
Top-K Entity Resolution
with Adaptive Locality-Sensitive Hashing

Vasilis Verroios
Stanford University

verroios@stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

ABSTRACT
Given a set of records, entity resolution algorithms find all
the records referring to each entity. In this paper, we study
the problem of top-k entity resolution: finding all the records
referring to the k largest (in terms of records) entities. Top-k
entity resolution is driven by many modern applications that
operate over just the few most popular entities in a dataset.
We propose a novel approach, based on locality-sensitive
hashing (LSH), that can very rapidly and accurately pro-
cess massive datasets. Our key insight is to adaptively de-
cide how much processing each record requires to ascertain
if it refers to a top-k entity or not: the less likely a record
is to refer to a top-k entity, the less it is processed. The
heavily reduced amount of processing for the vast majority
of records that do not refer to top-k entities, leads to sig-
nificant speedups. Our experiments with web images, web
articles, and scientific publications show a 2x to 25x speedup
compared to the traditional approach for high-dimensional
data.

1. INTRODUCTION
Given a set of records, the objective in entity resolution

(ER) is to find clusters of records such that each cluster
collects all the records referring to the same entity. For ex-
ample, if the records are restaurant entries on Google Maps,
the objective of ER is to find all entries referring to the same
restaurant, for every restaurant.

In many cases, the popularity of different entities is not the
same: few entities collect a large number of records referring
to them, while for most entities there are is a single or a
couple of records referring to them. Moreover, there are
many applications that only need to find those few entities
with the large number of records referring to them, and do
not need all other less popular entities. Let us illustrate a
few such applications.

First, consider an application that collects answers/solutions
from forums regarding software bugs. In this case, the records
are the forum threads and the entities are the different software-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Dataset Filtering
Top-k

Entities’
Records

Entity
Resolution

Entity 1

Entity 2

Entity k

Figure 1: Filtering stage in the overall workflow.

bug cases. The objective here is to improve the quality of
answers by constructing a single answer (or finding the best
answer) to each distinct software-bug case. Constructing
a single aggregated answer possibly requires human effort,
hence, such an application can only focus on the few most
popular software bugs; that obviously impact a large num-
ber of users. (After all, for the vast majority of bug cases
with a single or a few forum threads discussing them, users
can just go over those discussions and find the best solution
to the issue.)

Second, consider an application that finds the different
opinions on social media for a specific topic. For example,
the topic can be “NBA Finals 2016 Game 7” and the top-
2 opinions (expressed in most posts) could be “Steph Curry
choked in the last minutes”and“Warriors need to sign Kevin
Durant”. Here, the records would be the different posts in
social media and the entities the different opinions. Clearly,
the users of this application are not interested in all the
opinions for each topic (and cannot go over all opinions)
but want to get a feeling about what most people think by
looking at the top opinions.

Overall, we can find a motivating example for any appli-
cation where the user’s experience drastically improves by
the application being aware of the records/entries referring
to the top entities and possibly cleaning/aggregating the in-
formation for those entities (e.g., popular questions in search
engine query logs, viral videos in video streaming engines,
suspicious individuals that appear very often in specific lo-
cations of an airport). In addition, finding the entities that
collect a large number of records referring to them, may be
very useful from a data analytics perspective: for a given ap-
plication understanding which entities collect many entries
and why, can lead to changes in the functionality/interface
that can improve the overall user experience.

The naive approach for finding the largest entities, in
terms of number of records referring to them, is to first apply

10.1145/1235

an ER algorithm to find all entities, and then output only the
largest entities. However, most ER algorithms require the
computation of pairwise similarities for every two records in
a dataset. We can expect that the applications where find-
ing the largest entities is important, generate large datasets
and the cost of computing the similarity of every two records
in large datasets is prohibitive. In the previous “NBA Finals
2016 Game 7” example, we can expect the dataset to consist
of at least 100 thousand posts/messages: a dataset of 100
thousand records would require the computation of almost 5
billion pairwise similarities. Note also that computing each
pairwise similarity may be an expensive operation for many
applications, e.g., records containing images.

In this paper, we focus on a lightweight preprocessing
stage that receives the whole dataset as an input and tries to
filter out all the records that do not belong to the k largest
entities; where k is an input parameter. The output of this
filtering stage is then fed to an ER algorithm that produces
one cluster of records for each of the top-k entities and, pos-
sibly, aggregates the records in each cluster to produce a
summary for each entity (Figure 1). The filtering stage out-
put may contain a few records that do not belong to the k
largest entities, or a few records from the k largest entities
may not be part of the output. Nevertheless, if the number
of such errors is limited, we expect that the subsequent ER
algorithm can recover and produce (almost) the same final
outcome as if the filtering stage was not present. The pur-
pose of the filtering stage is to enable the efficient processing
of very large datasets, by having a linear cost to the number
of records in the dataset. Since the filtering stage output is
expected to be orders of magnitude smaller than the whole
dataset, the ER algorithm can afford a quadratic (or even
higher) cost to the size of the input, or even involve human
curation.

Various different aspects of entity resolution have been
studied over the years [17, 38, 36, 19, 10]. The most related
topic to the problem studied here, is the one of blocking [25,
6, 8, 26, 18, 12, 13]: the goal of blocking is to split a dataset
into blocks, such that the records of each entity (ideally)
do not split across two or more different blocks. Moreover,
the cost of blocking must be low, typically linear to the
number of records in the dataset. Nevertheless, blocking
mechanisms are designed for entity resolution over the en-
tire dataset. Especially for high-dimensional data (e.g., web
articles, images, videos, audio), there is a significant compu-
tational cost to process each record in the dataset, to decide
in which blocks to place the record. In this paper, we argue
that we can find the small portion of the dataset referring
to the top-k entities, with a very low cost for each record in
the rest of the dataset, that does not refer to a top-k entity.

Our approach consists of a linear-cost filtering stage al-
gorithm that uses Locality-Sensitive Hashing (LSH) [20] in
an adaptive way. LSH essentially enables efficient block-
ing for high-dimensional data. In the most common setting,
LSH uses a set of hash tables and applies a large number
of hash functions on each record of the dataset. Every two
records that LSH places in the same bucket, in one of the
tables, are considered “similar”, i.e., referring to the same
entity for ER. Nevertheless, LSH requires a large number
of hash functions to be applied on each record. That is,
while the cost of applying LSH is linear to the size of the
input, the cost of processing each record is high. The Adap-
tive LSH approach we propose is capable of processing the

longitude

latitude

sparsedense

dense

dense

Figure 2: Key insight in Adaptive LSH.

vast majority of records in the dataset with a very low cost
per record, showing a speedup of up to 25x, compared to
traditional-LSH blocking.

Figure 2 illustrates our approach’s key insight using a sim-
ple cartoon sketch. The points refer to restaurant records,
where for each record only the location (longitude/latitude)
is known. The records of the top-k entities lie on the “dense”
areas (i.e., areas with many records) in this space, while the
records that can be filtered out lie on “sparse” areas. The
key insight is that only a small number of LSH functions
need to be applied to the records that lie on “sparse” ar-
eas and the full set of LSH functions needs to be applied
only for the records that lie on “dense” areas. Adaptive LSH
starts by applying a small number of LSH functions on each
record in the dataset. It then detects which areas are sparse
and which are dense and continues by applying more LSH
functions only to the records in the dense areas, until it con-
verges to the records referring to the top-k entities. Thus,
Adaptive LSH can very efficiently filter out records that are
highly unlikely to be records referring to top-k entities, and
only requires a higher cost for records that refer (or are quite
likely to refer) to the top-k entities.

The rest of the paper is organized as follows: we start with
an overview of Adaptive LSH, in Section 2, in Section 3 we
present the LSH clustering functions, a key component of
our approach, in Sections 4 and 5 we discuss the algorithm
and details of Adaptive LSH, and in Section 6 we discuss our
experimental results with datasets of web articles, images,
and scientific publications.

2. APPROACH OVERVIEW
We start with the problem definition and an overview of

the Adaptive LSH approach through a discussion of its three
main concepts in Sections 2.2, 2.3, and 2.4.

2.1 Problem Definition
Let us denote the set of records in the dataset by

R = {r1, . . . , r|R|}
Each record ri refers to a single entity. In the ground

truth clustering

C∗ = {C∗1 , . . . , C∗|C∗|}
cluster C∗j contains all the records referring to entity j.

Assume a descending order on cluster size in our notation,
i.e., |C∗i | ≥ |C∗j | for i < j. The objective of the filtering
stage, as discussed in Figure 1, is to, very efficiently, find
the set of records O∗ that belong to the k largest clusters in
C∗:

O∗ = {rj : rj ∈ C∗i , i ≤ k}

Each method we study in this paper outputs a set of
records O, which we compare against the ground truth set
O∗. In particular, we measure the:

precision =
|O ∩ O∗|
|O| , recall =

|O ∩ O∗|
|O∗|

and

F1 score =
2 ∗ precision ∗ recall

precision + recall

2.2 Clustering Functions
To achieve a high precision and recall with a very low exe-

cution time, Adaptive LSH relies on a sequence of L cluster-
ing functions (gj : S → {Ci})Lj=1. Each function gj receives
as input a set of records S ⊆ R and clusters those records
into a set of non-overlapping clusters {Ci}. The input set S
can be the whole dataset R, or a single cluster produced by
a previous function in the sequence.

The functions in the sequence are probabilistic and have
the following four properties:

1. conservative evaluation: the functions attempt to cluster
the records of any ground truth cluster C∗i under the same
cluster in the output. That is, a cluster in the output of
any function gj may contain two or more ground truth
clusters, but a ground truth cluster should very rarely
split into two (or more) of the output clusters.

2. increasing accuracy : the further a function is in the se-
quence, the higher the chances of outputting the ground
truth clustering C∗ when applied on R; or the ground
truth clusters in a subset S, for any subset S.

3. increasing cost : the further a function is in the sequence,
the higher the cost of applying the function on any subset
of records S.

4. incremental computation: the computation of the func-
tions in the sequence can be performed incrementally.
That is, the computation required by a function gi con-
sists of the computation required by gi−1 plus some ad-
ditional computation.

2.3 Sequential Function Application
Our approach starts by applying the most lightweight

function in the sequence, g1, on the whole dataset R, and
continues by applying subsequent functions on the “most-
promising” (for being a top-k entity) clusters.

Let us illustrate the concept of sequential function ap-
plication via the example in Figure 3. The most “light-
weight” function g1 is applied on the whole dataset R and
splits it into the first round clusters (three in this figure)

C
(1)
1 , C

(1)
2 , C

(1)
3 ; the superscript denotes the round. In the

second round, the next function in the sequence, g2, is ap-

plied on one of the clusters from the first round; C
(1)
1 in this

example. In each round, our approach selects the largest,
in terms of number of records, cluster that is not an out-
come of the last function in the sequence. The intuition for
this choice is that a large cluster has to be processed sooner
or later, to find out if it belongs to the top-k or not. We
prove that the largest-cluster selection rule is actually opti-

mal, in Section 4. Function g2 splits C
(1)
1 into two clusters

C
(2)
1 , C

(2)
2 . The other two clusters C

(1)
2 , C

(1)
3 from the first

round, are also added, unchanged, to the list of clusters af-

ter Round 2. In the third round, cluster C
(2)
3 is selected.

Since cluster C
(2)
3 is the outcome of a g1 function, the next

function to be applied on C
(2)
3 is g2.

R

C(1)

C(1)

C(1)

C(2)

C(2)

C(2)

C(2)

C(3)

C(3)

C(3)

C(3)
C(3)

1

2

3

1

2

3

4

4

g1
g2

g2
1

2

3

5

Round 1 Round 2 Round 3

g3

Figure 3: Sequential function application example.

The sequential function application stops when the k largest
clusters, in the list of clusters at the end of a round, are an
outcome of the last function in the sequence: the union of
records in the k clusters are returned as the output of the
filtering stage. In this case, based on Properties 1 and 2,
each of the k clusters is very likely to refer to exactly one
of the ground truth clusters in C∗. In addition, based on
Property 1, all other ground truth clusters are very likely to
be smaller than the k clusters and, thus, it is “safe” to con-
clude that the k clusters after the last round are the top-k
clusters in C∗. Of course, our approach may introduce errors
and the output may be not be identical to the ground truth
output O∗, as the objective is a high-performance filtering
stage that significantly reduces the size of the initial dataset.
Nonetheless, even when those errors are non-negligible, we
can trade precision for recall and control the output’s qual-
ity with a small cost in performance, as we discuss in the
experimental section.

When the sequential function application terminates, we
expect that for the vast majority of records in the dataset
only the first few functions in the sequence will have been
applied. Going back to the discussion for Figure 2, all the
records lying on the “sparse” areas will have a few functions
applied on, and the full sequence of functions will only be
applied on the records lying on the“dense”areas. Hence, the
amount of processing applied on the vast majority of records
will be considerably lower than the amount of processing
applied on the records on the “dense” areas that are likely
to belong to the top-k entities.

Note also that because of Property 4, the sequential func-
tion application is performed incrementally. For instance,

part of the computation required for applying g2 on C
(1)
1 , is

already performed by g1 (when applied on R), and does not
need to be repeated.

2.4 Locality-Sensitive Hashing
The third key concept in our approach is using Locality-

Sensitive Hashing (LSH) [20] as the main component of the
sequence of clustering functions. We give an overview of
LSH and we discuss how to build clustering functions with
Properties 1 to 4 in the next section.

3. CLUSTERING FUNCTIONS
In this section, we present the clustering functions used in

our approach. Our goal is to provide an overview without
going into the technical details that involve LSH. All details
can be found in Appendix A.

The clustering functions rely on distance metrics: the
smaller the distance between two records, the more likely
the two records are to refer to the same entity. To illustrate,
consider the following example:

EXAMPLE 1 Consider a set of records where each record
consists of a single photo of a person, processed so that the
distance between eyes and the distance of nose tip to mouth
are computed. The two distances form a two dimensional
vector. Consider as a distance function the cosine distance,
i.e., the angle between the vectors of two records. If two
photos show the same person we can expect the ratio of eyes
distance to nose-mouth distance to be roughly the same in the
two photos and, hence, the angle between the two respective
vectors to be small.

In addition, the clustering functions assume a distance
threshold dthr: if the distance between two records is less
than dthr, the two records are considered a match.

Clearly, real datasets consist of records with multiple fields.
Therefore, there is a separate distance metric for each field
and it may be more effective to use multiple distance thresh-
olds. For example, consider a set of records, where each one
consists of a person photo and fingerprints. In this case,
there could be two thresholds and two records would be
considered a match if the photos’ distance was lower than
the first threshold, or if the fingerprints’ distance was lower
than the second threshold. To keep the discussion in the
next sections concise, we focus on the simplest case of a
single field/threshold. In Appendix C, we discuss how to
extend all the mechanisms in our approach for the general
case, where each record consists of many fields.

Two records can also be considered a match, via transi-
tivity. That is, if two records a and b are within the distance
threshold, and b is also within the threshold with a record
c, records a and c are also considered a match.

To find the matches without having to compute the
(|R|

2

)
pairwise distances, the clustering functions use LSH. LSH
is based on hash functions that are applied individually on
each record. The smaller the distance between two records,
the more likely a hash function is to give the same value
when applied to each of the two records. One example of
such hash functions is the random hyperplanes for the cosine
distance:

30

eyes
distance

nose-mouth
distance

e2
e1

r1

r2

Figure 4: Random hyperplanes example.

EXAMPLE 2 Consider again the dataset of photos, in Exam-
ple 1. Consider two random hyperplanes (lines) through the
origin, in the two dimensional space representing the photos.
Figure 4 depicts two such lines, e1 and e2. In addition, con-
sider the vectors, r1 and r2, for two photos in the dataset.
The cosine distance between r1 and r2 is 30 degrees. Note
that the difference between e1 and e2, is that r1 and r2 are
on the same side for line e1, but for different sides for line
e2. The hash function in this case is simple a random line
and the hash value is 1 or −1, depending on which side of
the line the input record lies. In general, the smaller the an-
gle between two records, the higher the likelihood of selecting
a random line where the two records lie on the same side of

the selected line: note that the likelihood for records r1 and
r2 is 1− 30

180
, while, in general, the likelihood is 1− θ

180
, if θ

is the angle between the two records.

LSH applies a large number of such hash functions on each
record. The outcome of those functions is used to build hash
tables: the index of each bucket, in each table, is formed by
the concatenation of the outcome from a number of hash
functions. The following example illustrates the hash tables
built by LSH:

EXAMPLE 3 Consider again the hash functions and dataset,
from Example 2. Assume LSH uses two hash tables: for each
table, three hash functions (random lines through the origin)
are selected. Since the outcome of each function is binary,
there are 23 = 8 buckets in each table. Now consider the
event of two records hashing to the same bucket in at least
one of the two tables. If the angle between the two records is

θ, the probability of this event is: 1−
(
1− (1− θ

180
)3
)2

.

15 55 80 180
Cosine distance (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
a
b
ili
ty
 o
f
h
a
sh

in
g

 t
o
 t
h
e
 s
a
m
e
 b
u
ck

e
t

w=1, z=1

w=15, z=20

w=30, z=70

Figure 5: Probability of hashing to the same bucket

The number of hash tables z, and the number of hash
functions per table w, are selected so that: (a) if two records
are within the distance threshold dthr, the probability of the
two records hashing to the same bucket in at least one table,
must always be very close to one and (b) if the distance
between two records is greater than dthr, the probability
of the two records hashing to the same bucket in at least
one table, must be as close to zero as possible (details in
Section 5.1).

The plot of Figure 5 illustrates the probability of hashing
to the same bucket, in at least one table, using the setting
of Examples 1 to 3. The x-axis shows the angle distance
between two records and the y-axis the probability for three
w, z value pairs: 1) w = 1, z = 1, 2) w = 15, z = 20, and 3)
w = 30, z = 70.

Consider a threshold dthr of 15 degrees. As Figure 5
shows, the more hash functions used, the more sharply the
probability of hashing to the same bucket drops, after the
threshold. On the other hand, applying more functions on
each record, incurs a higher cost.

Each clustering function in the sequence relies on an LSH
scheme with z tables and w hash functions per table: the
further a function is in the sequence, the larger the values
of w and z are. We call these clustering functions transitive
hashing functions:

DEFINITION 1 (Transitive Hashing) A transitive hash-
ing function H, based on an LSH scheme with z tables and w
hash functions per table, receives as input a set of records S,
and splits S into a set of clusters {Ci} as follows: consider
the graph G = (S,E), where (r1, r2) ∈ E iff records r1 and
r2 hash to same bucket of at least one of the z hash tables.
Function H outputs one cluster Ci for each of the connected
components of G.

In Appendix B, we present an efficient implementation for
transitive hashing functions.

Note how transitive hashing functions attempt to satisfy
the three properties stated in Section 2.2:

1. conservative evaluation: even when w and z are small,
pairs of records within the threshold are very likely to be
placed in the same bucket, in at least one of the tables;
based on point (a) above.

2. increasing accuracy : the further a function is in the se-
quence, the larger the values of w and z are, and the less
the false matches are.

3. increasing cost : the further a function in the sequence,
the larger the values of w and z, and the higher the cost
of applying that function on any subset of records S.

4. incremental computation: the computation of the func-
tions can be performed incrementally, as the hash values
from previous functions in the sequence are re-used by
the functions that follow.

r1

r2

10o

r4

r3

60o

r5
55o

Figure 6: Transitive Hashing example.

We conclude this section with an example for transitive
hashing functions:

EXAMPLE 4 Consider the set of records S = {r1, r2, r3, r4, r5},
and two transitive hashing functions: H1 with z = 20 tables,
each using w = 15 hash functions, and H2 with z = 70 ta-
bles, each using w = 30 hash functions. Figure 6 depicts
the cosine distance between each two records in S (no edge
for pairs with a distance greater than 80 degrees). With
high probability H2 outputs

{
{r1, r2}, {r3}, {r4}, {r5}

}
: as

the plot in Figure 5 points out, the likelihood of two records
hashing to the same bucket when the distance between them
is greater than 55 degrees, for the w = 30, z = 70 curve, is
very low. Now assume that for H1, records r3 and r4 hash
to the same bucket in one of the 20 hash tables. (As the plot
in Figure 5 points out, there is a good chance of two records
hashing to the same bucket when the distance between them
is 60 degrees, for the w = 15, z = 20 curve.) Moreover, as-
sume records r4 and r5 hash to the same bucket in one of
the 20 hash tables, as well. Then, with high probability, H1

outputs
{
{r1, r2}, {r3, r4, r5}

}
.

4. ADAPTIVE LSH
In this section, we describe the algorithm of the Adap-

tive LSH approach outlined in Section 2, and we prove the
optimality of the largest-first selection rule.

4.1 Algorithm
The input and output of the algorithm are:

INPUT
parameter k, records R, distance metric d, threshold dthr,
sequence of transitive hashing functions H1, . . . , HL

OUTPUT
k largest connected components in graph G = (R,E),
where (r1, r2) ∈ E iff d(r1, r2) ≤ dthr.

The sequence of clustering functions used by Adaptive
LSH is a sequence of transitive hashing functionsH1, . . . , HL,
where function Hi is based on an LSH scheme with zi tables
and wi hash functions per table, where wi ≤ wi+1, zi ≤ zi+1,

Algorithm 1 Adaptive LSH
Input: R - Set of all records
Input: k - top-k parameter
Input: d - distance metric
Input: dthr - distance threshold
Input: H1, . . . , HL - sequence of functions
Input: costP , cost1, . . . , costL - cost model parameters
Output: top-k entities

1: {C(1)
i } := H1(R)

2: for each Round j do

3: C := largest cluster in {C(j)
i }; {C

(j)
i } := {C(j)

i } \ C
4: t := sequence number of function Ht that produced cluster C

5: if (costt+1 − costt) ∗ |C| ≥ costP ∗
(|C|

2

)
then

6: {Ci} := P (C)
7: else
8: {Ci} := Ht+1(C)
9: end if

10: {C(j+1)
i } := {Ci} ∪ {C(j)

i }
11: if largest k clusters in {C(j+1)

i } are all an outcome of function
HL or P then

12: return largest k clusters in {C(j+1)
i }

13: end if
14: end for

i ∈ [1, L). Sequence H1, . . . , HL is given as input (two inte-
gers wi, zi, for each function Hi) and in Section 5 we discuss
how to select the functions in this sequence.

As discussed in Section 2.3, Adaptive LSH selects the
largest cluster to process in each round, regardless of which
function each cluster is an outcome of. In Section 4.2, we
prove that selecting the largest cluster in each round is op-
timal under mild assumptions.

Besides the sequence of transitive hashing functions, Adap-
tive LSH also uses an additional function that computes the
matches in a cluster of records given as input, using the
exact record pair distances:

DEFINITION 2 (Pairwise Computation) The pairwise com-
putation function P receives as input a set of records S and
splits S into a set of clusters {Ci} as follows: consider the
graph G = (S,E), where (r1, r2) ∈ E iff d(r1, r2) ≤ dthr.
Function P computes the distances between pairs of records
and outputs one cluster Ci for each of the connected compo-
nents of graph G.

When a cluster C is the outcome of a function Hi and the
application of the next function in the sequence, Hi+1, has
a cost greater than the cost of applying function P on C,
Adaptive LSH applies P instead of Hi+1 on cluster C. This
is usually the case when cluster C is small and computing
the distances for, potentially, all pairs in C, is preferable to
computing a large number of hashes for each record in C.
Thus, the termination rule for Adaptive LSH (as discussed
in Section 2.3) is extended as follows: terminate once the k
largest clusters, in the list of clusters at the end of a round,
are an outcome of an HL or P function.

To decide when to apply the pairwise computation func-
tion P , the algorithm relies on a simple cost model:

DEFINITION 3 (Cost Model) The cost of applying the
pairwise computation function P , on a set of records S, is
costP ∗

(|S|
2

)
. The cost of applying function Hi in the se-

quence, on a set of records S, is cost i ∗ |S|. Moreover, the
cost of applying function Hi in the sequence on a record r,
when function Hj, j < i, is already applied on record r,
is cost i − costj. After the completion of the algorithm, the

overall cost is
∑L
i=0 ni ∗ cost i + nP ∗ costP , when function

Hi is the last sequence function applied on ni records and
nP is the overall number of pairwise similarities computed
by function P .

In Section 6.10, we run experiments to evaluate how sen-
sitive adaptive LSH is to the cost model: we manually add
noise to the model’s cost estimations and measure how the
execution time changes.

Algorithm 1 gives the detailed description of the process
outlined in Section 2.3. In Line 1, the algorithm applies the
first function in the sequence, H1, to all records. Then, in
successive rounds, the largest cluster C from the previous
round is selected (Line 3), and the algorithm applies a tran-
sitive hashing function or the pairwise computation function
on C, taking into account the cost model (Lines 3 to 9). The
algorithm terminates when the k largest clusters are an out-
come of the last function in the sequence or an outcome of
the pairwise computation function (Line 12).

4.2 Largest-First Optimality
In this section, we prove optimality for the Largest-First

strategy of Algorithm 1, after stating the optimality assump-
tions, in Theorem 1. We discuss in Appendix D, the cases
where it could make sense for an algorithm not to follow
these assumptions.

THEOREM 1 Consider the family of algorithms that:

1. do not “jump ahead” to function P , i.e., if a cluster C
is an outcome of a function Hi, the algorithm can only
apply function P on C, when (cost i+1 − cost i) ∗ |C| ≥
costP ∗

(|C|
2

)
(Line 5 on Algorithm 1).

2. do not “terminate early”, i.e., terminate only when the
k largest clusters are an outcome of either an HL or
P function.

Algorithm 1 gives the minimum overall cost compared to
any other algorithm of this family.

PROOF: We will prove that Algorithm 1 gives the mini-
mum overall cost compared to any other algorithm, for any
execution instance. In an execution instance, the outcome
of applying a function Hi or P on a set of records S, is the
same across all algorithms. In other words, all algorithms
would observe the exact same clusters during their execu-
tion if they would select the same cluster to process in each
step. Assume that another algorithm B in this family, gives
a lower overall cost than Algorithm 1, for a given execution
instance. Based on the cost model (Definition 3), for algo-
rithm B to have a lower overall cost than Algorithm 1, there
are three possibilities:

1. there must be a set of records S1 such that: both Al-
gorithms 1 and B apply P on S1, but the last function
Algorithm 1 applies on S1, before P , is Hi, and the last
function applied on S1 by B, before P , is Hj for j < i.

2. there must be a set of records S2 such that: algorithm B
applies P on S2 and the last function Algorithm 1 applies
on S2, is Hi, while the last function algorithm B applies
on S1, before P , is Hj for j < i.

3. there must be a set of records S3 such that: the last
function Algorithm 1 applies on S3 is either P or Hi, and
the last function B applies on S3 is Hj for j < i.

The first two possibilities violate Condition 1, in the def-
inition of the family of algorithms, since they would require
algorithm B to “jump ahead” to function P ; otherwise, Al-
gorithm 1 would apply the exact same functions on sets S1

15/180 1.0
Normalized Angle

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
a
b
ili
ty
 o
f
h
a
sh

in
g

 t
o
 t
h
e
 s
a
m
e
 b
u
ck

e
t

w=15, z=140

w=30, z=70

w=60, z=35

Figure 7: Three example value pairs for parameters
(w, z) of Program 1 to 3.

or S2. Hence, we focus on the third possibility. Consider
step l, where Algorithm 1 selects set S3 (or a cluster that
is a subset of S3), to apply function Hj+1 (where Hj is the
last function algorithm B applies on S3). At step l, set S3

is the largest cluster for Algorithm 1 to select it. Since clus-
ters always split in subsequent steps, S3 will also be larger
than the top-k clusters after the final step of Algorithm 1.
Hence, since we are focusing on the same execution instance,
Condition 2 in the algorithms’ family definition is violated,
as the largest cluster after the final step of algorithm B will
not be an outcome of an HL or P function.

5. DESIGNING THE FUNCTION SEQUENCE
Let us now focus on how to design the transitive hashing

function sequence, provided as input to Algorithm 1. The
discussion for the sequence design is divided in two parts.
In the first part, we discuss how to select a (w, z)-scheme
(i.e., an LSH scheme with z tables and w hash functions
per table) given a budget for the total hash functions (i.e.,
w∗z = budget). In the second part, we discuss how to select
the budget for each function in the sequence.

5.1 Selecting the (w,z)-scheme
Given a cost budget , the objective is to select the param-

eters w and z of a (w, z)-scheme, for the i-th function Hi in
the sequence. To simplify the discussion, we assume that the
cost of applying function Hi is proportional to the overall
number of hash functions, and that w and z must be factors
of budget , i.e., w ∗ z = budget . An extension for the cases
where these two assumptions do not hold is straightforward,
as we discuss in the end of the section.

Parameters w and z are selected based on the following
optimization program:

min
w,z

∫ 1

0

[
1−

[
1− pw(x)

]z]
dx (1)

s.t. w ∗ z = budget (2)

1−
[
1− pw(x)

]z ≥ 1− ε, x ≤ dthr (3)

Function p(x) is the probability of selecting a hash func-
tion that gives the same hash value for two records at a
distance x, where 0 ≤ x ≤ 1. (Function p(x) depends on
the distance metric and is given as input.) As illustrated
in Example 3, and analyzed in Appendix A, the probability
of hashing to the same bucket, in a (w, z)-scheme, is given
by: 1 −

[
1 − pw(x)

]z
. The budget constraint is given in

Equation 2 and the distance threshold constraint is given
in Equation 3. (Parameter ε used in the distance threshold
constraint, is also given as input.) The objective in Equa-
tion 1 states that the probability of hashing to the same
bucket (for pairs of records with distance greater than the
threshold dthr), should be minimized.

EXAMPLE 5 Consider the cosine distance as a distance met-
ric, function p(x) = 1 − x (where x is the normalized an-
gle, i.e., for an angle θ, x = θ

180
), a distance threshold

of dthr = 15
180

, a parameter ε = 0.001, and a budget of
2100 hash functions. Let us examine three pairs of (w, z)
values: (15, 140), (30, 70), and (60, 35). The plot in Fig-
ure 7 is equivalent to the one in Figure 5 (angle distance be-
tween two records on the x-axis, probability of the two records
hashing to the same bucket, given their distance, on the y-
axis). Pair (15, 140) minimizes the objective function value
in Equation 1 (area under the curve), but violates the dis-
tance threshold constraint in Equation 3. Both pairs (30, 70)
and (60, 35) satisfy the two constraints, with pair (30, 70)
giving a lower objective function value.

To find the optimal (w, z) values for Program 1 to 3, we
can perform a binary search over w values such that budget

w
is an integer. Note that the greater the value of w, the lower
the value of the objective function; as Figure 7 also points
out. Moreover, if the distance threshold constraint is not
satisfied for a value of w, it will not be satisfied for any
greater values as well.

In practice, we may also want to examine (w, z) values,
where budget

w
is not an integer. In this case, we would have

to adjust the probability expression in Equations 1 and 3:

expression
[
1−pw(x)

]z
becomes

[
1−pw(x)

]z ∗ [1−pw′(x)
]
,

where z = b budget
w
c and w′ = budget − w ∗ z. In addition,

we would have to exhaustively search over all possible val-
ues for w, z that satisfy the budget constraint. That is, for
w ∈ [1, budget], we would examine if the distance threshold
constraint is also satisfied, and keep the (w, z) value pair
minimizing the objective function.

Furthermore, we may also want to take into account a cost
model, in the Program 1 to 3. For instance, consider two
value pairs (w1, z1) and (w2, z2), such that w1∗z1 = w2∗z2 =
budget . There are cases where the actual cost of applying
a function based on a (w1, z1)-scheme is different compared
to the cost for a function based on a (w2, z2)-scheme. (For
example, when matrix multiplication is involved, the scheme
(w1, z1) may be more cost effective if w1 > w2.) In those
cases, Equation 2 needs to include a cost function that re-
flects the actual cost based on a specific (w, z) value pair.

5.2 Selecting the budget
We use two simple strategies to select the budget for each

transitive hashing function Hi, in the sequence:

• Exponential: The budget for function Hi is a mul-
tiple of the budget that was available for the previous
function in the sequence, Hi−1. For example, if the
budget for H1 is 4 hash functions and we multiply the
budget by 2 for every function in the sequence, the
budget for H2 will be 8 hash functions, the budget for
H3 will be 16 functions, and so on.

• Linear: The budget for function Hi is a multiple of
a constant. For example, if the constant is 100, the
budget for H1 is 100 hash functions, the budget for
H2 is 200 hash functions, the budget for H3 is 300
hash functions, and so on.

In the experimental evaluation, in Section 6.11, we try
different parameter values for the two strategies and we draw
conclusions regarding which strategy and values work better
in each case.

6. EXPERIMENTAL EVALUATION
In our experiments we use datasets of web articles [2],

scientific publications [1], and images [3].

6.1 Metrics
We compare filtering-stage approaches that output a set

records, as depicted in Figure 1. Hence, the execution time
of each approach does not include the application of any
specific entity resolution algorithm, after the filtering stage.
To quantify how accurate each approach is, we compare the
approach’s output to the ground truth output O∗, as dis-
cussed in Section 2.1. In addition, we use one more metric
to quantify the errors introduced by the probabilistic na-
ture of adaptive LSH and the other LSH approaches: we
run the pairwise computation function P (Definition 2) on
the whole dataset, and we compare the set of records in the
top-k clusters function P gives, to an approach’s output. In
particular, we use the following five metrics:

Execution Time: the time it takes for each method to
compute the output.

Precision Gold: consider the set of records in the ground
truth top-k entities and the set of records in the output of
each method. The gold precision is the percentage of output
records that belong to the ground truth set of records.

Recall Gold: the percentage of records in the ground
truth top-k entities that belong to the output of a method.

F1 Gold: the harmonic mean of precision and recall, i.e.,
2∗p∗r
p+r

, where p is the gold precision and r the gold recall.
F1 Target: in this case we consider as ground truth the

outcome of function P on the whole dataset and we compute
the harmonic mean of precision and recall, just like we do
for F1 Gold.

6.2 Datasets
We used three datasets in our experiments:
Cora [1]: a dataset of around 2000 scientific publications,

extensively used in the entity resolution literature. Each
record consists of the title, the authors, the venue, and other
related information regarding the publication (e.g., volume,
pages, year). Together with the original dataset, we used 2x,
4x, and 8x versions. For example, the 2x version contains
twice as many records as the original dataset. To extend the
original dataset, we uniformly at random select an entity
and uniformly at random pick a record from the selected
entity, for each record added to the original dataset. Since
each record has multiple fields, we use an AND distance
rule (see Appendix C.1) with two distance thresholds. In
particular, we create three sets of shingles for each record:
one for the title, one for the authors, and one for the rest
of the information in the record. We use the following AND
distance rule: two records are considered a match when (i)
the average jaccard similarity for the title and author sets
are at least 0.7 AND (ii) the jaccard similarity for the rest
of the information is at least 0.2.
SpotSigs [2]: a dataset of around 2200 web articles: each

article is based on an original article and, thus, all articles
having the same origin are considered the same entity (e.g.,
news articles discussing the same story with slight adjust-
ments for different web sites). The main body of each article
is transformed to a set of spot signatures based on the pro-
cess described in the original paper [31]. Two records are
considered a match when the jaccard similarity of their sets
is at least 0.4. (We also tried thresholds of 0.3 and 0.5 in

some experiments.) We also used a 2x, a 4x, and an 8x ver-
sion of the dataset in the experiments, where each version
is generated with the same sampling process as in Cora.

PopularImages [3]: three datasets of 10000 images each.
The images that are transformations (random cropping, scal-
ing, re-centering) of the same original image, are considered
the same entity. The unique original images are 500 popular
images used and shared extensively on the web and social
media, and are the same for all three datasets. The main
difference between the three datasets is the distribution for
the number of records per entity. They all follow a zip-
fian distribution, however, the exponent is different in each
dataset (e.g., the top-1 entity consists of around 500, 1000,
and 1700, in each dataset respectively). For each image,
we extract an RGB histogram: for each histogram bucket,
we count the number of pixels with an RGB value that is
within the bucket RGB limits. The RGB histogram forms a
vector and we consider two images a match when the cosine
distance between the images’ vectors is less than an angle
threshold: we used three thresholds in the experiments, 2, 3,
and 5 degrees.

6.3 Methods
We compare adaptive LSH (adaLSH) with the predomi-

nant alternative on high-dimensional data: blocking using
traditional LSH. We try different variations of the tradi-
tional LSH approach and we also try a baseline transitive
closure algorithm (Pairs) that computes the exact pairwise
distances between the records in the dataset.

adaLSH : The adaptive LSH approach we propose in this
paper. The default mode is the Exponential (Section 5.2)
starting with 20 hash functions for the first clustering func-
tion in the sequence; i.e., the first function applies 20 hash
functions, the second 40, the third 80, and so on.

LSH : The traditional LSH blocking approach adjusted
for the problem studied in this paper. In particular, LSH
starts by applying the same number X of hash functions
on every single record in the dataset. Given the number of
hash functions X and a distance threshold, LSH selects the
number of hash tables z and the number of hash functions
per table w, by solving the same optimization problems with
adaptive LSH (see Section 5.1 and Appendix C). (By solv-
ing such a problem we find the “optimal” w, z values that
satisfy w ∗ z ≤ X.) After the first stage of applying X hash
functions on all records, LSH uses the pairwise computation
function P (Definition 2) to verify if pairs of records in the
same bucket are indeed within the distance threshold. To
keep the comparison fair, we use three additional optimiza-
tions for LSH: (1) LSH terminates early when there are k
clusters that have been “verified” using function P that are
larger than any other cluster not yet verified, (2) when ap-
plying function P we skip checking pairs of records that are
already “transitively closed” by other pairs and, hence, be-
long to the same cluster, and (3) we use the same efficient
implementation and data structures with adaptive LSH (see
Appendix B). We also tried a variation of LSH, where we
only apply the first stage and do not apply function P at
all. This variation, assumes that all pairs of records within
each hash table bucket are within the distance threshold,
and applies transitive closure on those pairs to find the k
largest clusters. In the plots, we use LSHX (e.g., LSH640
applies 640 hash functions on each record) if function P is
applied after the first stage and LSHXnP otherwise.

Pairs: Essentially, Pairs is the application of the pair-
wise computation function P on the whole dataset. Again,
we use the above optimizations (2) and (3), i.e., we skip
pairs already “transitively closed” and use the efficient im-
plementation described in Appendix B.

6.4 Findings’ Overview
Below we provide an overview of our main findings:

• adaLSH gives a 2x to 25x speedup compared to traditional
LSH, depending on the dataset. (The speedup compared
to Pairs can become arbitrarily large, as the size of the
dataset increases.)
• the value of k only slightly affects the execution time for

adaLSH. In particular, the execution time for adaLSH just
slightly increases as the value of k increases, as long as the
records in the top-k entities comprise a relatively small
portion of the overall dataset (e.g., the top-1 entity repre-
sents 5% of all records and the top-k represent less than
10% of all records).
• adaLSH always gives the same (or a very slightly differ-

ent) outcome with Pairs. Thus, adaLSH only introduces
minimal errors due to its probabilistic nature. Neverthe-
less, this outcome can be considerably different from the
ground truth, in cases where a suboptimal distance thresh-
old(s) is used. Even in those cases, we can increase the
recall by having adaLSH (or LSH) return the records from
more than k clusters: while the precision drops, the size
of the output increases by only a factor of 2 to 3 compared
to the set of records in the ground truth top-k entities, in
the cases we studied.
• we tried to find if there is a specific variation for LSH that

performs as good as adaLSH, in terms of the execution
time, in each experimental setting. As expected, there
is usually a different best LSH variation in each different
setting. More interesting however, is the fact that adaLSH
always gives an important speedup compared to the best
LSH variation, in any setting.
• we added noise in the cost model (Definition 3) used in

adaLSH. It appears that even when the estimations for the
cost of applying a hash function on a record and the cost
for computing a pairwise similarity are not very accurate,
the execution time of adaLSH is just slightly affected.
• the distribution of number of records per entity affects the

execution time of adaLSH and the LSH variations. In the
distributions we tried, adaLSH would always give the best
performance and showed an important speedup compared
to each LSH variation for at least one distribution.

6.5 Different k values
We start by examining the execution time of adaLSH and

LSH on Cora, for different values of k, i.e., number of top
entities. Our objective here is to assess how much additional
overhead is induced, as we increase the number of entities
that must be retrieved. We run experiments for k = 2, 5, 10,
and 20, and we use LSH1280; we try other variations for LSH
in Section 6.8. In the plot of Figure 8(a), the x-axis shows
the k value, and the y-axis the execution time. Interest-
ingly, the execution time for adaLSH just slightly increases
as k increases. This means that the amount of computation
adaLSH performs to find the top-2 entities comprises a large
percentage of the overall computation for finding the top-20
entities. More interesting is the 10x speedup compared to
LSH, for any k value. LSH applies 1280 hash functions on all

records, while adaLSH starts by applying 20 hash functions
on all records and then adaptively decides which records to
process further.

1 5 10 20
k

0

10

20

30

40

50

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
)

adaLSH

LSH

(a) Cora

1 5 10 20
k

0

50

100

150

200

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
)

adaLSH

LSH

(b) SpotSigs

Figure 8: Execution time for different k values.
Let us now compare the results from Figure 8(a) to the

results for the same experiment on the SpotSigs dataset, in
Figure 8(b). The main difference in this case is that the cost
of applying a hash function increases in this dataset, so the
execution time for both adaLSH and LSH increases. Still,
adaLSH is not affected as much as LSH: the execution time
for LSH increases to around 180 seconds while for adaLSH it
goes to around 7 seconds, thus, giving an impressive speedup
of 25x.

1 5 10 20
k

0.0

0.2

0.4

0.6

0.8

1.0

F1
 g
o
ld

adaLSH

LSH

(a) Cora

1 5 10 20
k

0.0

0.2

0.4

0.6

0.8

1.0

F1
 g
o
ld

adaLSH

LSH

(b) SpotSigs

Figure 9: F1 Gold for different k values.

6.6 Accuracy
Now let us examine how accurate the outcome of adaLSH

and LSH is. The plots in Figures 9(a) and 9(b) give the F1
Gold for the same experiments of Figures 8(a) and 8(b), on
Cora and SpotSigs, respectively.

Both methods give a very similar F1 score, as they both
compute clusters that are almost identical to the ones Pairs
would produce. Hence, the probabilistic nature of the two
methods does not introduce errors. (We will see in Sec-
tion 6.8 that some other variations of LSH do, however, in-
troduce errors.) Still, the F1 score in case of SpotSigs in
Figure 9(b) is low (around 0.8) for k = 5 and 10, mean-
ing that transitive closure applied with this specific distance
threshold does not give a very accurate outcome.

To handle such situations where the outcome may not be
sufficiently accurate, we can increase the number of clusters
that the methods return. Remember that the main goal of
the filtering stage is to reduce the size of the initial dataset.
Therefore, by increasing the size of the methods’ output, we
can get a recall that is very close to 1.0, while still returning
an output that is just a few times larger than the size of the
ground truth output; i.e., the set of records in the ground
truth top-k entities.

To illustrate, we focus on a k value of 5 for SpotSigs, where
the F1 score is just above 0.8, as we saw in Figure 9(b). In
the experiment of Figure 10(a), the x-axis shows the num-
ber of clusters we ask a method to return. For example, for

an x-axis value of 10, the method returns the records for
the 10, instead of 5, largest clusters found. Then, we com-
pute the precision and recall of this set of records against
the set of records in the ground truth top-5 entities. Fig-
ure 10(a) shows the recall on the y-axis. Since adaLSH and
LSH give practically the same output with Pairs, we plot
just one curve for all three methods. Moreover, there are
three curves in Figure 10(a): one for each of the three simi-
larity thresholds we tried, 0.3, 0.5, and the default 0.4.

5 10 15 20
Returned Clusters

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca
ll
g
o
ld

thres0.3

thres0.4

thres0.5

(a) Recall

5 10 15 20
Returned Clusters

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n
 g
o
ld

thres0.3

thres0.4

thres0.5

(b) Precision

Figure 10: Precision/Recall on SpotSigs for k = 5.

The recall for all thresholds is almost the same and, more
importantly, follows the same trend: recall keeps going up as
we include more clusters in the output, to reach very close
to 1.0 for 20 clusters.

It is important to note here that the same effect of increas-
ing the recall, would not necessarily hold if we would relax
the similarity threshold, instead of including more clusters
in the output. Consider, for example, trying to find the top-
1 entity in a dataset. Let us assume that for a similarity
threshold of 0.9, the largest cluster a method finds, contains
only 80% of all the records in the ground truth top-1 entity.
If we relax the threshold to 0.8, the method may merge the
second largest cluster with a smaller cluster that will become
the largest one. However, the new largest cluster may now
contain 100% of the records of the ground truth top-2 en-
tity, but none of the top-1 entity records. Hence, the recall
would drop from 80% to 0% if we would relax the threshold,
in this case.

By increasing the size of the output, the precision in-
evitably drops. Figure 10(b) shows the precision for the
same setting with Figure 10(a). As we increase the number
of clusters returned from 5 to 20, the precision drops from
80% to almost 40%. Nevertheless, even for a precision of
40%, the size of the output is only 1

0.4
= 2.5 times larger

than the ground truth output.

103 104

Records

100

101

102

103

104

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
) adaLSH

LSH

Pairs

(a) Cora

103 104

Records

100

101

102

103

104

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
) adaLSH

LSH

Pairs

(b) SpotSigs

Figure 11: Execution time for different dataset sizes.

6.7 Different dataset sizes
Let us now study the effect of the dataset size in the per-

formance of the different methods. The log-log plot in Fig-
ure 11(a) shows the number of records in the dataset on
the x-axis and the execution time on the y-axis, for Cora,

Cora2x, Cora4x, and Cora8x. We use a k value of 10 in this
experiment; same results hold for other k values.

We observe that there is always a large speedup for adaLSH
compared to LSH (we use LSH1280 as before), ranging from
9x to 20x, on the different dataset sizes. As the dataset size
increases, the speedup of adaLSH compared to Pairs keeps
increasing (e.g., 60x on Cora8x).

Now, let us switch to the SpotSigs dataset: Figure 11(b)
shows the execution time for SpotSigs, SpotSigs2x, Spot-
Sigs4x, and SpotSigs8x. As mentioned in Section 6.5, the
cost of applying a hash function in SpotSigs is higher than
in Cora. This causes LSH to run slower on SpotSigs than
the baseline Pairs: LSH needs the dataset to be at least 9000
records to show a better performance than Pairs.

On the other hand, adaLSH gives an important 5x speedup
over Pairs even for a small dataset size of 2000 records, that
increases to 50x for SpotSigs8x. The speedup compared to
LSH is even greater here than in Cora, ranging from 15x to
25x.

101 102 103 104

LSH Functions

100

101

102

103

E
xe
cu

ti
o
n
 T
im

e
 (
se
cs
) adaLSH

LSH

(a) SpotSigs

101 102 103 104

LSH Functions

100

101

102

103

104

E
xe
cu

ti
o
n
 T
im

e
 (
se
cs
)

adaLSH

LSH

(b) SpotSigs8x

Figure 12: LSH vs adaLSH, for different LSH
variations.

6.8 LSH vs adaLSH
Until now we used only LSH1280 in the plots. Here, we

dig into the different variations of LSH. Clearly, knowing
in advance which LSH variation is better in each case is
not possible. Our goal here is to examine how much better
adaLSH is, compared to the best LSH variation, if we knew
in advance the best LSH variation to use in each case.

We start by plotting the execution time in Figure 12(a),
on SpotSigs and k = 10, for five LSH variations: LSH20,
LSH80, LSH320, LSH1280, and LSH5120. That is, the x-
axis shows the number of hash functions used by LSH and
the y-axis the execution time. (For adaLSH we plot the same
execution time for all x-axis values.) We see that adaLSH
gives a 4x speedup even when compared to the best LSH
variation; LSH80 in this case.

When the size of the dataset increases we expect that some
other LSH variation will perform better. Indeed, as we see
in Figure 12(b), for SpotSigs8x and k = 10, LSH320 is now
the lowest execution time variation. Still, adaLSH gives a
3x speedup compared to LSH320.

We tried one more setting in this section, that illustrates
the tradeoff between accuracy and performance when we run
only the first stage of LSH. Hence, we tried four variations:
LSH20, LSH20nP, LSH640, and LSH640nP. (As discussed in
Section 6.3, the nP variations do not apply function P after
the first stage.) Figure 13(a) depicts the results, for k = 10
on SpotSigs, SpotSigs2x, SpotSigs4x, and SpotSigs8x. We
see that adaLSH gives an, at least, 4x speedup against all
variations of LSH, besides LSH20nP.

Of course, the nP variations, and especially LSH20nP, are
much less accurate than the other methods as Figure 13(b)

103 104

Records

100

101

102

103

104

E
xe
cu

ti
o
n
 T
im

e
 (
se
cs
) adaLSH

LSH20

LSH640

LSH20nP

LSH640nP

(a) Execution time

4000 8000 16000
Records

0.0

0.2

0.4

0.6

0.8

1.0

F1
 t
a
rg
e
t

adaLSH

LSH20

LSH640

LSH20nP

LSH640nP

(b) F1 target

Figure 13: LSH vs adaLSH, performance/accuracy

shows: the F1 Target is just 0.7 for LSH20nP on SpotSigs
and drops to 0.4 on SpotSigs8x, while for LSH640nP the F1
Target drops from 0.9 to below 0.7. On the other hand, all
other methods give an F1 Target very close to 1.0.

We close this section with another interesting perspective
on the results from Figure 12(a). Note that the compu-
tation performed by LSH20nP is actually the computation
that adaLSH performs in the first round; as discussed in Sec-
tion 6.3, in the adaLSH used in the experimental evaluation,
the first function in the sequence applies 20 hash functions
on all the records. As Figure 12(a) shows, the overall com-
putation adaLSH performs takes just 5 to 10 times more
than the computation it performs on the first round.

6.9 Entity sizes’ distribution
We now switch to the PopularImages dataset. Our objec-

tive here is not to illustrate how large the adaLSH speedup
can be, but instead study a case where the“sparse”areas (ar-
eas with a few records) in the dataset are limited. That is,
when using the cosine distance for RGB histograms, for al-
most every image in the dataset, there are images that refer
to a different entity but have a similar histogram with that
image. (Clearly, there are more efficient ways of perform-
ing this task, still, the cosine distance for RGB histograms
serves our propose well, here.)

In addition, we wanted to study how the distribution of
records per entity affects the performance of each method,
in this case. For example, how the existence of entities with
a very large number of records referring to them, affects the
execution time.

The three datasets in PopularImages, follow zipfian dis-
tributions, with exponents of 1.05, 1.1, and 1.2, respectively.
Hence, in the 1.05-exponent dataset, the top-1 entity con-
sists of around 500 records, the top-2 entity of around 250
records, the top-3 of around 150 records, and so on. In the
1.1-exponent dataset, the top-1 entity consists of around
1000 records, top-2 entity of around 400 records, and the
top-3 entity of around 300 records, while in the 1.2-exponent
dataset, the top-1 entity consists of around 1700 records,
top-2 entity of around 800 records, and the top-3 entity of
around 500 records.

1.05 1.1 1.2
Zipf Exponent

0

200

400

600

800

1000

1200

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
) adaLSH

LSH320

LSH2560

(a) dthr = 3 degrees

1.05 1.1 1.2
Zipf Exponent

0

500

1000

1500

2000

2500

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
) adaLSH

LSH320

LSH2560

(b) dthr = 5 degrees

Figure 14: Execution time on PopularImages.

Figure 14(a) depicts the execution time for adaLSH, LSH320,
and LSH2560, for a cosine distance threshold of 3 degrees
and k = 10. The x-axis shows the zipfian exponent and the
y-axis the execution time for each method. Applying Pairs
on each of these datasets takes almost one hour and we do
not include it in this plot.

Even in this, far from ideal, scenario, adaLSH gives an im-
portant 1.5 speedup for a zipfian exponent of 1.05, and a 1.7
speedup for exponents of 1.1 and 1.2, compared to LSH320.
Compared to LSH2560, adaLSH gives a 1.7 speedup for an
exponent of 1.05, a 1.5 speedup for an exponent of 1.1, while
for an exponent of 1.2 adaLSH is just slightly better.

The results for a threshold of 5 degrees appear in Fig-
ure 14(b). The adaLSH speedup ranges from 1.2 to 1.5
compared to LSH2560 and from 1.3 to 1.6 for LSH320.

Besides the adaLSH speedup, there are a couple more in-
teresting points in Figures 14(a) and 14(b). The execution
time for both thresholds increase as the exponent increases.
The main reason for this increase is the sizes of the top
entities, that, as discussed above, increase as the exponent
increases. For example, applying the pairwise computation
function P on the top-1 entity often takes more than 50% of
the execution time. LSH320 that applies less hash functions
than LSH2560 in the first stage, ends up applying function
P on clusters even larger than the top-1 entity, and the in-
crease in execution time, as the exponent increases, is even
more evident.

The execution time also increases as we relax the distance
threshold from 3 to 5 degrees, as we see when comparing
Figures 14(a) and 14(b). The reason is again the larger sizes
for the clusters that need to be “verified” using function P :
a relaxed threshold gives larger clusters.

Note that LSH320, which clearly underperforms here, was
(together with LSH80) the most effective LSH variation in
the experiments, in Figures 12(a) and 12(b). This illus-
trates, again, that the most effective LSH variation can be
very different in different cases. On the other hand, adaLSH
always gives a significantly better performance.

1.05 1.1 1.2
Zipf Exponent

0.0

0.2

0.4

0.6

0.8

1.0

F1
 G
o
ld

2degrees

3degrees

5degrees

Figure 15: F1 Gold on PopularImages.

The last effect we discuss here, is the tradeoff between
performance and accuracy, as the distance threshold and
the zipfian exponent change. In Figure 15, we plot the F1
gold (y-axis) for thresholds 2, 3, and 5 and for exponents
1.05, 1.1, and 1.2 (x-axis), for k = 10. All three methods
give almost the same F1 score, so we just use one curve for
each threshold. As the distance threshold drops from 5 to
2 degrees, there are images that refer to the same entity,
but still do not get clustered together because of the more
strict threshold. As we see in Figure 15, the more strict the
threshold, the lower the F1 score. Moreover, we see that the
lighter the tail (the higher the exponent) is, the higher the
F1 score becomes, as the top-10 entities form larger clusters
and errors happen to a lesser extent. Overall, while a smaller

threshold lets methods run faster, it also introduces more
errors, in this case.

6.10 Adding noise to the cost model
Here, we add noise to the simple cost model used by Algo-

rithm 1 in Line 5. In particular, we multiply by a noise factor
nf , the cost of applying the pairwise computation function
P on a cluster C: costP ∗

(|C|
2

)
. That is, when factor nf

is less than one, the cost of applying P is under-estimated
and P is applied sooner (and on larger clusters) compared to
when no noise is added. On the other hand, when factor nf
is greater than one, the cost of applying P is over-estimated
and the application of P is deferred until clusters are small
enough.

103 104

Records

100

101

102

103

104

E
xe

cu
ti
o
n
 T
im

e
 (
se

cs
) clean

1/2

2/1

1/5

5/1

(a) k = 2

103 104

Records

100

101

102

103

104

E
xe

cu
ti
o
n
 T
im

e
 (
se

cs
) clean

1/2

2/1

1/5

5/1

(b) k = 10

Figure 16: Adding noise to the cost model.

We tried four values for factor nf : 1
2
, 1
5
, 2
1
, and 5

1
. In

Figure 16(a), the y-axis shows the execution time for k =
2, on SpotSigs, SpotSigs2x, SpotSigs4x, and SpotSigs8x (x-
axis). In Figure 16(b), we run the same experiment for k =
10. Each curve refers to a different value for factor nf . We
also plot the execution time for adaptive LSH without any
noise added (“clean” curve). (Note that parameters costP
and cost i, 1 ≤ i ≤ L, are estimated using 100 samples each.)

We draw one main conclusion from the plots of Figures 16(a)
and 16(b): adaptive LSH is not sensitive to cost-model noise
and the execution time may only be significantly affected for
a very small nf of 1

5
. That is, there is a considerable increase

in the execution time for adaptive LSH, only when the cost
of applying P is heavily under-estimated and P ends up be-
ing applied early and on larger clusters compared to when
no (or a little bit of) noise is added.

6.11 Exponential vs Linear sequences
The last experiment we include in this paper, studies the

different modes for budget selection, discussed in Section 5.2.
We try:
• expo: the default Exponential mode, where the budget

is doubled for every function in the sequence, starting
from 20 hash functions for the first function.

• lin320, lin640, lin1280: the Linear mode, where the
budget starts from 320, 640, or 1280 hash functions,
for the first function, and is increased by 320, 640, or
1280 hash functions, for every function in the sequence.

Figure 17(a) shows the execution time for the four modes
in the y-axis, on Cora, Cora2x, Cora4x, Cora8x (x-axis),
for k = 10. Figure 17(b) refers to the same experiment for
SpotSigs.

Clearly, the Exponential mode is the best option requiring
a far lower execution time compared to other modes. Note
that, in the Exponential mode (when the budget is doubled
for every function in the sequence), the “amount” of process-
ing performed on the selected cluster in each step, is almost

103 104

Records

100

101

102

103

104

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
) expo

lin320

lin640

lin1280

(a) Cora

103 104

Records

100

101

102

103

104

E
xe

cu
ti
o
n
 T
im

e
 (
se
cs
) expo

lin320

lin640

lin1280

(b) SpotSigs
Figure 17: Different budget selection modes.

the same with the amount of processing performed in all pre-
vious steps, on the records of the selected cluster. Hence,
the Exponential mode is able to find the sweet spot in the
trade-off between running fewer hash functions, overall, in
many steps and running more hash functions in fewer steps.

7. RELATED WORK
We organize the related work in three parts: entity reso-

lution, blocking, and locality-sensitive hashing.
Blocking: To enable entity resolution on large datasets,

many blocking approaches have been suggested for differ-
ent settings [25, 6, 8, 26]. Paper [13] proposes a mechanism
that automatically learns hash functions for blocking and
is applicable on heterogeneous data expressed in multiple
schemas without requiring predefined blocking rules. Block-
ing over heterogeneous data is also the topic in paper [28].
The framework in paper [18], is able to produce blocks that
satisfy size constraints, i.e., blocks are not larger than an
upper threshold (e.g., for performance) and/or blocks are
not smaller than a lower threshold (e.g., for privacy). Dis-
tributed blocking is the topic of paper [12] that models the
communication-computation trade-off and proposes strate-
gies to distribute the pairwise comparison workload across
nodes. In paper [37], the concept of iterative blocking is
introduced, where results from one block are used when
processing other blocks, iteratively, to improve accuracy, by
detecting additional record matches, and reduce execution
time, by skipping unnecessary record comparisons. Block-
ing using LSH is applied in Helix [15], a large scale data ex-
ploration system. Supervised meta-blocking [29] uses a set
of training examples to efficiently re-structure a collection
of blocks and avoid unnecessary record comparisons while
minimizing the number of missed record matches.

Entity Resolution: A good overview of traditional ER
approaches can be found in surveys [17] and [38]. Here, we
will try to cover a few more recent studies with a connection
to the setting in this paper. Paper [36] uses a set of positive
(records that match) and negative examples (records that do
not match) to find the best similarity functions and thresh-
olds to use in a dataset; note that our approach could be
combined with such a method that selects similarity func-
tions and computes the “right” threshold for each function.
Examples can also be provided in an active manner as re-
search in crowd entity resolution suggests [7, 35, 34, 33, 39,
14]. An alternative of using examples, is defining constraints
for matching records, through declarative/interactive frame-
works [10, 16]. Entity resolution is also studied in settings
where the data is distributed across multiple nodes [5], and
the goal is to reduce the bandwidth usage while maintain-
ing a low execution time. Incremental ER is the focus in
paper [19], where data updates can be handled efficiently
and can also provide evidence to fix previous errors.

Locality-Sensitive Hashing: Many LSH variations have
been studied since the concept of LSH has been proposed [20].
Here, we briefly discuss some of the variations that involve
some notion of adaptivity; although quite different from the
LSH adaptivity concept introduced in this paper. Multi-
Probe LSH [24] reduces the number of hash tables it uses,
by probing multiple buckets in each table when searching for
items similar to a query item (e.g., image or video). Another
similar concept is the entropy-based LSH [27, 22], which
trades time for space requirements, for nearest-neighbor search
on Euclidean spaces. Bayesian [30] and sequential hypoth-
esis testing LSH [11] use the hash values generated in the
first stage of LSH, to efficiently verify if each two records
in the same bucket of a hash table are indeed within the
distance threshold or not. Paper [23] focuses on a specific
locality-sensitive family of functions, the minwise hashing
functions [9] for jaccard similarity: based on a theoretical
framework, only a few bits are kept for each hash value, in
order to reduce the space requirements and computational
overhead. Paper [32] also focuses on a specific family of func-
tions, random projections for cosine similarity, and proposes
a mechanism that trades accuracy for space, in an online
setting for LSH. The last LSH variation discussed here, is
adaptive with respect to nearest-neighbor queries [21]: a no-
tion of accuracy, with respect to queries, is defined for each
hash function and, at query time, the most appropriate hash
functions are selected.

8. CONCLUSION
We proposed adaptive LSH, a novel approach for finding

the records referring to the top-k entities, in large datasets.
This problem is motivated by many modern applications
that focus on the few most popular entities in a dataset. The
main component of our approach is a sequence of cluster-
ing functions that adaptively apply locality-sensitive hash-
ing (LSH). The large cost savings come from applying only
the few first lightweight functions in the sequence on the
vast majority of records and detecting with a very low cost
that those records do not refer to the top-k entities. Our ap-
proach is general and applicable in all types of data where
a distance metric can model how likely two records are to
refer to the same entity. The outcome is an accurately and
drastically reduced, in terms of records, dataset: sophisti-
cated, case-specific entity resolution algorithms can then be
much more efficiently applied on the small dataset.

Our experiments involved different types of data: multi-
field publication records, web articles, and images. We com-
pared adaptive LSH to the widespread, for high dimensional
data, LSH-blocking approach. The speedup ranges from 2x
to 25x compared to the traditional LSH approach, while in-
troducing only negligible errors due to the approach’s prob-
abilistic nature. Furthermore, we saw that even in datasets
where the accuracy against the ground truth is not expected
to be particularly high, we can increase the recall with a
small penalty in performance. To verify that, in practice,
adaptive LSH operates in a fundamentally different way than
traditional LSH, we cherry-picked the best LSH variation, in
each case. We found out that even compared to the hand-
picked best LSH variation, adaptive LSH gives a substantial
speedup, except for cases where a very large portion of the
dataset refers to the top-1 entity and adaptive LSH is only
slightly better than the best LSH variation.

9. REFERENCES
[1] Cora dataset.

people.cs.umass.edu/˜mccallum/data/cora-refs.tar.gz.

[2] Gold set of near duplicates. http://mpi-inf.mpg.de/˜mtb/
spotsigs/GoldSetOfNearDuplicates.tar.gz.

[3] Popular images. Hidden due to double-blind requirements.
[4] Top-k entity resolution with adaptive locality-sensitive

hashing. Technical report, http:// bit.ly/ 2eOZOlS .
[5] N. Ayat, R. Akbarinia, H. Afsarmanesh, and P. Valduriez.

Entity resolution for distributed probabilistic data.
Distributed and Parallel Databases, 31(4):509–542, 2013.

[6] R. Baxter, P. Christen, and T. Churches. A comparison of
fast blocking methods for record linkage. In ACM SIGKDD
Workshop on Data Cleaning, Record Linkage, and Object
Identification, 2003.

[7] K. Bellare, S. Iyengar, A. G. Parameswaran, and
V. Rastogi. Active sampling for entity matching. In KDD,
2012.

[8] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive
blocking: Learning to scale up record linkage. In ICDM,
2006.

[9] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In WWW, 1997.

[10] D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C.
Tan. A declarative framework for linking entities. TODS,
41(3):17:1–17:38, 2016.

[11] A. Chakrabarti and S. Parthasarathy. Sequential
hypothesis tests for adaptive locality sensitive hashing. In
WWW, 2015.

[12] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data
deduplication. PVLDB, 9(11):864–875, 2016.

[13] A. Das Sarma, A. Jain, A. Machanavajjhala, and
P. Bohannon. An automatic blocking mechanism for
large-scale de-duplication tasks. In CIKM, 2012.

[14] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
Large-scale linked data integration using probabilistic
reasoning and crowdsourcing. The VLDB Journal,
22(5):665–687, 2013.

[15] J. Ellis, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis,
K. Srinivas, and M. J. Ward. Exploring big data with helix:
Finding needles in a big haystack. SIGMOD Rec.,
43(4):43–54, 2015.

[16] A. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiané-Ruiz,
N. Tang, and S. Yin. Nadeef/er: Generic and interactive
entity resolution. In SIGMOD, 2014.

[17] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.
Data Eng., 19(1):1–16, 2007.

[18] J. Fisher, P. Christen, Q. Wang, and E. Rahm. A
clustering-based framework to control block sizes for entity
resolution. In KDD, 2015.

[19] A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental
record linkage. PVLDB, 7(9):697–708, 2014.

[20] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC,
1998.

[21] H. Jegou, L. Amsaleg, C. Schmid, and P. Gros. Query
adaptative locality sensitive hashing. In International
Conference on Acoustics, Speech, and Signal Processing,
ICASSP, 2008.

[22] M. Kapralov. Smooth tradeoffs between insert and query
complexity in nearest neighbor search. In PODS, 2015.

[23] P. Li and A. C. König. Theory and applications of b-bit
minwise hashing. Commun. ACM, 54(8):101–109, 2011.

[24] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe lsh: Efficient indexing for high-dimensional
similarity search. In VLDB, 2007.

[25] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In KDD, 2000.

[26] M. Michelson and C. A. Knoblock. Learning blocking

schemes for record linkage. In AAAI, 2006.
[27] R. Panigrahy. Entropy based nearest neighbor search in

high dimensions. In SODA, 2006.
[28] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and

W. Nejdl. Beyond 100 million entities: Large-scale
blocking-based resolution for heterogeneous data. In
WSDM, 2012.

[29] G. Papadakis, G. Papastefanatos, and G. Koutrika.
Supervised meta-blocking. PVLDB, 7(14):1929–1940, 2014.

[30] V. Satuluri and S. Parthasarathy. Bayesian locality
sensitive hashing for fast similarity search. PVLDB,
5(5):430–441, 2012.

[31] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs:
Robust and efficient near duplicate detection in large web
collections. In SIGIR, 2008.

[32] B. Van Durme and A. Lall. Efficient online locality
sensitive hashing via reservoir counting. In Human
Language Technologies HLT, 2011.

[33] V. Verroios and H. Garcia-Molina. Entity resolution with
crowd errors. In ICDE, 2015.

[34] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. In VLDB, 2012.

[35] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, 2013.

[36] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching:
How similar is similar. PVLDB, 4(10):622–633, 2011.

[37] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald,
and H. Garcia-Molina. Entity resolution with iterative
blocking. In SIGMOD, 2009.

[38] W. Winkler. Overview of record linkage and current
research directions. Technical report, Statistical Research
Division, U.S. Bureau of the Census, Washington, DC,
2006.

[39] C. Zhang, R. Meng, L. Chen, and F. Zhu. Crowdlink: An
error-tolerant model for linking complex records. In
ExploreDB, 2015.

APPENDIX
A. LOCALITY-SENSITIVE HASHING

The clustering functions of the approach proposed in this
paper use LSH, as discussed in Section 3. In this Appendix,
we present the details for LSH.

LSH uses a set of hash tables and applies a number of
hash functions on each record, such that two records that
are “close” to each other, based on the given distance metric
and distance threshold, hash to the same bucket, in at least
one of the tables.

In particular, LSH is based on the notion of (dt, ρdt, p1, p2)-
sensitive functions:

DEFINITION 4 (Locality-Sensitive Family) For a given
distance metric d, a (dt, ρdt, p1, p2)-sensitive family F con-
sists of hash functions, where each function h : R→ B maps
a record r ∈ R to a bucket b ∈ B and has the following two
properties for records r1 and r2:
• if d(r1, r2) ≤ dt, then h(r1) = h(r2) with probability at

least p1.
• if d(r1, r2) ≥ ρdt, then h(r1) = h(r2) with probability

at most p2.

That is, when selecting a hash function h ∈ F uniformly
at random, for two records r1 and r2 with d(r1, r2) ≤ dt,
the probability of selecting a function h with h(r1) = h(r2)
is at least p1. If d(r1, r2) ≥ ρdt the probability of selecting
a function h with h(r1) = h(r2) is at most p2. Note that
ρ needs to be greater than one and p1 greater than p2, for
F to be useful. Intuitively, when picking a hash function

people.cs.umass.edu/~mccallum/data/cora-refs.tar.gz
http://mpi-inf.mpg.de/~mtb/spotsigs/GoldSetOfNearDuplicates.tar.gz
http://mpi-inf.mpg.de/~mtb/spotsigs/GoldSetOfNearDuplicates.tar.gz
http://bit.ly/2eOZOlS

from a (dt, ρdt, p1, p2)-sensitive family F , we will pick with
high probability a function that hashes to the same bucket
two records that are very similar, and we will pick with high
probability a function that hashes to different buckets two
records that are not very similar.

EXAMPLE 6 Consider again Example 2. When selecting
uniformly at random a hyperplane through the origin, the
likelihood of picking a hyperplane like e2 (where r1 and r2
lie on different sides) is 30

180
; while the likelihood of picking

a hyperplane like e1 is 180−30
180

. As discussed in Example 2,
we consider each random hyperplane as a hash function, h :
R → {b1, b2}, that hashes each vector/record, r ∈ R, to two
buckets, b1 or b2, depending on which side of the hyperplane
vector r lies. In general, the family of hash functions de-
fined by the random hyperplanes, is (θ1, θ2,

180−θ1
180

, 180−θ2
180

)-
sensitive, for θ1, θ2 ∈ [0, 180] and θ1 < θ2. That is, if the
distance between two vectors/records is θ, the likelihood of
picking a hash function that hashes the two vectors to the
same bucket is exactly 180−θ

180
.

Although in Example 6 the space is two dimensional, it is
not hard to see that the family of hash functions defined by
random hyperplanes, is (θ1, θ2,

180−θ1
180

, 180−θ2
180

)-sensitive for
any number of dimensions, for the cosine distance.

A (dt, ρdt, p1, p2)-sensitive family can be “amplified” using
an AND-construction or an OR-construction:

DEFINITION 5 (AND-construction) Given a (dt, ρdt, p1, p2)-
sensitive family F , a (dt, ρdt, p

w
1 , p

w
2)-sensitive family F ′ is

constructed by selecting w functions, h1, h2, . . . hw ∈ F , to
define a function h′ ∈ F ′ such that h′(r1) = h′(r2) iff
hi(r1) = hi(r2) for all i ∈ [1, w], for two records r1, r2.

DEFINITION 6 (OR-construction) Given a (dt, ρdt, p1, p2)-
sensitive family F , a (dt, ρdt, 1 − (1 − p1)z, 1 − (1 − p2)z)-
sensitive family F ′ is constructed by selecting z functions,
h1, h2, . . . hz ∈ F , to define a function h′ ∈ F ′ such that
h′(r1) = h′(r2) iff hi(r1) = hi(r2) for at least one i ∈ [1, z],
for two records r1, r2.

For the AND-construction, if the probability of select-
ing a hash function h ∈ F with h(r1) = h(r2) is p1 (or
p2), it follows that the probability of selecting w functions
h1, h2, . . . hw ∈ F , with all of them having hi(r1) = hi(r2)
(i ∈ [1, w]), is pw1 (or pw2).

For the OR-construction, if the probability of selecting a
hash function h ∈ F with h(r1) = h(r2) is p1 (or p2), it fol-
lows that the probability of selecting z functions h1, h2, . . . hz ∈
F , with none of them having hi(r1) = hi(r2) (i ∈ [1, z]), is
(1 − p1)z (or (1 − p2)z). Hence, the probability of at least
one having hi(r1) = hi(r2) is 1− (1−p1)z (or 1− (1−p2)z).

The two constructions can be combined together to form
an AND-OR construction. In particular, a (dt, ρdt, p1, p2)-
sensitive family F is first transformed to a (dt, ρdt, p

w
1 , p

w
2)-

sensitive family F ′ using an AND-construction, and then
F ′ is transformed to a (dt, ρdt, 1− (1− pw1)z, 1− (1− pw2)z)-
sensitive family F ′′ using an OR-construction.

As discussed in Section 3, the AND-OR construction can
be thought of as a hashing scheme of z hash tables: in each
of the z tables two records r1 and r2 hash to the same bucket
if hi(r1) = hi(r2) for all of the w hash functions hi, for that
table. (For each table there is an independent selection of
w functions hi ∈ F .)

B. IMPLEMENTATION DETAILS
Here, we discuss how to efficiently implement all the key

components of Algorithm 1, in Section 4. In particular, we
discuss the implementation for transitive hashing functions
(Line 8) and the pairwise computation function (Line 6),
finding the largest cluster (Line 3), and the termination con-
dition (Line 11). We start with the description of two data
structures, and then we focus on how the two structures are
used in the lower level operations in Algorithm 1.

B.1 Data Structures
The data structures used in the implementation are a

parent-pointer tree structure and a bin-based structure. The
parent-pointer tree structure is used by transitive hashing
functions and the pairwise computation function, while the
bin-based structure is used for finding the largest cluster and
in the termination condition.

firs
t last

{#leaves: 3} {#leaves: 2}

{#leaves: 7}

{#leaves: 5}

{#leaves: 2}

Figure 18: Parent-pointer tree.
The parent-pointer tree structure is depicted in Figure 18.

Each node has a pointer to the parent, leaf nodes have a
pointer to the first leaf on the right, and the root has a
pointer to the first and last leaves. Each parent-pointer tree
represents a cluster: the leaves of the tree refer to the records
that belong to the cluster. In addition, each node stores the
number of leaves that are successors of that node.

The bin-based structure is an array of log(|R|) bins; where
|R| is the number of all records in the dataset. In each
bin, the roots of different parent-pointer trees are stored.
The root of a parent-pointer tree with x leaves, is stored on
the log(bxc)-th bin of the array. For example, an array for
|R| = 10 records would have four bins: the first bin would
store trees with 1 leaf, the second bin trees with 2 or 3 leaves,
the third bin trees with 4 to 7 leaves, and the fourth bin trees
with 8 to 10 leaves.

B.2 Transitive Hashing Functions
A transitive hashing functionHi based on a (wi, zi)-scheme,

uses zi hash tables. For each record r of an input set S, zi
bucket indices (consisting of wi hashes each) are computed.
Based on those hashes, record r is added to each of the zi
tables. (Note that the computation of hashes is incremental
and uses the hashes computed from the previous function in
the sequence Hi−1, on record r.) Hashing function Hi uses
a number of parent-pointer trees: each cluster in the out-
put refers to one parent-pointer tree. When function Hi is
invoked, there are no trees and none of the input records be-
longs to a tree. Moreover, the zi hash tables are empty, i.e.,
each invocation of function Hi uses a different set of tables;
to avoid a possible merge of clusters from different invoca-
tions. To process a cluster of records stored in a parent-
pointer tree, function Hi uses the “first” pointer in the root
to reach the first leaf, processes that record, then uses the
“right” pointer of the first leaf to access the next record in
the cluster, and so on. When a record r1 is added to a hash
table there are four cases:

1. the bucket in the table is empty and record r1 has not
been added yet to a parent-pointer tree: a new tree is

r2r1

{#leaves: 1}

fir
st

last

r2

{#leaves: 3}

fir
st

last

r1

4

{#leaves: 2} {#leaves: 2}

r1

firs
t last

{#leaves: 4}
n’

(a) (b) (c)

Figure 19: Tree updates when adding a record r1 to
a hash table.

created with record r1 being the single leaf of that tree,
as depicted in Figure 19a.

2. the bucket in the table is empty and record r1 has al-
ready been added to a parent-pointer tree: just add r1
in the bucket.

3. the bucket in the table is not empty and record r1 has
not been added yet to a parent-pointer tree: find the
root of the tree of the record r2 that was last added in
the bucket and add record r1 to this tree, by updating
all tree pointers (updates appear in red on Figure 19b).

4. the bucket in the table is not empty and record r1 has
already been added to a parent-pointer tree: find the
root of the tree of the record r2 that was last added
in the bucket. If the root for r2 is the same with the
root of the tree of r1 (i.e., the two records belong to
the same tree), just add r1 to the bucket. Otherwise,
merge the two trees into one: use a new node n′ as a
root and update all pointers, as depicted in Figure 19c.

Note that all records of a bucket in a hash table are under
the same tree. To find the root of a bucket’s tree, the process
starts from the record that was last added in the bucket, in
cases 3 and 4, because it is more likely that the path to the
root is shorter, compared to when starting from the, say,
first record added in the bucket.

The complexity of adding a record r to a hash table is
O(log(|Cr|)), where Cr is the cluster where record r belongs
in the output of function Hi.

B.3 Pairwise Computation Function
The pairwise computation function P also uses parent-

pointer trees. When the distance between two records is
less than the distance threshold, the trees of the two records
are merged; the process is similar to the one discussed in the
previous section. In addition, for two records that belong to
the same tree, P can safely skip the distance computation
for those two records. Nevertheless, note that in our cost
model (Line 5 in Algorithm 1) we are being conservative and
assume that the cost of function P involves the computation
of all pairwise distances.

B.4 Finding the Largest Cluster
Upon completion of a function Hi or P , the output clus-

ters(trees) are added to the bin-based array. When the
largest cluster must be found for the next iteration, the
search starts from the last non-empty bin in the array and
the largest cluster in that bin is returned and removed from
the bin.

Adding a cluster to the bin-based array is a constant-time
operation and we expect that the clusters in the last non-
empty bin to always be much fewer than all the clusters
stored in the array.

B.5 Termination Condition
To efficiently compute when the loop of Algorithm 1 must

terminate, we use an array of “final” clusters. When the
largest cluster selected in an iteration, is an outcome of a
function HL or a function P , the cluster is not processed
but it is added instead to the array of final clusters. Once
k clusters are added in the final clusters array, Algorithm 1
terminates and the clusters in the final clusters array are re-
turned as the output. Note that this condition is equivalent
to the condition in Line 11 of Algorithm 1.

C. COMPLEX DISTANCE RULES
When records have multiple fields, distance rules may in-

volve more than one field, as discussed in Section 3. The
main workflow of Adaptive LSH, summarized in Algorithm 1,
remains the same in that case, however, some of the details
of transitive hashing functions and the design of the function
sequence change.

We focus on distance rules that consist of: AND rules, OR
rules, and weighted average rules. Next, we discuss how to
design the sequence of transitive hashing functions for each
type of rules and conclude this section with a brief discussion
on the case of more complicated rules that combine several
AND, OR, and weighted average rules.

C.1 AND rules
To keep the discussion simple, we assume the AND rule

involves only two record fields: given a distance metric and

threshold for each field, two records r1 = {f (1)
1 , f

(2)
1 } and

r2 = {f (1)
2 , f

(2)
2 } refer to the same entity if

d(f
(1)
1 , f

(1)
2) ≤ d(1)thr AND d(f

(2)
1 , f

(2)
2) ≤ d(2)thr

In the AND-OR hashing scheme used by function Hi in
the sequence, the hash value for each of the hash tables will
be formed using both fields f (1) and f (2). In particular,
given a Locality-Sensitive family of hash functions for each
field, for each hash table used by function Hi, we pick w hash
functions from the family of field f (1) and u hash functions
from the family of field f (2). The hash value for each hash
table is a concatenation of the w and u hash values.

Consider functions p1(x1) and p2(x2) that give the prob-
ability of selecting a hash function that gives the same hash
value for two records at a distance x1 (x2) on field f (1) (f (2));
0 ≤ x1, x2 ≤ 1. Assuming z tables are used, the probability
of two records at a distance x1 on field f (1) and x2 on field
f (2), hashing to the same bucket in any of the z tables, is:

1−
[
1− pw1 (x1)pu2 (x2)

]z
To decide the values w, u, z, for a given budget of hash

functions, we use a generalization of Program 1 to 3:

min
w,u,z

∫ 1

0

∫ 1

0

[
1−

[
1− pw1 (x1)pu2 (x2)

]z]
dx1dx2 (4)

s.t. (w + u) ∗ z=budget (5)

1−
[
1− pw1 (x1)pu2 (x2)

]z≥1− ε, x1≤d(1)thr, x2≤d
(2)
thr(6)

Just as in Program 1 to 3, we can also search over w, u, z
values, where budget

w+u
is not an integer, by adjusting the prob-

ability expression, or take into account cost functions that
reflect the actual cost of computing each hash value.

Note one more important detail here: we may have to add
some constraints in Program 4 to 6 that reflect the solutions
obtained for previous functions in the sequence. That is, if
the previous function in the sequence is using w′ functions
from the family of field f (1) and u′ hash functions from the
family of field f (2), on each table, we need to apply con-
straints w ≥ w′ and u ≥ u′. Those constraints are related
to the incremental computation property of the sequence of
clustering functions: there are already w′ plus u′ hash val-
ues computed for each table, so, ideally, we want to use all
of them for the next function in the sequence.

C.2 OR rules
An OR rule for records of two fields states that two records

r1 = {f (1)
1 , f

(2)
1 } and r2 = {f (1)

2 , f
(2)
2 } refer to the same

entity if

d(f
(1)
1 , f

(1)
2) ≤ d(1)thr OR d(f

(2)
1 , f

(2)
2) ≤ d(2)thr

For an OR rule, the AND-OR hashing scheme used by
function Hi in the sequence, has hash tables that involve
only field f (1) and tables that involve only field f (2). As-
suming a (w, z)-scheme is used for field f (1) and a (u, v)-

scheme is used for field f (2), the probability of two records
at a distance x1 on field f (1) and x2 on field f (2), hashing
to the same bucket in any of the z + v tables, is:

1−
[
1− pw1 (x1)

]z[
1− pu2 (x2)

]v
To decide the values w, z, u, v, for a given budget of hash

functions, we use the following program:

min
w,z,u,v

∫ 1

0

∫ 1

0

[
1−

[
1− pw1 (x1)

]z[
1− pu2 (x2)

]v]
dx1dx2 (7)

s.t. w ∗ z + u ∗ v=budget (8)

1−
[
1− pw1 (x1)

]z≥1− ε, x1≤d(1)thr (9)

1−
[
1− pu2 (x2)

]v≥1− ε, x2≤d(2)thr (10)

C.3 Weighted average rules
Handling weighted average rules requires a slightly differ-

ent approach compared to the AND and OR rules.
A weighted average rule uses a list of weights α1, . . . , αF

(
∑
i αi = 1), for records of F fields, and a single distance

threshold dthr. Two records r1 = {f (1)
1 , . . . , f

(F)
1 } and r2 =

{f (1)
2 , . . . , f

(F)
2 } refer to the same entity if

d̄(r1, r2) =

F∑
i=0

αid(f
(i)
1 , f

(i)
2) ≤ dthr

For a weighted average rule a (w, z)-scheme is used for
function Hi in the sequence, just like in the case of a single
field: the values for parameters w and z are chosen based on
the process described in Section 5.1. Nevertheless, there is
one important difference compared to the single field case.
In order to select each of the w hash functions, for each of
the z hash tables, the following process is used:

DEFINITION 7 (Weighted-Average Function Selection)

(a) randomly select one of the F fields based on the distri-
bution defined by the field weights α1, . . . , αF , i.e., the prob-
ability of picking field i is αi, and (b) select uniformly at
random one of the hash functions from the locality-sensitive
family for the selected field i.

The process of Definition 7 has the theoretical properties
summarized in the following two theorems.

THEOREM 2 For each field i, consider a locality sensitive
family F (i), such that the probability of selecting a hash func-
tion hj ∈ F (i) with hj(ra) = hj(rb), for any two records ra
and rb, is:

Pr[hj(ra) ≡ hj(rb)] = 1− d(f (i)
a , f

(i)
b)

where 0 ≤ d(f (i)
a , f

(i)
b) ≤ 1

If h′j is a hash function selected using the process of Def-
inition 7, then:

Pr[h′j(ra) ≡ h′j(rb)] = 1− d̄(ra, rb)

PROOF: The probability of selecting a field i in step (a)
of the process is Pr[field i picked] = αi. Moreover, if field

i is picked then Pr[h′j(ra) ≡ h′j(rb)] = [1 − d(f
(i)
a , f

(i)
b)].

Therefore,

Pr[h′j(ra) ≡ h′j(rb)] =

F∑
i=0

Pr[field i picked][1− d(f (i)
a , f

(i)
b)]

=
F∑
i=0

αi[1− d(f (i)
a , f

(i)
b)]

=

F∑
i=0

αi −
∑
i

αid(f (i)
a , f

(i)
b)

= 1− d̄(ra, rb)

An example where Theorem 2 applies is the family of min-
hash functions for the Jaccard distance. A more general
version of Theorem 2 is stated in Theorem 3:

THEOREM 3 For each field i, consider a (dthr, ρdthr, p
(i)
1 , p

(i)
2)-

sensitive family. In this case, the family of functions F ′,
where each function h′j ∈ F ′ is selected using the process of

Definition 7, is (dthr, ρdthr,
∑F
i=0 αip

(i)
1 ,
∑F
i=0 αip

(i)
2)-sensitive.

PROOF: The proof is similar to the one of Theorem 2.

C.4 Combining rules
In the last part of this appendix, we briefly discuss the

case of ER rules that combine AND, OR, and weighted av-
erage rules. In this case, we need to combine the processes
described in the previous parts of this section. To select the
number of hash functions coming from the locality-sensitive
hashing family of each field, we need to solve more general
optimization programs compared to the ones discussed be-
fore. Nevertheless, the main principle in those programs is
the same with the ones we discussed: the probability of hash-
ing to the same bucket should be very close to 1.0 for pairs of
records that satisfy the combined ER rule (e.g., Equation 6)
and the overall volume under the probability curve should
be minimized (e.g., Equation 4).

The more fields are involved in the ER rule, the more pa-
rameters are involved in the optimization program, and the
more computationally heavy it is to solve the program. In
practice, this is not an issue, however, for two reasons. First,
the whole function sequence design process is run offline,
before Adaptive LSH is applied on a dataset and the same
sequence design usually suffices for many similar datasets.
Second, depending on the program, an exhaustive search
over all parameter values can often be avoided (e.g., binary
search for Program 1 to 3).

D. OPTIMALITY ASSUMPTIONS
In this Appendix, we discuss when it could make sense

for an algorithm not to follow the largest-first optimality
assumptions, stated in Theorem 1, in Section 4.2.

Let us start with the second assumption and consider al-
gorithms that do “terminate early”. (That is, algorithms
that may terminate even when the k largest clusters are not
all an outcome of either an HL or P function.) In that case,
the algorithm would either: (a) output a cluster which is not
an outcome of an HL or P function, or (b) would not out-
put one of the k largest clusters. In case (a), the algorithm
should be fairly certain that this cluster would not split into
smaller clusters if function P (or HL) was applied on it.
In case (b), the algorithm should be fairly certain that the
cluster not contained in the output, would split into small
(smaller than the k largest clusters that are an outcome of
an HL or P function) clusters. Thus, an algorithm should
have a good estimation of how likely it is for clusters to
split, if more functions in the sequence were to be applied
on them, and how large the new clusters would be.

A good estimation of how likely are clusters to split and
how large the new clusters would be, is also the key condi-
tion for an algorithm to potentially benefit from breaking the
first assumption. Seeing how it could be beneficial to break
the first assumption, is a bit more complicated. Let us illus-
trate with a simple example. Consider two clusters, C1 of
10 records and C2 of 12 clusters, and assume we are looking
for the top-1 entity. Moreover, assume that: (a) C1 either
does not split at all, with 50% probability, or splits into two
clusters of 5 records, with 50% probability, (b) C2 either
does not split at all, with 5% probability, or splits into two
clusters of 9 and 3 records, with 50% probability, or splits
into four clusters of 3 records each, with 45% probability,
and (c) to find out if C1 splits, we need to apply function P
on it, while for C2, we can apply the next sequence-function,
to find out if it splits, but we need to apply function P to
find out if it splits to four clusters or two clusters. In this
example, it can be beneficial to first apply function P on the
smaller cluster C1 first. If cluster C1 splits into two clusters
of 5 clusters each, then it only makes sense to directly apply
P on C2 to find out if the largest cluster in C2 consists of
9 or 3 records. (Note that the largest-first strategy would
first apply the next sequence-function on C2, so we would
not be able to avoid the cost of that function on C2.) Poten-
tially, such a strategy could lead to a lower execution time
compared to largest-first.

The bottom line is that an algorithm could benefit from
breaking the two assumptions, only when it keeps estimates
of the sizes of sub-clusters inside each cluster. Computing
accurately such estimates may not always be possible, or
may be so costly, in terms of execution time, that the over-
head outweighs the benefits. We plan to investigate in fu-
ture research if this could be a direction giving a non-trivial
improvement.

	Introduction
	Approach Overview
	Problem Definition
	Clustering Functions
	Sequential Function Application
	Locality-Sensitive Hashing

	Clustering Functions
	Adaptive LSH
	Algorithm
	Largest-First Optimality

	Designing the Function Sequence
	Selecting the (w,z)-scheme
	Selecting the budget

	Experimental Evaluation
	Metrics
	Datasets
	Methods
	Findings' Overview
	Different k values
	Accuracy
	Different dataset sizes
	LSH vs adaLSH
	Entity sizes' distribution
	Adding noise to the cost model
	Exponential vs Linear sequences

	Related Work
	Conclusion
	References
	Locality-Sensitive Hashing
	Implementation Details
	Data Structures
	Transitive Hashing Functions
	Pairwise Computation Function
	Finding the Largest Cluster
	Termination Condition

	Complex Distance rules
	AND rules
	OR rules
	Weighted average rules
	Combining rules

	Optimality Assumptions

