
Top-K Entity Resolution
with Adaptive Locality-Sensitive Hashing

Vasilis Verroios
Stanford University

verroios@stanford.edu

Hector Garcia-Molina
Stanford University

hector@cs.stanford.edu

ABSTRACT
Given a set of records, entity resolution algorithms find all
the records referring to each entity. In this paper, we study
the problem of top-k entity resolution: finding all the records
referring to the k largest (in terms of records) entities. Top-k
entity resolution is driven by many modern applications that
operate over just the few most popular entities in a dataset.
We propose a novel approach, based on locality-sensitive
hashing, that can very rapidly and accurately process mas-
sive datasets. Our key insight is to adaptively decide how
much processing each record requires to ascertain if it refers
to a top-k entity or not: the less likely a record is to refer to
a top-k entity, the less it is processed. The heavily reduced
amount of processing for the vast majority of records that
do not refer to top-k entities, leads to significant speedups.
Our experiments with images, web articles, and scientific
publications show a 2x to 25x speedup compared to the tra-
ditional approach for high-dimensional data.

1. INTRODUCTION
Given a set of records, the objective in entity resolution

(ER) is to find clusters of records such that each cluster
collects all the records referring to the same entity. For ex-
ample, if the records are restaurant entries on Google Maps,
the objective of ER is to find all entries referring to the same
restaurant, for every restaurant.
In many applications the size of a resolved entity (i.e., the

number of records) reflects the importance or populatity of
the entity. For example, if the records are bug reports and
the entities are code bugs, the larger the entity, the more
users have encountered the bug, and the more important it
is to fix the bug. If we only have resources to fix say three
bugs this week, then we only need to identify the top three
bugs, i.e., we do not need to resolve all entities (which may
be very time consuming), just the three largest. It also so
happens that in most of these applications where importance
matters, entity sizes follow a Zipfian distribution, so the top
few entities are way more important or popular than the

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 7
Copyright 2017 VLDB Endowment 2150-8097/17/03.

Dataset Filtering
Top-k

Entities’
Records

Entity
Resolution

Entity 1

Entity 2

Entity k

Figure 1: Filtering stage in the overall workflow.

rest. As we will see, this fact makes it easier to find the top-
k entities without computing all entities. We next illustrate
two additional applications where one typically only needs
top-k entities. Incidentally, two of the datasets we use for
our experiments are from these applications.
First, consider news articles: in many cases, the same

story (or a large portion of it) is copied/reproduced in differ-
ent articles. In this case a resolved entity represents a single
story or news event, and its records are the articles that re-
fer to that story. The larger an entity, the more web sites or
newspapers decided to present that story, so the more popu-
lar (arguably important) that story is. If we are preparing a
news summary for readers with limited time, it makes sense
to include the top-k stories. (Of course, the summary may
also include other hand-picked stories.) Again, for the sum-
mary of the popular stories one does not need to resolve all
entities. Note that computing all entities in this application
can be prohibitive: there can be hundreds of thousands of
articles, resolution is quadratic in the number of articles, and
we want to produce our summary in a very timely manner.
Second, consider viral images in social media: images that

are being copied (possibly transformed) and shared, some-
times without a direct connection to the original post. Large
entities represent images that have been shared a lot and can
be much more interesting than other images for a number
of reasons, e.g., copyright issues or they indicate what im-
ages are being shared the most. In all those cases, finding
the top-k entities can be sufficient. For instance, serious
copyright violations may require an expert’s attention and
intervention and since experts’ time is limited, it can be bet-
ter allocated in content that is being extensively shared (i.e.,
one of the top-k entities).
Overall, we can find a motivating example for any ap-

plication where the user experience drastically improves by
awareness of the popular entities. Other interesting exam-
ples include: popular questions in search engine query logs,

suspicious individuals appearing very often in specific areas
of an airport, and viral videos in video streaming engines.
The naive approach for finding the largest entities is to

first apply an ER method on the whole dataset to find all en-
tities, and then output only the largest entities. However, for
applications where finding the largest entities is important,
we can expect the datasets to be large and change rapidly
over time. Hence, it is quite wasteful and inefficient to ap-
ply ER on the entire dataset. For instance, a traditional ER
algorithm may require the computation of pairwise similari-
ties for every two records in the dataset. (In large datasets,
the cost of computing the similarity of every two records is
prohibitive, e.g., a dataset of 100 thousand records would
require the computation of almost 5 billion pairwise simi-
larities.) Note also that computing each pairwise similarity
may be an expensive operation for many applications, e.g.,
records containing images.
In this paper, we focus on a lightweight preprocessing

stage that receives the whole dataset as an input and tries to
filter out all the records that do not belong to the k largest
entities; where k is an input parameter. The output of this
filtering stage is then fed to an ER algorithm that produces
one cluster of records for each of the top-k entities and, pos-
sibly, aggregates the records in each cluster to produce a
summary for each entity (Figure 1). The filtering stage out-
put may contain a few records that do not belong to the k
largest entities, or a few records from the k largest entities
may not be part of the output. Nevertheless, if the number
of such errors is limited, we expect that the subsequent ER
algorithm can recover and produce (almost) the same final
outcome as if the filtering stage was not present. The pur-
pose of the filtering stage is to enable the efficient processing
of large datasets, by having a linear cost to the number of
records in the dataset. Since the filtering stage output is
expected to be much smaller than the whole dataset, the
ER algorithm can afford a quadratic (or even higher) cost
to the input size, or even involve human curation.
Various different aspects of entity resolution have been

studied over the years [16, 37, 35, 18, 9]. The most related
topic to the problem studied here, is the one of blocking [24,
5, 7, 25, 17, 11, 12]: the goal of blocking is to split a dataset
into blocks, such that the records of each entity (ideally)
do not split across two or more different blocks. Moreover,
the cost of blocking must be low, typically linear to the
number of records in the dataset. Nevertheless, blocking
mechanisms are designed for entity resolution over the en-
tire dataset. Especially for high-dimensional data (e.g., web
articles, images, videos, audio), there is a significant compu-
tational cost to process each record in the dataset, to decide
in which blocks to place the record. In this paper, we argue
that we can find the small portion of the dataset referring
to the top-k entities, with a very low cost for each record in
the rest of the dataset, that does not refer to a top-k entity.
Our approach consists of a linear-cost filtering stage algo-

rithm that uses Locality-Sensitive Hashing (LSH) [19] in an
adaptive way. LSH essentially enables efficient blocking for
high-dimensional data. In the most common setting, LSH
uses a set of hash tables and applies a large number of hash
functions on each record of the dataset. Every two records
that LSH places in the same bucket, in one of the tables,
are considered “similar”, i.e., referring to the same entity
for ER. Nevertheless, LSH requires a large number of hash
functions to be applied on each record. That is, while the

longitude

latitude

sparsedense

dense

dense

Figure 2: Key insight in Adaptive LSH.

cost of applying LSH is linear to the size of the input, the
cost of processing each record is high. The Adaptive LSH
approach we propose is capable of processing the vast major-
ity of records in the dataset with a very low cost per record,
showing a speedup of up to 25x, compared to traditional
LSH blocking.
Figure 2 illustrates our approach’s key insight using a sim-

ple cartoon sketch. The points refer to restaurant records,
where for each record only the location (longitude/latitude)
is known. The records of the top-k entities lie on the “dense”
areas (i.e., areas with many records) in this space, while the
records that can be filtered out lie on “sparse” areas. The
key insight is that only a small number of LSH functions
need to be applied to the records that lie on “sparse” ar-
eas and the full set of LSH functions needs to be applied
only for the records that lie on “dense” areas. Adaptive LSH
starts by applying a small number of LSH functions on each
record in the dataset. It then detects which areas are sparse
and which are dense and continues by applying more LSH
functions only to the records in the dense areas, until it con-
verges to the records referring to the top-k entities. Thus,
Adaptive LSH can very efficiently filter out records that are
highly unlikely to be records referring to top-k entities, and
only requires a higher cost for records that refer (or are quite
likely to refer) to the top-k entities.
The rest of the paper is organized as follows: we start with

an overview of Adaptive LSH, in Section 2, in Section 3 we
present the LSH clustering functions, a key component of
our approach, in Sections 4 and 5 we discuss the algorithm
and details of Adaptive LSH, and in Sections 6 and 7 we dis-
cuss our experimental results with datasets of web articles,
images, and scientific publications.

2. APPROACH OVERVIEW
We start with the problem definition and an overview of

the Adaptive LSH approach through a discussion of its three
main concepts in Sections 2.2, 2.3, and 2.4.

2.1 Problem Definition
Let us denote the set of records in the dataset by

R = {r1, . . . , r|R|}
Each record ri refers to a single entity. In the ground

truth clustering C∗ = {C∗1 , . . . , C∗|C∗|}
cluster C∗j contains all the records referring to entity j.
Assume a descending order on cluster size in our nota-

tion, i.e., |C∗i | ≥ |C∗j | for i < j. The objective of the filter-
ing stage, in Figure 1, is to, very efficiently, find the set of
records O∗ that belong to the k largest clusters in C∗:

O∗ = {rj : rj ∈ C∗i , i ≤ k}

Each method we study in this paper outputs a set of
records O, which we compare against the ground truth set
O∗. In particular, we measure the:

precision =
|O ∩ O∗|
|O| , recall =

|O ∩ O∗|
|O∗|

and

F1 score =
2 ∗ precision ∗ recall

precision + recall

2.2 Clustering Functions
To achieve a high precision and recall with a very low exe-

cution time, Adaptive LSH relies on a sequence of L cluster-
ing functions (gj : S → {Ci})Lj=1. Each function gj receives
as input a set of records S ⊆ R and clusters those records
into a set of non-overlapping clusters {Ci}. The input set S
can be the whole dataset R, or a single cluster produced by
a previous function in the sequence.
The functions in the sequence are probabilistic and have

the following four properties:
1. conservative evaluation: the functions attempt to cluster

the records of any ground truth cluster C∗i under the same
cluster in the output. That is, a cluster in the output of
any function gj may contain two or more ground truth
clusters, but a ground truth cluster should very rarely
split into two (or more) of the output clusters.

2. increasing accuracy : the further a function is in the se-
quence, the higher the chances of outputting the ground
truth clustering C∗ when applied on R; or the ground
truth clusters in a subset S, for any subset S.

3. increasing cost : the further a function is in the sequence,
the higher the cost of applying the function on any subset
of records S.

4. incremental computation: the computation of the func-
tions in the sequence can be performed incrementally.
That is, the computation required by a function gi con-
sists of the computation required by gi−1 plus some ad-
ditional computation.

2.3 Sequential Function Application
Our approach starts by applying the most lightweight

function in the sequence, g1, on the whole dataset R, and
continues by applying subsequent functions on the “most-
promising” (for being a top-k entity) clusters.
Let us illustrate the concept of sequential function ap-

plication via the example in Figure 3. The most “light-
weight” function g1 is applied on the whole dataset R and
splits it into the first round clusters (three in this figure)
C

(1)
1 , C

(1)
2 , C

(1)
3 ; the superscript denotes the round. In the

second round, the next function in the sequence, g2, is ap-
plied on one of the clusters from the first round; C(1)

1 in this
example. In each round, our approach selects the largest,
in terms of number of records, cluster that is not an out-
come of the last function in the sequence. The intuition for
this choice is that a large cluster has to be processed sooner
or later, to find out if it belongs to the top-k or not. We
prove that the largest-cluster selection rule is actually opti-
mal, in Section 4. Function g2 splits C(1)

1 into two clusters
C

(2)
1 , C

(2)
2 . The other two clusters C(1)

2 , C
(1)
3 from the first

round, are also added, unchanged, to the list of clusters af-
ter Round 2. In the third round, cluster C(2)

3 is selected.
Since cluster C(2)

3 is the outcome of a g1 function, the next
function to be applied on C(2)

3 is g2.

R

C(1)

C(1)

C(1)

C(2)

C(2)

C(2)

C(2)

C(3)

C(3)

C(3)

C(3)
C(3)

1

2

3

1

2

3

4

4

g1
g2

g2
1

2

3

5

Round 1 Round 2 Round 3

g3

Figure 3: Sequential function application example.

The sequential function application stops when the k largest
clusters, at the end of a round, are an outcome of the last
function in the sequence: the union of records in the k clus-
ters are returned as the output of the filtering stage. In
this case, based on Properties 1 and 2, each of the k clus-
ters is very likely to refer to exactly one of the ground truth
clusters in C∗. In addition, based on Property 1, all other
ground truth clusters are very likely to be smaller than the k
clusters and, thus, it is “safe” to conclude that the k clusters
after the last round are the top-k clusters in C∗. Of course,
our approach may introduce errors and the output may not
be identical to the ground truth output O∗, as the objective
is a fast filtering process that significantly reduces the size of
the initial dataset. Nonetheless, even when those errors are
non-negligible, we can trade precision for recall and control
the output’s quality with a small cost in performance, as we
discuss in the experimental section.
When the sequential function application terminates, we

expect that for the vast majority of records only the first
few functions in the sequence will have been applied. Going
back to the discussion for Figure 2, all the records lying on
“sparse” areas will have a few functions applied on, and the
full sequence of functions will only be applied on the records
lying on “dense” areas. Hence, the amount of processing
applied on most records will be considerably lower than the
amount of processing applied on the records on the “dense”
areas that are likely to belong to the top-k entities.
Note also that because of Property 4, the sequential func-

tion application is performed incrementally. For instance,
part of the computation required for applying g2 on C(1)

1 , is
already performed by g1 and does not need to be repeated.

2.4 Locality-Sensitive Hashing
The third key concept in our approach is using LSH [19] as

the main component of the clustering function sequence. We
give an overview of LSH and discuss how to build clustering
functions with Properties 1 to 4 in the next section.

3. CLUSTERING FUNCTIONS
In this section, we present the clustering functions used in

our approach. Our goal is to provide an overview without
going into the technical details that involve LSH. All details
can be found in Appendix A.
The clustering functions rely on distance metrics: the

smaller the distance between two records, the more likely
the two records are to refer to the same entity. To illus-
trate, consider the following example:
EXAMPLE 1 Consider a set of records where each record

consists of a single photo of a person, processed so that the
distance between eyes and the distance of nose tip to mouth
are computed. The two distances form a two dimensional

30

eyes
distance

nose-mouth
distance

e2
e1

r1

r2

Figure 4: Random hyperplanes example.
vector. Consider the cosine distance, i.e., the angle between
the vectors of two records. If two photos show the same
person we can expect the ratio of eyes distance to nose-mouth
distance to be roughly the same in the two photos and, hence,
the angle between the two respective vectors to be small.
In addition, the clustering functions assume a distance

threshold dthr: if the distance between two records is less
than dthr, the two records are considered a match.
Clearly, real datasets consist of records with multiple fields.

Therefore, there is a separate distance metric for each field
and it may be more effective to use multiple distance thresh-
olds. For example, consider a set of records, where each one
consists of a person photo and fingerprints. In this case,
there could be two thresholds and two records would be
considered a match if the photos’ distance was lower than
the first threshold, or if the fingerprints’ distance was lower
than the second threshold. To keep the discussion in the
next sections concise, we focus on the simplest case of a
single field/threshold. In Appendix C, we discuss how to
extend all the mechanisms in our approach for the general
case, where each record consists of many fields.
Two records can also be considered a match, via transitiv-

ity. That is, if two records a and b are within the distance
threshold, and b is also within the threshold with a record
c, records a and c are also considered a match.
To find the matches without having to compute the

(|R|
2

)
distances, the clustering functions use LSH. LSH is based on
hash functions that are applied individually on each record.
The smaller the distance between two records, the more
likely a hash function is to give the same value when ap-
plied to each of the two records. One example of such hash
functions is the random hyperplanes for the cosine distance:
EXAMPLE 2 Consider again the dataset of photos, in Exam-

ple 1. Consider two random hyperplanes (lines) through the
origin, in the two dimensional space representing the photos.
Figure 4 depicts two such lines, e1 and e2. In addition, con-
sider the vectors, r1 and r2, for two photos in the dataset.
The cosine distance between r1 and r2 is 30 degrees. Note
that the difference between e1 and e2, is that r1 and r2 are
on the same side for line e1, but for different sides for line
e2. The hash function in this case is simple a random line
and the hash value is 1 or −1, depending on which side of
the line the input record lies. In general, the smaller the an-
gle between two records, the higher the likelihood of selecting
a random line where the two records lie on the same side of
the selected line: note that the likelihood for records r1 and
r2 is 1− 30

180
, while, in general, the likelihood is 1− θ

180
, if θ

is the angle between the two records.
LSH applies a large number of such hash functions on each

record. The outcome of those functions is used to build hash
tables: the index of each bucket, in each table, is formed by
concatenating the outcome from a number of hash functions.
The following example illustrates the tables built by LSH:

15 55 80 180
Cosine distance (degrees)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
a
b
ili
ty
 o
f
h
a
sh

in
g

 t
o
 t
h
e
 s
a
m
e
 b
u
ck

e
t

w=1, z=1

w=15, z=20

w=30, z=70

Figure 5: Probability of hashing to the same bucket
EXAMPLE 3 Consider again the hash functions and dataset,

from Example 2. Assume LSH uses two hash tables: for each
table, three hash functions (random lines through the origin)
are selected. Since the outcome of each function is binary,
there are 23 = 8 buckets in each table. Now consider the
event of two records hashing to the same bucket in at least
one of the two tables. If the angle between the two records is
θ, the probability of this event is: 1−

(
1− (1− θ

180
)3
)2.

The number of hash tables z, and the number of hash
functions per table w, are selected so that: (a) if two records
are within the distance threshold dthr, the probability of the
two records hashing to the same bucket in at least one table,
must be very close to 1.0 and (b) if the distance between
two records is greater than dthr, the probability of the two
records hashing to the same bucket in at least one table,
must be as close to 0.0 as possible (details in Section 5.1).
Figure 5 illustrates the probability of two records hashing

to the same bucket, in at least one table for the setting of
Examples 1 to 3. The x-axis shows the cosine distance and
the y-axis the probability for three w, z value pairs.
Consider a threshold dthr of 15 degrees. As Figure 5

shows, the more hash functions used, the more sharply the
probability of hashing to the same bucket drops, after the
threshold. On the other hand, applying more functions on
each record, incurs a higher cost.
Each clustering function in the sequence relies on an LSH

scheme with z tables and w hash functions per table: the
further a function is in the sequence, the larger the values
of w and z are. We call these clustering functions transitive
hashing functions:
DEFINITION 1 (Transitive Hashing) A transitive hash-

ing function H, based on an LSH scheme with z tables and
w hash functions per table, receives as input a set of records
S, and splits S into a set of clusters {Ci} as follows: con-
sider the graph G = (S,E), where (r1, r2) ∈ E iff records
r1 and r2 hash to same bucket of at least one of the z hash
tables. Function H outputs one cluster Ci for each of the
connected components of G.
In Appendix B, we present an efficient implementation for

transitive hashing functions.
Note how transitive hashing functions satisfy the three

properties stated in Section 2.2:
1. conservative evaluation: even when w and z are small,

pairs of records within the threshold are very likely to be
placed in the same bucket, in at least one of the tables;
based on point (a) above.

2. increasing accuracy : the further a function is in the se-
quence, the larger the values of w and z are, and the less
the false matches are.

3. increasing cost : the further a function in the sequence,
the larger the values of w and z, and the higher the cost
of applying that function on any subset of records S.

4. incremental computation: function computation is per-
formed incrementally, as the hash values from previous
sequence functions are re-used by functions that follow.

r1

r2

10o

r4

r3

60o

r5
55o

Figure 6: Transitive Hashing example.

We conclude this section with an example for transitive
hashing functions:
EXAMPLE 4 Consider the set of records S = {r1, r2, r3, r4, r5},

and two transitive hashing functions: H1 with z = 20 tables,
each using w = 15 hash functions, and H2 with z = 70 ta-
bles, each using w = 30 hash functions. Figure 6 depicts
the cosine distance between each two records in S (no edge
for pairs with a distance greater than 80 degrees). With
high probability H2 outputs

{
{r1, r2}, {r3}, {r4}, {r5}

}
: as

the plot in Figure 5 points out, the likelihood of two records
hashing to the same bucket when the distance between them
is greater than 55 degrees, for the w = 30, z = 70 curve, is
very low. Now assume that for H1, records r3 and r4 hash
to the same bucket in one of the 20 hash tables. (As the plot
in Figure 5 points out, there is a good chance of two records
hashing to the same bucket when the distance between them
is 60 degrees, for the w = 15, z = 20 curve.) Moreover, as-
sume records r4 and r5 hash to the same bucket in one of
the 20 hash tables, as well. Then, with high probability, H1

outputs
{
{r1, r2}, {r3, r4, r5}

}
.

4. ADAPTIVE LSH

4.1 Algorithm
INPUT
parameter k, records R, distance metric d, threshold dthr,
sequence of transitive hashing functions H1, . . . , HL

OUTPUT
k largest connected components in graph G = (R,E),
where (r1, r2) ∈ E iff d(r1, r2) ≤ dthr.

The sequence of clustering functions used by Adaptive
LSH is a sequence of transitive hashing functionsH1, . . . , HL,
where function Hi is based on an LSH scheme with zi tables
and wi hash functions per table, where wi ≤ wi+1, zi ≤ zi+1,
i ∈ [1, L). Sequence H1, . . . , HL is given as input (two inte-
gers wi, zi, for each function Hi) and in Section 5 we discuss
how to select the functions in this sequence.
As discussed in Section 2.3, Adaptive LSH selects the

largest cluster to process in each round, regardless of which
function each cluster is an outcome of. In Section 4.2, we
prove that selecting the largest cluster in each round is op-
timal under mild assumptions.
Besides the sequence of transitive hashing functions, Adap-

tive LSH also uses an additional function that computes the
matches in a cluster of records given as input, using the
exact record pair distances:

DEFINITION 2 (Pairwise Computation) The pairwise com-
putation function P receives as input a set of records S and
splits S into a set of clusters {Ci} as follows: consider the
graph G = (S,E), where (r1, r2) ∈ E iff d(r1, r2) ≤ dthr.
Function P computes the distances between pairs of records
and outputs one cluster Ci for each of the connected compo-
nents of graph G.
When a cluster C is the outcome of a function Hi and the

application of the next function in the sequence, Hi+1, has

Algorithm 1 Adaptive LSH
Input: R - Set of all records
Input: k - top-k parameter
Input: d - distance metric
Input: dthr - distance threshold
Input: H1, . . . , HL - sequence of functions
Input: costP , cost1, . . . , costL - cost model parameters
Output: top-k entities
1: {C(1)

i } := H1(R)
2: for each Round j do
3: C := largest cluster in {C(j)

i }; {C
(j)
i } := {C(j)

i } \ C
4: t := sequence number of function Ht that produced C
5: if (costt+1 − costt) ∗ |C| ≥ costP ∗

(|C|
2

)
then

6: {Ci} := P (C)
7: else
8: {Ci} := Ht+1(C)
9: end if
10: {C(j+1)

i } := {Ci} ∪ {C(j)
i }

11: if largest k clusters in {C(j+1)
i } are all an outcome of func-

tion HL or P then
12: return largest k clusters in {C(j+1)

i }
13: end if
14: end for

a cost greater than the cost of applying function P on C,
Adaptive LSH applies P instead of Hi+1 on cluster C. This
is usually the case when cluster C is small and computing
the distances for, potentially, all pairs in C, is preferable to
computing a large number of hashes for each record in C.
Thus, the termination rule for Adaptive LSH (as discussed
in Section 2.3) is extended as follows: terminate once the k
largest clusters, in the list of clusters at the end of a round,
are an outcome of an HL or P function.
To decide when to apply the pairwise computation func-

tion P , the algorithm relies on a simple cost model:
DEFINITION 3 (Cost Model) The cost of applying func-

tion P , on a set of records S, is costP ∗
(|S|

2

)
. The cost

of applying function Hi in the sequence, on a set S, is
cost i ∗ |S|. Moreover, the cost of applying function Hi on a
record r, when function Hj, j < i, is already applied on r,
is cost i − costj. After the completion of the algorithm, the
overall cost is

∑L
i=0 ni ∗cost i+nP ∗costP , when function Hi

is the last sequence function applied on ni records and nP is
the overall number of similarities computed by function P .
In Appendix E.2, we run experiments to evaluate how

sensitive adaptive LSH is to the cost model: we manually
add noise to the model’s cost estimations and measure how
the execution time changes. Algorithm 1 gives the detailed
description of the process outlined in Section 2.3.

4.2 Largest-First Optimality
In this section we prove optimality for the Largest-First

strategy of Algorithm 1 under two assumptions (explained
after the proof).

THEOREM 1 Consider the family of algorithms that:
1. do not “jump ahead” to function P , i.e., if a cluster C

is an outcome of a function Hi, the algorithm can only
apply function P on C, when (cost i+1 − cost i) ∗ |C| ≥
costP ∗

(|C|
2

)
(Line 5 on Algorithm 1).

2. do not “terminate early”, i.e., terminate only when the
k largest clusters are an outcome of either an HL or
P function.

Algorithm 1 gives the minimum overall cost compared to
any other algorithm of this family.

PROOF: Here we provide an overview for the proof; the
complete proof can be found in Appendix D.1. We use the
notion of an execution instance: in an execution instance,
the outcome of applying a function Hi or P on a set of
records S, is the same across all algorithms. In other words,
all algorithms would observe the exact same clusters if they
would select the same cluster to process in each step. We
prove the theorem by contradiction: we assume that another
algorithm gives a lower overall cost than Algorithm 1 for a
given execution instance, we consider all cases where such
an algorithm would have a lower overall cost, and we prove
that, in all those cases, one of the two conditions defining
the family of functions must be violated.

The rationale for the two conditions of Theorem 1 is sim-
ple. Condition 2 states that we consider algorithms that
try to minimize the errors by only returning clusters “thor-
oughly checked” by an HL or P function. For Condition 1,
accurately predicting if “jumping ahead” to function P will
eventually give a lower cost for a cluster C, is quite chal-
lenging, may not necessarily show significant gains (even if
predicting right), and requires a significant overhead of keep-
ing estimates for the structure (e.g., subclusters) of C, as we
discuss in Appendix D.2.
Besides the guarantee of the lowest cost for finding the

k largest clusters, the Largest-First strategy provides one
more guarantee, for an incremental mode of Algorithm 1.
Let us first describe the incremental mode. When a user
wants to monitor the results during the filtering process,
the incremental mode can output intermediate results be-
fore filtering is competed. To operate in incremental mode
Algorithm 1 is modified. In Line 11, we use a different con-
dition: if the largest cluster in the set of clusters {C(j+1)

i },
is an outcome of either an HL or P function, we output this
cluster, remove it from {C(j+1)

i }, and the loop of Lines 2
to 14 continues until k clusters are returned.
The second guarantee states that the incremental mode

of Algorithm 1, applied with input k, minimizes the cost of
finding the k′ largest clusters, for any k′ < k. For instance, if
a user is monitoring the results during filtering for an input
k = 2, the Largest-First strategy guarantees that the cost
(or time) for finding the largest cluster is minimized; another
strategy could minimize the cost of finding the second largest
cluster before finding the largest cluster and still be optimal
with respect to the top-2 clusters. This can be a very useful
property assuming that the higher a cluster is in the top-k
list, the higher the user’s interest is. The second guarantee
of the Largest-First strategy is formally stated in Theorem 2.

THEOREM 2 For an input k, Algorithm 1 reaches to a state
where the k′ largest clusters are an outcome of either an HL
or P function, for any k′ < k, with a lower cost compared
to any other algorithm in the family defined in Theorem 1.
PROOF: Again, we provide just an overview for the proof

here; the complete proof is included in Appendix D.1. For
a k′ < k, we consider applying Algorithm 1 with input k′

and with input k. Assuming the same execution instance,
we observe that Algorithm 1 executes in the exact same way
for both inputs, until it terminates when applied with input
k′. The proof of Theorem 2 is based on this observation and
the result from Theorem 1.

15/180 1.0
Normalized Angle

0.0

0.2

0.4

0.6

0.8

1.0

P
ro
b
a
b
ili
ty
 o
f
h
a
sh

in
g

 t
o
 t
h
e
 s
a
m
e
 b
u
ck

e
t

w=15, z=140

w=30, z=70

w=60, z=35

Figure 7: Example (w, z) values for Program 1 to 3.

5. DESIGNING THE FUNCTION SEQUENCE
Let us now focus on how to design the transitive hashing

function sequence, provided as input to Algorithm 1. The
discussion for the sequence design is divided in two parts.
In the first part, we discuss how to select a (w, z)-scheme
(i.e., an LSH scheme with z tables and w hash functions per
table) given a budget for the total number of hash functions
(i.e., w ∗ z = budget). In the second part, we discuss how to
select the budget for each function in the sequence.

5.1 Selecting the (w,z)-scheme
Given a cost budget , the objective is to select the param-

eters w and z of a (w, z)-scheme, for the i-th function Hi in
the sequence. To simplify the discussion, we assume that the
cost of applying function Hi is proportional to the overall
number of hash functions, and that w and z must be factors
of budget , i.e., w ∗ z = budget . An extension for the cases
where these two assumptions do not hold is straightforward
as we discuss in the end of the section.
Parameters w and z are selected based on the following

optimization program:

min
w,z

∫ 1

0

[
1−

[
1− pw(x)

]z]
dx (1)

s.t. w ∗ z = budget (2)
1−

[
1− pw(x)

]z ≥ 1− ε, x ≤ dthr (3)
Function p(x) is the probability of selecting a hash func-

tion that gives the same hash value for two records at a
distance x, where 0 ≤ x ≤ 1. (Function p(x) depends on
the distance metric and is given as input.) As illustrated in
Example 3 (and analyzed in Appendix A) the probability
of hashing to the same bucket, in a (w, z)-scheme, is given
by: 1 −

[
1 − pw(x)

]z. The budget constraint is given in
Equation 2 and the distance threshold constraint is given
in Equation 3. (Parameter ε used in the distance threshold
constraint, is also given as input.) The objective in Equa-
tion 1 states that the probability of hashing to the same
bucket (for pairs of records with distance greater than the
threshold dthr), should be minimized.
EXAMPLE 5 Consider the cosine distance as a distance met-

ric, function p(x) = 1 − x (where x is the normalized an-
gle, i.e., for an angle θ, x = θ

180
), a distance threshold

of dthr = 15
180

, a parameter ε = 0.001, and a budget of
2100 hash functions. Let us examine three pairs of (w, z)
values: (15, 140), (30, 70), and (60, 35). The plot in Fig-
ure 7 is equivalent to the one in Figure 5 (angle distance be-
tween two records on the x-axis, probability of the two records
hashing to the same bucket, given their distance, on the y-
axis). Pair (15, 140) minimizes the objective function value
in Equation 1 (area under the curve), but violates the dis-
tance threshold constraint in Equation 3. Both pairs (30, 70)
and (60, 35) satisfy the two constraints, with pair (30, 70)
giving a lower objective function value.

To find the optimal (w, z) values for Program 1 to 3, we
can perform a binary search over w values such that budget

w
is an integer. Note that the greater the value of w, the lower
the value of the objective function (see Figure 7). Moreover,
if the distance threshold constraint is not satisfied for a value
of w, it will also not be satisfied for any greater values.
In practice, we may also want to examine (w, z) values,

where budget
w

is not an integer. In this case, we would have
to adjust the probability expression in Equations 1 and 3:
expression

[
1−pw(x)

]z becomes
[
1−pw(x)

]z ∗ [1−pw′(x)
]
,

where z = b budget
w
c and w′ = budget − w ∗ z. In addition,

we would have to exhaustively search over all possible val-
ues for w, z that satisfy the budget constraint. That is, for
w ∈ [1, budget], we would examine if the distance threshold
constraint is also satisfied, and keep the (w, z) value pair
minimizing the objective function.
Furthermore, we may also want to take into account a cost

model, in the Program 1 to 3. For instance, consider two
value pairs (w1, z1) and (w2, z2), such that w1∗z1 = w2∗z2 =
budget . There are cases where the actual cost of applying
a function based on a (w1, z1)-scheme is different compared
to the cost for a function based on a (w2, z2)-scheme. (For
example, when matrix multiplication is involved, the scheme
(w1, z1) may be more cost effective if w1 > w2.) In those
cases, Equation 2 needs to include a cost function that re-
flects the actual cost based on a specific (w, z) value pair.

5.2 Selecting the budget
We use two simple strategies to select the budget for each

transitive hashing function Hi, in the sequence:

• Exponential: The budget for function Hi is a mul-
tiple of the budget that was available for the previous
function in the sequence, Hi−1. For example, if the
budget for H1 is 4 hash functions and we multiply the
budget by 2 for every function in the sequence, the
budget for H2 will be 8 hash functions, the budget for
H3 will be 16 functions, and so on.

• Linear: The budget for function Hi is a multiple of
a constant. For example, if the constant is 100, the
budget for H1 is 100 hash functions, the budget for
H2 is 200 hash functions, the budget for H3 is 300
hash functions, and so on.

In Appendix E.2, we discuss experiments with different
parameter values for the two strategies and we draw con-
clusions regarding which strategy and values work better in
each case.

6. EXPERIMENTAL SETTING
In this section, we give an overview of the methods, met-

rics, and datasets used in our experiments.

6.1 Methods
The methods we explore extend across two orthogonal di-

mensions, as we discuss next.

6.1.1 adaLSH vs Alternatives
We compare adaptive LSH with different blocking ap-

proaches and a traditional transitive closure algorithm (Pairs).
Since our main focus is high-dimensional data, we try dif-
ferent blocking variations that rely on LSH.

adaLSH : The adaptive LSH approach we propose in this
paper. The default mode is the Exponential (Section 5.2)
starting with 20 hash functions for the first clustering func-
tion in the sequence; i.e., the first function applies 20 hash
functions, the second 40, the third 80, and so on.

LSH-X: Different blocking variations that rely on LSH,
adjusted for the problem studied in this paper. LSH starts
by applying the same number X of hash functions on ev-
ery single record in the dataset. Given the number of hash
functions X and a distance threshold, LSH selects the num-
ber of hash tables z and the number of hash functions per
table w, by solving the same optimization problems with
adaptive LSH (see Section 5.1 and Appendix C). (By solv-
ing such a problem we find the “optimal” w, z values that
satisfy w ∗ z ≤ X.) After the first stage of applying X hash
functions on all records, LSH uses the pairwise computa-
tion function P (Definition 2) to verify if pairs of records in
the same bucket are indeed within the distance threshold.
To make the comparison fair, we use three additional opti-
mizations for LSH methods: (1) LSH terminates early when
there are k clusters that have been “verified” using function
P that are larger than any other cluster not yet verified, (2)
when applying function P we skip checking pairs of records
that are already “transitively closed” by other pairs and,
hence, belong to the same cluster, and (3) we use the same
efficient implementation and data structures with adaptive
LSH (see Appendix B). In Appendix E.1, we also discuss
experiments with a variation of LSH, that only applies the
first stage and does not apply function P at all. This varia-
tion, assumes that all pairs of records within each hash table
bucket are within the distance threshold, and applies tran-
sitive closure on those pairs to find the k largest clusters.
In the plots, we just use LSH if only one LSH variation is
used in the experiment. If more than one LSH variations are
used, we use LSHX (e.g., LSH640 applies 640 hash functions
on each record) if function P is applied after the first stage
and LSHXnP otherwise.

Pairs: Essentially, Pairs is the application of the pair-
wise computation function P on the whole dataset. Again,
we use the above optimizations (2) and (3), i.e., we skip
pairs already “transitively closed” and use the efficient im-
plementation described in Appendix B.

6.1.2 Improving Accuracy
We study two different approaches for improving the ac-

curacy for the filtering stage output:
Return more clusters than the needed k: One way to

include more records from the top-k entities in the filtering
output, is to return more than the k largest clusters found
during filtering, i.e., return the k̂ largest clusters, for a k̂ > k.
However, note that by returning more than k clusters the
filtering output increases. In Section 7.3, we study the trade-
offs between accuracy and performance as we increase k̂.
Recovery process: After applying an ER algorithm on

the filtering output (Figure 1), we can apply an additional
recovery process to retrieve additional records for top-k enti-
ties that were not included in the filtering output. In partic-
ular, after applying an ER algorithm on the filtering output,
we have k clusters of records. We can then apply cleansing
and aggregation on each cluster to create an summary for
the information on the entity represented by each cluster.
For instance, for a customer we could collect all the first
and last names, email accounts, and telephone numbers she

uses, or, for a news article, we could construct the most
complete version covering all sentences used in different ver-
sions. The recovery process compares all the records from
the initial dataset that were not included in the filtering
output, with each of the k clusters, after applying ER (and
possibly cleansing/aggregation) on the filtering output. The
goal is to find records that refer to the same entities with
the entities in the k clusters, that were mistakenly left out
from the filtering output. Note that if all the records for a
top-k entity are left out from the filtering output, there is no
way for this recovery process to retrieve the records for that
entity and include the entity in the extended top-k result.

6.2 Metrics
We use metrics that evaluate the performance and accu-

racy of the different filtering approaches.

6.2.1 Accuracy
Treating filtering output as a single set of records: in
this case we compare the set of records in the filtering output
with the set of records that refer to the top-k entities as de-
termined by the ground truth. In the experiments presented
here, we use the precision, recall, and F1 score, as defined
in Section 2.1. (We will be referring to these three metrics
as Precision/Recall/F1 Gold, throughout the section.)
Treating filtering output as a set of clusters: To
weigh the accuracy of higher ranked clusters higher, we
can consider the filtered records, not a set, but a set of
clusters. That is, we consider a filtering output clustering
C = {C1, . . . , C|C|}, such that all records in each cluster Ci
of C refer to the same entity and each cluster in C refers
to a different entity. We compare C to the ground truth
clustering C∗ (Section 2.1) and we compute the mean Aver-
age Precision (mAP) and mean Average Recall (mAR). For
example, assume we are looking for the top-2 entities and
consider a clustering C =

{
{a, b, c, f}, {e}

}
and a ground

truth clustering C∗ =
{
{a, b, c}, {e, g}

}
. The precision on

the top-1 cluster is 3
4
and the precision on the top-2 clusters

is |a,b,c,e|
|a,b,c,f,e| = 4

5
. Hence, the mean average precision in this

case is 0.75+0.8
2

= 0.775; while the mAR is 1.0+0.8
2

= 0.9.
Note that we do not consider the accuracy of the final

result after applying an actual ER algorithm on the filtering
output. If the ER algorithm is “perfect” the output will be
exactly the same with clustering C. Of course an actual ER
algorithm would, most likely, introduce more errors, how-
ever, we can expect that the better the ER algorithm is,
the closer the final result would be to clustering C. Hence,
the accuracy metrics we obtain for the filtered set should
closely approximate the accuracy of the final result. (To get
the actual accuracy of the final result would require know-
ing precisely the ER algorithm used, so the results would
be specific to a single ER algorithm. We believe that an
approximate accuracy value is more useful in our context.)
We also compute the Precision Gold, Recall Gold, F1

Gold, mAP, and mAR, after the recovery process of Sec-
tion 6.1.2 is applied. (We call those metrics Precision/Recall/
F1/mAP/mAR with Recovery.) For the same reasons as be-
fore, we consider a “perfect” recovery process that outputs a
set of clusters C = {C1, . . . , C|C|} when applied on the out-
put O of a filtering approach: for each entity referenced by
a record in O, we collect all the records for that entity on
the whole dataset, in a single cluster in C. For mAP/mAR,
we compare C to the ground truth clustering C∗, while for

Precision/Recall/F1, we compare the union of all records in
C to the union of all records in C∗.

6.2.2 Performance
Execution Time: the time it takes for a filtering method
to compute the output.
Dataset Reduction: we compute the reduction percentage
from the filtering stage, e.g., if the filleting output consists
of 100 records while the whole dataset is 1000 records, the
reduction percentage is 10%.
Speedup w/o Recovery: we compare the time it takes to
apply ER on the whole dataset (WholeTime) to the time it
takes to apply ER on the reduced dataset (ReducedTime),
after the filtering stage, taking into account the time spent
on filtering (FilteringTime). Hence, the speedup is the ratio

WholeTime
FilteringTime+ReducedTime

. Since we are not considering partic-
ular ER algorithms, we assume a “benchmark ER algorithm”
is applied to compute WholeTime and ReducedTime. This
benchmark ER algorithm computes all the pairwise similar-
ities in the whole or reduced dataset. On one hand, our
speedup numbers are conservative, because we expect the
run time of a real ER algorithm to be higher, as the bench-
mark ER algorithm does not take into account the actual
clustering time. On the other hand, a real ER algorithm
many not compute all similarities, so it would perform bet-
ter than our benchmark algorithm. But without an exten-
sive evaluation of multiple real ER algorithms in different
domains, which is beyond the paper’s scope, we believe the
use of a benchmark ER algorithm yields valuable insights.
Speedup with Recovery: The speedup in this case is the
ratio WholeTime

FilteringTime+ReducedTime+RecoveryTime
, where RecoveryTime

is the run time for the recovery process. To compute the
RecoveryTime, we consider a “benchmark recovery algorithm”,
that computes the pairwise similarity between each record in
the filtering output with each record that was not included
in the filtering output. For instance, if the filtering output
consisted of a single record, we would compare that record
with every other record in the dataset. (Again, we believe
that a simple benchmark recovery algorithm is sufficient for
our purpose and yields valuable insights.)

6.3 Datasets
We used 3 datasets in our experiments. (The ground truth

entities are available in each dataset’s material.)
Cora [1]: a dataset of around 2000 scientific publications,

extensively used in the entity resolution literature. Each
record consists of the title, authors, venue, and other pub-
lication information (e.g., volume, pages, year). Together
with the original dataset, we used 2x, 4x, and 8x versions.
For example, the 2x version contains twice as many records
as the original dataset. To extend the original dataset, we
uniformly at random select an entity a and uniformly at ran-
dom pick a record ra referring to the selected entity a, for
each record added to the dataset. Since each record has mul-
tiple fields in Cora, filtering methods decide if two records
are a match using an AND distance rule (see Appendix C.1)
with two distance thresholds. In particular, we create three
sets of shingles for each record: one for the title, one for
the authors, and one for the rest of the information in the
record. We use the following AND rule: two records are con-
sidered a match when (i) the average jaccard similarity for
the title and author sets are at least 0.7 and (ii) the jaccard
similarity for the rest of the information is at least 0.2.

SpotSigs [2]: a dataset of around 2200 web articles: each
article is based on an original article and, thus, all articles
having the same origin are considered the same entity (e.g.,
news articles discussing the same story with slight adjust-
ments for different web sites). The main body of each article
is transformed to a set of spot signatures based on the pro-
cess described in the original paper [30]. Two records are
considered a match when the jaccard similarity of their sets
is at least 0.4. (We also tried thresholds of 0.3 and 0.5 in
some experiments.) We also used a 2x, a 4x, and an 8x ver-
sion of the dataset in the experiments, where each version
is generated with the same sampling process as in Cora.

PopularImages [3]: three datasets of 10000 images each.
The images that are transformations (random cropping, scal-
ing, re-centering) of the same original image, are considered
the same entity. The unique original images are 500 pop-
ular images used and shared extensively on the web and
social media, and are the same for all three datasets. The
main difference between the three datasets is the distribu-
tion for the number of records per entity. They all follow
a zipfian distribution, however, the exponent is different in
each dataset (e.g., the top-1 entity consists of around 500,
1000, and 1700, in each dataset respectively). To compute
the similarity between images, we extract for each image
an RGB histogram: for each histogram bucket, we count
the number of pixels with an RGB value that is within the
bucket RGB limits. The RGB histogram forms a vector and
we consider two images a match when the cosine distance
between the images’ vectors is less than an angle threshold:
we used thresholds of 2, 3, and 5 degrees in the experiments.

7. EXPERIMENTAL RESULTS
The experimental results are organized in four sections.

First, we give an overview of our main findings in Section 7.1.
In Section 7.2, we compare adaLSH to other alternatives, as
discussed in Section 6.1.1, on a number of basic settings. In
Section 7.3, we study the performance-accuracy trade-offs
for filtering, as discussed in Section 6.1.2. In Section 7.4,
we present the most interesting results from all the other
settings we explored in our evaluation.

7.1 Findings’ Overview
• adaLSH gives a 2x to 25x speedup compared to traditional
blocking approaches relying on LSH. (The speedup com-
pared to Pairs can become arbitrarily large, as the size of
the dataset increases.) Moreover, the execution time for
adaLSH just slightly increases as the value of k increases,
as long as the records in the top-k entities comprise a rel-
atively small portion of the overall dataset (e.g., the top-1
entity represents 5% of all records and the top-k entities
represent less than 10% of all records).
• adaLSH always gives the same (or a very slightly different)
outcome as Pairs. Thus, adaLSH only introduces minimal
errors due to its probabilistic nature.
• The filtering outcome can be considerably different from
the ground truth set of records for the top-k entities, since
filtering approaches rely on simple ER rules to achieve
a low run time. Even in those cases, we can increase
the Recall or the mAP and mAR, by having a filtering
method return the records from more than k clusters; i.e.,
increase the value of k̂. While the size of the filtering
output increases, the “Speedup with(w/o) Recovery” can
still be very high (e.g., higher than 3x in SpotSigs4x),
when using adaLSH.

1 5 10 20
k

0

10

20

30

40

50

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

)

adaLSH

LSH

Pairs

(a) different k values

103 104

Records

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) adaLSH

LSH

Pairs

(b) different dataset sizes
Figure 8: Execution time on Cora.

• adaLSH always gives an important speedup compared to
the best LSH variation, in any setting: we searched for the
best, in terms of execution time, variation of LSH block-
ing in each experimental setting and we compared with
adaLSH, to find out that adaLSH is always considerably
faster than the best, hand-picked, LSH method.
• The distribution of number of records per entity affects
the execution time of adaLSH and the LSH variations.
In the distributions we tried, adaLSH would always give
the best performance and showed, for at least one dis-
tribution, an important speedup compared to each LSH
variation.

7.2 adaLSH vs Alternatives
We compare adaLSH, LSH1280, and Pairs, for different

values of k (number of top entities) and for different dataset
sizes. (For LSH-X methods we tried X values that are a
power of two and since a typical number of hash functions
for LSH is 1000, we use LSH1280 in the experiments of this
section. In Section 7.4, we have an extensive comparison of
adaLSH with other LSH blocking variations and as we find
out the optimal value of X for LSH-X varies from 80 to
2560, in the settings we tried.) The metrics used here are
the filtering Execution Time and the F1 Gold.

7.2.1 Performance
We start by examining the execution time of adaLSH,

LSH1280, and Pairs, on Cora, for different k values. Our
objective here is to assess the execution time, as we increase
the number of entities that must be retrieved. We run exper-
iments for k = 2, 5, 10, and 20. In the plot of Figure 8(a), the
x-axis shows the k value, and the y-axis the execution time.
adaLSH gives a 10x speedup compared to LSH1280, for any
k value: while LSH needs to apply 1280 hash functions on all
records, adaLSH starts by applying only 20 hash functions
on all records and then adaptively decides which records
to process further. Pairs needs almost the same time with
LSH1280 and, hence, the speedup of adaLSH is also approx-
imately 10x compared to Pairs. Furthermore, the execution
time for adaLSH just slightly increases as k increases. This
means that the amount of computation adaLSH performs
to find the top-2 entities comprises a large percentage of the
overall computation for finding the top-20 entities.
Next, we study how the execution time increases for each

approach as we increase the dataset size. The log-log plot
in Figure 8(b) depicts the results on experiments for Cora,
Cora2x, Cora4x, and Cora8x (dataset size on x-axis). We
use k = 10 here; same results hold for other k values. We
observe that there is always a very large speedup for adaLSH
compared to LSH1280, ranging from 9x to 20x, on the differ-
ent dataset sizes. Note also that the speedup from Cora4x
to Cora8x decreases. Nevertheless, we have observed that,
in general, adaLSH speedup compared to LSH methods re-
mains large (and can even increase) as we increase the dataset

1 5 10 20
k

0

50

100

150

200

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

)

adaLSH

LSH

Pairs

(a) different k values

103 104

Records

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) adaLSH

LSH

Pairs

(b) different dataset sizes
Figure 9: Execution time on SpotSigs.

size. The only case where we found the speedup to be lim-
ited is when the records of the top-1 entity comprise a very
large percentage of the overall dataset: in this case, the run
time of applying P on the top-1 entity dominates the execu-
tion time of both approaches (more on this in Section 7.4.2).
Compared to Pairs, the speedup of adaLSH keeps increasing
as the dataset size increases (e.g., 60x on Cora8x).
Let us now switch to the SpotSigs dataset, which is a

higher dimensional dataset compared to Cora. We will com-
pare the results on Cora from Figure 8(a) to the results for
the same experiment on SpotSigs, in Figure 9(a). The main
difference is that the cost of applying a hash function on
SpotSigs is much higher compared to Cora, so the execution
time for both adaLSH and LSH increases. Still, adaLSH is
not affected as much as LSH: the execution time for LSH
increases to around 180 seconds while for adaLSH it goes
to around 7 seconds, thus, we get an impressive speedup of
25x by applying adaLSH. Furthermore, we see that, adaLSH
also gives a substantial speedup of 5x compared to Pairs.
The log-log plot in Figure 9(b) is analogous to the plot of

Figure 8(b), for SpotSigs1x, 2x, 4x, and 8x, when k = 10.
The speedup of adaLSH compared to Pairs increases from 5x
on SpotSigs to 50x on SpotSigs8x, while the speedup com-
pared to LSH ranges from 15x to 25x. LSH is slower than
Pairs on small datasets and shows a better performance than
Pairs, only when the dataset is larger than 9000 records.

7.2.2 Accuracy
The last part in this section focuses on accuracy: we com-

pare the outcome of the different filtering approaches to the
set of records for the top-k entities and we compute the F1
Gold. The plots in Figures 10(a) and 10(b) give the F1 Gold
(y-axis) for the same experiments of Figures 8(a) and 9(a),
on Cora and SpotSigs, respectively.
All three approaches give an almost identical F1 score, as

they compute very similar clusters. Thus, the probabilistic
nature of adaLSH and LSH1280 does not introduce errors.
(However, there are other LSH methods that do introduce
errors, as we discuss in Appendix E.1.) For Cora the filtering
output is very close to the ground truth, i.e., we get a very
high F1 score on all k values. Nevertheless, the F1 score
in case of SpotSigs (Figure 10(b)) is low (around 0.8) for
k = 5 and 10: as the filtering stage relies on simple record
matching rules to boost performance, we can expect that
the accuracy will not always be high, on all datasets.
In the next section, we study more closely the errors in-

troduced by the filtering stage and how we can limit those
errors by increasing the size of the filtering output.

7.3 Improving Accuracy
As discussed in Section 6.1.2, we can handle situations

where the filtering outcome may not be sufficiently accu-
rate, by increasing the number of clusters k̂ that a filtering

1 5 10 20
k

0.0

0.2

0.4

0.6

0.8

1.0

F1
 g

o
ld

adaLSH

LSH

Pairs

(a) Cora

1 5 10 20
k

0.0

0.2

0.4

0.6

0.8

1.0

F1
 g

o
ld

adaLSH

LSH

Pairs

(b) SpotSigs
Figure 10: F1 Gold for different k values.

5 10 15 20
k̂

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll
g
o
ld

thres0.3

thres0.4

thres0.5

(a) Recall

5 10 15 20
k̂

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n
 g

o
ld

thres0.3

thres0.4

thres0.5

(b) Precision
Figure 11: Precision/Recall on SpotSigs, for k = 5.
method must return. Remember that the main goal of the
filtering stage is to reduce the size of the initial dataset.
Therefore, by increasing k̂, we can get a recall that is very
close to 1.0, while still significantly reducing the size of the
original dataset, as we discuss in this section.

7.3.1 Precision and Recall Gold
To illustrate the trade-off between precision and recall, we

focus on a k value of 5 for SpotSigs, where the F1 score is just
above 0.8, as we saw in Figure 10(b). In the experiment of
Figure 11(a), the x-axis shows k̂, i.e., the number of clusters
we ask a method to return. Then, we compute the precision
and recall of this set of records against the set of records
in the ground truth top-5 entities. Figure 11(a) shows the
Recall Gold on the y-axis. Since adaLSH and LSH give
practically the same output with Pairs, we plot just one
curve for all three methods. Moreover, we include the results
for three different similarity thresholds, 0.3, 0.5, and the
default 0.4 (one curve for each threshold), in Figure 11(a).
The recall for all thresholds is almost the same and, more

importantly, follows the same trend: recall keeps going up
as k̂ increases, to reach very close to 1.0 for 20 clusters.
By increasing the output’s size, the precision inevitably

drops. Figure 11(b) shows the Precision Gold for the same
setting with Figure 11(a). As we increase k̂ from 5 to 20, the
precision drops from 80% to almost 40%. A lower precision
means that a lower percentage of the original dataset will
be filtered out, which in turn means that the Speedup w/o
(with) Recovery will be lower. We quantify the trade-off
between accuracy and reduction in Sections 7.3.2 to 7.3.4.
It is important to note here that we would not necessar-

ily increase the recall, by relaxing the similarity threshold,
instead of including more clusters in the output. Consider,
for example, trying to find the top-1 entity in a dataset. Let
us assume that for a similarity threshold of 0.9, the largest
cluster a method finds, contains only 80% of all the records
in the ground truth top-1 entity. If we relax the threshold to
0.8, the method may merge the second largest cluster with a
smaller one, which would now form the largest cluster. How-
ever, the new largest cluster may be actually referring to the
ground truth top-2 entity and contain all the records for that
entity, but none of the top-1 entity records. Hence, the recall
would drop from 80% to 0% by relaxing the threshold.

5 10 15 20
k̂

0.0

0.2

0.4

0.6

0.8

1.0

D
a
ta

se
t

R
e
d
u
ct

io
n
 %

1x

2x

4x

Actual1x

Actual2x

Actual4x

(a) Dataset Reduction

5 10 15 20
k̂

1

4

8

16

S
p
e
e
d
U

p
 w

/o
 R

e
co

v
e
ry 1x

2x

4x

(b) Speedup w/o Recovery
Figure 12: Reduction % and Speedup on SpotSigs.

5 10 15 20 25 30
k̂

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
n
 A

v
e
ra

g
e
 P

re
ci

si
o
n
 (

m
A

P
)

k=2

k=5

k=10

k=20

(a) mean Average Precision

5 10 15 20 25 30
k̂

0.0

0.2

0.4

0.6

0.8

1.0

m
e
a
n
 A

v
e
ra

g
e
 R

e
ca

ll
(m

A
R

)

k=2

k=5

k=10

k=20

(b) mean Average Recall
Figure 13: mAP and mAR on SpotSigs.

7.3.2 Reduction and Speedup
Figure 12(a), depicts the Dataset Reduction percentage

(y-axis), for different k̂ values, on different dataset sizes
(SpotSigs1x, 2x, and 4x), for k = 5. In addition to the
three curves, we plot one horizontal dashed line for each
dataset size, indicating the actual percentage of records for
the ground truth top-k entities (Actual1x, 2x, and 4x). (Again,
adaLSH and LSH give the same output as Pairs, so we plot
just one curve for all three methods.) As k̂ increases, a
filtering method ends up returning a larger portion of the
dataset. However, for larger datasets this percentage is still
rather small even for a large number of clusters returned
(e.g., less than 40% on SpotSigs4x, for k̂ = 20).
To see how those percentages translate to speedups, we

plot the Speedup w/o Recovery (y-axis) in Figure 12(b),
where we use adaLSH for the filtering stage. That is, in the
Speedup w/o Recovery formula of WholeTime

FilteringTime+ReducedTime

(see Section 6.2), the FilteringTime is the execution time for
adaLSH. We see that the speedup increases as the dataset
size increases, and even for a reduction percentage of 40%
(SpotSigs4x at k̂ = 20), we get a significant speedup of 6x.

7.3.3 mean Average Precision and Recall
Next, we study how accuracy, in terms of mAP and mAR,

increases, as k̂ increases. The goal is to understand how
easily we can reconstruct the ground truth outcome, when
we apply a “perfect” ER algorithm (see Section 6.2) on the
reduced dataset. Figures 13(a) and 13(b) show the mAP and
mAR, respectively, on the y-axis, while the x-axis shows k̂.
We plot results for different k values; one curve per k value.
We see that for all values of k, the mAP eventually reaches
1.0 as we increase k̂; results for mAR are slightly worse.
The comparison between the mAP/mAR metrics in Fig-

ures 13(a), 13(b) with the precision and recall in Figures 11(a),
11(b), points out a beneficial fact: accuracy for higher-
ranked entities is higher. For instance, for k = k̂ = 5,
the set-based precision and recall are around 0.8, while the
ranked-cluster precision and recall are higher than 0.9.

7.3.4 Recovery
The last experiment of this section focuses on the recovery

process discussed in Section 6.1.2, for the Speedup with Re-

5 10 15 20
k̂

1

2

4

8

S
p
e
e
d
U

p
 w

it
h
 R

e
co

v
e
ry 1x

2x

4x

(a) Speedup with Recovery

5 10 15 20 25 30
k̂

0.0

0.2

0.4

0.6

0.8

1.0

m
A

P
 w

it
h
 R

e
co

v
e
ry

k=2

k=5

k=10

k=20

(b) mAP with Recovery
Figure 14: Applying recovery on SpotSigs.

101 102 103 104

LSH Functions

100

101

102

103

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) adaLSH

LSH

(a) SpotSigs

101 102 103 104

LSH Functions

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

)

adaLSH

LSH

(b) SpotSigs8x
Figure 15: adaLSH vs different LSH variations.

covery and mAP(mAR) with Recovery metrics. Figure 14(a)
corresponds to Figure 12(b) and depicts the Speedup with
Recovery with adaLSH used for filtering, while Figure 14(b)
corresponds to Figures 13(a) and 13(b) and depicts the mAP
with Recovery; the results for the mAR with Recovery are
almost identical to the ones for mAP with Recovery.
In Figure 14(a), we see that the speedup decreases as k̂

increases. As expected, the speedup is lower compared to
the Speedup w/o Recovery since we also include the run
time for recovery, in this case. Nevertheless, as the dataset
size increases the speedup increases: in SpotSigs4x, even
for a large k̂ value of 20, we get an almost 4x speedup.
With respect to accuracy, we observe that the mAP with
Recovery, in Figure 14(b), very quickly reaches to 1.0 for all
k values, as we increase k̂.
Whether it is useful to increase k̂ and/or use recovery

depends on the desired accuracy level and performance. But
our results do suggest that both techniques are useful tools:
they can noticeably increase accuracy while still retaining
significant speedups over a non-filtered approach.

7.4 Other Settings
In addition to the experiments presented so far, we have also
explored many other settings. Here we describe a few of the
more interesting results from all the experiments we ran.

7.4.1 adaLSH vs best LSH variation
Until now we used only LSH1280 in the plots. Here, we ex-

plore the different LSH blocking variations. Clearly, know-
ing in advance which LSH variation is better in each case is
not possible. Our goal here is to examine how much better
adaLSH is, compared to the best LSH variation, if we knew
in advance the best LSH variation to use in each case.
The log-log plot in Figure 15(a) shows the execution time

on SpotSigs and k = 10, for five LSH variations: LSH20
to LSH5120. That is, the x-axis shows the number of hash
functions used by LSH and the y-axis the execution time.
(For adaLSH we plot the same execution time for all x-axis
values.) We see that adaLSH gives a 4x speedup even when
compared to the best LSH variation; LSH80 in this case.
When the size of the dataset increases we expect that

some other LSH variation will perform better. Indeed, as
we see in Figure 15(b), for SpotSigs8x and k = 10, LSH320

1.05 1.1 1.2
Zipf Exponent

0

200

400

600

800

1000

1200
E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) adaLSH

LSH320

LSH2560

(a) dthr = 3 degrees

1.05 1.1 1.2
Zipf Exponent

0

500

1000

1500

2000

2500

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) adaLSH

LSH320

LSH2560

(b) dthr = 5 degrees

Figure 16: Execution time on PopularImages.

is now the lowest execution time variation. Still, adaLSH
gives a 3x speedup compared to LSH320.
Hence, as the experiments in this section point out, a big

advantage of adaLSH compared to LSH variations is that
adaLSH does not need tuning with respect to the number
of hash functions to apply. In addition, adaLSH can ap-
ply a different number of hash functions on different records
and manages to achieve 3-4x speedups compared to the op-
timally tuned LSH version.
We have also run experiments with other LSH blocking

variations that can be found in Appendix E.1.

7.4.2 Entity sizes’ distribution
The last experiments discussed in this section focus on

the PopularImages dataset. Our objective here is not to il-
lustrate how large the adaLSH speedup can be, but instead
study a more challenging scenario for adaLSH. When using
the cosine distance for RGB histograms, for almost every
image in the dataset, there are images that refer to a dif-
ferent entity but have a similar histogram with that image.
(Clearly, there are better features we can extract for each
image, still, the cosine distance for RGB histograms serves
our propose well, here.)
In addition, we wanted to study how the distribution of

records per entity affects the performance of each method,
in this case. The three datasets in PopularImages, follow
zipfian distributions, with exponents of 1.05, 1.1, and 1.2,
respectively. For instance, in the 1.05-exponent dataset, the
top-1 entity consists of around 500 records, the top-2 entity
of around 250 records, and the top-3 of around 150 records,
while in the 1.2-exponent dataset, the top-1 entity consists
of around 1700 records, top-2 entity of around 800 records,
and the top-3 entity of around 500 records.
Figure 16(a) depicts the execution time for adaLSH, LSH320,

and LSH2560, for a cosine distance threshold of 3 degrees
and k = 10. The x-axis shows the zipfian exponent and
the y-axis the execution time for each method. (Pairs takes
almost one hour to run and we do not include it in this plot.)
Even in this, far from ideal, scenario, adaLSH gives a 1.5

speedup for a zipfian exponent of 1.05, and a 1.7 speedup for
exponents of 1.1 and 1.2, compared to LSH320. Compared
to LSH2560, adaLSH gives a 1.7 speedup for an exponent of
1.05 and a 1.5 speedup for an exponent of 1.1. The results for
a threshold of 5 degrees appear in Figure 16(b). The adaLSH
speedup ranges from 1.2 to 1.5 compared to LSH2560 and
from 1.3 to 1.6 for LSH320.
Note that the execution time for both thresholds increases

as the exponent increases. The main reason for this increase
is the sizes of the top entities, that, as discussed above,
increase as the exponent increases. For example, applying
the pairwise computation function P on the top-1 entity

1.05 1.1 1.2
Zipf Exponent

0.0

0.2

0.4

0.6

0.8

1.0

F1
 G

o
ld

2degrees

3degrees

5degrees

Figure 17: F1 Gold on PopularImages.

often takes more than 50% of the execution time. LSH320
that applies less hash functions than LSH2560 in the first
stage, ends up applying function P on clusters even larger
than the top-1 entity, and the increase in execution time, as
the exponent increases, is even more evident.
The execution time also increases as we relax the distance

threshold from 3 to 5 degrees, as we see when comparing
Figures 16(a) and 16(b). The reason is again the larger sizes
for the clusters that need to be “verified” using function P :
a relaxed threshold gives larger clusters.
Note also that LSH320, which clearly underperforms here,

was (together with LSH80) the most effective LSH variation
in the experiments, in Figures 15(a) and 15(b). This illus-
trates, again, that the most effective LSH variation can be
very different in each case. On the other hand, adaLSH
always gives a better performance without requiring tuning.
The last effect we discuss here, is the tradeoff between

performance and accuracy, as the distance threshold and
the zipfian exponent change. In Figure 17, we plot the F1
gold (y-axis) for thresholds 2, 3, and 5 and for exponents
1.05, 1.1, and 1.2 (x-axis), for k = 10. All three methods
give almost the same F1 score, so we just use one curve for
each threshold. As the distance threshold drops from 5 to
2 degrees, there are images that refer to the same entity,
but still do not get clustered together because of the more
strict threshold. As we see in Figure 17, the more strict the
threshold, the lower the F1 score. Moreover, we see that the
lighter the tail (the higher the exponent) is, the higher the
F1 score becomes, as the top-10 entities form larger clusters
and errors happen to a lesser extent. Overall, while a smaller
threshold lets methods run faster, it also introduces more
errors, in this case.

8. RELATED WORK
Blocking: To enable entity resolution on large datasets,

many blocking approaches have been suggested for differ-
ent settings [24, 5, 7, 25]. Paper [12] proposes a mechanism
that automatically learns hash functions for blocking and
is applicable on heterogeneous data expressed in multiple
schemas without requiring predefined blocking rules. Block-
ing over heterogeneous data is also the topic in paper [27].
The framework in paper [17], is able to produce blocks that
satisfy size constraints, i.e., blocks are not larger than an
upper threshold (e.g., for performance) and/or blocks are
not smaller than a lower threshold (e.g., for privacy). Dis-
tributed blocking is the topic of paper [11] that models the
communication-computation trade-off and proposes strate-
gies to distribute the pairwise comparison workload across
nodes. In paper [36], the concept of iterative blocking is
introduced, where results from one block are used when
processing other blocks, iteratively, to improve accuracy, by
detecting additional record matches, and reduce execution

time, by skipping unnecessary record comparisons. Block-
ing using LSH is applied in Helix [14], a large scale data ex-
ploration system. Supervised meta-blocking [28] uses a set
of training examples to efficiently re-structure a collection
of blocks and avoid unnecessary record comparisons while
minimizing the number of missed record matches.
Entity Resolution: A good overview of traditional ER

approaches can be found in surveys [16] and [37]. Here, we
will try to cover a few more recent studies with a connection
to the setting in this paper. Paper [35] uses a set of pos-
itive (records that match) and negative examples (records
that do not match) to find the best similarity functions and
thresholds to use in a dataset; note that our approach could
be combined with such a method that selects similarity func-
tions and computes the “right” threshold for each function.
Examples can also be provided in an active manner as re-
search in crowd entity resolution suggests [6, 34, 33, 32, 38,
13]. An alternative of using examples, is defining constraints
for matching records, through declarative/interactive frame-
works [9, 15]. Entity resolution is also studied in settings
where the data is distributed across multiple nodes [4], and
the goal is to reduce the bandwidth usage while maintain-
ing a low execution time. Incremental ER is the focus in
paper [18], where data updates can be handled efficiently
and can also provide evidence to fix previous errors.
Locality-Sensitive Hashing: Here, we briefly discuss a

number of LSH variations that involve some notion of adap-
tivity; although quite different from the LSH adaptivity con-
cept introduced in this paper. Multi-Probe LSH [23] reduces
the number of hash tables it uses, by probing multiple buck-
ets in each table when searching for items similar to a query
item (e.g., image or video). Another similar concept is the
entropy-based LSH [26, 21], which trades time for space re-
quirements, for nearest-neighbor search on Euclidean spaces.
Bayesian [29] and sequential hypothesis testing LSH [10] use
the hash values generated in the first stage of LSH, to effi-
ciently verify if each two records in the same hash bucket are
indeed within the threshold. Paper [22] focuses on a specific
LSH family of functions, the minwise hashing functions [8]
for jaccard similarity: based on a theoretical framework,
only a few bits are kept for each hash value, in order to
reduce space and computational overhead. Paper [31] also
focuses on a specific function family, random projections for
cosine similarity, and proposes a mechanism that trades ac-
curacy for space, in an online setting for LSH. The last LSH
variation discussed here, is adaptive with respect to nearest-
neighbor queries [20]: a notion of accuracy, with respect to
queries, is defined for each hash function and, at query time,
the most appropriate hash functions are selected.

9. CONCLUSION
We proposed adaptive LSH, a novel approach for finding

in large datasets the records referring to the top-k entities.
This problem is motivated by many modern applications
that focus on the few most popular entities in a dataset. The
main component of our approach is a sequence of cluster-
ing functions that adaptively apply locality-sensitive hash-
ing (LSH). The large cost savings come from applying only
the few first lightweight functions in the sequence on the
vast majority of records and detecting with a very low cost
that those records do not refer to the top-k entities. Our
approach is general and applicable in all types of data where
a distance metric can model how likely two records are to

refer to the same entity. The filtering output is a drastically
reduced dataset that can be used to very accurately and ef-
ficiently find the top-k entities using the full ER algorithm.
Our experiments involved different types of data: multi-

field publication records, web articles, and images. We com-
pared adaptive LSH to the common, for high dimensional
data, LSH-blocking approach. The speedup ranges from 2x
to 25x compared to traditional LSH blocking, while intro-
ducing only negligible errors due to the approach’s proba-
bilistic nature. Furthermore, our adaptive LSH approach
does not require knowing in advance the right number of
hash functions to apply and may apply a different number
of hash functions on different records. We also presented
two schemes for improving accuracy further, with modest
performance overhead.
In the future, we plan to explore a couple of interesting di-

rections for adaptive LSH. First, we believe that adaLSH can
offer large performance gains in online settings, where we do
not have a fixed dataset and input records arrive dynami-
cally: we plan to study mechanisms that decide, for instance,
how many hash tables and clusters to maintain or decide,
for a new record, between applying hashing or comparing
with existing clusters. Second, we can apply adaLSH in an
incremental way, so that it outputs clusters during its exe-
cution, allowing users observe results before its completion.
We briefly discuss this incremental mode in Section 4.2. We
also plan to study how we can pipeline the execution of the
filtering stage with ER algorithms.

10. REFERENCES
[1] Cora dataset.

people.cs.umass.edu/~mccallum/data/cora-refs.tar.gz.
[2] Gold set of near duplicates. http://mpi-inf.mpg.de/~mtb/

spotsigs/GoldSetOfNearDuplicates.tar.gz.
[3] Popular images.

stanford.edu/~verroios/datasets/popimages.zip.
[4] N. Ayat, R. Akbarinia, H. Afsarmanesh, and P. Valduriez.

Entity resolution for distributed probabilistic data.
Distributed and Parallel Databases, 31(4):509–542, 2013.

[5] R. Baxter, P. Christen, and T. Churches. A comparison of
fast blocking methods for record linkage. In ACM SIGKDD
Workshop on Data Cleaning, Record Linkage, and Object
Identification, 2003.

[6] K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi.
Active sampling for entity matching. In KDD, 2012.

[7] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive
blocking: Learning to scale up record linkage. In ICDM, 2006.

[8] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In WWW, 1997.

[9] D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-C.
Tan. A declarative framework for linking entities. TODS,
41(3):17:1–17:38, 2016.

[10] A. Chakrabarti and S. Parthasarathy. Sequential hypothesis
tests for adaptive locality sensitive hashing. In WWW, 2015.

[11] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data
deduplication. PVLDB, 9(11):864–875, 2016.

[12] A. Das Sarma, A. Jain, A. Machanavajjhala, and
P. Bohannon. An automatic blocking mechanism for
large-scale de-duplication tasks. In CIKM, 2012.

[13] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux.
Large-scale linked data integration using probabilistic
reasoning and crowdsourcing. The VLDB Journal,
22(5):665–687, 2013.

[14] J. Ellis, A. Fokoue, O. Hassanzadeh, A. Kementsietsidis,
K. Srinivas, and M. J. Ward. Exploring big data with helix:
Finding needles in a big haystack. SIGMOD Rec.,
43(4):43–54, 2015.

[15] A. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiané-Ruiz,
N. Tang, and S. Yin. Nadeef/er: Generic and interactive
entity resolution. In SIGMOD, 2014.

people.cs.umass.edu/~mccallum/data/cora-refs.tar.gz
http://mpi-inf.mpg.de/~mtb/spotsigs/GoldSetOfNearDuplicates.tar.gz
http://mpi-inf.mpg.de/~mtb/spotsigs/GoldSetOfNearDuplicates.tar.gz
stanford.edu/~verroios/datasets/popimages.zip

[16] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. IEEE Trans. Knowl.
Data Eng., 19(1):1–16, 2007.

[17] J. Fisher, P. Christen, Q. Wang, and E. Rahm. A
clustering-based framework to control block sizes for entity
resolution. In KDD, 2015.

[18] A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental
record linkage. PVLDB, 7(9):697–708, 2014.

[19] P. Indyk and R. Motwani. Approximate nearest neighbors:
Towards removing the curse of dimensionality. In STOC,
1998.

[20] H. Jegou, L. Amsaleg, C. Schmid, and P. Gros. Query
adaptative locality sensitive hashing. In ICASSP, 2008.

[21] M. Kapralov. Smooth tradeoffs between insert and query
complexity in nearest neighbor search. In PODS, 2015.

[22] P. Li and A. C. König. Theory and applications of b-bit
minwise hashing. Commun. ACM, 54(8):101–109, 2011.

[23] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li.
Multi-probe lsh: Efficient indexing for high-dimensional
similarity search. In VLDB, 2007.

[24] A. McCallum, K. Nigam, and L. H. Ungar. Efficient
clustering of high-dimensional data sets with application to
reference matching. In KDD, 2000.

[25] M. Michelson and C. A. Knoblock. Learning blocking schemes
for record linkage. In AAAI, 2006.

[26] R. Panigrahy. Entropy based nearest neighbor search in high
dimensions. In SODA, 2006.

[27] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and
W. Nejdl. Beyond 100 million entities: Large-scale
blocking-based resolution for heterogeneous data. In WSDM,
2012.

[28] G. Papadakis, G. Papastefanatos, and G. Koutrika.
Supervised meta-blocking. PVLDB, 7(14):1929–1940, 2014.

[29] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive
hashing for fast similarity search. PVLDB, 5(5):430–441,
2012.

[30] M. Theobald, J. Siddharth, and A. Paepcke. Spotsigs: Robust
and efficient near duplicate detection in large web collections.
In SIGIR, 2008.

[31] B. Van Durme and A. Lall. Efficient online locality sensitive
hashing via reservoir counting. In HLT, 2011.

[32] V. Verroios and H. Garcia-Molina. Entity resolution with
crowd errors. In ICDE, 2015.

[33] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. In VLDB, 2012.

[34] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, 2013.

[35] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching: How
similar is similar. PVLDB, 4(10):622–633, 2011.

[36] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and
H. Garcia-Molina. Entity resolution with iterative blocking.
In SIGMOD, 2009.

[37] W. Winkler. Overview of record linkage and current research
directions. Technical report, Statistical Research Division,
U.S. Bureau of the Census, Washington, DC, 2006.

[38] C. Zhang, R. Meng, L. Chen, and F. Zhu. Crowdlink: An
error-tolerant model for linking complex records. In
ExploreDB, 2015.

APPENDIX
A. LOCALITY-SENSITIVE HASHING
The clustering functions of the approach proposed in this

paper use LSH, as discussed in Section 3. In this Appendix,
we present the details for LSH.
LSH uses a set of hash tables and applies a number of

hash functions on each record, such that two records that
are “close” to each other, based on the given distance metric
and distance threshold, hash to the same bucket, in at least
one of the tables.

In particular, LSH is based on the notion of (dt, ρdt, p1, p2)-
sensitive functions:
DEFINITION 4 (Locality-Sensitive Family) For a given

distance metric d, a (dt, ρdt, p1, p2)-sensitive family F con-
sists of hash functions, where each function h : R→ B maps
a record r ∈ R to a bucket b ∈ B and has the following two
properties for records r1 and r2:

• if d(r1, r2) ≤ dt, then h(r1) = h(r2) with probability at
least p1.

• if d(r1, r2) ≥ ρdt, then h(r1) = h(r2) with probability
at most p2.

That is, when selecting a hash function h ∈ F uniformly
at random, for two records r1 and r2 with d(r1, r2) ≤ dt,
the probability of selecting a function h with h(r1) = h(r2)
is at least p1. If d(r1, r2) ≥ ρdt the probability of selecting
a function h with h(r1) = h(r2) is at most p2. Note that
ρ needs to be greater than one and p1 greater than p2, for
F to be useful. Intuitively, when picking a hash function
from a (dt, ρdt, p1, p2)-sensitive family F , we will pick with
high probability a function that hashes to the same bucket
two records that are very similar, and we will pick with high
probability a function that hashes to different buckets two
records that are not very similar.
EXAMPLE 6 Consider again Example 2. When selecting

uniformly at random a hyperplane through the origin, the
likelihood of picking a hyperplane like e2 (where r1 and r2
lie on different sides) is 30

180
; while the likelihood of picking

a hyperplane like e1 is 180−30
180

. As discussed in Example 2,
we consider each random hyperplane as a hash function, h :
R → {b1, b2}, that hashes each vector/record, r ∈ R, to two
buckets, b1 or b2, depending on which side of the hyperplane
vector r lies. In general, the family of hash functions de-
fined by the random hyperplanes, is (θ1, θ2,

180−θ1

180
, 180−θ2

180
)-

sensitive, for θ1, θ2 ∈ [0, 180] and θ1 < θ2. That is, if the
distance between two vectors/records is θ, the likelihood of
picking a hash function that hashes the two vectors to the
same bucket is exactly 180−θ

180
.

Although in Example 6 the space is two dimensional, it is
not hard to see that the family of hash functions defined by
random hyperplanes, is (θ1, θ2,

180−θ1

180
, 180−θ2

180
)-sensitive for

any number of dimensions, for the cosine distance.
A (dt, ρdt, p1, p2)-sensitive family can be “amplified” using

an AND-construction or an OR-construction:
DEFINITION 5 (AND-construction)Given a (dt, ρdt, p1, p2)-

sensitive family F , a (dt, ρdt, p
w
1 , p

w
2)-sensitive family F ′ is

constructed by selecting w functions, h1, h2, . . . hw ∈ F , to
define a function h′ ∈ F ′ such that h′(r1) = h′(r2) iff
hi(r1) = hi(r2) for all i ∈ [1, w], for two records r1, r2.
DEFINITION 6 (OR-construction)Given a (dt, ρdt, p1, p2)-

sensitive family F , a (dt, ρdt, 1 − (1 − p1)z, 1 − (1 − p2)z)-
sensitive family F ′ is constructed by selecting z functions,
h1, h2, . . . hz ∈ F , to define a function h′ ∈ F ′ such that
h′(r1) = h′(r2) iff hi(r1) = hi(r2) for at least one i ∈ [1, z],
for two records r1, r2.
For the AND-construction, if the probability of select-

ing a hash function h ∈ F with h(r1) = h(r2) is p1 (or
p2), it follows that the probability of selecting w functions
h1, h2, . . . hw ∈ F , with all of them having hi(r1) = hi(r2)
(i ∈ [1, w]), is pw1 (or pw2).

For the OR-construction, if the probability of selecting a
hash function h ∈ F with h(r1) = h(r2) is p1 (or p2), it fol-
lows that the probability of selecting z functions h1, h2, . . . hz ∈
F , with none of them having hi(r1) = hi(r2) (i ∈ [1, z]), is
(1 − p1)z (or (1 − p2)z). Hence, the probability of at least
one having hi(r1) = hi(r2) is 1− (1−p1)z (or 1− (1−p2)z).
The two constructions can be combined together to form

an AND-OR construction. In particular, a (dt, ρdt, p1, p2)-
sensitive family F is first transformed to a (dt, ρdt, p

w
1 , p

w
2)-

sensitive family F ′ using an AND-construction, and then
F ′ is transformed to a (dt, ρdt, 1− (1− pw1)z, 1− (1− pw2)z)-
sensitive family F ′′ using an OR-construction.
As discussed in Section 3, the AND-OR construction can

be thought of as a hashing scheme of z hash tables: in each
of the z tables two records r1 and r2 hash to the same bucket
if hi(r1) = hi(r2) for all of the w hash functions hi, for that
table. (For each table there is an independent selection of
w functions hi ∈ F .)

B. IMPLEMENTATION DETAILS
Here, we discuss how to efficiently implement all the key

components of Algorithm 1, in Section 4. In particular, we
discuss the implementation for transitive hashing functions
(Line 8) and the pairwise computation function (Line 6),
finding the largest cluster (Line 3), and the termination con-
dition (Line 11). We start with the description of two data
structures, and then we focus on how the two structures are
used in the lower level operations in Algorithm 1.

B.1 Data Structures
The data structures used in the implementation are a

parent-pointer tree structure and a bin-based structure. The
parent-pointer tree structure is used by transitive hashing
functions and the pairwise computation function, while the
bin-based structure is used for finding the largest cluster and
in the termination condition.

firs
t last

{#leaves: 3} {#leaves: 2}

{#leaves: 7}

{#leaves: 5}

{#leaves: 2}

Figure 18: Parent-pointer tree.

The parent-pointer tree structure is depicted in Figure 18.
Each node has a pointer to the parent, leaf nodes have a
pointer to the first leaf on the right, and the root has a
pointer to the first and last leaves. Each parent-pointer tree
represents a cluster: the leaves of the tree refer to the records
that belong to the cluster. In addition, each node stores the
number of leaves that are successors of that node.
The bin-based structure is an array of log(|R|) bins; where
|R| is the number of all records in the dataset. In each
bin, the roots of different parent-pointer trees are stored.
The root of a parent-pointer tree with x leaves, is stored on
the log(bxc)-th bin of the array. For example, an array for
|R| = 10 records would have four bins: the first bin would
store trees with 1 leaf, the second bin trees with 2 or 3
leaves, the third bin trees with 4 to 7 leaves, and the fourth
bin trees with 8 to 10 leaves.

B.2 Transitive Hashing Functions
A transitive hashing functionHi based on a (wi, zi)-scheme,

uses zi hash tables. For each record r of an input set S, zi
bucket indices (consisting of wi hashes each) are computed.
Based on those hashes, record r is added to each of the zi
tables. (Note that the computation of hashes is incremental
and uses the hashes computed from the previous function in
the sequence Hi−1, on record r.) Hashing function Hi uses
a number of parent-pointer trees: each cluster in the out-
put refers to one parent-pointer tree. When function Hi is
invoked, there are no trees and none of the input records be-
longs to a tree. Moreover, the zi hash tables are empty, i.e.,
each invocation of function Hi uses a different set of tables;
to avoid a possible merge of clusters from different invoca-
tions. To process a cluster of records stored in a parent-
pointer tree, function Hi uses the “first” pointer in the root
to reach the first leaf, processes that record, then uses the
“right” pointer of the first leaf to access the next record in
the cluster, and so on. When a record r1 is added to a hash
table there are four cases:

r2r1

{#leaves: 1}

fir
st

last

r2

{#leaves: 3}

fir
st

last

r1

4

{#leaves: 2} {#leaves: 2}

r1

firs
t last

{#leaves: 4}
n’

(a) (b) (c)

Figure 19: Tree updates when adding a record r1 to
a hash table.

1. the bucket in the table is empty and record r1 has not
been added yet to a parent-pointer tree: a new tree is
created with record r1 being the single leaf of that tree,
as depicted in Figure 19a.

2. the bucket in the table is empty and record r1 has al-
ready been added to a parent-pointer tree: just add r1
in the bucket.

3. the bucket in the table is not empty and record r1 has
not been added yet to a parent-pointer tree: find the
root of the tree of the record r2 that was last added in
the bucket and add record r1 to this tree, by updating
all tree pointers (updates appear in red on Figure 19b).

4. the bucket in the table is not empty and record r1 has
already been added to a parent-pointer tree: find the
root of the tree of the record r2 that was last added
in the bucket. If the root for r2 is the same with the
root of the tree of r1 (i.e., the two records belong to
the same tree), just add r1 to the bucket. Otherwise,
merge the two trees into one: use a new node n′ as a
root and update all pointers, as depicted in Figure 19c.

Note that all records of a bucket in a hash table are under
the same tree. To find the root of a bucket’s tree, the process
starts from the record that was last added in the bucket, in
cases 3 and 4, because it is more likely that the path to the
root is shorter, compared to when starting from the, say,
first record added in the bucket.
The complexity of adding a record r to a hash table is

O(log(|Cr|)), where Cr is the cluster where record r belongs
in the output of function Hi.

B.3 Pairwise Computation Function
The pairwise computation function P also uses parent-

pointer trees. When the distance between two records is
less than the distance threshold, the trees of the two records
are merged; the process is similar to the one discussed in the
previous section. In addition, for two records that belong to
the same tree, P can safely skip the distance computation
for those two records. Nevertheless, note that in our cost
model (Line 5 in Algorithm 1) we are being conservative and
assume that the cost of function P involves the computation
of all pairwise distances.

B.4 Finding the Largest Cluster
Upon completion of a function Hi or P , the output clus-

ters(trees) are added to the bin-based array. When the
largest cluster must be found for the next iteration, the
search starts from the last non-empty bin in the array and
the largest cluster in that bin is returned and removed from
the bin.
Adding a cluster to the bin-based array is a constant-time

operation and we expect that the clusters in the last non-
empty bin to always be much fewer than all the clusters
stored in the array.

B.5 Termination Condition
To efficiently compute when the loop of Algorithm 1 must

terminate, we use an array of “final” clusters. When the
largest cluster selected in an iteration, is an outcome of a
function HL or a function P , the cluster is not processed
but it is added instead to the array of final clusters. Once
k clusters are added in the final clusters array, Algorithm 1
terminates and the clusters in the final clusters array are re-
turned as the output. Note that this condition is equivalent
to the condition in Line 11 of Algorithm 1.

C. COMPLEX DISTANCE RULES
When records have multiple fields, distance rules may in-

volve more than one field, as discussed in Section 3. The
main workflow of Adaptive LSH, summarized in Algorithm 1,
remains the same in that case, however, some of the details
of transitive hashing functions and the design of the function
sequence change.
We focus on distance rules that consist of: AND rules, OR

rules, and weighted average rules. Next, we discuss how to
design the sequence of transitive hashing functions for each
type of rules and conclude this section with a brief discussion
on the case of more complicated rules that combine several
AND, OR, and weighted average rules.

C.1 AND rules
To keep the discussion simple, we assume the AND rule

involves only two record fields: given a distance metric and
threshold for each field, two records r1 = {f (1)

1 , f
(2)
1 } and

r2 = {f (1)
2 , f

(2)
2 } refer to the same entity if

d(f
(1)
1 , f

(1)
2) ≤ d(1)thr AND d(f

(2)
1 , f

(2)
2) ≤ d(2)thr

In the AND-OR hashing scheme used by function Hi in
the sequence, the hash value for each of the hash tables will
be formed using both fields f (1) and f (2). In particular,
given a Locality-Sensitive family of hash functions for each
field, for each hash table used by functionHi, we pick w hash
functions from the family of field f (1) and u hash functions

from the family of field f (2). The hash value for each hash
table is a concatenation of the w and u hash values.
Consider functions p1(x1) and p2(x2) that give the prob-

ability of selecting a hash function that gives the same hash
value for two records at a distance x1 (x2) on field f (1) (f (2));
0 ≤ x1, x2 ≤ 1. Assuming z tables are used, the probability
of two records at a distance x1 on field f (1) and x2 on field
f (2), hashing to the same bucket in any of the z tables, is:

1−
[
1− pw1 (x1)pu2 (x2)

]z
To decide the values w, u, z, for a given budget of hash

functions, we use a generalization of Program 1 to 3:

min
w,u,z

∫ 1

0

∫ 1

0

[
1−

[
1− pw1 (x1)pu2 (x2)

]z]
dx1dx2 (4)

s.t. (w + u) ∗ z=budget (5)

1−
[
1− pw1 (x1)pu2 (x2)

]z≥1− ε, x1≤d(1)thr, x2≤d
(2)
thr(6)

Just as in Program 1 to 3, we can also search over w, u, z
values, where budget

w+u
is not an integer, by adjusting the prob-

ability expression, or take into account cost functions that
reflect the actual cost of computing each hash value.
Note one more important detail here: we may have to add

some constraints in Program 4 to 6 that reflect the solutions
obtained for previous functions in the sequence. That is, if
the previous function in the sequence is using w′ functions
from the family of field f (1) and u′ hash functions from the
family of field f (2), on each table, we need to apply con-
straints w ≥ w′ and u ≥ u′. Those constraints are related
to the incremental computation property of the sequence of
clustering functions: there are already w′ plus u′ hash val-
ues computed for each table, so, ideally, we want to use all
of them for the next function in the sequence.

C.2 OR rules
An OR rule for records of two fields states that two records

r1 = {f (1)
1 , f

(2)
1 } and r2 = {f (1)

2 , f
(2)
2 } refer to the same

entity if

d(f
(1)
1 , f

(1)
2) ≤ d(1)thr OR d(f

(2)
1 , f

(2)
2) ≤ d(2)thr

For an OR rule, the AND-OR hashing scheme used by
function Hi in the sequence, has hash tables that involve
only field f (1) and tables that involve only field f (2). As-
suming a (w, z)-scheme is used for field f (1) and a (u, v)-
scheme is used for field f (2), the probability of two records
at a distance x1 on field f (1) and x2 on field f (2), hashing
to the same bucket in any of the z + v tables, is:

1−
[
1− pw1 (x1)

]z[
1− pu2 (x2)

]v
To decide the values w, z, u, v, for a given budget of hash

functions, we use the following program:

min
w,z,u,v

∫ 1

0

∫ 1

0

[
1−

[
1− pw1 (x1)

]z[
1− pu2 (x2)

]v]
dx1dx2 (7)

s.t. w ∗ z + u ∗ v=budget (8)

1−
[
1− pw1 (x1)

]z≥1− ε, x1≤d(1)thr (9)

1−
[
1− pu2 (x2)

]v≥1− ε, x2≤d(2)thr (10)

C.3 Weighted average rules
Handling weighted average rules requires a slightly differ-

ent approach compared to the AND and OR rules.
A weighted average rule uses a list of weights α1, . . . , αF

(
∑
i αi = 1), for records of F fields, and a single distance

threshold dthr. Two records r1 = {f (1)
1 , . . . , f

(F)
1 } and r2 =

{f (1)
2 , . . . , f

(F)
2 } refer to the same entity if

d̄(r1, r2) =

F∑
i=0

αid(f
(i)
1 , f

(i)
2) ≤ dthr

For a weighted average rule a (w, z)-scheme is used for
function Hi in the sequence, just like in the case of a single
field: the values for parameters w and z are chosen based on
the process described in Section 5.1. Nevertheless, there is
one important difference compared to the single field case.
In order to select each of the w hash functions, for each of
the z hash tables, the following process is used:

DEFINITION 7 (Weighted-Average Function Selection)
(a) randomly select one of the F fields based on the distri-
bution defined by the field weights α1, . . . , αF , i.e., the prob-
ability of picking field i is αi, and (b) select uniformly at
random one of the hash functions from the locality-sensitive
family for the selected field i.

The process of Definition 7 has the theoretical properties
summarized in the following two theorems.

THEOREM 3 For each field i, consider a locality sensitive
family F (i), such that the probability of selecting a hash func-
tion hj ∈ F (i) with hj(ra) = hj(rb), for any two records ra
and rb, is:

Pr[hj(ra) ≡ hj(rb)] = 1− d(f (i)
a , f

(i)
b)

where 0 ≤ d(f (i)
a , f

(i)
b) ≤ 1

If h′j is a hash function selected using the process of Def-
inition 7, then:

Pr[h′j(ra) ≡ h′j(rb)] = 1− d̄(ra, rb)

PROOF: The probability of selecting a field i in step (a)
of the process is Pr[field i picked] = αi. Moreover, if field
i is picked then Pr[h′j(ra) ≡ h′j(rb)] = [1 − d(f

(i)
a , f

(i)
b)].

Therefore,

Pr[h′j(ra) ≡ h′j(rb)] =

F∑
i=0

Pr[field i picked][1− d(f (i)
a , f

(i)
b)]

=

F∑
i=0

αi[1− d(f (i)
a , f

(i)
b)]

=

F∑
i=0

αi −
∑
i

αid(f (i)
a , f

(i)
b)

= 1− d̄(ra, rb)

An example where Theorem 3 applies is the family of min-
hash functions for the Jaccard distance. A more general
version of Theorem 3 is stated in Theorem 4:

THEOREM 4 For each field i, consider a (dthr, ρdthr, p
(i)
1 , p

(i)
2)-

sensitive family. In this case, the family of functions F ′,
where each function h′j ∈ F ′ is selected using the process of
Definition 7, is (dthr, ρdthr,

∑F
i=0 αip

(i)
1 ,
∑F
i=0 αip

(i)
2)-sensitive.

PROOF: The proof is similar to the one of Theorem 3.

C.4 Combining rules
In the last part of this appendix, we briefly discuss the

case of ER rules that combine AND, OR, and weighted av-
erage rules. In this case, we need to combine the processes
described in the previous parts of this section. To select the
number of hash functions coming from the locality-sensitive
hashing family of each field, we need to solve more general
optimization programs compared to the ones discussed be-
fore. Nevertheless, the main principle in those programs is
the same with the ones we discussed: the probability of hash-
ing to the same bucket should be very close to 1.0 for pairs of
records that satisfy the combined ER rule (e.g., Equation 6)
and the overall volume under the probability curve should
be minimized (e.g., Equation 4).
The more fields are involved in the ER rule, the more pa-

rameters are involved in the optimization program, and the
more computationally heavy it is to solve the program. In
practice, this is not an issue, however, for two reasons. First,
the whole function sequence design process is run offline,
before Adaptive LSH is applied on a dataset and the same
sequence design usually suffices for many similar datasets.
Second, depending on the program, an exhaustive search
over all parameter values can often be avoided (e.g., binary
search for Program 1 to 3).

D. LARGEST-FIRST OPTIMALITY
In this Appendix, we give the full proofs for Theorems 1

and 2 (Section 4.2) and discuss when it could make sense
for an algorithm not to follow the largest-first optimality
assumptions.

D.1 Proofs
THEOREM 1 Consider the family of algorithms that:
1. do not “jump ahead” to function P , i.e., if a cluster C

is an outcome of a function Hi, the algorithm can only
apply function P on C, when (cost i+1 − cost i) ∗ |C| ≥
costP ∗

(|C|
2

)
(Line 5 on Algorithm 1).

2. do not “terminate early”, i.e., terminate only when the
k largest clusters are an outcome of either an HL or P
function.

Algorithm 1 gives the minimum overall cost compared to
any other algorithm of this family.
PROOF: We will prove that Algorithm 1 gives the mini-

mum overall cost compared to any other algorithm, for any
execution instance. In an execution instance, the outcome
of applying a function Hi or P on a set of records S, is the
same across all algorithms. In other words, all algorithms
would observe the exact same clusters during their execu-
tion if they would select the same cluster to process in each
step. Assume that another algorithm B in this family, gives
a lower overall cost than Algorithm 1, for a given execution
instance. Based on the cost model (Definition 3), for algo-
rithm B to have a lower overall cost than Algorithm 1, there
are three possibilities:
1. there must be a set of records S1 such that: both Al-

gorithms 1 and B apply P on S1, but the last function
Algorithm 1 applies on S1, before P , is Hi, and the last
function applied on S1 by B, before P , is Hj for j < i.

2. there must be a set of records S2 such that: algorithm B
applies P on S2 and the last function Algorithm 1 applies
on S2, is Hi, while the last function algorithm B applies
on S2, before P , is Hj for j < i.

3. there must be a set of records S3 such that: the last
function Algorithm 1 applies on S3 is either P or Hi, and
the last function B applies on S3 is Hj for j < i.

The first two possibilities violate Condition 1, in the def-
inition of the family of algorithms, since they would require
algorithm B to “jump ahead” to function P ; otherwise, Al-
gorithm 1 would apply the exact same functions on sets S1

or S2. Hence, we focus on the third possibility. Consider
step l, where Algorithm 1 selects set S3 (or a cluster that
is a subset of S3), to apply function Hj+1 (where Hj is the
last function algorithm B applies on S3). At step l, set S3

is the largest cluster for Algorithm 1 to select it. Since clus-
ters always split in subsequent steps, S3 will also be larger
than the top-k clusters after the final step of Algorithm 1.
Hence, since we are focusing on the same execution instance,
Condition 2 in the algorithms’ family definition is violated,
as the largest cluster after the final step of algorithm B will
not be an outcome of an HL or P function.

THEOREM 2 For an input k, Algorithm 1 reaches to a state
where the k′ largest clusters are an outcome of either an HL
or P function, for any k′ < k, with a lower cost compared to
any other algorithm in the the family defined in Theorem 1.
PROOF: For a k′ < k, consider applying Algorithm 1 with

input k′ and with input k. Assume the same execution in-
stance in both cases. Note that Algorithm 1 will execute
in the exact same way for both inputs, until it terminates
when applied with input k′. That is, Algorithm 1 will pro-
cess the same clusters using the same functions and in the
same order, in both cases, before the k′ largest clusters are
an outcome of either an HL or P function. We know from
Theorem 1 that Algorithm 1 finds the k′ largest clusters
with a minimum cost when applied with input k′. Since Al-
gorithm 1 executes in the same way when applied with input
k, we conclude that Algorithm 1 reaches to a state where
the k′ largest clusters are an outcome of either an HL or P
function, with a minimum cost.

D.2 Assumptions
Let us start with the second assumption and consider al-

gorithms that do “terminate early”. (That is, algorithms
that may terminate even when the k largest clusters are not
all an outcome of either an HL or P function.) In that case,
the algorithm would either: (a) output a cluster which is
not an outcome of an HL or P function, or (b) would not
output one of the k largest clusters. In case (a), the algo-
rithm should be fairly certain that this cluster would not
split into smaller clusters if function P (or HL) was applied
on it. In case (b), the algorithm should be fairly certain
that the cluster not contained in the output, would split
into small (smaller than the k largest clusters that are an
outcome of an HL or P function) clusters. Thus, an algo-
rithm should have a good estimation of how likely it is for
clusters to split, if more functions in the sequence were to
be applied on them, and how large the new clusters would
be.
A good estimation of how likely are clusters to split and

how large the new clusters would be, is also the key condi-
tion for an algorithm to potentially benefit from breaking
the first assumption. Seeing how it could be beneficial to
break the first assumption, is a bit more complicated. Let
us illustrate with a simple example. Consider two clusters,
C1 of 10 records and C2 of 12 clusters, and assume we are

looking for the top-1 entity. Moreover, assume that: (a) C1

either does not split at all, with 50% probability, or splits
into two clusters of 5 records, with 50% probability, (b) C2

either does not split at all, with 5% probability, or splits
into two clusters of 9 and 3 records, with 50% probabil-
ity, or splits into four clusters of 3 records each, with 45%
probability, and (c) to find out if C1 splits, we need to ap-
ply function P on it, while for C2, we can apply the next
sequence-function, to find out if it splits, but we need to ap-
ply function P to find out if it splits to four clusters or two
clusters. In this example, it can be beneficial to first apply
function P on the smaller cluster C1 first. If cluster C1 splits
into two clusters of 5 clusters each, then it only makes sense
to directly apply P on C2 to find out if the largest cluster
in C2 consists of 9 or 3 records. (Note that the largest-first
strategy would first apply the next sequence-function on C2,
so we would not be able to avoid the cost of that function
on C2.) Potentially, such a strategy could lead to a lower
execution time compared to largest-first.
The bottom line is that an algorithm could benefit from

breaking the two assumptions, only when it keeps estimates
of the sizes of sub-clusters inside each cluster. Computing
accurately such estimates may not always be possible, or
may be so costly, in terms of execution time, that the over-
head outweighs the benefits. We plan to investigate in fu-
ture research if this could be a direction giving a non-trivial
improvement.

E. ADDITIONAL EXPERIMENTS

E.1 LSH blocking variations
In this appendix, we discuss a setting that illustrates the

tradeoff between accuracy and performance when we run
only the first stage of LSH. To measure accuracy in this
case we use a metric called F1 target: we consider as ground
truth the outcome of function P on the whole dataset and
we compute the harmonic mean of precision and recall, just
like we do for F1 Gold. The purpose of this metric is to
quantify the errors introduced by the probabilistic nature of
the LSH approaches.
We use four LSH variations: LSH20, LSH20nP, LSH640,

and LSH640nP. (As discussed in Section 6.1, the nP vari-
ations do not apply function P after the first stage.) Fig-
ure 20(a) depicts the results, for k = 10 on SpotSigs, Spot-
Sigs2x, SpotSigs4x, and SpotSigs8x. We see that adaLSH
gives an, at least, 4x speedup against all variations of LSH,
besides LSH20nP.

103 104

Records

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) adaLSH

LSH20

LSH640

LSH20nP

LSH640nP

(a) Execution time

4000 8000 16000
Records

0.0

0.2

0.4

0.6

0.8

1.0

F1
 t

a
rg

e
t

adaLSH

LSH20

LSH640

LSH20nP

LSH640nP

(b) F1 target

Figure 20: LSH vs adaLSH, performance/accuracy
Of course, the nP variations, and especially LSH20nP, are

much less accurate than the other methods as Figure 20(b)
shows: the F1 Target is just 0.7 for LSH20nP on SpotSigs
and drops to 0.4 on SpotSigs8x, while for LSH640nP the F1

Target drops from 0.9 to below 0.7. On the other hand, all
other methods give an F1 Target very close to 1.0.
There is another interesting perspective on the results

from Figure 15(a). Note that the computation performed
by LSH20nP is actually the computation that adaLSH per-
forms in the first round; as discussed in Section 6.1, in the
adaLSH used in the experimental evaluation, the first func-
tion in the sequence applies 20 hash functions on all the
records. As Figure 15(a) shows, the overall computation
adaLSH performs takes just 5 to 10 times more than the
computation it performs on the first round.

E.2 adaptive LSH Tuning
Here, we discuss a couple of experiments regarding the fine

tuning of adaptive LSH. First, we add noise to the simple
cost model used by Algorithm 1 in Line 5. In particular,
we multiply by a noise factor nf , the cost of applying the
pairwise computation function P on a cluster C: costP ∗(|C|

2

)
. That is, when factor nf is less than one, the cost of

applying P is under-estimated and P is applied sooner (and
on larger clusters) compared to when no noise is added. On
the other hand, when factor nf is greater than one, the cost
of applying P is over-estimated and the application of P is
deferred until clusters are small enough.

103 104

Records

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) clean

1/2

2/1

1/5

5/1

(a) k = 2

103 104

Records

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) clean

1/2

2/1

1/5

5/1

(b) k = 10

Figure 21: Adding noise to the cost model.
We tried four values for factor nf : 1

2
, 1
5
, 2
1
, and 5

1
. In

Figure 21(a), the y-axis shows the execution time for k = 2,
on SpotSigs, SpotSigs2x, SpotSigs4x, and SpotSigs8x (x-
axis). In Figure 21(b), we run the same experiment for k =
10. Each curve refers to a different value for factor nf . We
also plot the execution time for adaptive LSH without any
noise added (“clean” curve). (Note that parameters costP
and cost i, 1 ≤ i ≤ L, are estimated using 100 samples each.)
We draw one main conclusion from the plots of Figures 21(a)

and 21(b): adaptive LSH is not sensitive to cost-model noise
and the execution time may only be significantly affected for
a very small nf of 1

5
. That is, there is a considerable increase

in the execution time for adaptive LSH, only when the cost
of applying P is heavily under-estimated and P ends up be-
ing applied early and on larger clusters compared to when
no (or a little bit of) noise is added.
The second experiment in this appendix, studies the dif-

ferent modes for budget selection, discussed in Section 5.2.
We try:

• expo: the default Exponential mode, where the budget
is doubled for every function in the sequence, starting
from 20 hash functions for the first function.
• lin320, lin640, lin1280: the Linear mode, where the
budget starts from 320, 640, or 1280 hash functions,
for the first function, and is increased by 320, 640, or
1280 hash functions, for every function in the sequence.

103 104

Records

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) expo

lin320

lin640

lin1280

(a) Cora

103 104

Records

100

101

102

103

104

E
xe

cu
ti

o
n
 T

im
e
 (

se
cs

) expo

lin320

lin640

lin1280

(b) SpotSigs
Figure 22: Different budget selection modes.

Figure 22(a) shows the execution time for the four modes
in the y-axis, on Cora, Cora2x, Cora4x, Cora8x (x-axis),
for k = 10. Figure 22(b) refers to the same experiment for
SpotSigs.
Clearly, the Exponential mode is the best option requir-

ing a far lower execution time compared to other modes.
Note that, in the Exponential mode (when the budget is
doubled for every function in the sequence), the “amount”
of processing performed on the selected cluster in each step,
is almost the same with the amount of processing performed
in all previous steps, on the records of the selected cluster.
Hence, the Exponential mode is able to find the sweet spot
in the trade-off between running fewer hash functions, over-
all, in many steps and running more hash functions in fewer
steps.

	Introduction
	Approach Overview
	Problem Definition
	Clustering Functions
	Sequential Function Application
	Locality-Sensitive Hashing

	Clustering Functions
	Adaptive LSH
	Algorithm
	Largest-First Optimality

	Designing the Function Sequence
	Selecting the (w,z)-scheme
	Selecting the budget

	Experimental Setting
	Methods
	adaLSH vs Alternatives
	Improving Accuracy

	Metrics
	Accuracy
	Performance

	Datasets

	Experimental Results
	Findings' Overview
	adaLSH vs Alternatives
	Performance
	Accuracy

	Improving Accuracy
	Precision and Recall Gold
	Reduction and Speedup
	mean Average Precision and Recall
	Recovery

	Other Settings
	adaLSH vs best LSH variation
	Entity sizes' distribution

	Related Work
	Conclusion
	References
	Locality-Sensitive Hashing
	Implementation Details
	Data Structures
	Transitive Hashing Functions
	Pairwise Computation Function
	Finding the Largest Cluster
	Termination Condition

	Complex Distance rules
	AND rules
	OR rules
	Weighted average rules
	Combining rules

	Largest-First Optimality
	Proofs
	Assumptions

	Additional Experiments
	LSH blocking variations
	adaptive LSH Tuning

