) = Y

(z,y)EW (q)

Pm(2,9y)

Therefore,

Pr(Uy = 1|mgy,A) > Pr(Uy = 1|mg, A)
Intuitively, Lemma 3 is based on the fact that a question

will only be useful if a question with a smaller sequence
number that refers to the same pair, is useful.

LEMMA 4. The objective function EU(0,T) is submodular. THEOREM 2. Greedy is a (1 — 7) -approzimation algorithm

That is, for the Optimal Grouping Problem. That is,
EU(, 70 T) - EUM,T2) > EU,T; U T) — EU(D, Ty) BU(Par, Tar) > (1L~) BUP", T7)
when Q(7Ta) C Q(Ts). where Par, Tar are the tasks returned by Stage 2 of Greedy
Proof: Consider the questions within multi-item task T, and P*, T is the optimal solution to the Optimal Grouping
Q({T}). Note that Problem.
PROOF:

U®,T.UT)— EU®,T,) = Z Pr(U, =1) Consider the sorted list of pairwise tasks Lp, computed in
o) Lines 2 to 10, of Algorithm Note that for any j, Lp[0 : j]
(first j tasks in the list) is the set of pairwise tasks with
and the highest aggregate utility, for a budget j * ¢©. Now con-
sider the optimal solution P*,7* and assume |P*| = j*
_ _ _ i.e., there are j* pairwise tasks in the optimal solution
U@, TwuT)—EU®D,T) = Z Pr(Us =1) ;(md |T*| =i (i.e., there are ¢* multi-item tasks in the op2
ey timal solution). In Lines 11 to 18, Algorithm [I| considers
Since Q(7a) € Q(Ts), the sequence number of each ques- solution Lpl0 : 5*], Lgr[0 : 4*]. Since the utility of pair-
tion in Q({T'}) is (potentially) greater when we append T' wise tasks depends only on difficult pairs while the utility of
to T, compared to when we append T to 7,. Hence, based multi-item tasks depends only on non-difficult pairs, we can
on Lemma 3, for any ¢ € Q({T'}), Pr(Uy = 1) is lower when consider the utility of Lp[0: j*] and Lgr[0 : ¢*] separately.
we append T to T, compared to when we append 7' to 7. Based on Theorem 1, the utility of Lgr|[0 : i*] is at least the
It follows that: (1= 1) of the utlhty of T* and, based on our observation

above, the utility of Lp[0: 5] is least the utility of P* (they
must have the same utility, actually, since P* is part of the
optimal solution). Hence,

LEMMA 5. The objective function EU(D,T) is increasing.)
That is, EU(Lp[0: 5], Lar[0 + i*]) > (1= Z)BU(P", T)

In fact, the final outcome of Greedy may have an even

U@, 7.) < BUD,Ty) higher utility than Lp[0: j*], Lgr[0 : ¢*]. Therefore,

when Q(7a) € Q(Tb).

Proof: Consider the questions in Q(72) N Q(7T). We can EU(Pcr, Tar) > (1 — l)EU(P*,T*)
safely assume that each question in Q(7.) N Q(Ty), has the €
same sequence number when in Q(7,) and when in Q(7) O
(e..g.7 if i'n Q(%) there are 2 questions referri.ng on the' same THEOREM 3. Consider a sequence of budgets
pair, while in Q(7.) there is only one question referring on
that pair, we can safely assume that in the intersection we (B; = j % M |je Z+)
include the question with the sequence number of 1). Since) !
Q(T.) € Q(Ty), For any i € [1,|Lg|]
1
U@, Lgl0 :4]) > ~EU(0, T3
v, 7.)= >, Pr(U;=1) @, Lel0 =) 2 £ BUD. T5)
4€Q(Ta)NQ(Ty) where Lg 1is the outcome of Edges Stage 1 (Lg[0 : 7] de-
and notes the first i multi-item tasks in the list) and Tg, the set of
multi-item tasks that maximizes EU for a budget constraint
B;.
U, T) = > PrUy=1)+ Y. Pr(U,=1) -
Ta T T Ta - .
1€QTINR(T) 1€QTNQT) Consider the worst case scenario for Edges Stage 1: a) k
Thus, is an odd number and b) the opt1mal set of multi-item tasks,
TB , has an overall utility of 7 % (2) * Umaz, Where Umqg is the
U®,7.) < EU®D,Ts) h1ghest Pr(Uy = 1) for any question g (i.e., there are ¢ multi-

item tasks where all the questions within each task have the
highest Pr(U, = 1)). Edges chooses the questions with the

Now that we showed EU is an increasing submodular . - .
highest Pr(U = 1), so the overall utility of Lg[0 : 7] is at

function, we can use the result for the approximation ratio

k— E—1
of greedy algortihms [27]. Consider any budget B; = i * ™. least @ 7 *Umaz (since k is an odd number, there are ==
Based on the result from [27], the aggregate utility of the questions in each task). Therefore,
first ¢ multi-item tasks greedily appended in the list Lgr,
is at least (1 - é) of the utility of the optimal solution con- EU(0, Lg[0 :)) > lEU(@,)
taining 4 multi-item tasks, 75, . k '

O O

18

THEOREM 4. Edges is a %-approm’mation algorithm for the
Optimal Grouping Problem. That is,

1 * *
EU(Pg,Ts) > EEU(P ,TY)
where Pg, Te are the tasks returned by Edges Stage 2 and
P*,T™ is the optimal solution to the Optimal Grouping Prob-
lem.

PROOF:

The proof is similar to the proof of Theorem 2. In Lines 11
to 18, Algorithm |1 considers solution Lp[0 : j*], Lg[0 : i*].
Based on Theorem 3, the utility of Lg[0 : ¢*] is at least the
% of the utility of 7*. Hence,

EU(Lpl0 : 57, Le[0 : i"]) > %EU(P*,T*)

The final outcome of Edges may have an even higher util-
ity than Lp[0: j*], Lg[0 : ¢*], thus,

EU(Ps, Te) > ~EU(P*, T")
k O

E. PRELIMINARY EXPERIMENTS’ SETTING

Here, we describe in detail the experimental setting used
in Section The experiments we ran are summarized in
Table[2] Parameter k is the task size, #Pairs is the number
of pairs of records in a task referring to the same entity
(without any other record in the task referring to the entity
of a pair), #Triplets is the number of triplets of records in a
task referring to the same entity (again any other record in
the task refers to a different entity), and Sport is the sport
from which the records in the task are selected. Each row in
Table [2| refers to one experiment, where we issue ten tasks
of the same k, #Pairs, #Triplets, and Sport. The records
for each task are selected randomly, so that the #Pairs and
#Triplets requirements are satisfied. Each task is assigned
to ten different workers. In Section [2] we report numbers
for each k. To compute these numbers we average across
#Pairs, #Triplets, and Sport.

F. MULTI-ITEM TASK LAYOUT

The main purpose of multi-item tasks is to get “fast” an-
swers without workers having to focus on each record in-
cluded in a task. Hence, it does not make a lot of sense to
have full-size images or present all fields of information for
each record, in a multi-item task. To design the layout of
multi-item tasks, a number of decisions have to be made: (i)
width/height of images (ii) set of fields (e.g., product name,
price), in case of textual information, (iii) how to place the
records, e.g., for 6-item tasks, should the grid be 2x3 or 3x27

The layout decisions can actually be dynamic for each
task, or even for each record in the task. For example, an
algorithm could analyze all data, to find the most indicative
fields to include in the human tasks, or could compare the
data of a set of records to select the fields to use in a spe-
cific task, based on the differences and similarities between
those records. As another example, consider an image pro-
cessing algorithm that would compare the images in a task
and decide how large each image should be, based on how
similar the image is with the other images in the task. All
these possibilities point out some very promising directions
for future work.

19

#Pairs

#Triplets

Sport

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

GymnasticsMen

GymnasticsMen

GymnasticsMen

GymnasticsMen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

SoccerWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

GymnasticsWomen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

WaterpoloMen

O QOO O O O O O O O x| x| x| 1| O O O ©Of O O O O O O x| |] i | i | x| x| O] O] ©O| ©Of O D O | O

WaterpoloMen

‘WaterpoloMen

‘WaterpoloMen

===
NN DN

‘WaterpoloMen

[

SoccerWomen

SoccerWomen

GymnasticsWomen

N[N DO N

OO0~ OO O|O|O|O| | O|O|O|O|HO)|O|O| | O|O|OO| —| OO OO H O OO H OO O = O|O| OO —|O|O|O|O| | OO O = O O ©

GymnasticsWomen

WaterpoloMen

2

OO OO W N O|W N OO W N OO N OO W N OO W N OO N OO N OO W N OO W N OO W N = O W N

0

WaterpoloMen

Table 2: Experimental setting of Section [2}

	Introduction
	Basic Interface Comparison
	Approach Overview
	Resolve Pairs
	Direct Resolution
	ERA Resolution

	Detect Difficult Pairs
	Optimal Grouping Problem
	Intuition and Motivation
	Problem Definition
	Utility Function EU

	Greedy Algorithm
	Edges Algorithm
	2Greedy Algorithm

	Experimental Evaluation
	Datasets, Parameters and ERA
	Datasets
	Parameters
	Entity Resolution Algorithm

	Experiments
	mTurk Answers
	Key Findings

	Related Work
	Conclusion
	References
	Probabilities' Computation
	Expected Costs' Computation
	Algorithms
	Proofs
	Preliminary Experiments' Setting
	Multi-item Task Layout

