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ABSTRACT
We examine algorithms for creating indexes into ordered se-
ries of instructional lecture video transcripts. The goal is for
students and industry practitioners to use the indexes to-
wards review or reference. Lecture videos differ from often-
examined document collections such as newspaper articles
in that the transcript ordering generally reflects pedagogical
intent. One challenge is therefore to identify where a con-
cept is primarily introduced, and where the resulting index
should thus direct students. The typically applied TF-IDF
approach gets tricked in this context by artifacts such as
worked examples whose associated vocabulary may domi-
nate a lecture, but should not be included in a good index.
We contrast the TF-IDF approach with algorithms that con-
sult Wikipedia documents to vouch for term importance.
This method helps filter the harmful artifacts. We measure
the algorithms against three human-created indexes over the
90 lecture videos of a popular database course. We found
that (i) humans have low inter-rater reliability, whether they
are experts in the field or not, and that (ii) one of the ex-
amined algorithms approaches the inter-rater reliability with
humans.

1. INTRODUCTION
Offerings of massively open online courses (MOOCs) have
been expanding over the past years. Companies are betting
their existence on the continuation of this trend. Universi-
ties are experimenting to find their own approaches, either
to teaching open classes, or to develop courses directed to
their enrolled students. Thus, while the embrace of the ‘mas-
sive,’ and ‘open’ portions of MOOCs might vary, the ‘online’
aspect as a tool for teaching is gaining ground, and we fo-
cus on this aspect here. Best practices for the use of the
Internet to teach are still evolving, and not all voices are en-
thusiastic [7]. Nonetheless, given the trend it is essential to
develop technologies that take maximum advantage of the
online medium.

Current course offerings expose many opportunities for such
technologies. Peer assessment, forum use, guided tutoring,
and interventions that address dropout rates all offer such
possibilities for technological improvement [20, 2, 5, 1, 10,
26].

We focus here on opportunities arising when students need

to review course material before approaching assessments.
Other intended beneficiaries of this work are industrial prac-
titioners wishing to learn parts of course material. Course
reviews are historically offered by instructors to peers of stu-
dents. In online settings, however, students may not arrive
at courses on traditional term boundaries; so students’ re-
view time lines are not aligned as they would be among
a fixed group of peers. In the extreme, untended courses
may not have any active teaching staff. Without support,
students fend for themselves when they don’t understand a
concept or need to review for a test.

One important source for students to review in today’s on-
line courses are lecture videos. Typical courses include 100
or more such presentations. While the sequential nature of
video may make them suited for structured, linear pedagogy
during concept introductions, their sequentiality is clumsy
when videos are used as reference material during course
review activities. For those occasions random access as af-
forded by the traditional index at the end of books is much
more appropriate. We are not proposing a student-facing
interface that mimics book indexes; we are rather referring
to the capabilities of book indexes—however they can best
manifest in online teaching.

The problem is that human indexing is very expensive. We
therefore present comparisons of algorithms that can be ap-
plied towards the automatic production of indexes into in-
structional videos. We use as our raw material the closed
caption files that are often available for educational video.
Those files contain transcripts of the videoed instructor’s
words, paired with timing information at roughly sentence
granularity.

The challenge in effective indexing is that keywords must not
only reference the important elements of concepts, and must
furthermore direct students to the video segments that con-
tain the primary treatments of those concepts. Competent
indexing into instructional videos can serve as the founda-
tion to a number of higher-level facilities for students. In
[1] we discussed how answers to forum post questions might
be approached using video indexes. Other opportunities in-
clude automated advice for review when students struggle
with particular assignments, and facilities that make courses
suitable as reference resources for professionals after they
complete a course.



Many keyword extraction systems are designed for use on
large collections of loosely related documents, such as news-
paper articles [24], or are directed at summarizing or index-
ing individual documents [18].

In contrast, the algorithms we study here are confronted
with a series of video transcript files that introduce a number
of related concepts in pedagogically thought-through order.
Many keyword extraction algorithms leverage the fact that
documents on very different topics will have mostly disjoint
sets of words, which may not be the case in our setting
where very few authors (i.e. instructors) produce all the
documents.

Evaluation of an algorithm’s success in building a ‘good’ in-
dex is particularly difficult because indexing from free text
is a highly subjective process. We do not in this work oper-
ate with pre-defined keyword sets from which an algorithm
would choose. Instead, the harder task we set for our algo-
rithms is freely to choose words from the text that should
be included in the index, subject possibly to a stemming
process. The task thus holds many degrees of freedom that
allow for a multitude of outcomes.

Given this lack of a natural ground truth, we decided to eval-
uate outcomes for our algorithms by comparing against de-
cisions made by humans. We paid three humans to carefully
index the video transcripts from a Stanford online database
course. We examined how well the three resulting indexes
compared to each other, and how outcomes of several al-
gorithms compared to each of the human-generated results.
We make the three reference indexes and the database course
video caption files available to the public in hope of eliciting
indexing approaches beyond those that we explored.

Figure 1 is a schematic of the task solved by the human and
algorithmic indexers.

...

Isolation, L2-t1

Join, L5-t2, L9-t3

Deletion anomaly, L4-t4...

L1 L2 L3 L4

Figure 1: The task to be solved by the algorithms and human in-
dexers. Construct an index into ordered video lecture transcripts
such that index keywords and phrases reference the lecture por-
tions where corresponding concepts are introduced.

The ordered lecture transcripts L1–Ln contain lines of in-
structor speech, together with timing information. An index
is to be constructed that maps concept-bearing words and
phrases to lecture-time pairs. Note that index entries may
map to multiple lectures, if the corresponding word or phrase
is important in those lectures. Our current implementations

set tn to the first occurrence of the respective index term
in the lecture. Note as well that we do not impose a con-
trolled vocabulary for the index entries. All entries are taken
from the transcript text. Any word or phrase is therefore a
potential candidate for inclusion in the index.

Our first experiment took a traditional approach, selecting
words for the index that appeared disproportionately often
in certain lectures. We then incorporated lexical informa-
tion, by only considering phrases that followed certain part-
of-speech patterns. Finally, we introduced external knowl-
edge from Wikipedia into an algorithm’s indexing decisions.
Note that none of the algorithms included supervised learn-
ing, as we do not assume the existence of a training set for
all courses.

In Section 2 we review some of the related literature. Sec-
tion 3 offers more detail on how we created our three human-
generated reference indexes. Section 4 introduces the al-
gorithms we explored. Section 5 offers some observations
around the experimental results, and we conclude in a final
section.

2. RELATED WORK
Much of the research on keyword extraction has focused on
leveraging statistical properties of a corpus or single doc-
ument. Term frequency-inverse document frequency (TF-
IDF) is a widely used method that weights phrases in a
document proportionally to the number of times they ap-
pear in that document, and inversely proportionally to the
number of documents in which the phrases appear at least
once [14]. Statistical methods that work on a single docu-
ment have also been proposed, such as selecting keywords
that co-occur in sentences with frequent words unevenly [15].
The TextRank system uses sentence co-occurrence data in a
graph-based approach, by forming a node for each candidate
phrase and an edge between two phrases if they appear to-
gether in a sentence. The system then runs PageRank over
the induced graph to select keywords [16]. An approach that
uses graphs for topic clustering was presented in [18]. Other
methods have combined linguistic and statistical properties
of the document by first filtering the set of possible keywords
(e.g. only considering noun phrases or adjectives) and then
applying frequency-based methods [22].

The approaches outlined so far all take an unsupervised ap-
proach to keyword extraction. There has also been work
on supervised approaches, which classify each phrase by
whether it should be a keyword or not. Turney trained a
decision tree on different annotated corpora to choose key-
words based on features such as the length of the phrase
and whether it is a proper noun [25]. Hulth takes a related
approach, and finds that adding part-of-speech tags as a fea-
ture leads to improved results [12]. The major downside of
supervised learning is the expense associated with labeling
data, as many types of documents will require a person with
domain knowledge to choose keywords. As a result many of
these supervised systems use academic journals with author-
provided keywords as datasets. Supervised approaches are
not an option in our use case.

Discerning important terms in the specific setting of instruc-
tional videos has also been investigated. This task differs



from keyword extraction from a large heterogeneous doc-
ument collection because of the sequential nature of the
videos, the fact that they will be about closely related top-
ics, and the additional audio-visual component. Methods
have been designed to combine the statistical properties of
the lecture transcripts with cues from the lecture videos,
such as the introduction of a new speaker, and evaluated
on governmental instruction videos [19]. This work differs
from the work presented here along several dimensions. The
human raters were constrained to use keywords that were
pre-selected by the authors’ baseline keyword extraction al-
gorithm. Furthermore, rather than introducing Wikipedia
for extraction support the cited work relies on video fea-
tures. The authors report percent-agreement between their
algorithm and the gold set, which can be misleading com-
pared to indicators such as Cohen’s Kappa. Nonetheless [19]
is very much in the spirit of our investigation.

Keyword extraction from Khan Academy lecture videos has
been experimented with, using statistical properties of the
lecture transcripts [13].

Finally, there has been research into using Wikipedia’s ex-
ternal knowledge for natural language processing tasks such
as clustering documents [11] and computing semantic simi-
larity between words [17].

3. PREPARATION OF GOLD INDEX
In order to evaluate our algorithms, we prepared a gold stan-
dard index of terms extracted from an introductory databases
course by three paid human indexers. Each was presented
with all 90 course closed caption video transcripts, and was
asked to work through each file in the order the videos were
presented in class. Videos were usually around 10 minutes
long.

From each line in a file the indexers were asked to select as
many keywords and phrases as they felt should appear in
their index. Two of the indexers only used words or phrases
that appeared in the text. One expert indexer added syn-
onyms.

We used indexers’ selected keywords and phrases in our in-
vestigation1. Additionally we asked indexers for two more
pieces of information that we did not use, but which are
included in our public copies of the indexers’ results.

First, we asked indexers also to mark lines in which a partic-
ular phrase for the index appeared in the context of the pri-
mary introduction to the phrase’s underlying concept. Sec-
ond, for each lecture file, indexers ranked the top five most
important phrases from that lecture. We allowed inclusion
of fewer than five phrases.

One participant had taken the database course being in-
dexed. A second indexer had taken at least one database
course in another institution, and the third was a college-
educated individual in a non-technical field.

On average indexers selected about 8 phrases per video.

1From here on we use the term ‘phrase’ to mean n-grams
of any length, including one, unless the distinction is signif-
icant.

We evaluated agreement between the indexers’ output using
Fleiss’ Kappa, which generalizes Cohen’s Kappa to settings
with more than two annotators [9]. The κ is a measure of
inter-rater agreement, with range [−1, 1], where 1 means the
raters are in complete agreement, -1 complete disagreement,
and 0 the agreement expected by chance.

For our algorithms we formulate the indexing problem as a
binary classification task, where the two categories are in-
index and not-in-index. The algorithms’ task was to classify
phrases in each lecture into these two buckets.

When not comparing against each of the three indexers in-
dividually, we combined the work of all three into a single
index by computing the lecture-by-lecture three-way union.
Several other approaches for combining the three ground
truth examples can be formulated. We selected the union
because it was the most licentious for the algorithms. How-
ever, when comparing algorithm results to individual index-
ers the respective indexer’s actual work was used.

We computed a κ of 0.325 between the indexes produced
by the three human raters. This κ is evidence of signifi-
cant differences between the decisions of the three indexers.
The non-expert was much more prolific in choosing in-index
phrases than the two experts. But even the two experts
frequently made different choices.

We consider this κ the upper bound on the performance we
could reasonably expect from any indexing algorithm. The
largest pairwise Cohen’s κ between raters was 0.336 and the
lowest was 0.309 (note that Fleiss’ Kappa is not generally
the average of the pairwise Cohen’s Kappas).

4. EXPERIMENTS
We implemented several index term extraction algorithms
and measured how closely they agreed with the gold index
derived from the work of our human indexers.

For each experiment we applied the Porter stemming al-
gorithm to each word in the document and each word in
phrases destined for the index. Phrases therefore matched
if all of the individual stemmed tokens matched. In exper-
iments using n-grams as candidate phrases, stopwords were
removed from the document before the n-grams were formed,
using the stopword list of the SMART system [23].

The following subsections introduce the algorithm (families)
we applied to the lecture transcripts.

4.1 Traditional Approach: TF-IDF
Our simplest algorithm used a straight term frequency-inverse
document frequency (TF-IDF) approach to identifying index
terms in a lecture. TF-IDF is defined for each phrase-lecture
pair as the product of the number of times the phrase ap-
pears in the lecture, divided by the logarithm of the pro-
portion of lectures in which the phrase appears. That is,
we used the standard definition of TF-IDF, with each lec-
ture taken as a document. We then ranked the phrases for
each lecture by their TF-IDF score in that lecture. Any
phrases above a chosen threshold were marked as in-index.
All phrases lower in the list were marked not-in-index. We
chose the average number of keywords that the human in-



dexers included in their indexes as the threshold value. We
limited the algorithms to a maximum phrase length of four.

4.2 Leveraging Linguistic Information
Considering all of the n-grams in the collection of lectures as
candidate keywords has the potential of adding significant
noise. By selecting only certain linguistic patterns for con-
sideration as phrases, it is possible to reduce the size of the
candidate set, while still covering most important phrases.
We measured an algorithm that first runs a part-of-speech
tagger over the lecture transcripts, and then selected only
phrases that consist of an arbitrary number of adjectives
followed by one or more nouns. For example, “equality con-
dition” or “XML data” were both included in the candidate
set. We then ran TF-IDF over this reduced set. After this
process we proceeded as in Section 4.1.

4.3 Adding External Knowledge
Motivated by the intuition that phrases gain importance be-
cause of both their role in a document and their semantic
meaning in the broader world, we experimented with mul-
tiple algorithms that incorporate outside knowledge. Each
algorithm integrates Wikipedia as a knowledge source in dif-
ferent ways.

4.3.1 Boosting Documents
The first algorithm attaches to each lecture a closely related
Wikipedia page, and then uses the previously described sta-
tistical and linguistic techniques to choose phrases from the
combined document. Formally, the procedure is as follows.
First, for each lecture, the algorithm takes the title of the
lecture, removes stopwords, and uses the result as a query
to Wikipedia. Then, the first page in the search results
returned by Wikipedia is concatenated to the lecture tran-
script. After attaching a Wikipedia page to each transcript,
we run the previously described procedures over the collec-
tion of concatenated lecture-Wikipedia pages.

For example, for the lecture titled “View Modifications Us-
ing Triggers”, the first page in the Wikipedia search re-
sults is “Database trigger”, which is then concatenated to
the transcript of the lecture. Then, using either n-grams or
adjective-noun phrases as candidate keywords, the algorithm
chooses phrases with TF-IDF over the combined document
for the index.

4.3.2 Boosting Phrases
This algorithm first creates a list of candidate index terms
using adjective-noun phrases. Then the candidates are ranked
by their TF-IDF score summed over all Wikipedia docu-
ments. That is, for a phrase p, we define its term frequency
TFw(p) as

TFw(p) := log (number of times p appears on Wikipedia)

and its inverse document frequency IDFw(p,W ) for a phrase
p and Wikipedia article collection W as

IDFw(p,W ) := log

(
|W |

number of documents in W with p
+ 1

)
and finally TF -IDFw(p,W ) is defined as

TF -IDFw(p,W ) := TFw(p) · IDFw(p,W )

View Modifications 
Using Triggers

In this video, which will mostly 
be live demo, we'll talk about 
modifying views through 
triggers…

Database trigger
A database trigger is procedural 
code that is automatically 
executed in response to certain 
events on a particular table or 
view in a database…

In this video, which will mostly be live 
demo, we'll talk about modifying views 
through triggers…A database trigger is 
procedural code that is automatically 
executed in response to certain events 
on a particular table or view in a 
database…

TF-IDF

Figure 2: The Document Boosting algorithm searches for a
Wikipedia page using the title of the lecture, concatenates the
result to the lecture, and then runs TF-IDF over the combined
document.

Next, this global candidate ranking is combined with the
basic TF-IDF approach described in Section 4.1. First, we
create a normalized Wikipedia candidate ranking

TF -IDFw−norm(p,W ) :=
TF -IDFw(p,W )∑
p′ TF -IDFw(p′,W )

and normalized lecture collection ranking

TF -IDFnorm(p, l, L) :=
TF -IDF (p, l, L)∑
p′ TF -IDF (p′, l, L)

Then, we combine the two normalized rankings to form a
final score

TF -IDFcombined(p, l, L,W ) :=

ηTF -IDFw−norm(p,W ) + TF -IDFnorm(p, l, L)

where η is used to determine the weight between Wikipedia
scores and lecture scores. We found that a value of η = 2,
meaning the Wikipedia ranking is weighted twice as much
as the lecture ranking, works well in practice, and we report
results of computations with that setting in place.

We also experimented with only boosting phrases of at least
two words, based on the intution that longer phrases are
often meaningful, but appear infrequently and are there-
fore given low scores by TF-IDF. We call this alternative
“Phrase Boosting N-Grams” in Figure 6. The approach can
be thought of as multiplying TFw(p) by 0 if p consists of
fewer than two tokens:

TFw−ngram(p) := TFw(p) · 1 {p is at least two tokens}

A few subtleties deserve further description. First, in our
simple TF-IDF approach, a score is calculated for each lec-
ture l and phrase p, while in our Wikipedia calculation a
score is only calculated for each p. That approach is chosen
because in this algorithm we are not interested in keywords
for every Wikipedia document, but only in obtaining a global
sense of the importance of a phrase. The algorithm is equiv-



View Modifications 
Using Triggers

In this video, which will mostly 
be live demo, we'll talk about 
modifying views through 
triggers…

TF-IDF TF-IDF

…
BCNF,
insert trigger,
sql query,
…

…
insert trigger,
base table,
update view,
…

…
insert trigger,
BCNF,
base table,
sql query,
update view,
…

Figure 3: The Phrase Boosting algorithm runs TF-IDF over the
entirety of Wikipedia and then combines the global ranking with
a local ranking for a document.

alent to summing over all Wikipedia documents d ∈W

TFw(p) = log

(∑
d∈W

number of times p appears in d

)

Second, we take the logarithm of the phrase count in the
Wikipedia ranking. This choice produces improved empiri-
cal results.

4.4 Results
As stated in Section 3, we computed agreement between hu-
mans using Fleiss’ Kappa. We evaluated each algorithm by
computing Cohen’s Kappa agreement between the algorithm
and the gold set unified from the three human indexes as de-
scribed in Section 3: the union of the lecture-phrase pairs in
the gold indexes. That is a lecture-phrase pair is classified
as in-index if any human indexer classified it as in-index,
and classified as not-in-index otherwise. When using a sin-
gle metric for agreement, such as Cohen’s Kappa, paradoxes
can arise when one category is much more prevalent than
another and the chance-correction term in the agreement
metric overcompensates. This effect leads to inappropriately
low values of κ for high inter-rater agreement [8].

This problem arises in our context because there are many
more not-in-index phrases than phrases destined for the in-
dex. To help deconstruct the above-mentioned inappropri-
ate κ values, we report three additional metrics: agreement
on in-index decisions (Ppos), agreement on not-in-index de-
cisions (Pneg) [4], and prevalence-adjusted bias-adjusted κ
(PABAK) [3]. Because the algorithms produce a ranking
of candidate phrases, we produce a binary classification by
choosing a threshold above which candidates are labeled as
in-index. In our reported results, we use the average number
of keywords per lecture labeled by humans as the threshold.

These three metrics are defined in terms of a concordance
table with two raters (the composite-human and the algo-
rithm) and two categories (in-index and not-in-index), as
shown in Figure 4 and Figure 5.

in-index not-in-index Total

Keyword a b f1
Not Keyword c d f2
Total g1 g2 N

Figure 4: The concordance table used to calculate Ppos and Pneg.

Positive agreement is the number of terms both indexers
marked as in-index over the average number of terms marked
as in-index, and negative agreement is the number of terms
both indexers marked as not in-index over the average num-
ber of terms marked as not in-index:

Ppos :=
a

f1+g1
2

Pneg :=
d

f2+g2
2

PABAK is defined as the Kappa on a modified concordance
table where a and d are replaced with their average, and c
and d are replaced with their average.

in-index not-in-index

in-index (a+ d)/2 (b+ c)/2
not-in-index (b+ c)/2 (a+ d)/2

Figure 5: The concordance table used to calculate PABAK. a, b,
c, and d are as defined in Figure 4

An issue arises when evaluating the size of Pneg in the com-
parison between an algorithm and a human indexer. Con-
sider the sentence “One of them is what’s called the inner
join on a condition.” Say, the indexer classified the 2-gram
inner join as belonging into the index, whereas the algorithm
decided that nothing in this sentence should be included in
the index. Do we now say that Pneg is computed from all
the possible phrase-level parts of the sentence that both in-
dexer and algorithm decided not to place in the index? This
decision would mean that all of the following should count
towards boosting Pneg: “One,”, “One of,” “One of them,”
“One of them is,” and so on for n-grams of increasing n.

Clearly this approach would make Pneg meaningless. In-
stead we include in the set of candidates for consideration
in the computation of Pneg only 1-grams, and any n-grams
that were chosen to be in the index by at least one rater.

Kappa values do not have a universally agreed upon inter-
pretation, but values in the range we observe (about 0.15
to 0.3) have been interpreted as indicating “slight” to “fair”
agreement. The fact that agreement between humans is only
0.336, and the lowest pairwise Kappa between humans was
0.309 suggests that the phrase extraction task is inherently
subjective, and there are multiple valid interpretations of
what phrases are important enough to be included in the
index.

The metrics for all of the algorithms are shown in Fig-
ure 6. The Phrase Boosting N-Grams algorithm, which fa-
vors longer words, performed the best out of all algorithms,
and had a Cohen’s Kappa of 0.237 agreement with the gold
index. This nears the lowest pairwise agreement between
humans of 0.309, showing that the algorithm is close to the
performance of a human.

The plain TF-IDF algorithm was also able to achieve rea-
sonable performance with respect to the human annotators.



Algorithm κ Ppos Pneg PABAK
TF-IDF 0.205 0.233 0.971 0.889

TF-IDF with Adjective-Noun Chunks 0.079 0.118 0.961 0.850
Document Boosting 0.209 0.234 0.973 0.895

Document Boosting with Adjective-Noun Chunks 0.142 0.173 0.968 0.876
Phrase Boosting 0.204 0.234 0.970 0.883

Phrase Boosting N-Grams 0.237 0.262 0.974 0.899

Figure 6

Limiting the candidate set to adjective-noun chunks drasti-
cally hurt the performance of the algorithm, suggesting that
many important phrases do not fit this linguistic pattern,
and the restriction is too severe. However, Document Boost-
ing with adjective-noun chunks seems to yield significant im-
provement. Document Boosting and Phrase Boosting, the
two algorithms that incorporated external knowledge, were
able to make improvements on the basic algorithm. Docu-
ment Boosting, which appended a Wikipedia document to
each lecture, was able to improve over TF-IDF, and boost-
ing longer phrases (Phrase Boosting N-Grams) was able to
improve further. We can see that negative agreement was
high for all algorithms, suggesting that it is relatively easy to
identify phrases that should not be indexed. Positive agree-
ment was lower, implying it is indeed difficult to identify a
small number of phrases to summarize the document, given
that there are a large number of possible phrases, and there
can be legitimate disagreement on what phrases are most
important.

Interestingly, the algorithms seemed to be significantly closer
to the indexer who took at least one database course in an-
other institution. For example, the Document Boosting al-
gorithm had a κ of 0.240 and a Ppos of 0.247 when compared
to this indexer, while the κs compared to other indexers were
0.146 and 0.191, and the Ppos values were 0.147 and 0.147.

Rank Phrase
1 view
2 materialized view
3 materialized
4 query
5 view query
6 virtual view
7 modify
8 user query
9 base table
10 modify command
11 index
12 insert command
13 multivalued dependency
14 database design
15 user

Figure 7: The top 15 keywords from ‘Materialized Views’ by
Phrase Boosting with N-grams. Phrases that also appear in the
gold index are marked in bold.

To give a more subjective view of our results, we also show
the set of keywords extracted from a lecture on ‘Materialized
Views’ by the Phrase Boosting with N-grams algorithm, in
Figure 7 . Of the top 15 keywords marked by the algorithm,
11 were included in the gold index marked by humans (for

this lecture there were 18 keywords in the gold set), and
the algorithm produces a ranking that is similar to the hu-
mans. Of the keywords ranked highly by the algorithm that
were not in the gold index, some (‘materialized’, ‘insert com-
mand’, ‘multivalued dependency’) are relevant to the course,
but perhaps not essential to the specific lecture. The last two
keywords, ‘user’ and ‘user query’ expose a weakness of the
algorithm, where it is difficult to discern phrases that are
used frequently, but not essential to the lecture concept.

5. DISCUSSION
In order to convey intuition for how the algorithms differ, we
will examine the index phrases extracted from a few lectures
in depth.

In general, Phrase Boosting can be thought of as imposing
a prior distribution over what phrases should be considered
important. This prior is then combined with the local knowl-
edge in a specific lecture. In practice, TF-IDF tends to give
longer phrases unfairly low scores, because they do not ap-
pear frequently, even though they may be quite important
to the content. Phrase Boosting corrects this by raising the
value of longer phrases. For example, in the lecture “DTDs
IDs and IDREFs”, the phrase “Document Type Descriptors”
is clearly important, but only appears 5 times in the lecture,
and is therefore ranked 36th if Phrase Boosting is not used.
After incorporating the global Wikipedia ranking and the
preference for longer phrases, the phrase is boosted to the
9th rank. There are similar occurences throughout the lec-
ture collection of longer phrases that only appear a small
number of times in the lecture but have a high TF -IDFw

score on the Wikipedia ranking. In a lecture on“Multivalued
Dependencies and Fourth Normal Form”, the phrase “mul-
tivalued dependencies” appears only 3 times in the lecture
transcript and is therefore not considered an index phrase by
plain TF-IDF. The phrase appears 26 times on Wikipedia
in 4 documents, and is tagged as a phrase to include in the
index when the Wikipedia ranking is incorporated.

Observe the following convenient properties of Phrase Boost-
ing from algorithmic and computational perspectives. First,
one can modify the preference of the algorithm towards fa-
voring local or external information using η, where η > 1
means the Wikipedia ranking is favored. If η = 0, all weight
is given to TF -IDFnorm, and the algorithm would output
the same rankings as TF-IDF, and as η → ∞, all weight
is given to TF -IDFw−norm, and the algorithm would out-
put the ranking extracted from Wikipedia. This principle
applies more generally, and Phrase Boosting can incorpo-
rate any prior belief about index phrases. Second, although
there are a large number of documents in Wikipedia (the
algorithm was run on 5,027,125 documents, a total size of



about 50GB), the runtime complexity is linear in the num-
ber of documents and therefore quite tractable on modern
hardware.

Document Boosting TF-IDF
transaction transaction
isolation level read
read isolation level
lock t1
commit t2
concurrent commit
serialization client
repeat read dirty read
concurrency control uncommit
dirty read transaction isolation level
transaction commit GPA

Figure 8

The Document Boosting algorithm can be thought of as
amplifying the index phrases for a lecture, and therefore
decreasing the scores of phrases that happen to occur fre-
quently in a lecture but are not meaningful. This effect often
occurs if a lecture has worked examples that use words from
the examples frequently, as can be seen in Figure 8. The
table shows the top ranked phrases for the Document Boost-
ing algorithm and plain TF-IDF for a lecture on “Isolation
Levels”. In TF-IDF’s index phrases we can see that the lec-
ture included an example involving students, and the token
“GPA” appears frequently, even though it is not important
to the core concept of the lecture. Similarly, the instruc-
tor used examples with transactions named “T1” and “T2”,
which appeared frequently in this lecture and not others, in
effect tricking the TF-IDF metric.

When Document Boosting was run, the Wikipedia article
“Isolation (database systems)” was selected, which was able
to decrease the frequency of phrases that were part of specific
examples, and augment the frequency of words that were re-
lated to the concept of isolation levels, such as “concurrency
control”, “repeat read”, and “transaction commit”. We can
see that conceptually the algorithm is boosting phrases in
the intersection of the Wikipedia article and lecture. This
allows noise that only occurs frequently in the lecture to be
identified and filtered.

6. CONCLUSION
We have started to tackle the task of choosing the most im-
portant phrases from a collection of lectures, to construct
a random-access index analogous to those in the back of
books. Going forward we will use this capability to con-
struct student support facilities such as automatically an-
swering learner questions with references to relevant lecture
clips, and recommendation tasks, such as finding the best
study materials given a student’s progress through a course.
There has been little previous work on index extraction in
the online education setting, and in lecture series videos
in particular. We therefore began by evaluating the per-
formance of term frequency-inverse document frequency, a
well-known metric for gauging the importance of a phrase to
a document. After evaluating the weaknesses of TF-IDF in
this educational context, we designed algorithms that incor-
porated linguistic information, in the form of part-of-speech

tags and chunking, and external information, with the en-
tire Wikipedia document collection used as a knowledge
source. The algorithms that incorporate Wikipedia infor-
mation boost performance of TF-IDF, especially on longer
phrases that do not have high raw frequencies in a lecture.

In the process of this work we paid three high-quality per-
sons to index an internationally renowned database course.
We used the three indexes to evaluate our algorithms. In
an effort to allow our work to be reproduced at other in-
stitutions, and to foster additional work in this area we are
making the three indexes and the course video transcripts
publicly available.

In the future we will explore using the rich structure pro-
vided by the Wikipedia dataset to improve our keyword ex-
traction algorithms further. For example, Wikipedia grants
access to the link structure between its documents, and
groups documents into collections, which are explored for
different tasks in [11] and [17].

We are also interested in keyword extraction as a supervised
learning task. As previously described, one of the main chal-
lenges is the cost of obtaining a large amount of labelled
data, especially in the online education setting where anno-
tators often need to be highly educated and devote a sub-
stantial amount of time to generate high quality indexing.
One possible strategy is transfer learning, where a learning
algorithm is trained on a different problem than the one
on which it will make predictions. It is possible that there
are features that differentiate important phrases in journal
abstracts or newspapers that could also differentiate impor-
tant phrases in lectures. Indeed, transfer learning for text
classification has been explored previously [21], [6].

Good human-generated indexes sometimes include page ref-
erences into books for terms that do not appear in the refer-
enced page. This decision might be based on knowledge of
synonymy, or even deeper domain knowledge. Inclusion of
synonyms has been widely studied in the context of query
expansion. But future work could reveal that indexing terms
into lectures where the term does not appear might be fea-
sible in automated index generators as well, based on the
fact that lectures often build on each other. Since one of the
indexers did include some synonyms such algorithms could
be studied over that data.

Random access into lecture videos remains an important
challenge. Those media contain expensive-to-produce con-
tent, and making that content as useful as possible will im-
prove online learning and reference opportunities.
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