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Abstract

We present a framework and a toolkit to monitor and enforce distributed integrity constraints
in loosely coupled heterogeneous information systems. Our framework enables and formalizes
weakened notions of consistency, which are essential in such environments. Our framework is
used to describe (1) interfaces provided by a database for the data items involved in inter-
site constraints; (2) strategies for monitoring and enforcing such constraints; (3) guarantees
regarding the level of consistency the system can provide. Our toolkit uses this framework to
provide a set of con�gurable modules that are used to monitor and enforce constraints spanning
loosely coupled heterogeneous information systems.

1 Introduction

We address the management of distributed integrity constraints over data that is stored in a collec-

tion of loosely coupled heterogeneous information systems. Distributed integrity constraints arise

naturally whenever data that is semantically related is stored in di�erent systems. For example, a

construction company keeps data about a building under construction in its private database. This

data must be consistent with the architect's design (e.g., walls must be in the same places), which

is stored in an entirely di�erent database.

Throughout this paper, we use the term \database" to mean any information system. In

addition to traditional database systems, we include bibliographic information systems, \whois"

servers, legacy systems, �le systems, etc. We use the term \loosely coupled" to refer to information

systems that do not o�er standard control facilities such as those found in traditional distributed

databases. In particular, such databases do not support multi-database transactions or multi-

database query and update mechanisms that guarantee data consistency. Often, one or more of the

component databases does not even support (local) transactions. Another characteristic of such
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environments is that di�erent databases support di�erent modes of access to the database. For

example, one database might provide only read access to its data, while another might provide

both read and write access. Yet another may provide noti�cation of updates.

This heterogeneity in the method of database access and control is one of the prime reasons

why traditional integrity constraint management techniques cannot be applied to loosely coupled

heterogeneous environments. In particular, traditional approaches to constraint management as-

sume various facilities such as distributed transactions, remote locking, and prepare-to-commit

interfaces, which are usually not supported by the databases involved in a loosely coupled system.

Further, most previous work assumes that all databases in the system o�er a homogeneous access

and control method, as discussed in Section 2.

In spite of the di�culties outlined above, integrity constraint management is very important in

many loosely coupled scenarios. Currently, systems involving data stored in several loosely coupled

databases have no systematic method for monitoring or enforcing integrity constraints over the data.

In most such systems, integrity constraints are simply not monitored, are monitored manually, or

are monitored in an ad-hoc manner. Monitoring integrity constraints manually or using ad-hoc

techniques is tedious and error-prone, while neglecting integrity constraint management altogether

often leads to irreparable inconsistencies and costly correction measures.

We argue that in the loosely coupled environment that we study, it is not, in general, possible

to make the kind of strict consistency guarantees that traditional constraint management systems

make. For example, it is usually not possible to ensure that every application sees strictly consistent

data any time it executes. Given this situation, our work focuses on how weakened notions of

consistency may be de�ned, implemented, and used. We propose a uniform, rule-based framework

in which we can formally de�ne guarantees of weak consistency. Our framework is also used to de�ne

the interfaces (modes of access) provided by each database to the constraint manager. Further, we

use our rule-based framework to specify constraint management strategies . We consider two kinds

of constraint management. Constraint enforcement involves doing the work necessary to make

(usually a weakened form of) the constraint valid. In some situations, however, the best we can

do is constraint monitoring. This involves indicating when the constraint is valid and when it is

not. We have also developed a set of proof rules that enable us to derive the validity of guarantees

based on interface and strategy speci�cations [CGMW94]. However, due to space constraints, we

do not discuss that work in this paper.

Using our framework, it is possible to capture a wide variety of constraint management tech-

niques over a wide variety of loosely coupled heterogeneous environments, and to provide formal

guarantees for weakened constraints. We also show how our interfaces and strategies can be used in

practice. We describe a toolkit of general-purpose constraint management and translation services

that can easily be con�gured to a given heterogeneous environment (for e.g., relational databases,

object-oriented databases, �le systems, bibliographic information systems etc.) Using the toolkit,

one can describe the interfaces available for each database, and one can select strategies from a

menu of proven strategies (examples of which are given in this paper) that conform to the inter-
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faces. Based on the interfaces and the strategy, the toolkit o�ers guarantees of weak consistency to

applications. At run-time, the toolkit will monitor or enforce the constraints so that the guarantees

are valid.

This paper is organized as follows. In Section 2, we discuss how our work relates to traditional

database constraint management literature as well as other related areas. We present a short

overview of the framework underlying our approach to constraint management in Section 3. We

expand on the framework by discussing interfaces, strategies and guarantees in Sections 3.1, 3.2,

and 3.3, respectively. In Section 4, we present our constraint management toolkit and illustrate its

use with an extended example. We discuss how failures are handled in Section 5. Some additional

scenarios that illustrate the use of our framework and toolkit are presented in Section 6, while

Section 7 discusses the use of guarantees and some issues in implementing distributed strategies.

We summarize our conclusions in Section 8. The appendix presents the formal de�nition of the

rule language used in our framework, which is described informally in Section 3.

2 Related Work

Most previous work in database constraint management addresses centralized or tightly coupled

distributed environments. The techniques presented in such work are not applicable in the loosely

coupled, heterogeneous environment we study because they assume many facilities such as dis-

tributed transactions, remote locking, prepare-to-commit interfaces, etc. For example, both [SV86]

and [Gre93] provide useful techniques for monitoring constraints in distributed databases, but these

techniques rely on a traditional notion of data fragmentation and the presence of global transac-

tions.

Reference [CW93] describes a constraint maintenance method for a multi-database environment

in which each database is relational, supports basic SQL operations, and has a production rules

facility; in addition, there must be a persistent queue facility between sites. Similarly, [RSK91] de-

scribes a framework and [GW94] presents a set of protocols for inter-database constraints based on

a homogeneous relational interface to each database. Neither approach is applicable in a truly het-

erogeneous environment where each database o�ers a di�erent interface to the constraint manager,

and where some (or all) of the databases may not have the required features.

There has been some work on speci�c constraint management strategies in a loosely coupled

environment. For example, the Demarcation Protocol [BGM92] is a method to maintain simple

arithmetic constraints. Reference [GW93] describes a method for checking distributed constraints

at a single site whenever possible. These are are special cases of the more general framework we

present here. (In fact, we can express the Demarcation Protocol in our framework and prove the

associated guarantee. This is discussed in Section 6.)

Another approach to constraint management in multi-database environments is to extend the

transaction concept to multi-databases by suitably weakening the traditional notion of correctness

of schedules [Elm91]. This approach typically restricts the data items that may be involved in a
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constraint (e.g., constraints may be over local data only for local-serializability [BGMS92]). These

approaches di�er from ours in that with extended transactions there still is no mechanism to allow

di�erent interfaces at the participating sites, and no way to monitor constraints that hold only at

particular times.

Finally, the formal aspects of our framework are related to work in Metric Temporal Logic

(MTL) [Koy92]. Our formalism can be considered an extension of MTL in which events are modeled

explicitly, and distributed rules are used as the primary constructs for speci�cation. A formalism of

events and rules is more convenient than a purely state-based formalism for studying many systems

like the ones we model; a similar observation is made in [L+93]. While our formal framework

shares its interest in speci�cation with software modeling languages such as LOTOS [BB87] and

Esterel [BG92], our formalism is much simpler than those languages since it is targeted at modeling

constraint management systems.

3 Framework

In this section, we describe our logical constraint management architecture and de�ne the three main

components of our framework, namely interfaces , strategies , and guarantees . (The toolkit is covered

in Section 4.) In the interest of saving space and keeping the discussion intuitive, we introduce

the concepts in our framework by example. In the appendix, we present the formal de�nition of

the rule language we use, and its execution semantics. appendix. As mentioned in Section 2, the

theoretical framework is similar to Metric Temporal Logic [Koy92], with some additions that make

it easy and natural to specify constraint management in loosely coupled systems.

The key components of the logical architecture are illustrated in Figure 1. Our distributed

constraint manager (CM) consists of a collection of Constraint Manager Shells (CM-Shells). The

CM-Shell interacts with the local database and cooperates with other CM-Shells to monitor or

enforce the inter-site constraints. If it is not possible to have a CM-Shell at the site of some

database, its duties can be performed by one or more of the other CM-Shells, as for Site 3 in the

�gure. In the sequel, we use the term CM to refer to one or more of the CM-Shells acting on the

behalf of the constraint manager. The three major components of our framework are described

below:

� Interfaces. For each data item involved in a constraint, the interface for that data item

describes, how the item may be read, written, and/or monitored by the CM. For example,

the interface for a data item X might specify that a request from the CM to read X will be

serviced within t1 seconds,
1 and that any user update to X will result in a noti�cation to the

CM within t2 seconds. The interface for each data item is dependent on the facilities provided

by the database system containing that item. Note that we do not �x a speci�c granularity

1We consider seconds as our time unit in this paper, but our approach applies equally well with other time units.

Note also that the use of time does not, in general, require synchronized clocks; this issue is discussed further in

Section 7.
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Figure 1: Constraint Management Architecture

for \data items" here. For example, a data item might be a single object or it might be the

set of all tuples in a database relation. Our framework also lets us de�ne a single interface for

a set of related data items (e.g., the set of salaries of all employees in the Sales department).

� Strategies. For a given constraint, a strategy is the speci�cation of an algorithm used by

the CM for monitoring or enforcing the constraint. Strategies incorporate the operations

available for the data items involved in the constraint. For example (informally), a naive

strategy for maintaining the copy constraint X = Y might specify that all updates to X are

propagated to Y , while all updates to Y are undone.

� Guarantees. For a given constraint, a guarantee is a logical description of the level of

consistency guaranteed for that constraint. For example (informally), given a copy constraint

X = Y , where X is the primary copy, a guarantee may state that Y takes every value that

X takes; that is, that no values of X are \lost."

Figure 1 depicts the relationship between the Constraint Manager, the databases, and the

applications (or users). Each database o�ers interfaces to the CM for its data items. Applications

inform the CM of each constraint that needs to be maintained. The CM provides guarantees to

the applications, based on the interfaces and the strategy it decides to follow in order to maintain

the constraint. Our approach applies to both single-site and multi-site applications. In the case of

multi-site applications (for e.g., application 3 in the �gure), the application chooses the CM-Shells

at one of its sites to be its \local" CM-Shell. This choice is arbitrary and does not a�ect the validity

of our approach.
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Our formal framework includes detailed semantics and proof rules that allow us to prove guaran-

tees from interface and strategy speci�cations. While arbitrary interfaces, strategies and guarantees

may be expressed using our framework, in practice we expect most often to use interfaces and strate-

gies from menus provided by the toolkit, with previously proven guarantees. We also plan to extend

the toolkit so that it can help the system designer derive new guarantees for di�erent interfaces

and strategies.

3.1 Specifying Interfaces

The interface for a data item involved in a constraint describes how that data item may be read,

written, or monitored by the constraint manager. Interfaces are speci�ed using a rule-based no-

tation. Note that, as in any speci�cation system, it is important for interface speci�cations to

correctly re
ect the actual behavior provided by the database containing that item. As stated

above, the database administrators at each site can choose the appropriate interfaces from a menu

or they may write their own custom interfaces.

For each data item, its interface is de�ned by a set of interface statements of the form:

E1 ^ C !� E2

The meaning of this statement is the following: If an event E1, of the form indicated by event

template E1, occurs at time t, and condition C (involving the event and local data items) is true at

t, then the database guarantees that an event E2 matching template E2 will occur at some time in

the interval [t; t+ �]. The condition C is evaluated at the time the left-hand side event occurs, and

it may be omitted when not needed.

3.1.1 Examples

In the heterogeneous systems we model, interfaces for data items may vary within and across

database systems. These interfaces can be quite varied and complex. We believe that our language

is useful to describe many interfaces that occur in practice. Below, we present some examples of

interfaces. We use the term CM to denote the CM-Shell responsible for the database o�ering the

interface (usually the local CM-Shell).

Write Interface: When a database o�ers a write interface for a data item X , it promises to

perform write operations to X requested by the CM within some time bound. We use the

event templateWR(X; b) to represent the database receiving a request for the write operation

X  b from the CM. Similarly, we use the event template W (X; b) to represent the database

performing the operationX  b. Let � be the time bound within which the database promises

to perform the requested write operation. This write interface is expressed as follows:

WR(X; b)!� W (X; b)
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Note that parameters such as b in the above rule are to be distinguished from local data

items. Parameters are simply artifacts of the rule language, whereas local data items refer

to actual data in the local database. We represent parameters by lower-case letters and local

data items by upper-case letters.

No Spontaneous Write Interface: When a database o�ers this interface for a data item X , it

promises not to update X spontaneously. An event is called spontaneous if it can occur at any

time, independent of constraint management. Spontaneous events model actions performed

by local applications that may be unaware of the CM, and that operate on the local database

independently. We use the event template Ws(X; b) to represent an application performing

the spontaneous write operation X  b. The \no spontaneous writes" interface guarantees

that there will be no Ws(X; b) events. We express this in our interface speci�cation language

by using a special event F (for false), which, by de�nition, can never occur. Using F , we

write the following speci�cation for this interface:

Ws(X; b)! F

Note that this interface does not mean that X can never be updated, only that it cannot be

updated without involving the CM. (Data items may have more than one interface.)

Notify Interface: When a database o�ers a notify interface for a data item X , it promises to

notify the CM within some time bound every time X is updated spontaneously. By using

N(X; b) to represent the CM receiving a noti�cation of the update operation X  b, and

using � to represent the time bound on noti�cation, we express this interface as follows:

Ws(X; b)!� N(X; b)

Conditional Notify Interface: This is a re�nement of the Notify Interface. In this interface, the

database noti�es the CM only when, in addition to X being updated spontaneously, some

condition is satis�ed. In addition to reducing communication costs, such an interface is useful

when the local database can evaluate conditions that cannot be evaluated from the outside.

A simple example is an interface that sends a noti�cation to the CM only when the update

changes the value of X by more than 10%. To express this interface, we use a spontaneous

write event of the form Ws(X; a; b), which represents X being updated from a to b. We then

write the following:

Ws(X; a; b)^ (jb� aj > a � 0:1)!� N(X; b)

Periodic Notify Interface: Another kind of notify interface is one in which the current value of

the data item is sent to the CM periodically. To describe such periodic interfaces, we use

the notion of periodic events of the form P (p), which occur every p seconds by de�nition. A

300-second periodic notify interface is expressed as follows:

P (300)^ (X = b)!� N(X; b)
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This interface states that every time a P (300) event occurs (every 300 seconds), a noti�cation

with the current value of X is sent to the CM within � seconds.

Read Interface: When a database o�ers a read interface for a data item X , the CM can send it

a read-request and the database will respond with the current value of X within some time

bound �. We use the event RR(X) to represent the database receiving a read request from

the CM, and the event R(X; b) to represent the CM receiving the response from the database.

We express this interface as follows:

RR(X)^ (X = b)!� R(X; b)

Parameterized Interfaces: In each of the above interfaces, the data item name X may be pa-

rameterized, yielding an interface for a set of related data items. For example, let phone(n)

denote \the phone number of n," where n is the name of an employee. Then, to specify that

the CM is noti�ed every time the phone number of any employee n is updated (spontaneously),

we use a Parameterized Notify Interface, written as:

Ws(phone(n); b)!� N(phone(n); b)

3.2 Specifying Strategies

The strategy for a constraint describes the algorithm used by the constraint manager to monitor

or enforce the constraint. Strategies are speci�ed using a rule-based notation similar to that used

for interfaces.

The strategy for a given constraint is de�ned by a set of strategy statements of the form:

E1 !� C?E2

where E1 and E2 are event templates and C is a condition involving the events and data items local

to the site of the event matching template E2. (Each event has a unique site.) This statement

states that if an event matching template E1 occurs at time t, then there exists a time t
0 in the time

interval [t; t+ �] such that if C is true at t0 then an event matching template E2 occurs at time t
0.

The condition may be omitted when it is not needed. The events represented by templates E1 and

E2 can be at di�erent sites, however, the condition C can refer to data at the site of the right-hand

side event only.

3.2.1 Example

Consider the copy constraint X = Y , where X and Y are at di�erent sites. Let X have a Notify

Interface (recall Section 3.1.1) and let Y have a Write Interface. A simple strategy in this case is

the propagation of updates from X to Y by making a write request at Y whenever a noti�cation

is received from X . Assuming the write request can follow the noti�cation within 5 seconds, we

write:

N(X; v)!5 WR(Y; v)
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Just like interfaces, strategies can be parameterized. For example, let phone1 (n) denote \the

phone number of n," and let phone2 (n) denote the same phone number stored in another database.2

We can specify that a write request is sent to phone2 (n) within 5 seconds every time a noti�cation

is received from phone1 (n) using the following rule:

N(phone1(n); v)!5 WR(phone2 (n); v)

In general, our framework is capable of expressing more complex strategies than these examples.

Each CM-Shell can have private data, stored in the CM-Shell itself, for use in strategies. This data

may be read and written in the right-hand side of strategy rules. For example, the CM can use

a local data item Cx to cache the value of X (obtained, for example, through a Periodic Notify

Interface) using the following rule:

N(X; b)!5 W (Cx ; b)

Note that Cx is a local data item maintained by the CM, while b is a parameter used only to express

the rule. To forward a write request to a remote data item Y only when the new value of X di�ers

from the cached value, we can write the rule:

N(X; b)!5 (Cx 6= b)?WR(Y; b)

The reader may observe that this and the previous rule are triggered by the same event, and that

this rule must �re before the previous one. As explained in Appendix A.1, our rule language permits

a sequence of conditions and events on the right-hand side of rules to achieve this. Note that the

CM-Shell at each site can use only data that is local to that site, therefore strategies do not need

global data access.

Once our framework has been used to specify a strategy (and to verify the correctness of a

guarantee) then the rule-based strategy speci�cation is implemented using the host language of the

Constraint Manager. In our toolkit, the implementation uses a distributed rule engine, although

other implementations could also be used.

3.3 Specifying Guarantees

A guarantee is essentially a modi�ed (usually weakened) form of the constraint being managed. As

we will see, guarantees vary in strength, from guarantees like \X = Y always," which is very useful

but very di�cult to achieve, to guarantees like \X = Y if there are no updates for a day," which

is easy to achieve but not very useful. In between these two extremes is a spectrum of weakened

guarantees that are both useful and relatively easy to achieve. One of the strengths of our approach

is that it lets us specify guarantees anywhere in this range, unlike existing systems where one either

2Note that the two databases can be of di�erent types. For example, the �rst may be a relational database while

the second is a 
at-�le system. The complexity of translation to and from these di�erent data models is handled by

the CM-Translators, described in Section 4.
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gets strong consistency (with distributed transactions, when applicable), or no consistency at all.

However, we note that identifying the right weakened guarantees that are meaningful to applications

and that can be enforced is challenging. We return to this issue in Section 7.1.

Guarantees are logical expressions involving occurrences of events and predicates over data

items and time. The basic construct of the guarantee language is the following:

fEventjConditiong@Time variable

For example, W (X; 5)@t1 means that there is a write operation \X  5" performed at time

t1. Similarly (X = 25)@t2 means that the data item X has value 25 at time t2. In addition to

this construct, we have predicates over data items, variables, and constants, and the usual logical

connectives such as and (^), or (_), not (:), implies ()), etc. We also permit a limited form of

quanti�cation for variables representing time, as described in the �rst example below. (Note that

quanti�cation over data involved in a constraint is achieved by means of parametrized data names,

as explained in Section 3.1.1.)

3.3.1 Example: Some Guarantees for Copy Constraints

Consider the case of an inter-site copy constraint X = Y between a data item X at site S1 and

a data item Y at site S2. Suppose we wish to maintain Y as a copy of X . Below, we discuss

some guarantees, one or more of which may be useful for a given application. For simplicity in

presentation we consider a single copy constraint, but our guarantees also apply to a set of inter-

site copy constraints over related data items, where X and Y are replaced by parameterized data

names.

� A simple guarantee that is desirable in many situations is that at no time should Y have

a value not previously taken by X . Informally, we call this the \Y follows X" guarantee.

Formally, we express this by saying that if Y has a certain value at time t1, then X must have

had that value at some time t2 before t1. Note that, implicitly, variables on the left-hand side

of the ) sign are universally quanti�ed, while those on the right-hand side are existentially

quanti�ed:

(Y = y)@t1 ) (X = y)@t2 ^ (t2 < t1) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : (1)

� In some cases, one may also want that every value taken by X is eventually re
ected in Y .

That is, if X = x at some time, we are guaranteed that Y = x at some later time; there are

no missing values. Informally, we call this the \X leads Y " guarantee. Formally, we express

this as follows:

(X = x)@t1 ) (Y = x)@t2 ^ (t2 > t1) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :(2)

Note that this guarantee may not be desirable in all situations. For example, if X represents

the position of a \player" in an interactive distributed game, we usually are only interested

in the latest position of the player (the most recent value of X), and we do not care about
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a missed update. On the other hand, there are situations in which it is important for each

value to be propagated. For example, if X represents the phone number of an employee, and

if Y is a copy of X on another system that is interested in recording all the phone numbers

of this employee over time, then guarantee (2) is desirable.

� In many cases, the order in which the updates are propagated is important in addition to the

assurance that they are eventually propagated. For example, if X represents the position of

a robot and Y is its copy on a system that plots the robot's path, we would like to receive

the updated positions of the robot in the order in which the updates are actually made.

Informally, we call this the \Y strictly follows X" guarantee. Formally, we express this as

follows:

(Y = y1)@t1 ^ (Y = y2)@t2 ^ (t1 < t2)) (X = y1)@t3 ^ (X = y2)@t4 ^ (t3 < t4) : : : : : : :(3)

We call guarantees such as the ones above non-metric since they do not make explicit reference

to time intervals. That is, they specify only the order in which events occur and predicates are

satis�ed, not an explicit delay between them. In contrast with non-metric guarantees, we also have

metric guarantees, which state that some event must occur or some predicate must be true within

some �xed time bound of another event or predicate. We can extend non-metric guarantees (1)

and (2) above to metric guarantees by placing a bound on the delay between the time at which the

two conditions mentioned in the guarantees are true. For example, the metric form of guarantee

(1) is the following:

(Y = y)@t1 ) (X = y)@t2 ^ (t1 � � < t2 < t1) : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : (4)

where � is a constant. This guarantee speci�es that if Y = y at time t1, then X = y at some time

t2 that is at most � seconds before t1. Informally, Y takes values held by X no more than � seconds

ago.

4 A Toolkit for Constraint Management

We have presented a framework and language for specifying interfaces, strategies, and guarantees

for constraint management in heterogeneous systems. In this section we describe how we have

used this framework to develop and implement a toolkit for constraint management. The toolkit

provides a set of easily con�gurable services that monitor or enforce constraints spanning multiple

loosely coupled databases. We �rst brie
y describe the architecture of the toolkit, and then we use

an example to illustrate some of its features.

4.1 Architecture

Figure 2 depicts the architecture of our constraint management toolkit, which is a realization

of the logical architecture depicted in Figure 1. At the lowest level we have the Raw Information

Sources (RIS), which could be relational or object-oriented database systems (OODBs), �le systems,

bibliographic information systems, electronic mail systems, network news systems, and so on. Each
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Figure 2: Constraint Management Toolkit Architecture

RIS has its own particular interface, which we call RISI. For example, for a Sybase RIS, the RISI is

SQL-based and includes the protocols to send a query to the Sybase server and receive the results.

The CM-Shell processes at the top of the �gure implement the selected strategy, which is described

in the Strategy Speci�cation. Thus, each CM-Shell is a general-purpose process that is con�gured

by reading the Strategy Speci�cation �le.

If the CM-Shell were to interact directly with the RIS, it would have to understand the pe-

culiarities of each RISI. For example, to read a data item X stored in a relational database, a

CM-Shell would have to issue a request in the particular dialect of SQL that the RIS understands.

If X is stored in an OODB or a �le system, the procedure to read X will be completely di�er-

ent. To factor this complexity away from the CM-Shells, we provide a CM-Translator (for each

RIS) that presents to the CM-Shells the local capabilities in a standard fashion. This interface

provided by the CM-Translator is the CM-Interface (CMI). The design and implementation of the

CM-Translator is helped by the CM-Raw Interface Description (CM-RID) �le, which con�gures

standard CM-Translators to the particular underlying data source by presenting the speci�cs of the

RISI in a standard format. For example, a CM-Translator for relational databases can be con�g-

ured to interface with any DBMS (e.g., Sybase, Oracle) and any database (e.g., a payroll database,

an inventory database) just by specifying the appropriate CM-RID.

A �nal component of our architecture (not shown in Figure 2) is a library of common interfaces

and strategies. Thus, the contents of the Strategy Speci�cation and the CM-RID �les can usually be

selected from available menus of proven strategies and interfaces. However, the toolkit is extensible

and can accommodate custom interface and strategy descriptions written using our rule language.

During initialization, the CM-Shells query the CM-Translators about the local capabilities and
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services. The CM-Translators respond with the interface speci�cations. The CM then suggests

strategies that are applicable to these interfaces, along with the associated guarantees. The system

administrator can either select one of the suggested strategies, or specify a di�erent strategy using

the strategy speci�cation language. Once a strategy is speci�ed, the CM distributes the rules of the

strategy to CM-Shells based on the site of the event on the left-hand side of the rule. Each rule is

executed in the CM-Shell handling the site at which the left-hand side event occurs. Based on this

distribution of rules, the CM also determines, for each event template in each rule, the CM-Shells

and/or the CM-Translators to which an event matching that template must be forwarded. During

initialization, the CM-Translators also perform any set-up required for supporting the selected

interface. For example, a CM-Translator supporting a Notify Interface for a Sybase RIS may need

to declare triggers on the underlying database.

At run-time, the CM-Shells process events received from their respective CM-Translators and

�re rules appropriately. The events that are produced as a result of rules �ring are forwarded to

the local CM-Translator and other CM-Shells as determined during initialization. CM-Translators

implement the events using the native facilities of the RIS, thus executing the strategy. The CM-

Shell supports a simple programmatic interface to allow applications to read auxiliary CM data for

the guarantees that refer to it.

4.2 Example

Consider the following scenario. A company stores the personnel information for some of its em-

ployees in a local San Francisco branch database A. Personnel information also is stored in a

database B at the headquarters in New York. These databases are loosely coupled in the sense

described in Section 1. We wish to maintain the following constraint: For each employee in the

San Francisco database, the salary stored in database A must equal the salary stored in database

B. This is an example of a parameterized copy constraint. Let salary1 (n) denote the salary of n in

database A, where, intuitively, n represents the employee ID. Similarly, let salary2 (n) denote the

salary of n in database B. The constraint is then salary1 (n) = salary2 (n) for all n in database A.

We �rst demonstrate how the toolkit is used to de�ne interfaces for salary1 (n) and salary2 (n),

and then we show how a simple strategy is speci�ed and implemented. Finally, we discuss the

validity of di�erent guarantees, and we show how, with very little e�ort, we can continue to enforce

the copy constraint even when the interface for salary1 (n) changes. The reader may wish to refer

to Figure 2 as the description proceeds.

4.2.1 Interfaces

Suppose the RIS B is a Sybase relational database that provides a write interface for data item

salary2 (n), de�ned in our language as WR(salary2 (n); b) !� W (salary2 (n); b). In practice, this

interface means that the RIS at site B can be instructed to write object salary2 (n). The CM-RID

tailors the CM-Translator to handle such write requests. In addition to the interface statement,

the CM-RID at B speci�es the following:
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� The command that has to be issued to the RIS to perform the write. In our example, the

CM-RID speci�es that to write a value b to salary2 (n), the SQL query \update employees

set salary = b where empid = n" must be sent to the SQL server. Note that we use the

parameter n in the query. Our CM-Translator performs the necessary substitution given a

particular instance of n.

� Low-level details of the protocol for querying the SQL server. In our example, the CM-RID

indicates that the underlying RID is a Sybase database, and also speci�es the network name

of the Sybase server, the port number to connect to, the name of the machine on which it is

running, etc. Using these details, the CM-Translator can send the SQL query to the RIS and

receive the acknowledgment.

Suppose the RIS at site A o�ers a notify interface for data item salary1 (n). This interface is

de�ned by the rule Ws(salary1 (n); b)!� N(salary1 (n); b). For the purpose of this example, let us

assume that the notify interface is implemented by declaring a database trigger on the data items

salary1 (n). The CM-RID speci�es what the CM-Translator at A needs to do to declare the trigger,

and what it should expect to receive from the RIS when salary1 (n) changes.

4.2.2 Strategy

Consider the following simple strategy: Make a write request to salary2 (n) within � seconds when-

ever a noti�cation of a write to salary1 (n) is received. We express this using our strategy speci�-

cation language as follows:

N(salary1 (n); b)!� WR(salary2 (n); b)

This strategy speci�cation is processed by both of the CM-Shells. The strategy speci�cation

also indicates where objects are located, i.e., that salary1 (n) is at site A and that salary2 (n) is at

B. As explained earlier, from the site of the event template on the left-hand side of the rule, the

toolkit can determine which CM-Shell is responsible for executing each rule. In our example, the

CM-Shell at A is responsible for the left-hand side of the rule because salary1 (n) is at that site.

When the A CM-Shell receives a N(salary1 (n); b) event from its CM-Translator, it forwards the

event to the B CM-Shell, since the B CM-Shell is responsible for the right-hand side of the rule.

The B CM-Shell then sends the WR(salary2 (n); b) event to its local CM-Translator. Based on the

expected maximum execution time of each CM-Shell and the maximum transmission time between

CM-Shells, the database administrators can compute an estimate for �, the time guarantee in the

rule. (See the discussion on timing guarantees at the end of Section 5.)

4.2.3 Guarantees

Given the interfaces and the strategy above, we can prove that guarantees (1), (2) and (3) of

Section 3.3.1 are all valid. We can also prove that the associated metric guarantee (4) is valid

for an appropriate �. Intuitively, it is easy to see why these guarantees are all valid; yet, there
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are important details (such as a requirement for in-order message processing) that were discovered

during the process of veri�cation of the guarantee using our proof rules.

Now consider what happens if the administrator at site A decides to change the interface for

data item salary1 (n) from the above notify interface to a read interface (described in Section 3.1.1).

Now the CM is no longer noti�ed of updates to salary1 (n); instead, the database at A only o�ers

to respond with the current value of salary1 (n) whenever it is requested. Since the only way to

�nd out about changes to salary1 (n) in this scenario is to periodically read the salaries, we must

use a polling strategy. The simplest strategy is to periodically read salary1 (n) and propagate the

value read to salary2 (n).3 We express this strategy as follows:

P (60)!� RR(X)

R(X; b)!� WR(Y; b)

Recall that the event P (60) represents a periodic event that occurs every 60 seconds.

Guarantees (1), (3) and (4) from Section 3.3.1 are valid in this scenario, while guarantee (2) is

not. Intuitively, it is easy to see why guarantees (1), (3) and (4) are valid. The reason guarantee

(2) is not valid is that since we are polling salary1 (n) periodically, it is possible for us to \miss"

updates when two or more updates to salary1 (n) occur in the same polling interval.

4.3 Implementation Status

We have implemented CM-Translators for Unix �les and relational databases. The translators are

implemented using an object-oriented approach that requires only minor amounts of rewriting when

moving to di�erent kinds of raw sources (RIS). Currently, some low-level details for communicating

with, say, Sybase must be embedded in the CM-Translator code. This code has to be rewritten

to port the CM-Translator to, say, an Oracle database. However, the amount of code that needs

to be rewritten is typically less than a page. Porting the CM-Translator to, say, a WAIS-like RIS

involves incorporating the WAIS protocol for the submission of queries and the retrieval of results.

We could avoid the need to rewrite the CM-Translator by enhancing the CM-RID format to include

a scripting language such as Tcl [Ous90]; there is a tradeo� here between complexity in the CM-

Translator and complexity in the CM-RID. The design and implementation of translators is in itself

a di�cult and interesting issue. While we currently are building translators by hand, we hope to

soon exploit related work we are doing in the context of a query mediation project [PGMW95].

We have used our toolkit to implement several constraint management scenarios such as copy

constraints for data with read, write and notify interfaces. Strategies include update propagation,

polling, and the Demarcation Protocol (described in Section 6). We are currently implementing a

large scenario for distributed constraints involving several databases at Stanford. The databases

include the Stanford \whois" database, the Computer Science Department's custom personnel

3Note that we could certainly do better, for example by caching salary1(n) at the CM and propagating updates to

salary2(n) only when the value of salary1(n) changes. In the interest of simplicity, we do not consider this strategy

here.

15



database (\lookup"), the database group's Sybase database, and a bibliographic database. There

are copy constraints for di�erent personnel data such as phone numbers, addresses, etc., stored in

the di�erent databases. We also have referential integrity constraints, such as one that speci�es that

every paper authored by a Stanford database researcher as reported by the bibliographic database

must also be mentioned in the Sybase database.

Using our toolkit, we coordinate the activities of the loosely coupled, heterogeneous databases

without modifying the databases or the existing applications, thus maintaining database autonomy.

Heterogeneity in the modes of database access and control is handled in a uniform way by describing

interfaces using our rule language. Furthermore, incorporating new databases or changing the

interface to an existing database requires very little work, since only the high-level interface and

strategy speci�cations have to be modi�ed (and can be chosen from a menu in most cases). Even

though the databases in the system are not transactional, our toolkit provides a formal notion of

data consistency that is useful in practice.

5 Failure Handling

In a distributed environment, especially a loosely coupled one, coping with failures is an important

component of any coordinating software. We classify failures of the databases in our architecture

into the following two types:4 We say a database interface has had a metric failure when it is unable

to honor the time bounds speci�ed in the interface speci�cations. In such a scenario, the actions

mandated by the interface statements are eventually performed, but not within the time bound

speci�ed. Such failures may be caused by the underlying database being overloaded or crashing.

(In many cases, crashes can be mapped to metric failures if the database has some basic recovery

facilities and can \remember" messages that need to be sent out upon recovery.) When a metric

failure occurs on one or more of the sites involved in a constraint, the metric guarantees for that

constraint are no longer valid. However, the non-metric guarantees continue to be valid, which may

allow many applications to continue to function.

The second kind of failure is one in which the interface statements are no longer valid at all.

We call this a logical failure. Such a failure may be caused by catastrophic failure of one or more

of the databases, and we expect such failures to be very infrequent. When a logical failure occurs,

both metric and non-metric guarantees involving the failed site are no longer valid until the system

is reset.

In our current implementation, failures are detected and 
agged. In the future, we plan to

incorporate a more sophisticated failure handling scheme into our toolkit, permitting applications

to deal with failures in a more sophisticated manner. Recall that in our toolkit, the CM-Translator

translates the raw interface (RISI) of the underlying database to the CM-Interface presented to the

CM-Shell. The CM-Translator also maps (when possible) failures of the RISI into metric or logical

4Throughout this paper, we assume a reliable network. Therefore, we consider only site (database) failures here.

Of course, network failures can be viewed as the failure of the sites sending the a�ected message.
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failures of the CM-Interface. On detecting a failure, the CM-Translator noti�es the local CM-Shell,

which then propagates the information to other CM-Shells so that the a�ected guarantees may be

marked as invalid.

The method used by the CM-Translator to detect failures of the RISI depends on the nature

of the RISI and the CM-Interface being supported. For example, consider a CM-Translator im-

plementing a Read Interface with a Unix �le system as the underlying database. In this case, the

the CM-Translator will use the read() system call interface to the Unix �le system. Failure of this

system call can be detected based on the return value, and such a failure can be 
agged as a failure

of the Read Interface. Depending on the reason for the failure of the read() call, the Read Interface

failure is 
agged as either a metric or a logical failure. Similarly, a CM-Translator for a Sybase

database can detect and 
ag interface failures based on the error codes returned by calls to the

Sybase library routines that communicate with the SQL server.

Sometimes, however, the nature of the RISI may make detecting failures very di�cult or impos-

sible. For example, consider a CM-Translator supporting a Notify Interface for a legacy database,

and suppose the database simply sends a message to the CM-Translator whenever there is an up-

date to some data item. If the database fails silently and does not report some update, there is no

way for the CM-Translator to detect the failure. If it is not possible to ensure that the probability

of such undetectable failures is acceptably low, then a Notify Interface should not be used for this

database. Often, one can use another available interface, such as a Read Interface, and use polling

to simulate noti�cation, as in the example in Section 4. Note that some probability of undetectable

failures exists in most systems. For example, undetected hardware failures (e.g., double parity

errors on disk or memory reads) can silently corrupt data on disk or in memory, and this is not

detected until some application fails unexpectedly.

The probability of a metric failure of an interface depends on the choice of the time bound

in the rules specifying that interface. Typically, these time bounds would be determined based

on the processing power of the information source, the expected load, the maximum estimated

communication delay (including retries), etc. In practice, these constants could be chosen to ensure

that the interface is honored with, say, 99.99% probability. It is well known that all fault tolerant

systems have to select constants (timeouts, number of retries, etc.) in a similar manner [Cri89];

the di�erence is that our toolkit makes the e�ects of choosing these constants explicit in the form

of metric guarantees, so that applications do not have to guess.

6 Additional Constraint Management Scenarios

Our framework and toolkit for constraint management can be applied in a variety of scenarios,

with interfaces and strategies ranging from simple (such as those described so far) to complex. In

this section, we brie
y illustrate some additional scenarios to show the wide range of interfaces,

strategies and guarantees that our framework and toolkit can cover.
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6.1 Demarcation Protocol

Consider the inequality constraint X � Y where X and Y are at di�erent sites. The Demarcation

Protocol [BGM92] is applicable in this scenario if the sites of X and Y both o�er certain interfaces.

The protocol guarantees that the constraint X � Y is always valid. The protocol uses local

limit data items Xl and Yl (located at the sites of X and Y respectively) and uses the constraint

managers of the underlying databases to enforce the local constraints X � Xl and Y � Yl. Using

our framework, we can accurately specify the interfaces assumed by the Demarcation Protocol,

which are fairly complex. We can also specify the Demarcation Protocol itself. Then, using our

proof rules, we can prove the guarantee X � Y based on the speci�cation of the protocol strategy

and the interfaces. Thus, our framework is capable of expressing a complex scenario, in which

we use the facilities of the underlying database (such as local constraint managers) in order to

implement a global constraint, in addition to the simple ones we discuss elsewhere in this paper.

There are many ways of implementing the Demarcation Protocol such that the above guarantee

is valid, and some of these are less desirable than the others. For example, an implementation

that simply does not change the limit data items Xl and Yl will satisfy the above guarantee, but

is not very desirable since it does not permit X (and Y ) to ever exceed (respectively, fall below)

their original limit values. We can formalize this intuitive guarantee by introducing an event to

denote a request for a limit-change operation, and by specifying that if there is enough \slack" at

one site, then a change-limit request at the other site must be granted within some time. Di�erent

implementations of this protocol (called policies in [BGM92]) can then be compared using this

guarantee. In [CGMW94], we have presented a formal speci�cation of interfaces, strategies and

guarantees for the Demarcation Protocol.

6.2 Referential Integrity

Consider a referential integrity constraint that states that for every employee ID having a record

describing a project assignment (\project record" for short) in one database, there must be a record

in another database with the salary information for that employee ID (\salary record" for short).

A weakened form of this constraint, more suitable to loosely coupled heterogeneous systems, is

the following guarantee: The above referential integrity constraint may be violated for any one

employee ID for a period of at most 24 hours. We express this guarantee using an exists predicate.5

An exists predicate E(X), where X is a data item name (usually parameterized), is true if and only

if the data item X exists in the database. In our example, let project(i) denote the project record

of an employee with employee ID i, and let salary(i) denote the salary record of that employee

as stored in the second database. The guarantee states that if the project record exists at time t

in the �rst database, the salary record must exist in the second database within 24 hours (86,400

5We use an explicit exists predicate because our language does not include general quanti�cation for data item

names (although we do have quanti�cation of time variables).
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seconds), and is expressed as follows:

E(project(i))@t) E(salary(i))@(t + 86400)

A simple strategy to realize the above guarantee is the following. At the end of each working

day, the CM deletes all project records from the projects database that do not have a corresponding

salary record in the salary database, perhaps notifying the database owner of the deleted records.

This strategy assumes the projects database permits the CM to delete records. If this is not the

case, then there may be no way for the CM to enforce the referential integrity constraint. However,

the CM could still monitor the constraint using a technique similar to that described in the next

section.

6.3 Monitor

Consider a scenario where we have a copy constraint X = Y , both X and Y have notify interfaces

(see Section 3.1.1), and the CM cannot update either data item. In this case, the best the CM

can do is to monitor the constraint. One method of monitoring the constraint is to maintain some

auxiliary data items at the site of the application6 interested in this constraint. (We discuss the

storage and access of auxiliary data in Section 7.1.) These auxiliary data items indicate the validity

of the constraint over time. In particular, we may o�er the following guarantee to an application:

((Flag = true) ^ (Tb = s))@t) (X = Y )@@[s; t� �]

Here Flag and Tb are auxiliary data items The guarantee states that if Flag is true, then X = Y

was true at all times in the time interval indicated on the right-hand side. The auxiliary data item

Tb is used to keep track of the start of the time interval during which X = Y . (In the guarantee,

we use Tb by accessing its value s on the right-hand side.) Details of the strategy used to ensure

this guarantee, as well as the proof of the guarantee using the interface and strategy speci�cations

is in [CGMW94].

6.4 Periodic Guarantees

A periodic guarantee is one that states that the constraint is valid periodically. For example,

consider an old-fashioned banking environment in which all update transactions occur between

9 a.m. and 5 p.m. Suppose we have a set of copy constraints stating that balances for each account

at the local branch and the head o�ce must be equal. A simple strategy in this situation is to

propagate the new values of account balances from the branch to the head o�ce at the end of each

working day. If the branch o�ers an interface that guarantees that there will be no updates to

account balances between 5 p.m. and 8 a.m., and if the propagation of new values at the end of

the day takes 15 minutes, we can o�er a periodic guarantee that the copy constraints will be valid

every day from 5:15 p.m. to 8 a.m. the next day. Such a guarantee permits, for example, a �nancial

6In the case of multi-site applications, this is the site of the CM-Shell that services the application. The choice of

a CM-Shell can be arbitrary.
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analysis application at the main o�ce to proceed with the assurance of consistency, assuming it

runs in the above time interval.

7 Discussion

In this section, we discuss some details of how applications can use the guarantees o�ered by our

toolkit. We also explain why the implementation of strategies does not require global data access

and clocks, and we discuss how auxiliary CM data is stored and accessed.

7.1 Using Guarantees

From the viewpoint of an application, weakened notions of consistency as expressed by our guar-

antees are not as easy to use as conventional, strict consistency is. Yet, given the restrictions on

data access and control in a loosely coupled heterogeneous environment, weakened consistency is

usually all that can be o�ered. Weakened consistency is certainly more useful than no consistency

guarantees at all, which is what usually is o�ered to applications in current systems. In this section,

we discuss how applications can use weakened consistency guarantees.

The ease of use of a guarantee depends on the \strength" of the guarantee. Guarantees that

are relatively strong are easy to use. For example, a strong non-metric guarantee like X � Y (as

o�ered by the Demarcation Protocol) permits the application know at all times that the data it

sees is consistent. Similarly, consider guarantees (1) and (2) of Section 3.3.1 from the viewpoint of

an application that runs at Y 's site and tabulates the di�erent values taken by X . This application

can read Y and be assured that Y is a value previously taken by X (due to guarantee (1)) and that

Y does not miss any values that X takes (due to guarantee (2)). Hence, these guarantees permit

the application to know that its tabulation is correct.

The guarantees that are harder to use are those that are conditional on the values of some

auxiliary data items. For example, consider the following guarantee introduced in Section 6.3:

((Flag = true) ^ (Tb = s))@t) (X = Y )@@[s; t� �]

In order to use this guarantee, the application must read the values of the auxiliary data items Flag

and Tb. Such auxiliary data may be stored in a private database of the CM-Shell at the site of the

application. In this case, the application reads their values through the CM-Shell. Alternatively,

the underlying database at the site may o�er to store such auxiliary data for the CM-Shell. In

this case, the application can read the auxiliary data directly from the database. In our toolkit,

for example, auxiliary data for a CM-Shell that is at the site of a Sybase database is stored in

the Sybase database, while the auxiliary data for a CM-Shell that is at the site of a bibliographic

information system is stored in a private database.

Note that guarantees are always designed in such a way that that applications can use them

without the need for global transactions. This is done by ensuring that reading local data only

is su�cient to conclude some desirable properties of the global data. In the above guarantee, for
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example, by reading local (auxiliary) data items Flag and Tb, an application can determine the

validity of the global constraint X = Y . It is a straightforward extension of the strategy and

guarantee in that example to replicate Flag and Tb at the site of each application interested in the

guarantee, so that each application accesses only local data.

The reader will note that it is important to read the data items on the left-hand side of the )

in the guarantee consistently. If the auxiliarly data items Flag and Tb are stored in the CM-Shell,

the CM-Shell ensures that they are read consistently, since they are under its control. If, however,

they are stored in the underlying database, then the database must have some facility to permit

consistent read of these data items.

Once the application reads the auxiliary data items Flag and Tb, it can determine whether the

constraint was valid during the interval speci�ed on the right-hand side of the guarantee. To see

how this guarantee is useful, suppose that the application received some query results based on the

values of X and Y at some time in the past. Then this guarantee permits the application to check

whether that the query was computed based on a consistent state of the data. If X = Y was true

at the time at which the earlier query was computed, the application can proceed with con�dence

in the query results. If the guarantee is inconclusive about whether X = Y was true at the query-

computation time (either because Flag is false or because the time interval on the right-hand side

of the guarantee does not include the time of interest to the application), the application can either

proceed with the understanding that the query results may not be accurate, or it can recompute

the query in the hope that the new computation will be performed on a consistent state.

In this paper, we have illustrated guarantees only for some simple copy, inequality, and refer-

ential integrity constraints. As constraints get more complex, their guarantees will also increase

in complexity, making them more di�cult to use. However, note that simple constraints like the

ones we consider here are the most common kind of constraints in a loosely coupled heterogeneous

environment, where it is unlikely that autonomous data repositories will have very complex inter-

dependencies. Furthermore, if there are complex constraints in a loosely coupled heterogeneous

system, they are often split into distributed copy constraints plus local constraints. For example,

consider the constraint X = Y + Z, where X , Y , and Z are at three di�erent sites. A common

way to manage this constraint is to have cached copies Yc and Zc of Y and Z, respectively, at the

site where X is. Hence, we would have the constraints X = Yc + Zc, Yc = Y and Zc = Z. Only

the simple copy constraints are distributed and they can be handled by the strategies of Section

3.3.1, for instance. Thus, even if our framework is used for simple constraints only, we believe it

can cover the vast majority of the scenarios of interest for loosely coupled heterogeneous systems.

7.2 Executing Strategies

In Section 7.1 we have seen how the use of guarantees does not require global transactions. Similarly,

execution of strategies (rules) does not require global transactions. To see this, note that while the

left-hand side and right-hand side of a rule each (separately) execute \atomically," the entire rule

does not. Further, each side of a rule is restricted to accessing data that is all at the same site.
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Thus the atomic execution of each side of the rule can be implemented in the local CM-Shell.

Another issue is that of clock synchronization. In the formal part of our work, we use global time

to reason about events and conditions. This approach is similar to that in [Koy92]. For example,

consider a rule of the form E1 !5 E2 where events E1 and E2 matching the event templates E1 and

E2, respectively, are at di�erent sites. This rule states that if E1 occurs at site S1 at 9:00:00 a.m.,

then E2 must occur at site S2 before 9:00:05 a.m., where both times refer to absolute, wall-clock

time. Recall that this is a speci�cation of an interface or strategy based on expected maximum

delays. Implementing such a rule does not require any access to global time (or even a notion of

time in the implementation). Thus our toolkit does not rely on global clock synchronization for

implementing strategies even though we use it as a reasoning tool in our formal framework. Certain

kinds of guarantees, such as the periodic guarantees of Section 6, explicitly refer to global time, and

they assume global clocks. Such a scenario does not pose a problem as long as the time intervals

speci�ed in the guarantee are signi�cantly larger than the expected skew in system clocks. In the

example of Section 6, a clock skew of a few seconds (or even minutes) can be accommodated by

including an error margin in the interval speci�ed in the guarantee.

8 Conclusion

Distributed integrity constraints arise naturally when information systems inter-operate, due to

interdependencies between data. Traditional constraint management techniques assume facilities

like atomic transactions, locking, and global queries. While these are reasonable assumptions in

centralized or tightly coupled distributed environments, they typically do not hold in loosely cou-

pled heterogeneous environments, and traditional constraint management techniques are therefore

inapplicable in such cases. Another characteristic of heterogeneous environments is that di�erent

databases o�er di�erent facilities and capabilites for accessing data, which also makes constraint

management more di�cult. Currently, constraints in heterogeneous environments are either not

monitored at all, or are monitored using ad-hoc techniques. Such techniques are error-prone and

can lead to irreparable inconsistencies in the databases.

We have presented a framework and a toolkit for constraint management in loosely coupled,

heterogeneous information systems. Our framework formalizes weakened notions of consistency,

which are essential in real-world loosely coupled heterogeneous scenarios, where it is not possible

to guarantee strict consistency. Our framework also allows us to formally specify the interfaces

each database o�ers, along with constraint management strategies. Our toolkit provides a set of

con�gurable modules that enable us to monitor and enforce constraints in a uniform and useful

manner.
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Appendix A Syntax and Semantics of Rule Language

In Section 3, we motivated and informally presented the rule language used in our framework.

Many concepts were introduced by example in that section. In this section, we present the formal

speci�cation of the syntax and semantics of our rule language. Examples of how these de�nitions

can be used to prove guarantees of consistency can be found in [CGMW94].

Appendix A.1 Events, Templates and Rules

We �rst de�ne events and event templates, which are the building blocks of our rule langage. The

syntax and informal semantics of the rule language are presented next. (Formal semantics of the

rule language are in the next section.)

Let fD1; D2; : : : ; Dng be the set of all data items in the system, including all the databases and

any data stored by the constraint manager. An interpretation I is a function that maps each Di

to a value, yielding a state of the system. For example, if we have three data items fD1; D2; D3g,

then a possible interpretation is fD1 = 7; D2 = 14; D3 = 49g. We permit an interpretation to

\under-specify" the state by allowing some data items to map to null, meaning these data items

can assume any value. The system passes through a sequence of states, each represented by an

interpretation of its data items.

The behavior of the databases and the constraint manager is described by events . For the

purposes of constraint management, we divide events into two types:

� Spontaneous events , which occur as a result of users or application programs operating on

the databases.

� Generated events , which occur as a (direct or indirect) result of a strategy being executed by

the CM or an interface being maintained by a database.

Each event is represented using a six-tuple: E = (time; desc; old; new; rule; trigger), where the

components of the tuple are described below:

time: The time at which the event E occurs. For simplicity, we assume that all references are to

global \physical" time. We use time mainly for reasoning about correctness, and as we will

see, in practice we do not require synchronized clocks.

desc: The descriptor of the event, drawn from the following set of descriptors. (This set can be

expanded by adding new templates and their semantics.)

fWs(x; );Wg(x; ); RR(x); N(x; );WR(x; )g

old: The interpretation representing the state of the system just before the event occurs.

new: The interpretation representing the state of the system just after the event occurs.
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rule: If E is a generated event, this is a rule whose \�ring" resulted in the occurrence of this event.

If E is a spontaneous event, this component is null. Rules are described below.

trigger: If E is a generated event, this is the event which caused the rule above to �re. If E is a

spontaneous event, this is null.

For an event E, we denote a component of the event using dot notation. For example, E:old denotes

the old component of the event E.

We de�ne an event template to be an event descriptor in which some of the components are

parameterized or \wild-carded." An event template represents the set of all event descriptors that

can be obtained from the template by substituting particular values for the parameters and wild-

cards. For example, Ws(X; b) represents the in�nite set of spontaneous write event descriptors that

have X as the �rst component and any value as the second component. We use \ " to denote

a wild-card|a parameter whose name is not important. Thus Wg( ; ) represents the set of all

generated write event descriptors (of any value to any data item in the system). We use E to

denote event templates. In the sequel we use Ws(X; b) as shorthand for Ws(X; ; b).

We now de�ne what it means for an event to match an event template. We say an event

E matches an event template E if there is an interpretation I of the variables in E such that

substituting using I in E yields E. Such a matching interpretation I , if it exists, is denoted by

mi(E; E). The special false event template, F , does not match any event (by de�nition).

The general form of a rule is

E0 ^ C0 !� C1?E1; C2?E2; : : : ; Ck?Ek

where Ei are event templates, C0 is a boolean expression involving data items local to the site of

E1 and variables, and Ci are boolean expressions involving data items local to the site of E1 and

variables.7 The meaning of this rule is as follows: If an event matching the event template on the

LHS occurs at a time t at which the condition C0 is true, then there exist ti 2 [t; t+ �]; i = 1 : : :k

where ti < ti+1; i = 1 : : :k � 1 such that at time ti, the condition Ci is evaluated, and if it

evaluates to true, the event matching event template Ei occurs. The event corresponding to the

event template Ei is obtained by substituting in Ei using the matching interpretation for the LHS,

mi(E0; E0). Note that variables on the LHS are implicitly universally quanti�ed, while variables

on the RHS that do not occur on the LHS are implicitly existentially quanti�ed. The bindings of

variables from the LHS are passed on to the RHS (through the matching interpretation), so that a

variable occurring on both sides takes on the same value.

Appendix A.2 Valid Executions

We de�ne the semantics of our rule language using the concept of valid executions over a system

of databases. A valid execution is an execution (E1; : : : ; En) that satis�es the following properties.

Note that these properties re
ect the semantics of rules described in Section 3 and Appendix A.1.

7All the events on the RHS of a rule must have the same site.
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1. The events in the sequence are sorted in order of nondecreasing time.

8i; j 2 [1; n]; Ei:time < Ej :time) i < j

2. For each event in the execution: If the event descriptor is a (spontaneous or generated) write,

then the new interpretation maps the corresponding data item to the value written, with all

other data items being mapped to the same value in both old and new. If the event descriptor

is not a write, then the old and new interpretations are identical. Formally,

8i = 1 : : :n,

if Ei:desc = Ws(X;�; �) then Ei:new = Ei:old� fX = �g
S
fX = �g

else if Ei:desc = Wg(X; �) then Ei:new = Ei:old� fX = g
S
fX = �g

else Ei:new = Ei:old.

3. The old interpretation in each event is identical to the new interpretation in the immediately

preceding event. That is, the only changes to the interpretations are those caused by events.

Note that interpretations model only data items related to constraints, hence this restriction

applies to only such constraint data; other data items may change their values.

Ei:old = Ei�1:new i = 2 : : :n

4. For all i = 1 : : :n, if Ei is a spontaneous event then both Ei:rule and Ei:trigger are null.

5. For all i = 1 : : :n, if Ei is a generated event, then (informally) its rule component speci�es

the rule whose �ring caused Ei to occur, and its trigger component speci�es the event whose

occurrence caused the rule to �re. Further, the LHS and RHS conditions of the rule must be

satis�ed by the appropriate interpretations.

Formally, if Ei is a generated event then both Ei:rule and Ei:trigger are non-null. Further,

the following properties are true:

(a) Ei:trigger is an event that matches the LHS event template of Ei:rule. Let the matching

interpretation be I ;

(b) I can be extended8 to an interpretation I 0 such that substituting using I 0 in a RHS event

template Ej of Ei:rule gives Ei;

(c) The LHS condition of Ei:rule is satis�ed by Ei:trigger:new;

(d) The RHS condition Cj (corresponding to Ej) of Ei:rule is satis�ed by Ei:old.

6. Informally, the converse of the previous property. That is, if an event matching the LHS

event template of some rule occurs and if the LHS and (some) RHS conditions of that rule

are satis�ed at the appropriate times, then events matching the corresponding RHS event

templates occur within the time speci�ed by the rule.

8We say an interpretation I is extended to an interpretation I
0 if the set of non-null mappings in I is a subset of

the set of non-null mappings in I
0.
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Formally, if Ei matches the LHS of a rule r: E0 ^ C0 ! C1?E1 : : :Ck?Ek ; B � �, and Ei:new

satis�es C0, then there exist tj 2 [Ei:time; Ei:time + �]; j = 1 : : :k where tj < tj+1; j =

1 : : :k � 1 and, for all j = 1 : : :k, exactly one of the following holds true:

� Cj is false at tj ;

� there exists an event Ej , such that Ej :time = tj , Ej :old satis�es Cj , and substituting

using matching interpretation mi(Ei; E0) in Ej gives Ej:desc. Further, Ej :rule = r and

Ej:trigger = Ei.

7. This property formalizes our assumptions of in-order message delivery between sites and

in-order processing at each site. To do this, we �rst introduce some additional notation.

If Ei and Ej are events in an execution such that Ej :trigger = Ei and Ej :rule = R we write

Ei ;
R Ej .

We say rules R1: E11 ^C1 ! C2?E12 and R2: E21 ^C1 ! C2?E22 are related if site(E11 ) = site(E21 )

and site(E12 ) = site(E22 ).

The formal statement of this property is that if E1@t1 ;
R1 E2@t2 and E3@t3 ;

R2 E4@t4,

where R1 are R2 are related rules, then t1 < t3 i� t2 < t4.

Using the above speci�cation of the semantics of our rule language, in [CGMW94] we derive

proof rules and present proofs of some consistency guarantees.
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