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ABSTRACT
In this paper, we present CrowdDQS, a system that uses
the most recent set of crowdsourced voting evidence to dy-
namically issue questions to workers on Amazon Mechanical
Turk (AMT). CrowdDQS posts all questions to AMT in a
single batch, but delays the decision of the exact question to
issue a worker until the last moment, concentrating votes on
uncertain questions to maximize accuracy. Unlike previous
works, CrowdDQS also (1) optionally can also decide when
it is more beneficial to issue gold standard questions with
known answers than to solicit new votes (both can help us
estimate worker accuracy, but gold standard questions pro-
vide a less noisy estimate of worker accuracy at the expense
of not obtaining new votes), (2) estimates worker accuracies
in real-time even with limited evidence (with or without gold
standard questions), and (3) infers the distribution of worker
skill levels to actively block poor workers. We deploy our
system live on AMT to over 1000 crowdworkers, and find
that using our techniques, CrowdDQS can accurately an-
swer questions using up to 6x fewer votes than standard
approaches. We also find there are many non-obvious practi-
cal challenges involved in deploying such a system seamlessly
to crowdworkers, and discuss techniques to overcome these
challenges.
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1. INTRODUCTION
In recent years, the development of crowdsourcing mar-

ketplaces such as Amazon Mechanical Turk (AMT) has al-
lowed for computer scientists to scalably leverage the power
of human insights into their computational workflows. Re-
cent applications of the crowd include labeling training data
for machine learning, improving entity resolution workflows,
data filtering, image understanding, sentiment analysis, and
many others [8,17,18,28,35,37,39,40,41]. In industry, there
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are reports of several organizations spending millions of dol-
lars annually on crowdsourcing budgets [24].

The standard setting for these crowdsourced data pro-
cessing tasks is often as follows: requesters have a pool of
questions they want the crowd to answer, where each ques-
tion has a predefined number of answer choices. To ensure
high data quality, requesters add redundancy by allocating a
fixed number of votes for each question (e.g. a requester may
stipulate that each question be voted on by 5 distinct work-
ers). The questions and number of requested votes are sent
together as a batch to the crowdsourcing system, which then
publishes all tasks simultaneously for workers to complete.
Finally, the requesters aggregate these votes (e.g. with ma-
jority voting) to produce a final set of answers. Existing
crowdsourcing marketplaces like AMT are optimized and
designed around this workflow.

This standard workflow has several inherent weaknesses
because it is batch-based and static — i.e. the allocation of
needed votes per task is decided in advance, without an easy
ability to react to worker responses. Crowdworkers have
unknown and variable skill levels — some workers produce
lower quality data than others, and some workers are spam-
mers, i.e. they try to answer as many questions as possible
without any consideration for accuracy. Due to their pro-
lificness, spammers and low-quality workers can often have
a disproportionate effect on the quality of the aggregated
votes, even if they represent a small fraction of the worker
pool. Another problem in the standard workflow is that al-
locating a fixed number of votes per question is inherently
wasteful. Questions which have high worker agreement end
up receiving unnecessary extra votes, while more difficult
questions with high worker disagreement receive few votes.

There are several existing techniques to help mitigate some
of these problems after a batch has been completed. Many
techniques [11,13,22,25,31,34,39,42,46], such as expectation-
maximization (EM) [7], have been proposed which estimate
worker accuracy and then discount the votes of poor quality
workers during aggregation. However, these algorithms are
usually designed to be run after the batch of tasks has been
completed, and do not actively prevent poor quality workers
from voting on questions.

Another common approach to estimate worker accuracy
is to use gold standard questions (GSQs), where requesters
have some number of questions in their tasks with known
ground truth [27, 38]. However, how do we choose when to
issue gold standard questions versus solicit more votes? For
example, if we pay a worker for 10 different votes, and 3
votes are devoted to gold standard questions, 30% of our



budget does not go toward doing real work. This trade-off
is not well-addressed in the literature.

The focus of our work is instead to consider a dynamic
approach to question selection, where tasks are assigned to
workers on-the-fly within a batch, based on the latest set of
previous responses. A dynamic approach has the potential
to detect and evict poor quality workers, and also to focus
votes on the questions which cause the most uncertainty.

In this paper, we present CrowdDQS (Crowd Dynamic
Question Selection), a system implemented on top of Ama-
zon Mechanical Turk which we find can need up to 6 times
fewer votes in practice than standard workflows, while still
maintaining the same accuracy. CrowdDQS is designed to
achieve the following:

• We estimate worker accuracies after each response within
a batch and use the most recent evidence to do so. This
allows the system to automatically learn about the dis-
tribution of workers on a specific group of tasks, and to
use this information when blocking workers.

• When a worker asks to work on a question in our batch,
we dynamically choose which question they should vote
on using the latest set of voting evidence that has been
collected.

• We automatically issue gold standard questions when we
determine it is more important to learn about a worker’s
accuracy than it is to receive new votes from the worker.

• We block low-quality workers and spammers from an-
swering more questions as soon as they are detected, pre-
venting them from contributing more poor-quality votes
to our batch.

• We deploy our system to workers on Amazon Mechani-
cal Turk seamlessly, maintaining the same interface that
workers are accustomed to.

• We use incremental updating algorithms to make all of
these decisions in real-time. Even though we decide
which question to serve a worker just before it is pre-
sented to them, the worker does not notice any perceived
delay.

The idea of dynamically issuing tasks to workers has been
discussed before in various contexts in the literature [4, 10,
15, 23, 41, 46]. However, due to the practical difficulty of
seamlessly deploying a dynamic question selection algorithm
on existing crowdsourcing marketplaces, most work has been
confined to experiments on synthetic data only [4, 12, 15,
16, 32, 33]. There is a small handful of very recent work
(e.g. QASCA [46] and iCrowd [10]) where researchers have
directly tested dynamic task selection algorithms on Amazon
Mechanical Turk. We discuss previous work in this area in
more detail in Section 13. At a high level, CrowdDQS makes
the following contributions relative to these recent systems:

• Our system dynamically chooses when to inject gold
standard questions versus solicit new votes. We propose
a novel mechanism for quantifying the trade-off between
learning more about the specific accuracy of a worker
versus improving the accuracy of our aggregated worker
responses.

• Our system actively blocks poor performing workers by
automatically learning about their accuracy. This hap-
pens while the batch is still receiving votes, as opposed
to other approaches which wait for a batch to finish.

• Our approach to estimating worker accuracies is differ-
ent from what we have previously seen used in other
crowdsourcing work. Compared to standard EM-based
variants, our approach is specifically designed to be more
robust at estimating worker accuracies when we have few
votes for a worker. This property is crucial in a setting
where we must estimate worker accuracies in an online
manner.
• We discuss a novel way of incrementally updating our

worker accuracy estimates in an online manner when new
votes arrive.
• We provide thorough insights about the practical chal-

lenges that need to be considered in order to deploy such
systems seamlessly to workers on Amazon Mechanical
Turk. Most of these practical insights have not yet been
discussed in the literature.

2. PAPER OUTLINE
We organize our paper as follows:

• We begin by providing a high-level overview of Crowd-
DQS in Section 3.
• We next describe the algorithms that are run when a

worker submits a new vote — our approach to worker
accuracy estimation (Section 4), vote aggregation (Sec-
tion 5), and our criteria for blocking workers (Section 6).
• We next describe what happens when a worker requests

a new task from CrowdDQS, and how we dynamically
assign a task to the worker (Section 7).
• In Section 8, we describe how to extend this dynamic

question selection to also decide when it is most benefi-
cial to issue gold standard questions.
• In Section 9, we describe how to update our worker accu-

racy algorithm to handle incremental updates, allowing
for real-time performance.
• In Section 10, we characterize our algorithms by running

experiments on synthetic data. We evaluate our worker
accuracy estimation approach and incremental updating
algorithm, and we demonstrate that static GSQ strate-
gies often reduce predicted answer accuracy.
• In Section 11, we deploy CrowdDQS live to over 1000

workers on Amazon Mechanical Turk and show that we
obtain significant improvements over standard approaches.
We find that our approach can reduce the number of
questions needed to reach a given accuracy by a factor
of up to 6x.
• In Section 12, we discuss how to overcome the practical

challenges of deploying such a system live to Amazon
Mechanical Turk.
• Finally, we describe related work in Section 13, and sum-

marize our work in Section 14.

3. CROWDDQS — OVERVIEW
Our dynamic question selection system, CrowdDQS, takes

as input:

• A question bank Q of N multiple-choice questions that
should be answered by the crowd. Our system assigns
these questions to crowdworkers as they request work.
Specifically, we define Q = {qi}, 1 ≤ i ≤ N , where qi
represents the i-th question in the question bank. We
also take as input ci, the number of choices for the i-th
question qi.



• A set of NG gold standard questions QG = {q∗i }, as well
as their associated answers AG = {a∗i }, 1 ≤ i ≤ NG.
q∗i and a∗i represent the i-th gold standard question and
answer, respectively. We denote c∗i as the number of
choices for q∗i , and thus each a∗i ∈ {1, 2, · · · , ci}.
• A budget B, i.e. the total number of votes we are willing

to solicit from crowd. Note that this budget can be spent
on gold standard questions or votes on questions in Q.

Our system responds to two different types of events until
the budget B is exhausted — a worker requesting a question
to vote on, and a worker submitting a vote to a question we
provide to them.

• When a worker requests a question, the system utilizes
the current set of answers it has received in order to select
a question to present to a worker — this question can be
from either the question bank Q or the gold standard set
QG. The system makes sure to not present the worker
with the same question multiple times. Note that in
crowdsourcing systems such as AMT, it is not known in
advance which workers will choose to work on our tasks.
• When a worker submits a vote to a question, the sys-

tem records the worker ID and response that is received.
Using the set of previous answers collected and this new
worker response, the system can then block workers that
have answered all available questions or that are esti-
mated to have too high an error rate.

Finally, when the system has exhausted its budget B, it
aggregates the set of worker responses, producing a set of
predicted answers Â = {âi}, 1 ≤ i ≤ N, âi ∈ {1, 2, · · · , ci}.
Our goal is to use our question selection strategy to maxi-
mize the accuracy of this final set of answers.

3.1 Implementation Details
A common misconception about a dynamic question se-

lection approach is that it requires us to issue questions to
a crowdsourcing platform one by one. This would be ex-
tremely problematic — issuing questions one by one can
add an unacceptable amount of latency in completing a set
of tasks because workers cannot work in parallel.

Instead, we deploy our question selection algorithms via
an ExternalQuestion on Amazon Mechanical Turk (AMT).
This allows us to issue all of our questions in a single batch,
but still delay choosing which question to display to workers
until the last possible moment. When a worker requests to
answer a question from our group of tasks, the worker ID
is sent to a server that is hosting our ExternalQuestion.
Our server dynamically chooses which question from Q or
QG to present to the crowdworker based on the latest set of
worker responses our server has observed.

We discuss other practical challenges of deploying Crowd-
DQS onto Amazon Mechanical Turk in Section 12. In Ap-
pendix D, we describe various extensions to CrowdDQS —
e.g. handling batching multiple questions to workers, incor-
porating machine-learning based priors, and modeling indi-
vidual question difficulty.

4. WORKER ACCURACY ESTIMATION
In CrowdDQS, we attempt to estimate worker accuracies

in order to guide our vote aggregation and question selec-
tion strategies. While there are many techniques used in the
literature to perform this accuracy estimation after having

received all worker responses, we wish to perform this es-
timation in an online manner, before we have received all
worker responses. In our setting, the number of questions
answered by any worker may initially be very low, and many
questions will have few votes.

4.1 Standard EM-based approaches
Though expectation-maximization [7] is commonly used

as a technique to aggregate votes and estimate worker accu-
racies [11, 13, 22, 25, 31, 34, 39, 42, 46], it is usually employed
after all responses are collected. A typical approach with
EM would be to first produce a set of aggregated answers
assuming all workers have equal accuracies (the expectation
step). Then, given these aggregated votes, we would com-
pute the maximum likelihood accuracies of workers (maxi-
mization step). We would repeat this process, using these
new accuracies to recompute the aggregated answers until
the aggregated answers converge.

This approach works well in practice when we have already
collected many answers for each question. However, when
there are few answers, EM is overzealous in its estimates
for worker accuracies because the expectation step forces us
to choose a “correct” answer for each question, even if the
current set of votes makes us unsure of what the correct
answer should be. This leads to extreme estimates for the
worker accuracies when there are a few number of votes.

Consider a simple example where we have two workers, w1

and w2, who have each voted on two yes/no (Y/N) questions.
The responses for q1 are {w1 : Y,w2 : Y } and for q2 they
are {w1 : Y,w2 : N} — i.e. the workers agree on q1 but
disagree on q2. EM could converge on a “yes” answer for q1
and a “no” answer for q2. However, this would imply the
maximum likelihood accuracy for w1 to be 100% and for
w2 to be 50%. If we were then to use these accuracies to
estimate the probability each of our answer estimates were
correct, we would assume both answers were correct with
100% probability (because we assume that anything w1 is
always correct), without capturing the fact that we should
be less confident in our aggregated answer for q2 than our
aggregated answer for q1.

4.2 Marginal Likelihood Estimation
In our approach, we avoid being so overzealous in our es-

timates by taking into account the uncertainty due to each
question’s votes. To do so, for each worker we compute the
likelihood of observing their votes, without making any as-
sumption as to what the correct answer is for each question
— instead, each answer choice is weighted by the currently
observed evidence. Essentially, we estimate the marginal
likelihood distribution of the accuracy of each worker, given
the available evidence. We then use this likelihood distribu-
tion to compute the expected value of a worker’s accuracy.
We explain this further below.

Let p̂j be the estimated accuracy for worker wj , where
we interpret p̂j to mean that the worker answers a question
correctly with probability p̂j , and answers a question incor-
rectly with probability 1 − p̂j , with each incorrect answer
choice being equally likely. Let QW

j be the set of question
indices corresponding to the questions that worker wj has

answered, let WQ
i be the set of workers that have answered

question qi, and let aij be the response of worker wj to
question qi. Let gRj be the number of gold standard ques-
tions correctly answered by worker j, and let gj be the total



number of GSQs answered by this worker.
For clarity, assume that wj refers to the worker whose

accuracy, pj , we are currently computing. We fix all other
worker accuracies to their currently estimated value, and we
can then estimate the expected accuracy of wj by temporar-
ily assuming all other worker accuracies are fixed. We then
update our estimate for wj ’s accuracy and repeat this pro-
cess for the next worker. We continue until worker accuracies
have converged or we’ve reached a fixed number of iterations.
In practice we find this seems to usually converge in just 1 or
2 iterations. We initially estimate the worker accuracies by
computing the fraction of times each worker agrees with the
majority vote for a question, but when new votes arrive, we
can initialize our estimates using our previously computed
accuracies. More concretely, our approach is to repeat the
following until the worker accuracies do not change more
than a small delta (δ = 0.01) between iterations:

1. For each worker wj , use the following rule to update wj ’s
estimated accuracy:

p̂′j =

∫ 1

pmin
pLj(p) dp∫ 1

pmin
Lj(p) dp

,

where Lj(p) is the likelihood of worker wj ’s accuracy
being p given the available evidence:

Lj(p) = pg
R
j (1− p)gj−gRj ×∏

i∈QW
j

ci∑
c=1

(
p1aij=c +

1− p
ci − 1

1aij 6=c

)
×

∏
k∈WQ

i ,k 6=j

p̂k1aik=c +
1− p̂k
ci − 1

1aik 6=c.

2. If maxj |p̂′j − p̂j | ≥ δ and we haven’t exceeded the max-
imum number of iterations, go back to the first step —
otherwise, return the newly updated worker accuracies.

Essentially, for each question answered by wj , we compute
the likelihood of observing the other workers’ responses over
all possible values for wj ’s accuracy. We then integrate over
this likelihood distribution to compute the expected value of
wj ’s accuracy. We assume a minimum accuracy pmin which
represents our assumption that workers are better than ran-
dom. For example, for binary questions we might assume
pmin to be 50%.

In our previous example, our approach would yield esti-
mated worker accuracies of approximately w1 = 74% and
w2 = 74%. It makes intuitive sense that our estimates for
both workers accuracies should be the same, as there is an
ambiguity in what the correct response should be to question
2. Using methods described later in Section 5, we would also
estimate 89% confidence in a “yes” answer for q1 and 50%
confidence in a “no” answer for q2, thus capturing the notion
of more uncertainty in our aggregated answer for q2.

Remarks. We compare this method against standard
EM in our synthetic data experiments in Section 10.1, and
find our approach significantly reduces the root mean squared
error (RMSE) in predicting worker accuracies when there
are few votes per worker. A drawback of our approach is
that a naive implementation is slightly more computation-
ally intensive than EM — however, in Section 9, we describe
how to significantly optimize our approach by incrementally
updating worker accuracies when we receive new votes.

5. VOTE AGGREGATION
Once we have estimated worker accuracies (described in

Section 4), the maximum likelihood answer choice for a ques-
tion can be computed in a straightforward Bayesian manner.

Given a set of evidence E, and true correct answer ai for
question i, the probability that ai is a specific answer choice
c∗ can be computed using Bayes’ rule:

P (ai = c∗ | E) =
P (E | ai = c∗)P (ai = c∗)

P (E)

=
P (E | ai = c∗)P (ai = c∗)∑

c P (E | ai = c)P (ai = c)
.

To simplify the discussion, we assume each answer choice is
equally likely a priori, and thus P (ai = c) = 1

ci
. If instead

the answer choices have a skewed distribution, our equations
can be easily modified to account for this. The maximum
likelihood answer to question qi, which we denote as âi, can
be easily computed by finding the answer choice which max-
imizes the numerator of our previous equation:

âi = arg max
c∈{1,2,··· ,ci}

∏
j∈WQ

i

p̂j1aij=c +
1− p̂j
ci − 1

1aij 6=c.

The estimated probability of âi being the true answer for
qi, π̂i = P (âi = ai), can also be given by normalizing the
previous result. We can refer to this as the confidence of
CrowdDQS that the correct answer to qi is our estimate âi:

π̂i =

∏
j∈WQ

i
p̂j1aij=âi +

1−p̂j
ci−1

1aij 6=âi∑ci
c=1

∏
j∈WQ

i
p̂j1aij=c +

1−p̂j
ci−1

1aij 6=c

.

As an example, suppose we have three workers with es-
timated worker accuracies of 90%, 80%, and 60%. Sup-
pose that these workers vote on a yes/no question with the
votes {Yes, No, No}, respectively. The probability of ob-
serving the evidence given that the correct answer is “yes”
is 0.9 ∗ (1 − 0.8) ∗ (1 − 0.6) = 0.072, and the probability of
observing the evidence given that the correct answer is “no”
is (1− 0.9) ∗ 0.8 ∗ 0.6 = 0.048, and thus the maximum like-
lihood answer for the question would be computed as “yes.”
The estimated probability of “yes” being the true, correct
answer would be 0.072/(0.072 + 0.048) = 60%. In this case,
even though there are two votes for “no,” because the source
of these votes are from lower quality workers, they get out-
weighed by a single high quality “yes” vote.

6. BLOCKING
We can get further improvements to CrowdDQS by incor-

porating a strategy to dynamically block poor-performing
workers and spammers. In our earlier estimate of worker
accuracies, for each worker we estimated the marginal likeli-
hood distribution of their accuracy. This leads to a natural
criterion for blocking a worker: namely, we wish to block a
worker when we think it is likely that a replacement worker
would have a higher accuracy than the worker we are con-
sidering to block.

Because we compute the marginal likelihood distribution
curve for each worker while estimating their accuracy, we
can just integrate over this curve to find the probability that
P (pj ≤ p̂avg), where p̂avg is the estimated average worker
accuracy for workers on our task. If we denote the number



of workers we have observed as NW , p̂avg is just:

p̂avg =
1

NW

∑
j

p̂j .

If the probability of the worker being worse than aver-
age is high enough (in our experiments, we used a blocking
threshold, TB , of 60% or more), we block the worker, i.e. we
block if the following is true:

P (pj ≤ p̂avg) =

∫ p̂avg

pmin
Lj(p) dp∫ 1

pmin
Lj(p) dp

≥ TB .

Remarks. In Section 12, we discuss how to practically
block a worker without negatively affecting a requester’s rep-
utation, and how to block a worker so that they can still
continue to work on different groups of tasks by the same
requester. If needed, we can adjust TB to trade-off precision
and recall for our blocking strategy. In theory, TB can be
any value over 50%, but we set TB = 60% because it works
well in practice without overzealously blocking workers.

7. DYNAMIC QUESTION SELECTION
When a worker wj requests to vote on a new question

from CrowdDQS, how should we assign the question to ask
this worker? We first briefly describe the default round-robin
(RR) approach used on crowdsourcing systems such as Ama-
zon Mechanical Turk, before describing our dynamic ques-
tion selection (DQS) approach, which uses existing votes
to dynamically attempt to assign the best question to any
given worker. For now, we do not consider gold standard
questions, instead revisiting them in Section 8.

7.1 Typical Approach — Round Robin
In the naive round robin (RR) approach, we allocate our

budget B to be evenly distributed among the questions in Q,
without issuing any gold standard questions. For example,
if we have B = 150 and N = 50, then each question in Q
would be assigned 3 votes. If we increased B to 175, we
would assign the first 25 questions in Q to have 4 votes, and
the last 25 questions to have 3 votes.

7.2 Our Approach — Maximize Potential Gain
In our approach, we take into account previous worker re-

sponses and select the question that has the most potential
to increase the expected accuracy of our final set of aggre-
gated votes. Our goal with CrowdDQS is to assign questions
to workers in order to maximize the overall accuracy of the
aggregated responses Â = {âi}. The current accuracy of
our set of aggregated votes can be estimated as 1

NQ

∑
i π̂i,

where π̂i (defined in Section 5) refers to CrowdDQS’s cur-
rent estimated confidence for question i.

The intuition behind our question selection algorithm is
that we greedily choose the question q∗i in Q whose confi-
dence π̂i stands to increase the most if we receive another
vote from worker wj . This also corresponds to the ques-
tion that would most increase our overall expected accuracy
1

NQ

∑
i π̂i. Of course, the confidence that CrowdDQS has

for its aggregated response to q∗i will depend on wj ’s vote
for that question, which is unknown to us when we assign a
question to the worker.

However, the maximum potential gain in our confidence
occurs if the worker responds with a vote which agrees with

the current aggregated response for q∗i , as a dissenting vote
would make us less certain about our aggregated response.
Thus, for any given qi, we compute the maximum potential
gain in accuracy for qi by recomputing the confidence π̂i if
wj were to respond with our current estimated true answer
for qi, i.e. âi. We denote this estimated gain as Gi(p̂j):

Gi(p̂j) =
p̂jIi,âi

p̂jIi,âi +
∑

c6=âi

1−p̂j
ci−1

Ii,c
− π̂i,

where we define the auxiliary notation Ii,c to refer to the
likelihood product that ai is c:

Ii,c =
∏

k∈WQ
i

p̂k1aik=c +
1− p̂k
ci − 1

1aik 6=c.

Thus, our question selection algorithm assigns to worker
wj the question which maximizes Gi(wj), i.e.:

q∗i = arg max
i

Gi(p̂j).

In practice, this is a lightweight computation because our
incremental updating algorithms cache Ii,c for each answer
choice of each question (described in Section 9).

8. DYNAMIC GOLD STANDARD QUESTION
SELECTION

In later experiments detailed in Section 10.3, we find that
typical static gold standard question strategies (i.e. strate-
gies where all workers are issued gold standard questions up
front) actually reduce accuracy if the budget is kept con-
stant. These results make it clear that the only way for us
to realize any practical gains from a gold standard question
approach is to issue them dynamically — i.e. we must be
prudent when asking gold standard questions, only asking
them when it appears likely that we can increase our accu-
racy. CrowdDQS allows us the flexibility to implement such
dynamic approaches which would otherwise be difficult to
deploy on a crowdsourcing platform.

Another key advantage of CrowdDQS is it allows for us
to issue gold standard questions to workers without them
realizing they are being asked a gold standard question, be-
cause GSQs can be asked at any time to a worker. The
typical approach to issuing gold standard questions is to ask
workers to successfully pass a qualification test before allow-
ing them to work on any other tasks by a submitter. The
problem with this approach is a spammer can do well on
the qualification test but then start spamming once granted
access to a submitter’s tasks. In CrowdDQS spammers will
be much less likely to know when they are being asked a
gold standard question.

8.1 Dynamic Gold Standard Question Issuing
Strategy

We improve upon static gold standard question strategies
by taking a more conservative approach to issuing gold stan-
dard questions. We first compute the gains for each question
using our DQS approach. Let the incoming worker be de-
noted as wj . Let S(N) refer to the top N potential questions
in Q, ordered by decreasing gain from the calculations of our
DQS strategy from Section 7. First, we only consider issuing
a gold standard question if we determine that an incorrect
answer to the GSQ would immediately lead to us blocking



wj , i.e. before considering if a GSQ should be issued, first
we check if: ∫ p̂avg

pmin
(1− p)Lj(p) dp∫ 1

pmin
(1− p)Lj(p) dp

≥ TB .

The left-hand side of the previous expression computes the
probability of the worker being worse than average if we
assume an incorrect GSQ response is added to their set of
evidence (adapted from Section 6). If that is the case, we
next consider the expected potential gain by asking a GSQ.
To do so, we must estimate the number of future questions
the worker will answer including the GSQ, denoted as Fj .
We use the heuristic that a worker will likely answer as many
questions as they have already contributed, but to remain
conservative, we cap this estimate: Fj = max(|QW

j |, 4).
However, by asking a GSQ, we must account for the fact
we will only get to ask the worker Fj − 1 other questions.
We will assume that those questions will be given by our
DQS algorithm from before.

If the worker gets the GSQ question correct, we improve
our confidence in the questions that the worker has already
answered because we have an increased accuracy estimate
for the worker. The new estimated accuracy of wj after
correctly answering a GSQ, denoted as p̂Rj , would be:

p̂Rj =

∫ 1

pmin
p2Lj(p) dp∫ 1

pmin
pLj(p) dp

.

By using this new estimate for wj ’s accuracy, we can re-
calculate our confidence in each question wj answered. Let
π̂R
i be the new confidence of question i when using p̂Rj as

the estimate for wj ’s accuracy. Thus if the worker correctly
answers the GSQ, we can then say the expected potential
gain in accuracy on wj ’s previously answered questions is∑

i∈QW
j
p̂j(π̂

R
i − π̂i). We next consider what happens with

the Fj − 1 other questions wj would answer. We can esti-
mate that our DQS algorithm would issue the questions in
S(Fj − 1) to wj . If the worker answers the GSQ incorrectly,
we will block the worker and we can assume that the ques-
tions in S(Fj −1) will be answered by a replacement worker
with accuracy p̂avg (the estimated average worker accuracy).
This gives us a total estimated potential gain for asking a
GSQ:

GGSQ =
∑

i∈QW
j

p̂j(π̂
R
i − π̂i)+

∑
i∈S(Fj−1)

p̂jGi(p̂
R
j )+(1− p̂j)Gi(p̂avg).

If we do not issue a GSQ, the potential gain is just the sum of
the DQS computed gains of the top Fj questions (as opposed
to Fj − 1 questions we consider when asking a GSQ):

GNoGSQ =
∑

i∈S(Fj)

Gi(p̂j).

We then issue a GSQ if GGSQ > GNoGSQ and if the worker
has not already answered all available GSQs.

This approach is much better than naive static GSQ strate-
gies because it only considers asking gold standard questions
if there appears to be a short-term realizable gain in doing
so. However, there are still several shortcomings with this
approach. First, it only considers asking a GSQ if it im-
mediately leads to a blocking decision — a better strategy
might try to look further out into the future. The strategy

also takes a conservative approach to estimating the amount
of future work we get from a worker — better estimates of
the amount of future work would allow our strategy to more
accurately estimate the potential gain of issuing a GSQ.

Despite these shortcomings, in our later experiments (Sec-
tion 11), we see that our dynamic GSQ approach yields
significant benefits on real-world data in how quickly our
system is able to obtain accurate results.

9. INCREMENTAL UPDATES FOR REAL-
TIME PERFORMANCE

Because our system is choosing questions to present to
workers on-the-fly, it is important for us to be aware of
the computational performance characteristics of our algo-
rithms. At a high level, each time we receive a new vote
and issue a new question, we must (1) recalculate worker
accuracies given the new vote evidence, and (2) compute
the most beneficial next question to solicit a new vote for,
given our new worker accuracy estimates. In practice, com-
putation time is dominated by needing to recalculate worker
accuracies in the presence of new vote evidence.

We can analyze the average-case performance requirements
of a naive non-incremental approach to executing these steps.
We will calculate the total computational complexity of exe-
cuting our worker accuracy estimation algorithm for a bud-
get of B questions.

For simplicity of this analysis, we will assume we are not
selecting gold standard questions or blocking workers. Con-
ceptually, in a naive non-incremental approach to recalcu-
lating worker accuracies, we repeat the following until con-
vergence:

• For each worker j, compute the likelihood distribution
of the worker’s accuracy, assuming every other worker’s
accuracy is fixed. Use this probability distribution to
compute the expected value of worker j’s accuracy.
• The computation of this probability distribution requires

us to sweep values of the worker accuracy estimate, p̂j ,
and compute the following for each value of p̂j that we
iterate over:∏

i∈QW
j

ci∑
c=1

∏
k∈WQ

i

p̂k1aik=c +
1− p̂k
ci − 1

1aik 6=c.

This requires us to loop over all the questions answered
by worker j, and then for each question qi answered by j,
we must also loop over all responses by all other workers
for qi.

Suppose that we are currently recomputing worker accura-
cies for the b-th vote, where 1 ≤ b ≤ B. Then, given an aver-
age worker lifetime of L questions, on average we will have
b/L workers, with O(L) responses per worker, and b/NQ

workers answering each question. Thus the average case
computational complexity of recalculating all worker accu-
racies is roughly O(b2/NQ) for the b-th vote, and O(B3/NQ)
for all B votes. If we make the reasonable assumption that
the total budget for NQ questions is B = O(NQ), then the
total computation time required of our dynamic algorithm
is O(N2

Q) under a naive non-incremental approach.
However, by intelligently reusing intermediate results from

previous computations, we can significantly improve upon
the O(N2

Q) naive approach to an O(NQ) approach. We re-
duce the computation needed to process a new vote through



two mechanisms which we term incremental worker updating
and incremental question updating, described next.

9.1 Incremental Worker Updating
In the incremental worker updating approach, we exploit

the fact that a worker j’s marginal likelihood distribution
only potentially changes under two scenarios: (1) if another
worker votes on a question that j already answered, or (2)
if we update the accuracy estimate of another worker who
has answered a question j already has. Thus, in our itera-
tive approach to worker accuracy estimation, we only need
to recalculate worker accuracy probability distributions for
workers who meet either of these two conditions.

To do so, we keep track of a graph G where the nodes
represent different workers, and an edge between a node j
and node k indicates that worker j and worker k have both
voted on the same question at some point. Suppose that
a worker j votes on question qi. Then, instead of comput-
ing new worker accuracy estimates for all workers, the first
iteration of our worker accuracy estimation only needs to
recalculate worker estimates for the workers who answered
qi, which is O(b/NQ) workers on average. Next, if the first
iteration of our algorithm causes us to update the accuracies
of any workers, for the next iteration of our algorithm we
only would calculate new accuracies for workers who shared
an edge in G with the newly updated workers. On aver-
age, the number of edges for a worker is roughly O(bL/NQ).
In practice, we usually only need one or two iterations for
our worker accuracy estimates to converge, and thus instead
of recomputing accuracy estimates for all O(b/L) workers,
we usually recompute accuracies for O(b/NQ) workers (first-
order approximation).

9.2 Incremental Question Updating
In the incremental question updating approach, we accel-

erate the computation of the worker accuracy probability
distribution curve. For a worker j whose accuracy probabil-
ity distribution we are trying to estimate, instead of recom-
puting ∏

i∈QW
j

ci∑
c=1

∏
k∈WQ

i

p̂k1aik=c +
1− p̂k
ci − 1

1aik 6=c

for each value of p̂j in our sweep, we instead keep track
of the following intermediate calculation Ii,c for choice c of
question i (first defined in Section 7):

Ii,c =
∏

k∈WQ
i

p̂k1aik=c +
1− p̂k
ci − 1

1aik 6=c

Instead of needing to iterate through all responses to qi to
recalculate Ii,c, we only need to divide out the contribution
caused by the old accuracy estimate and then multiply in
the new accuracy estimate’s contribution. Thus when up-
dating p̂j to p̂′j to estimate the worker accuracy’s marginal
likelihood, we only compute the following:

∏
i∈QW

j

ci∑
c=1

Ii,c ·
p̂′j1aij=c +

1−p̂′j
ci−1

1aij 6=c

p̂j1aij=c +
1−p̂j
ci−1

1aij 6=c

,

reducing the computation required to estimate the likelihood
distribution from O(bL/NQ) to O(L) for the b-th vote.

Summary. In summary, both of the above approaches,
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Figure 1: EM versus our marginal likelihood curve estimation
method from Section 4.

taken together, cause us to reduce the number of workers
we recompute accuracies for from O(b/L) to O(b/NQ), and
reduce the probability curve calculation from O(L)·O(b/NQ)
to O(L). Thus the per vote computation time becomes
O(bL/NQ), and the total computation becomes O(B2L/NQ)
for B votes. If we again assume that B = O(NQ), then we
have reduced our total computation from being O(N2

Q) to
O(NQ).

In Section 9.1, we experimentally evaluate the perfor-
mance gains of implementing these algorithms, and find it
greatly reduces the computational requirements of our ap-
proach.

10. SYNTHETIC DATA EXPERIMENTS
In Section 11, we will demonstrate that CrowdDQS is able

to achieve significant cost reductions in practice on real-
world datasets, deploying our algorithms to over 1000 work-
ers on AMT. In this section, however, we supplement our
understanding of CrowdDQS and our strategies through use
of synthetic data experiments. Synthetic data experiments
allow us to finely control and examine the effect that differ-
ent variables like worker accuracy, worker distribution, and
dataset size have on our system.

To carry out our synthetic data experiments we build a
simulator to study the operation of CrowdDQS under vari-
ous scenarios. Our simulator takes the following inputs:

• N — the number of questions in our question bank. For
simplicity, we assume each question has 2 choices.

• B — The budget, i.e. the number of votes to simulate.

• L — The worker lifetime, i.e. the total number of votes a
worker contributes before leaving our tasks. All workers
are assumed to have the same L in our simulations.

Our simulator also takes as input the distribution of worker
accuracies. Each simulated worker wj is assigned a hid-
den accuracy pj drawn randomly from this distribution, and
when presented a question, wj provides a correct answer
with probability pj and incorrect answer with probability
1 − pj . Workers arrive in a randomized order, are assumed
to respond with answers instantly, and provide up to L votes.
We allow for the question selection algorithms and worker
accuracy estimation to be user-configurable. After all B
votes have been simulated, our simulator evaluates the user-
configured algorithms by computing the accuracy of the ag-
gregated responses on the synthetic data.

10.1 Worker Accuracy Estimation vs. EM with
Limited Votes

In Section 4, we proposed our marginal likelihood curve
estimation as an alternative inference method to the com-
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Figure 2: Total simulation computation time in seconds as we
vary N , where total votes B = 5N , for both our incremental ap-
proach and the non-incremental naive approach. Our incremental
approach significantly decreases computation time.

monly used expectation maximization (EM) approach to es-
timating worker accuracies, which we argued is less effective
when there is limited worker voting evidence. In Figure 1,
we demonstrate this effect on synthetic data. We simulate
round-robin question issuing on a synthetic dataset of 10
questions with 10 workers whose accuracies are drawn uni-
formly at random between 80% and 95%, and we vary the
worker lifetime L from 2 through 10 for each worker (i.e.
we simulate B = 10L for L = 2, 3, · · · , 10, and each worker
is randomly assigned questions). After each simulation, we
estimate each worker’s accuracy using EM and our marginal
likelihood approach, and compute the root mean squared er-
ror (RMSE) of the estimates over 100 trials. We plot both
the RMSE and average accuracy of aggregating votes using
EM and using our approach.

We see in Figure 1a that compared to EM, our approach
significantly decreases the RMSE of our estimates for worker
accuracy, especially for low numbers of votes. Interestingly,
we see in Figure 1b that the accuracy of the aggregated votes
under both methods is approximately the same. However,
precise worker accuracy estimation is critically important
for our dynamic question selection algorithms, because our
estimates guide our decision as to which questions most need
additional votes. As the number of votes increase, we see
that our approach and EM converge to similar RMSEs, but
that our approach is much more informative when we have
little voting evidence.

10.2 Incremental Updating Performance Gains
In Section 9, we described an incremental approach to

greatly reduce our worker accuracy computational require-
ments to enable real-time performance. In Figure 2, we vary
the number of questions N in our simulator, and measure
the total computation time (over the entire run) to run our
dynamic question selection algorithms and accuracy esti-
mates for B = 5N votes (we set L = 10). We see the
full, non-incremental approach has quadratic time complex-
ity whereas the incremental approach has linear time com-
plexity, as our first order analysis indicated. Without these
gains, our dynamic question approach would not scale as
well when deployed as a real-time system.

10.3 Static Gold Standard Question Strategies
To illustrate some of the challenges with asking gold stan-

dard questions, we first consider static gold standard ques-
tion strategies — i.e. strategies where each newly observed
worker is given a set of gold standard questions to answer
before they answer any questions from our question bank Q.

We find that issuing a fixed number of GSQs is almost
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Figure 3: Effect on accuracy of aggregated votes of asking each
new worker one or more gold standard questions. Here we have
N = 40 questions, with worker accuracies being drawn uniformly
at random from 70% to 90% and DQS (dynamic question se-
lection) + blocking enabled. We see that static GSQ strategies
decrease overall accuracy.

always a bad idea, particularly when workers have short life-
times. With more votes, we would still learn about worker
accuracies through correlated voting patterns and have more
voting evidence per question, but GSQs often end up wasting
a large portion of our budget testing workers (more details
in Appendix C). In Figures 3a and 3b, we show the effect
asking 1 or 2 GSQs to each new worker has on the over-
all accuracy of our predicted answers. Even when worker
lifetimes are long (which reduces the relative cost of ask-
ing a GSQ), as in Figure 3b where L = 30, non-dynamic
approaches to asking GSQs can significantly decrease our
accuracy. For shorter worker lifetimes as seen in Figure 3a
(L = 5), we spend even more of our budget on GSQs and
end up with even lower accuracy as a result of asking GSQs
to each worker.

These results suggest that the common approach of asking
gold standard questions to all workers is often inadequate,
and thus we must be more clever about how to issue gold
standard questions to workers, as we described in Section 8.

11. CROWDDQS: REAL-WORLD SYSTEM
In order to determine the effectiveness of our algorithms in

a real crowdsourcing marketplace, we built the CrowdDQS
server in order to deploy our algorithms for dynamic ques-
tion selection and blocking on Amazon Mechanical Turk.
While AMT is arguably one of the most prominent market-
places for microtasking work, it is not designed for dynamic
question issuing. The standard idiom of use for AMT is for a
requester to post a list of specific questions to Amazon Me-
chanical Turk in a batch, and then to also request that each
question get a fixed number of votes from unique workers.
Thus, we require some clever engineering in order to deploy
our algorithms on AMT (for more details, see Section 12).

At a high-level, the CrowdDQS server works by allowing
us to upload a question bank of multiple choice questions
to be answered, a bank of available gold standard questions,
and the total number of votes to ask workers. The server
then creates a new batch of tasks on Mechanical Turk, with
one task created for each vote in the budget. For example,
if our budget was set at 250 votes on a question bank of
50 questions, our server would create 250 tasks on AMT.
However, the question to display in each task is determined
later and on-the-fly when a worker chooses to view the task.

As the system receives votes, it uses our algorithms to
adjust which questions to display to workers, as well as de-
termine when to block workers from completing more tasks
on the system. During this time, the requester is able to see
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Figure 5: Number of votes required by our system to reach 90%,
96%, 98% and 100% accuracy on CARS, averaged over 5 trials
(each run occurred during daylight hours PDT). The four strate-
gies we test are RR-MV: round-robin (RR) with majority vot-
ing, DQS: our dynamic question selection (DQS) with marginal
likelihood estimation of worker accuracies, DQS+B: DQS with
blocking enabled, and DQS+B+GSQ: DQS with blocking and
dynamic GSQ issuing enabled.

which questions are currently being voted on, blocked work-
ers, estimated worker accuracy, and estimated answers for
each question (along with the system’s confidence in each
answer). To ensure we are able to assign questions in real
time to workers, the CrowdDQS server implements our in-
cremental update techniques from Section 9 for recalculating
worker accuracies after each vote.

11.1 Experiments
Our CrowdDQS server allows us to choose which approach

we use for assigning questions to a worker, as well as for ag-
gregating the worker’s results. We test our algorithms on
3 different datasets1, collecting over 12,000 responses from
over 1000 workers:

(1) CARS. We use the CARS dataset of car images from
[36], where our question bank Q consists of photos of 50 cars,
and users are asked to identify the model of the car in the
photo, given two choices. Our GSQ bank QG has 10 photos
of cars. The options given to the user both have the correct
make of the car, but only one choice has the correct model.
Workers are paid $0.01 per vote.

1Examples from each dataset are available in Appendix A.

(2) DOGS. In the DOGS dataset, we use photos of 3 closely
related dog breeds from the Stanford Dogs dataset [19]: Aus-
tralian terriers, Norfolk terriers, and Border terriers. Work-
ers must choose the correct breed out of these 3 choices. Q
has 50 photos and QG has 6 photos. Workers are paid $0.02
per vote.

(3) SENTIMENT. In the SENTIMENT dataset, workers
must correctly classify the sentiment (positive or negative)
of Amazon product reviews (obtained from [26]). Q has 150
product reviews and for our GSQ bank, QG, we use 10 prod-
uct reviews. Workers are paid $0.01 per vote.

We test four strategies for question selection and vote ag-
gregation. Because many factors can affect the performance
of our strategies,2 we run each strategy 5 times and run all
strategies for a dataset at a similar time of day to reduce
the variability of our results. For each strategy, we compute
the number of votes required to first reach 90%, 94%, 98%,
and 100% accuracy. We allow workers to continue voting on
each run until we reach 100% accuracy on all tasks. The
server is able to compute these statistics because we have
labeled ground truth for all our datasets.

The four strategies we test are:

• RR-MV: Round-robin question assignment with ma-
jority voting (the standard workflow used in Amazon
Mechanical Turk).
• DQS: Our dynamic question selection (DQS) with marginal

likelihood estimation of worker accuracies.
• DQS+B: DQS with blocking enabled.
• DQS+B+GSQ: DQS with blocking and dynamic GSQ

issuing enabled.

11.2 Overall Results
In Figure 4 we plot the average number of votes needed per

question to reach 100% accuracy on all our datasets, compar-
ing the standard RR-MV approach with our DQS+B+GSQ
(dynamic question selection + blocking + GSQs) strategies
from this paper. Any gold standard questions that were
issued are also included in these vote totals. We find:

• On the CARS dataset, CrowdDQS uses 5.1x fewer ques-
tions than the standard round-robin approach to accu-
rately answer our questions.
• On the DOGS dataset, CrowdDQS uses 2.3x fewer ques-

tions than the standard round-robin approach.
• On the SENTIMENT dataset, CrowdDQS uses 1.5x

fewer questions than the standard round-robin approach.

In general, we find that our approach with CrowdDQS can
yield substantial cost savings while still maintaining accu-
racy. For example, for the CARS and DOGS datasets,
CrowdDQS can obtain 100% accuracy in just 2-4 votes per
question, even though 100% accuracy requires 10-11 votes
for the round-robin approach. CrowddDQS provides less
of an advantage over standard approaches when tasks are
very easy like in the SENTIMENTS dataset, which only
needs 3 votes per question on average to label accurately
with RR. This occurs because for easy tasks, a single pass
of votes leads to almost perfect accuracy. Nevertheless, we
find CrowdDQS still provides cost savings in these scenarios.

2e.g. worker accuracy distribution, the number of spammers
we attract, and the number of workers currently active in the
marketplace.



50 60 70 80 90 100
Worker Accuracy (%)

15

20

25

30

35

40

45

50

Av
g 

# 
of

 C
on

tri
bu

te
d 

Vo
te

s

Figure 6: Demonstration of prolific nature of spammers and
low-quality workers. We plot the average number of contributed
votes versus the estimated worker accuracy for workers who have
contributed at least 10 votes. Each data point is smoothed over
a window of 5% (i.e. when reporting the average number of votes
for 70% worker accuracy, we average the number of votes for
workers with accuracy between 65% to 75%).

11.3 In-depth Results
We plot more in-depth results for the CARS dataset in

Figure 5. We find that compared to the default round-robin
question assignment scheme used on Mechanical Turk, using
our techniques can reduce the average number of votes re-
quired to reach a given accuracy by up to 6x. For example,
to achieve 98% accuracy on our dataset, we found:

• We use 1.9x fewer questions than round-robin by using
our dynamic question selection (DQS) without using any
blocking or gold standard questions.
• We use 3.5x fewer questions than round-robin on aver-

age when we then add in the capability to dynamically
block poor-performing workers (DQS+B).
• We use 6x fewer questions than round-robin on average

by opportunistically issuing gold standard questions to
workers, in addition to blocking poor-performing workers
and using our dynamic question selection (DQS+B+GSQ).

11.4 Discussion
Where do these cost reductions come from? The stan-

dard round-robin, majority vote approach cannot differenti-
ate between questions that workers disagree on versus ques-
tions which have high worker agreement. This causes us to
waste votes on questions that do little to improve the overall
accuracy of our aggregated responses. In Appendix C, we
further discuss the intuition behind why CrowdDQS is able
to achieve these cost reductions, but in summary:

• DQS improves upon RR-MV by discounting votes of low-
quality workers and by focusing votes on uncertain ques-
tions.
• DQS+B improves upon DQS by blocking low-quality

workers from contributing more low-weighted votes, im-
proving the overall accuracy of the pool of workers al-
lowed to work on our task.
• DQS+B+GSQ improves upon DQS+B by using GSQs

to detect and remove inaccurate workers and spammers
early, instead of allowing them to fly under the radar
until corroborating votes arrive.

11.5 General Insights
In previous sections, we specified mathematical criteria

for question selection regarding both regular questions and
gold standard questions, as well as for worker accuracy es-
timation. It is easy for a qualitative understanding of our

system to be obscured by these equations and algorithms.
Here we describe some high-level observations we made dur-
ing our experiments which can help provide some intuition
into how our system behaves.

(1) The initial strategy with DQS is to get votes for every
question, as questions with no votes stand the most to gain
in expected accuracy by receiving an initial vote.

(2) After this initial pass of votes, questions start to be as-
signed their 2nd vote. If the 2nd vote does not corroborate
the first vote, our DQS algorithm will often immediately try
to get a new vote to help resolve the ambiguity. If the second
vote does corroborate the first vote, CrowdDQS will move
on to soliciting extra votes on another question.

(3) In the process of issuing 2nd, 3rd, and later votes for
questions, CrowdDQS may start to notice that some work-
ers often disagree with accurate workers (or at least, workers
that seem accurate). The accuracy estimate of these dis-
agreeing workers are then lowered, which causes their votes
to carry less weight during vote aggregation, and also po-
tentially leads to blocking the workers.

(4) An interesting side effect of detecting inaccurate workers
or spammers is that once CrowdDQS detects a low-quality
worker, it will often then assign more votes to questions that
were voted on by those workers. This is because CrowdDQS
automatically learns that we should assign more uncertainty
to questions that have a large proportion of their votes from
low-quality workers.

(5) Earlier, we noted that spammers and low-quality work-
ers often contribute a disproportionate number of votes rela-
tive to other workers. In Figure 6, we demonstrate this ten-
dency by plotting the average number of votes per worker
from the RR-MV CARS trials as a function of the estimated
worker accuracy. For this graph only, we exclude data from
workers who contribute less than 10 votes to ensure that
the accuracy estimates are reasonable. We observe that low-
quality workers answer the most questions. (Interestingly,
the most accurate workers also contribute many votes.)

(6) One reason why our dynamic approaches are a signifi-
cant improvement over round-robin is because RR becomes
a very expensive strategy as we receive more votes. After a
few rounds of votes, many questions will have been correctly
resolved by majority voting, but there will still be a few trou-
blesome questions that have high rates of worker disagree-
ment. For example, say we have 120 questions, and after a
few rounds of voting, only 3 questions remain which have
a large number of disagreements. To get a single vote on
these 3 difficult questions, the round-robin approach needs
to ask for 120 votes — this is essentially equivalent to saying
the votes on the last 3 difficult questions cost 40x more than
they should!

(7) There are interesting secondary effects of increasing worker
pay. With the typical round-robin approach, the first-order
effect of increasing the price paid to workers is that more
workers will be attracted to our tasks (thus completing our
task more quickly). However, this often also attracts spam-
mers and low-quality workers, which can then lower the qual-
ity of our results.

This changes under CrowdDQS. First, we are more robust
to the presence of spammers and low quality workers because
we block them from consuming our budget and we assign



low weight to their votes. However, increasing the price also
incentivizes workers to stay longer on our tasks, which allows
us to get a more accurate estimate of the worker’s accuracy.
In addition, a higher price attracts more people working on
our task in parallel. This allows us to get corroborated votes
more quickly, giving us faster estimates of worker accuracy.

11.6 Insights on Gold Standard Questions
From observing the voting logs of our runs, we observed

two scenarios where our system chose to issue GSQs, which
we describe below. In Appendix B, we further discuss the
intuition behind the trade-offs of asking GSQs.

(1) First, we saw that our system would issue GSQs to a
worker if they had answered around 5-10 questions near the
beginning of the job, with very few corroborating votes from
other workers which would enable us to infer their accuracy.
In this scenario, CrowdDQS sees that getting a better esti-
mate of the worker’s accuracy is better than the potential
increase in predicted answer accuracy by getting a new vote
(which provides less information about the worker’s accu-
racy). While this better worker accuracy estimate would
only have a small effect on the expected accuracy of each of
the 5-10 questions, the cumulative effect on these questions
outweighs the impact of a single new vote.

Note that in later stages of the job, we quickly get worker
accuracy evidence from correlating voting patterns, and thus
GSQs are less useful and rarely issued. This suggests that
GSQs have even more practical value when we increase the
number of questions in the question bank Q. In these scenar-
ios, without GSQs, bad workers would have the opportunity
to answer many questions without being detected.

(2) Second, we somewhat surprisingly also saw GSQs ap-
pear to relatively new workers at the end of a job. In these
instances, there are only a few questions which the system
is very uncertain about, and thus new workers are initially
prioritized to vote on these uncertain questions. Because
these are uncertain questions, this prevents the system from
getting a good estimate of the worker’s accuracy. In this sce-
nario, it seems like CrowdDQS is more interested in break-
ing the ties of the uncertain questions by getting a better
estimate of the new worker’s accuracy rather than by try-
ing to improve the confidence of questions that are already
effectively resolved.

12. PRACTICAL CHALLENGES
In order to implement the CrowdDQS server live on Ama-

zon Mechanical Turk, there were several practical challenges
we had to overcome.

(1) Dynamic Question Selection. In order to dynami-
cally display questions to workers, we make use of AMT’s
ExternalQuestion option for submitting tasks. A flawed
solution for dynamic question selection would be to issue
questions to AMT sequentially, where only one question is
issued at a time. This is undesirable because (a) it pre-
cludes workers from working in parallel on our tasks, and
(b) it would vastly increase latency because workers are of-
ten very unwilling to work on small batches of tasks. Work-
ers prefer to know that they can work on several questions
in a batch before moving on to a new batch.

With ExternalQuestions, a requester can specify an ex-
ternal URL where their question is hosted. Thus, we create
tasks on AMT all with the same ExternalQuestion URL on

our CrowdDQS server, and use our algorithms to dynami-
cally choose what is displayed at this URL.

(2) Blocking. While AMT provides a method for blocking
workers, this method negatively affects the worker’s reputa-
tion on AMT and also blocks the worker for all of the re-
quester’s tasks, even for different types of questions posted
by the requester. If a worker feels that a requester is unfair
in their blocking decisions, they often voice their complaints
on forums to other workers, which then diminishes the abil-
ity of the requester to find willing workers.

Instead, we use AMT’s qualification system to prevent
blocked workers from answering questions in our batch, while
still allowing any unblocked worker to vote on our questions.
The qualification system allows for requesters to assign arbi-
trary credentials to workers on the platform, and then spec-
ify that questions are only available to users that have either
the presence or absence of some set of these credentials. For
each new batch of questions uploaded to the CrowdDQS
server, we create a new qualification on Amazon Mechanical
Turk, and require that workers do not have this qualification
assigned to them in order to work on tasks in the batch.

Thus, initially all workers are free to work on the re-
quester’s tasks, but if needed, workers are blocked by assign-
ing them the newly-created qualification for a batch. This
mechanism does not adversely affect a worker’s reputation,
and still allows them to work on other questions in different
batches by the same requester.

(3) Real-time Decisions. Our algorithms rely on the cur-
rent set of voting evidence to choose the best questions to
ask workers. Thus, it is imperative that we are immediately
notified when there is a new vote so that we can update
our worker accuracy estimates and determine the next ques-
tion to assign. CrowdDQS achieves this by interjecting code
that first submits worker responses directly to our server be-
fore they are submitted to Amazon Mechanical Turk. This
mechanism is invisible to the crowdworker, but it allows our
server to immediately respond to new voting evidence. Once
we receive a new vote, we use our incremental algorithms of
Section 9 to efficiently update our accuracy estimates.

(4) Distinguishing Between Workers. AMT allows
workers to preview a requester’s task before deciding whether
to accept it. During this preview period, AMT does not pass
along any information to our server indicating the ID of the
worker viewing our question. Once the worker decides to ac-
cept a task, only then does AMT pass along a worker ID to
the server. This is problematic because our algorithms rely
on being able to distinguish between workers to determine
which question should be assigned next.

To work around this, we must set a cookie on the worker’s
machine to cache the worker’s ID on Amazon Mechanical
Turk after the first time they accept a task from our server.
Thus, for future questions previewed by the worker, we are
able to display the correct question by using the cached
worker ID. The first time a worker previews one of our ques-
tions, we do not have an ID stored for them, so we just treat
them as a new worker.

(5) Non-instantaneous Task Completion. Workers do
not complete tasks instantly. Thus, it is possible for a worker
to be in the midst of answering a question when a new worker
comes to request to work on a task. To avoid assigning the
same question over and over to different workers, we imple-



ment a reservation system in the server, where the server
keeps tracks of questions that are currently being voted on
by workers, and excludes reassigning those questions to new
workers until after the questions have been voted on.

(6) Discarded Tasks. Unfortunately, Amazon Mechanical
Turk does not notify our server if a worker discards a task.
This is problematic — if we do not know which tasks have
been discarded, the system can spend a long time waiting
for a vote that never arrives. This can lead to that question
being starved of votes, and ultimately greatly reducing ac-
curacy. To counter this, we implement several mechanisms
to detect when a worker has discarded a question.

The first mechanism we use is to implement a heartbeat
signal into our question’s JavaScript. Invisible to the worker,
the question the worker is viewing pings the CrowdDQS
server every 10 seconds to let our server know that the
worker still has a tab open with the question that they
accepted. If a worker closes their window, this heartbeat
signal stops, and the system knows to allow that question
to be reassigned to other workers. Another mechanism we
implement attempts to send a message to our server when a
worker closes their browser tab, directly notifying our server
that a question has been discarded. This mechanism is not
fully reliable (e.g. if a worker’s Internet goes out or if their
browser crashes, then this message will not have an opportu-
nity to be sent), and thus we still need to use our heartbeat
mechanism. Finally, if a user has been idle for 3 minutes
without answering a question, we release the question back
into the pool of assignable questions.

The trade-off we make here is that occasionally we may
assign an extra vote or two to a question, but this is greatly
preferable to starving a question of votes.

13. RELATED WORK
As mentioned in the introduction, the idea of dynami-

cally issuing tasks to workers has been discussed before in
the literature [4, 10, 15, 23, 41, 46]. Some prior work assume
that the set of workers is fixed and attempt to match tasks
optimally to these workers [1, 5, 15, 43, 44, 45], though this
assumption is less applicable to prominent crowdsourcing
systems like Amazon Mechanical Turk (which we focus on),
where we do not know which workers will work on our tasks.
Other work consider a worker setting similar to ours, but
either do not deploy live to an existing crowdsourcing sys-
tem [4,12,15,16,32,33], or dynamically assign questions us-
ing multiple batches [23, 41], and thus do not respond im-
mediately to new voting evidence, nor do they need to per-
form their computations in real-time. Some work [1, 12, 23]
consider early termination, where questions are given more
votes until a fixed confidence threshold is reached. This is
different from our approach which focuses votes on the most
beneficial questions that have not yet been terminated.

QASCA [46] and iCrowd [10], are the most closely related
work that we are aware of. Like our work, they [10,46] make
use of Amazon’s ExternalQuestion mechanism to dynami-
cally issue tasks to workers. QASCA’s [46] task assignment
criteria is similar to ours (QASCA uses expected accuracy
gain instead of maximum potential accuracy gain), but they
use EM [7] to estimate worker accuracies, which we argue
(Section 4) is less robust when there is little evidence for a
worker. iCrowd [10] attempts to match workers with tasks
based on inferred topic-level expertise, and initially assigns

GSQs to new workers to learn about their accuracy on a di-
verse set of topics (unlike our dynamic approach to GSQs).

However, unlike our work, neither of these systems ac-
tively blocks poor performing workers nor adaptively tries to
use gold standard questions to improve the accuracy of their
systems. We find, somewhat surprisingly, that GSQs are
usually only useful when asked in very specific circumstances
(see Section 10.3 and 11.6). Other work on GSQs [27, 38]
show that GSQs can help estimate the accuracy of workers
quickly and accurately, but unlike our work, they usually
do not consider the practical trade-off made between ask-
ing gold standard questions versus using repeated voting to
improve overall accuracy. We also provide incremental up-
dating techniques for estimating worker accuracy that are
not discussed in either QASCA or iCrowd. In addition, in
Section 12 we discuss in detail many non-obvious practical
challenges to deploying such a system that only receive lim-
ited treatment in [46] and [10]. For example, these challenges
include dealing with parallel task assignment, real-time per-
formance considerations, inferring worker IDs, detecting dis-
carded tasks, and practical blocking mechanisms.

There has also been extensive work on worker accuracy
estimation in the literature [2, 6, 11, 13, 14, 22, 30, 31, 34, 42].
However, the vast majority of this work has been in the
context of computing worker accuracies in order to improve
aggregating worker responses after a batch has completed,
where we have ample computation time available and many
votes per worker. Much of this work [11,13,22,25,31,34,39,
42,46] focuses on expectation maximization (EM) [7,9] based
methods, which we show are less desirable for a dynamic ap-
proach where we have limited evidence for workers. There
are other works [2,5,6,8,15,34] which formulate the worker
accuracy estimation problem in terms of probabilistic graph-
ical models [21]. Our approach to marginal likelihood curve
estimation most closely resembles the work in probabilistic
graphical models, where we can consider our formulation of
the problem to be similar to expressing a Markov Random
Field [20]. Our accuracy estimation is similar to the methods
of iterated conditional modes [3] and belief propagation [29]
for inference, but we are able to exploit the knowledge of our
specific domain to optimize our inference method to easily
handle incremental updates, which allows us to practically
deploy our algorithms in a real-time setting (Section 9).

14. CONCLUSION
In this paper, we presented CrowdDQS, a system inter-

facing seamlessly with Amazon Mechanical Turk to assign
questions to crowdworkers on-the-fly and in real-time. Un-
like other dynamic task assignment systems, CrowdDQS also
automatically removes poor workers from the worker pool
by (1) inferring worker accuracies through correlated voting
patterns between workers, and (2) deciding to directly learn
about worker accuracies by selectively issuing gold standard
questions to workers. We show that static GSQ strategies
are surprisingly ineffective at improving the accuracy of pre-
dicted answers, and instead develop an effective dynamic
strategy for issuing GSQs. We present worker accuracy es-
timation algorithms and incremental updating algorithms
which allow us to estimate worker accuracies in real-time
even with limited evidence. We deploy CrowdDQS live to
over 1000 workers on several real-world datasets, and find
that CrowdDQS accurately answers questions using up to
6x fewer votes than standard approaches.
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APPENDIX
A. DATASET SAMPLE QUESTIONS

Figure 7: Sample question from the CARS dataset.

Figure 8: Sample question from the DOGS dataset.

Figure 9: Sample question from the SENTIMENT dataset.

As mentioned in Section 11, we tested our system on sev-
eral real-world datasets. We provide examples from each
dataset in Figures 7, 8, and 9.

B. CROWDDQS INTUITION
In Section 11, we demonstrated that CrowdDQS can yield

significant reductions in the budget required to answer a set
of questions by the crowd. Where do the cost reductions
of CrowdDQS come from? Here we provide an intuitive

treatment of CrowdDQS’s operation. The standard round-
robin, majority vote approach cannot differentiate between
questions that workers disagree on versus questions which
have high worker agreement. This causes us to waste votes
on questions that do little to improve the overall accuracy
of our aggregated responses.

The DQS approach addresses the first problem with RR
by focusing votes on questions that have the greatest poten-
tial gain in accuracy — in practice, this corresponds to se-
lecting questions which CrowdDQS is most uncertain about.
Thus voting efforts are concentrated on the most difficult
questions, instead of being diffused over the entire question
set.

The DQS approach also is able to mitigate the effect of
spammers and inaccurate workers due to our marginal like-
lihood estimation approach. Spammers are inferred to have
close to random accuracy, and thus their votes are weighted
significantly less (or discounted entirely) when aggregating
worker responses. By discounting the votes of low quality
workers, DQS (unlike RR) does not suffer from low-quality
workers being able to have a large effect on the aggregated
set of votes.

Unfortunately, spammers can often be prolific. By intro-
ducing blocking, DQS+B can reduce the impact spammers
have even further than the DQS-only approach does. How-
ever, to begin to estimate a worker’s accuracy, we need for
multiple workers to vote on the same questions. Initially,
CrowdDQS prioritizes getting at least 1 vote for each ques-
tion. Thus there is a period early in the life of a batch
of questions where spammers can answer questions without
being detected. By introducing gold standard questions,
DQS+B+GSQ is able to catch these spammers early (see
Section 11.6 for more details).

Summarizing again:

• DQS improves upon RR-MV by discounting votes of low-
quality workers and by focusing votes on uncertain ques-
tions.
• DQS+B improves upon DQS by blocking low-quality

workers from contributing more low-weighted votes, im-
proving the overall accuracy of the pool of workers al-
lowed to work on our task.
• DQS+B+GSQ improves upon DQS+B by using GSQs

to detect and remove inaccurate workers and spammers
early, instead of allowing them to fly under the radar
until corroborating votes arrive.

C. GSQ INTUITION
One of our more surprising observations in Section 10.3

was that we must be very conservative when deciding to is-
sue gold standard questions to workers if we wish to improve
the accuracy of our predicted answers. There are several
reasons why issuing GSQs are so tricky:

• Asking a gold standard question prevents us from asking
for votes on questions in our question bank Q, and thus
asking gold standard questions to all workers is incredi-
bly wasteful (see Section 10.3).
• After each question in our question bank has received

one or more votes, the questions themselves can act as
“pseudo-gold standard questions.” While we may not
know the ground-truth responses for questions in our
question bank with 100% certainty, we will have a high
confidence in their predicted answers. This reduces the



relative information gain advantage of asking a gold stan-
dard question versus asking for a new vote on a question
that already has a few votes.
• For a gold standard question to be useful, it must ei-

ther provide a better accuracy estimate of the worker, or
it must somehow lead to us blocking the worker faster.
A better accuracy estimate is most useful for aggregat-
ing votes, especially when there are ties. However, our
dynamic question selection approach already minimizes
ties by asking for more votes on questions for which we
are less certain of the answer. If we use GSQs in order
to reduce the time needed to block a worker, we must
also have some estimate of how many more questions
the worker will answer for us, which may not be easy to
predict.

Because of these difficulties, our approach in Section 8 is
very conservative in deciding when to issue a gold standard
question.

D. EXTENSIONS
As alluded to in Section 3, in this section we briefly discuss

three possible extensions to CrowdDQS. We do not present
details or experimental results for these extensions.

Batching Multiple Questions within a Task. In some
cases, we may wish to issue multiple questions to a worker at
once. The advantage of issuing multiple questions is it allows
us to get a minimum number of votes per worker, which
can help us better estimate worker accuracies. Batching
questions can also help reduce the commission that must be
paid to AMT when issuing tasks. Batching also allows us to
post tasks with higher payment rewards for workers, which
may influence worker psychology to be more amenable to
accepting our tasks.

Implementing batching under CrowdDQS is straightfor-
ward. Suppose we want to batch K questions together

within a task. Instead of needing to select from
(
N
K

)
task

assignments, our real-time algorithms allow us to make K
different

(
N
1

)
task assignments. When a worker requests a

task from our server, we still use our algorithms to display
only one question. However, when the user submits this
question, our real-time algorithms can immediately display
a 2nd question to the worker instead of concluding the task.
Only once the K-th question has been submitted to our
server does CrowdDQS need to conclude the task.

Machine-based Priors. We considered a crowd-only solu-
tion to answering the questions in Q in this paper. However,
there are 2 ways we can incorporate machine-based priors
into our system. If we have a model that is calibrated to
output probabilities, then we can use these priors directly
into our worker accuracy estimation and answer aggregation
strategies as alluded to in Section 5. If we do not have a cali-
brated model, we can instead treat the machine-based labels
as though they all come from a single worker. CrowdDQS
would then use future crowd votes to learn the accuracy
of the machine classifier. This learned accuracy can then
be used to effectively integrate machine-based votes with
crowdsourced votes.

Explicitly Modeling Question Difficulty. In our model
for aggregating worker responses and estimating worker ac-
curacies, our equations assume each question is of equal dif-
ficulty. It could also be possible for us to try to infer each
question’s difficulty by fitting a“question difficulty”parame-
ter D ∈ [0, 1] to each question that modulates each worker’s
accuracy for that question to be between 1

ci
(purely ran-

dom) for high values of D to p̂j for low values of D. We
can then compute a maximum likelihood estimate for D for
each question. However, we suspect this would only slightly
improve our system. Even though we do not model question
difficulty explicitly, our question selection implicitly targets
votes on questions with high disagreement rates.


