
Maintenance of Data Cubes and Summary Tables in a

Warehouse

Inderpal Singh Mumick

AT&T Laboratories

mumick@research.att.com

Dallan Quass

Stanford University

quass@cs.stanford.edu

Barinderpal Singh Mumick

New Jersey Institute of Technology

bsm5485@hertz.njit.edu

Paper Number 222

Abstract

Data warehouses contain large amounts of information, often collected from a variety of independent

sources. Decision-support functions in a warehouse, such as on-line analytical processing (OLAP), involve

hundreds of complex aggregate queries over large volumes of data. It is not feasible to compute these

queries by scanning the data sets each time. Warehouse applications therefore build a large number of

summary tables, or materialized aggregate views, to help them increase the system performance.

As changes, most notably new transactional data, are collected at the data sources, all summary tables

at the warehouse that depend upon this data need to be updated. Usually, source changes are loaded

into the warehouse at regular intervals, usually once a day, in a batch window, and the warehouse is

made unavailable for querying while it is updated. Since the number of summary tables that need to be

maintained is often large, a critical issue for data warehousing is how to maintain the summary tables

e�ciently.

In this paper we propose a method of maintaining aggregate views (the summary-delta table method),

and use it to solve two problems in maintaining summary tables in a warehouse: (1) how to e�ciently

maintain a summary table while minimizing the batch window needed for maintenance, and (2) how to

maintain a large set of summary tables over the same base tables. We show that much of the work required

for maintaining one summary table by the summary-delta method can be re-used in maintaining other

summary tables, so that a set of summary tables can be maintained e�ciently.

While several papers have addressed the issues relating to choosing and materializing a set of summary

tables, this is the �rst paper to address maintaining summary tables e�ciently.

1 Introduction

Data warehouses contain information that is collected from multiple, independent data sources and integrated

into a common repository for querying and analysis. Often, data warehouses are designed for on-line analytical

processing (OLAP), where the queries aggregate large volumes of data in order to detect trends and anomalies.

In order to speed up query processing in such environments, warehouses usually contain a large number of

summary tables, which represent materialized aggregate views of the base data collected from the sources.

The summary tables group the base data along various dimensions, corresponding to di�erent sets of group-

by attributes, and compute various aggregate functions, often called measures. As an example, the cube

operator [GBLP96] can be used to de�ne several such summary tables with one statement.

As changes are made to the data sources, the warehouse views must be updated to reect the changed

state of the data sources. The views either can be recomputed from scratch, or incremental maintenance tech-

niques [BC79, SI84, RK86, BLT86, Han87, SP89, QW91, Qua96, CW91, GMS93, GL95, LMSS95, ZGHW95]

can be used to calculate the changes to the views due to the source changes. Using the incremental main-

tenance approach, the warehouse can be updated either immediately as soon as a change from a source is

1

received, or the update can be deferred until a time when a large batch of updates is applied to the warehouse

at once.

Most of the work and implementation on view maintenance has involved the immediate case [BLT86,

QW91, CW91, GL95]. Immediate maintenance has the downside that each update into the warehouse incurs

the overhead of updating the views. This overhead increases with the number of views and their complexity.

Another problem with immediate maintenance in a warehousing environment is that data warehouse applica-

tions often require that the state of the views not change while the warehouse is being accessed, so that readers

see a consistent snapshot of the warehouse across a sequence of multiple queries during analysis [AL80]. For

these reasons, warehouses are typically maintained in deferred mode, with the source changes received during

the day applied to the views in a nightly batch window, during which time the warehouse is unavailable to

readers.

The nightly batch window involves updating the base tables (if any) stored at the warehouse, and main-

taining all the materialized summary tables. The problem with this approach is that the warehouse is typically

unavailable to readers while the views are being maintained, due to the large number of updates that need

to be applied. Since the warehouse must be made available to readers again by the next morning, the time

required for maintenance is often a limiting factor in the number of summary tables that can be made available

in the warehouse. Because the number of summary tables available has such a signi�cant impact on OLAP

query performance, maintaining the summary tables e�ciently is crucial.

This paper addresses the issue of e�ciently maintaining a set of summary tables in a data warehouse.

Using e�cient incremental maintenance techniques, it is possible to increase the number of summary tables

available in the warehouse, or alternatively, to decrease the time that the warehouse is unavailable to readers.

The paper includes the following contributions:

� Incremental maintenance techniques for summary tables are given. Except for [Qua96], previous work

on view maintenance has touched upon aggregate views only briey [GMS93, GL95]. We propose a new

paradigm, called the summary-delta tables method, for maintenance of aggregate views.

� A general strategy to minimize the batch time needed for maintenance is to split the maintenance work

into propagate and refresh functions. Propagate can occur outside the batch window, while refresh occurs

inside the batch window. The propagate and refresh split for relational algebra was originally presented

and formalized in [CGL+96]. We use the propagate and refresh approach of [CGL+96], and extend it to

aggregate views by giving algorithms that split the maintenance work required for summary tables into

propagate and refresh functions.

� The work required to maintain one summary table often can be re-used toward maintaining other

summary tables. Thus, a set of summary tables can be maintained more e�ciently together than

maintaining each summary table in isolation. We show how multiple summary tables can be related so

that their maintenance can take advantage of the computation done to maintain other tables.

Paper outline: Section 2 presents a motivating example illustrating the importance of e�cient incremental

maintenance of summary tables. Background and notation is given in Section 3. Section 4 presents propagate

and refresh functions for maintaining individual summary tables. Section 5 explains how multiple summary

tables can be maintained e�ciently together. The summary-delta table method described in this paper has

been implemented, and a performance study based upon it is shown in Section 6. Related work and conclusions

appear in Section 7.

2 Motivating Example

Consider a warehouse of retail information, with point-of-sale (pos) data from hundreds of stores. The point

of sale data is stored in the warehouse in a large pos table, called a fact table, that contains a tuple for each

2

item sold in a sales transaction. Each tuple has the format

pos(storeID, itemID, date, qty, price).

The attributes of the tuple are the id of the store selling the item, the id of the item sold, the date of the sale,

the quantity of the item sold, and the selling price of the item. The pos table is allowed to contain duplicates,

for example, when an item is sold in di�erent transactions in the same store on the same date.

In addition, a warehouse will often store dimension tables, which contain information related to the fact

table. Let the stores and items tables contain store information and item information, respectively. The key

of stores is storeID, and the key of items is itemID.

stores(storeID, city, region).

items(itemID, name, category, cost).

Data in dimension tables often represents dimension hierarchies. A dimension hierarchy is essentially a

set of functional dependencies among the attributes of the dimension table. For our example we will assume

that in the stores dimension hierarchy, storeID functionally determines city, and city functionally determines

region. In the items dimension hierarchy, itemID functionally determines name, category, and cost.

In order to answer aggregate queries quickly, a warehouse will often store a number of summary tables,

which are materialized views that aggregate the data in the fact table, possibly after joining it with one or

more dimension tables. Figure 1 shows four summary tables, each de�ned as a materialized SQL view. We

assume that these views have been chosen to be materialized, either by the database administrator, or by

using an algorithm such as [HRU96].

CREATE VIEW SID sales(storeID, itemID, date, TotalCount, TotalQuantity) AS

SELECT storeID, itemID, date, COUNT(*) AS TotalCount, SUM(qty) AS TotalQuantity

FROM pos

GROUP BY storeID, itemID, date

CREATE VIEW sCD sales(city, date, TotalCount, TotalQuantity) AS

SELECT city, date, COUNT(*) AS TotalCount, SUM(qty) AS TotalQuantity

FROM pos, stores

WHERE pos.storeID = stores.storeID

GROUP BY city, date

CREATE VIEW SiC sales(storeID, category, TotalCount, EarliestSale, TotalQuantity) AS

SELECT storeID, category, COUNT(*) AS TotalCount, MIN(date) AS EarliestSale, SUM(qty) AS TotalQuantity

FROM pos, items

WHERE pos.itemID = items.itemID

GROUP BY storeID, category

CREATE VIEW sR sales(region, TotalCount, TotalQuantity) AS

SELECT region, COUNT(*) AS TotalCount, SUM(qty) AS TotalQuantity

FROM pos, stores

WHERE pos.storeID = stores.storeID

GROUP BY region

Figure 1: Example summary tables

3

Note that the names of the views have been chosen to reect the group-by attributes. The character S

represents storeID, I represents itemID, and D represents date. The notation sC represents the city for a

store, sR represents the region for a store, and iC represents the category for an item. For example, the name

SiC sales implies that storeID and category are the group-by attributes in the view de�nition.

The views of Figure 1 could represent four of the possible points on a \data cube" as described in [GBLP96],

except for the use of date as both a dimension and a measure. Another di�erence between this paper and

previous work on data cubes is that in previous work the data being aggregated comes solely from the fact table,

with dimension hierarchy information obtained implicitly. As mentioned earlier, data warehouses typically

store dimension hierarchy information explicitly in dimension tables; in this paper we extend the data-cube

concept to include explicit joins with dimension tables (see Section 3.3).

As sales are made, changes representing the new point-of-sale data come into the warehouse. For the

reasons mentioned in Section 1, most warehouses do not apply the changes immediately. Instead, changes are

deferred and applied to the base tables and summary tables in the warehouse at night in a single batch. Recall

that deferring the changes allows analysts that query the warehouse to see a consistent snapshot of the data

throughout the day, and can make the maintenance more e�cient.

Although it is often the case that changes to a warehouse involve only insertions, for the sake of example in

this paper we will assume that the changes involve both insertions and deletions. In order to correctly maintain

an aggregate view in the presence of deletions it is necessary to include a COUNT(*) aggregate function in the

view. Having COUNT(*) makes it possible to determine when all tuples in a group have been deleted (i.e., when

COUNT(*) for the group becomes 0), implying the deletion of the tuple for the group in the view. We have

included COUNT(*) explicitly in the example views above, but it also could be added implicitly when the view

is materialized in the warehouse.

For simplicity of presentation, we will usually assume in this paper that maintenance is performed in

response to changes only to the fact table, and that the columns being aggregated do not include null values.

However, the algorithms we present are easily extended to handle changes also to the dimension tables, as well

as nulls in the aggregated columns. The e�ect of changes to dimension tables is considered in Section 4.1.4,

and the e�ect of nulls in the aggregated columns is considered in Section 3.1.

2.1 Maintaining a single summary table

We will this section we illustrate by example our summary-delta table method, using it to maintain the

SID sales summary table of Figure 1. Later in Section 2.2, we show that much of the work in maintaining

SID sales can be re-used to maintain the other summary tables in the �gure. The complete algorithms for

maintaining a single summary table and a set of summary tables appear in Sections 4 and 5 respectively.

An important aspect of our maintenance algorithm is that the maintenance process is divided into two

functions: propagate and refresh. The work of computing a summary-delta table happens within the propagate

function, which can take place without locking the summary tables so that the warehouse can continue to be

made available for querying by clients. Summary tables are not locked until the refresh function, during which

time the summary table is updated from the summary-delta table.

Propagate: The propagate function involves creating a summary-delta table from the deferred set of changes.
The summary-delta table represents the net changes to the summary table due to the changes to the fact table.
Let the deferred set of insertions be stored in table pos ins and the deferred set of deletions be stored in table
pos del. Then the summary-delta table is derived using the following SQL statement, without accessing the
base pos table.

CREATE VIEW sd SID sales (storeID, itemID, date, sd Count, sd Quantity) AS

SELECT storeID, itemID, date, SUM(count) AS sd Count, SUM(quantity) AS sd Quantity

FROM ((SELECT storeID, itemID, date, 1 as count, qty as quantity FROM pos ins)

UNION ALL

4

(SELECT storeID, itemID, date, -1 as count, -qty as quantity FROM pos del)

)

GROUP BY storeID, itemID, date

To compute the summary-delta table, we �rst perform a projection on the inserted and deleted tuples so

that we have 1 for count and qty for quantity from the inserted tuples, and the negative of those values from

the deleted tuples. We then take the union of this result and aggregate it, grouping by the same group-by

attributes as in the summary table. The resulting aggregate function values represent the net changes to the

corresponding aggregate function values in the summary table. The propagate function is explained fully in

Section 4.1.

Refresh: The refresh function applies the net changes represented in the summary-delta table to the sum-

mary table. The function to refresh SID sales appears in Figure 2, and is described below. It takes as input

the summary-delta table sd SID sales, and the summary table SID sales, and updates the summary table to

reect the changes in the summary-delta table. For simplicity, we assume here that there are no null values

in pos. Null values will be considered later when deriving the geenric refresh algorithm.

The refresh function has been designed to run as quickly as possible. Except for certain cases involving

MIN and MAX (see Section 4.2), the refresh function does not require access to the base pos table, and all

aggregation is performed in the propagate function. Each tuple in the summary-delta table causes a single

update to the summary table, and each tuple in the summary table is updated at most once.

For each tuple �t in sd SID sales:

Let tuple t = (SELECT *

FROM SID sales d

WHERE d.storeID = �t.storeID AND d.date = �t.date AND d.itemID = �t.itemID)

If t is not found,

Insert tuple �t into SID sales

Else /* if t is found */

If �t.sd Count + t.TotalCount = 0,

Delete tuple t from SID sales

Else

Update tuple t.TotalCount += �t.sd Count,

t.TotalQuantity += �t.sd Quantity

Figure 2: Refresh function for SID sales.

Intuitively, the refresh function of Figure 2 can be written as an embedded SQL program using cursors

as follows. A cursor c1 is opened to iterate over each tuple �t in the summary-delta table sd SID sales. For

each �t, a query is issued and a second cursor c2 is opened to �nd a matching tuple t in the summary table

SID sales (there is at most one matching t since the match is on the group-by attributes). If a matching tuple

t is not found, then the �t tuple is inserted into the summary table. Otherwise, if t is found it is updated

or deleted using cursor c2, depending upon whether all tuples in t's group have been deleted. The refresh

function is explained fully in Section 4.2, including an explanation of how it can be optimized when certain

integrity constraints on the changes hold.

2.2 Maintaining multiple summary tables

We now give propagate functions that create summary deltas for the remaining summary tables of Figure 1.

E�ciently maintainingmultiple summary tables together allows more opportunity for optimization than main-

5

taining each summary table individually, because the summary-delta table computed for the maintenance of

one summary table often can be used to compute summary-delta tables for other summary tables. Since a

summary-delta table already involves some aggregation over the changes to the base tables, it is likely to be

smaller than the changes themselves, so using a summary-delta table to compute other summary-delta tables

will likely require fewer tuple accesses than computing each summary-delta table from the changes directly.

The queries de�ning summary-delta tables for sCD sales, SiC sales, and sR sales are shown in Figure 3.

The summary-delta tables for sCD sales and SiC sales both reference the summary-delta table for SID sales,

and the summary-delta table for sR sales references the summary-delta table for sCD sales.

CREATE VIEW sd sCD sales(city, region, date, sd Count, sd Quantity) AS

SELECT city, region, date, sum(sd Count) AS sd Count, sum(sd Quantity) AS sd Quantity

FROM sd SID sales, stores

WHERE sd SID sales.storeID = stores.storeID

GROUP BY city, region, date

CREATE VIEW sd SiC sales(storeID, category, sd Count, sd EarliestSale, sd Quantity) AS

SELECT storeID, category, sum(sd Count) AS sd Count, min(date) AS sd EarliestSale,

sum(sd Quantity) AS sd Quantity

FROM sd SID sales, items

WHERE sd SID sales.itemID = items.itemID

GROUP BY storeID, category

CREATE VIEW sd sR sales(region, sd Count, sd Quantity) AS

SELECT region, sum(sd Count) AS sd Count, sum(sd Quantity) AS sd Quantity

FROM sd sCD sales

GROUP BY region

Figure 3: Propagate Functions for sCD sales, SiC sales, and sR sales.

Notice that the summary-delta table sd sCD sales includes the region attribute, which is not necessary

to maintain sCD sales. Region is included so that later in the de�nition of sd sR sales we do not need to

join sd sCD sales with stores. Including region in sd sCD sales does not a�ect the maintenance of sCD sales

because in the dimension hierarchy for cities we have speci�ed that city functionally determines region, i.e.,

every city belongs to a single region, so grouping by (city, region, date) results in the same groups as grouping

by (city, date).

The refresh functions corresponding to the above summary-delta tables are not given in this section.

In general they follow in a straightforward fashion from the example refresh function for SID sales given in

Section 2.1, with the exception of the MIN aggregate function in SiC sales. In Section 4.2 we show how the

refresh function handles MIN and MAX aggregate functions.

2.3 Previous Aggregation Techniques

The technique of [GMS93] works by computing a set of insertions and deletions (combined into one delta set

� with positive and negative counts) for each materialized view. For aggregate views, whenever a tuple is

inserted or deleted into a group in the base table, the tuple for the corresponding group is deleted from the

materialized view. All such tuples are then recomputed from the base tables.

In [GL95], maintenance expressions for views having duplicate semantics are given, including an example

showing how to update an aggregate function (without group by) using the values of the aggregate function

applied to the set of insertions and deletions to the base data. However, maintenance of aggregate views

6

with group-by attributes is not considered. [JMS95] discusses the computational complexity of immediately

maintaining a single aggregate view in response to a single insertion into a chronicle (sequence of tuples).

The maintenance algorithms of [Qua96] extend the maintenance expressions of [GL95] by including expres-

sions for updating aggregate views with group-by attributes. The major di�erences between the current paper

and that of [Qua96] are: [Qua96] gives general maintenance expressions for maintaining views with aggrega-

tion, with little attention to e�ciency, while the current paper develops a method for maintaining a restricted

class of aggregate views, called the generalized cube views, which commonly appears as summary tables in

a data warehouse, and presents a method to maintain views of this type very e�ciently. The maintenance

algorithm of [Qua96] focuses mainly on deleting and inserting tuples in the view, while the summary-delta

table method updates the view tuples. In addition, [Qua96] considers maintaining only one aggregate view

at a time, while this work shows how to reduce the total amount of work by maintaining multiple summary

tables together. Also note that [Qua96] was presented at a workshop without a formal proceedings.

2.4 Importance of e�cient incremental maintenance

We will illustrate the bene�t that can be obtained by maintaining summary tables using the summary-delta

algorithm presented in this paper. For the summary tables of Figure 1, we contrast the cost of recomputing

from scratch against the cost of incremental maintenance using the counting algorithm of [GMS93] and the

summary-delta algorithm proposed in this paper, and further contrast the cost of maintaining each summary

table in isolation against the cost when summary-delta tables are re-used to maintain other summary-delta

tables.

Tuple Reads and Writes

Recomputation Summary-delta maintenance Counting[GMS93] maintenance

Summary table Individual Reuse deltas

SID sales 1,100,000 11,000 11,000 22,000

sCD sales 110,000 10,100 1,100 20,200

SiC sales 102,000 11,000 2,000 512,000

sR sales 2,010 10,010 110 1,010,020

Total cost 1,314,010 42,110 14,210 1,564,220

Table 1: Bene�ts of summary-delta Maintenance Algorithm.

Given a particular database (described in Appendix A), Table 1 shows the number of tuple reads and writes

required to recompute and incrementally maintain each of the summary tables. The �rst column in Table 1

shows the number of tuple accesses required to recompute each of the four summary tables, assuming that

summary tables are recomputed from other summary tables when possible, so that once the SID sales summary

table has been computed it can be used to compute the sCD sales and SiC sales summary tables, and so on.

The next two columns show the number of tuple accesses required to maintain each of the four summary tables

using the summary-delta table method. The second column assumes that each summary table is maintained

directly from the changes to the pos table, while the third column assumes that summary-delta tables created

for one summary table are re-used in the creation of summary-delta tables for other summary tables (using the

queries of Figure 3). The fourth column uses the counting algorithm [GMS93] to do incremental maintenance.

A discussion of how the numbers in Table 1 are derived appears in Appendix A.

Table 1 shows that the summary-delta algorithm leads to signi�cant savings over recomputation and the

counting algorithm. Further, the summary-delta algorithm bene�ts a lot by re-using summary-delta tables.

We also see that the counting algorithm can be even worse than recomputation for relatively small change sets.

These conclusions derived from a very simple analytical model here are bourne out by our implementation

7

and performance study (Section 6).

3 Background and Notation

In this section we review the concepts of self-maintainable aggregate functions (Section 3.1), data cube (Sec-

tion 3.2), and the computation lattice corresponding to a data cube (Section 3.3).

3.1 Self-maintainable aggregate functions

In Gray et al. [GBLP96], aggregate functions are divided three classes: distributive, algebraic, and holistic.

Distributive aggregate functions can be computed by partitioning their input into disjoint sets, aggregating

each set individually, then further aggregating the (partial) results from each set into the �nal result. Amongst

the aggregate functions found in standard SQL, COUNT, SUM, MIN, and MAX are distributive. For example,

COUNT can be computed by summing partial counts. Note however, if the DISTINCT keyword is used, as in

COUNT(DISTINCT E) (count the distinct values of E) then these functions are no longer distributive.

Algebraic aggregate functions can be expressed as a scalar function of distributive aggregate functions.

Average is algebraic, since it can be expressed as SUM/COUNT. From now on we will assume that if a view is

supposed to contain the AVG aggregate function, the materialized view will contain instead the SUM and COUNT

functions.

Holistic aggregate functions cannot be computed by dividing into parts. Median is an example of a holistic

aggregate function. We will not consider holistic functions in this paper.

De�nition 3.1 (Self-maintainable aggregate functions): A set of aggregate functions is self-maintainable

if the new value of the functions can be computed solely from the old values of the aggregation functions and

from the changes to the base data. Aggregate functions can be self-maintainable with respect to insertions,

with respect to deletions, or both.

In order for an aggregate function to be self-maintainable it must be distributive. In fact, all distributive

aggregate functions are self-maintainable with respect to insertions. However, not all distributive aggregate

functions are self-maintainable with respect to deletions. The COUNT(*) function can help to make certain

aggregate functions self-maintainable with respect to deletions, by helping to determine when all tuples in the

group (or in the full table if a group-by is not performed) have been deleted, so that the grouped tuple can

be deleted from the view.

The function COUNT(*) is always self-maintainable with respect to deletions. Including COUNT(*) also

makes the function COUNT(E), (count the number of non-null values of E), self-maintainable with respect

to deletions. If nulls are not allowed in the input, then COUNT(*) also makes SUM(E) self-maintainable with

respect to deletions. In the presence of nulls, both COUNT(*) and COUNT(E) are required to make SUM(E)

self-maintainable, as explained below:

Nulls and the SUM aggregation function: Nulls are ignored when computing aggregate values in SQL-
92 [MS93]. Therefore, if a non-empty relation R contains only tuples having null values for an attribute R:A,
the query

SELECT SUM(R.A)

FROM R

would return a single tuple with a null value (The query does not return 0 as the answer).

The semantics for nulls implies that for SUM(E), the sum of an expression E, if a tuple contributing the

last non-null value of E is deleted (COUNT(E) = 0) and there are still tuples in the group (COUNT(*) > 0), the

value of sum(E) must be set to null. Thus, in the presence of nulls both COUNT(*) and COUNT(E) are required

to maintain SUM(E).

8

MIN and MAX functions: MIN and MAX are not self-maintainable with respect to deletions, and cannot be

made self-maintainable. For instance, when a tuple having the minimum (maximum) value is deleted, the new

minimum (maximum) value for the group must be recomputed from the changes and the base data. Including

COUNT(*) can help a little (if COUNT(*) reaches 0, there is no other tuple in the group, so the group can be

deleted), but COUNT(*) cannot make MIN and MAX self-maintainable. (If COUNT(*) > 0 after a tuple having

minimum (maximum) value is deleted, we still need to look up the base table.) COUNT(E) can also help in

maintaining MIN(E) and MAX(E) (If Count(*) > 0 and COUNT(E) = 0, then MIN(E)= null), but COUNT(E) also

cannot make MIN and MAX self-maintainable (if Count(*) > 0 and COUNT(E) > 0, and a tuple having minimum

(maximum) value is deleted, then we need to look up the base table).

3.2 Data Cube

The date cube [GBLP96] is a convenient way of thinking about multiple aggregate views, all derived from a

fact table using di�erent sets of group-by attributes. Data cubes are popular in OLAP because they provide

an intuitive way for data analysts to navigate various levels of summary information in the database. In a

data cube, attributes are categorized into dimension attributes, on which grouping may be performed, and

measures, which are the results of aggregate functions.

Cube Views: A data cube with k dimension attributes is a shorthand for 2k cube views, each one de�ned

by a single SELECT -FROM -WHERE -GROUP BY block, having identical aggregation functions, identical FROM and

WHERE clauses, no HAVING clause, and one of the 2k subsets of the dimension attributes as the groupby

columns.

EXAMPLE 3.1 An example data cube for the pos table of Section 2 is shown in Figure 4(a) as a lattice
structure. (Ignore Figure 4(b)) for now.) Construction of the lattice corresponding to a data cube was �rst

(storeID, itemID, date)

(storeID, itemID) (storeID, date) (itemID, date)

(storeID) (itemID) (date)

()

storeID

city

region

none

itemID

category

none

(a) Data Cube Lattice (b) Dimension Hierarchy Lattices

Figure 4: Example Lattices.

introduced in [HRU96]. The dimension attributes of the data cube are storeID, itemID, and date, and the
measures are COUNT(*) and SUM(qty). Since the measures computed are assumed to be the same, each point
in the �gure is annotated simply by the group-by attributes. Thus, the point (storeID, itemID) represents the
cube view corresponding to the query

(SI): SELECT storeID, itemID, COUNT(*), SUM(qty)

FROM pos

GROUP BY storeID, itemID .

Edges in a lattice run from the node above to the node below. Each edge v1! v2 implies that v2 can be

answered using v1, instead of accessing the base data. The edge de�nes a query that derives view v2 below

9

from the view v1 above by simply replacing the table in the FROM clause with the name of the view above,

and by replacing any COUNT aggregate function with the SUM aggregate function. For example, the edge from

v1 = (storeID, itemID, date) to v2 = (storeID, itemID) de�nes the following query equivalent to query SI

above (assuming that the aggregate columns in the views are named count and qty).

(SI 0): SELECT storeID, itemID, SUM(count), SUM(qty)

FROM v1

GROUP BY storeID, itemID .

Generalized Cube Views: However, in most warehouses and decision support systems, the set of summary

tables do not �t into the structure of cube views|they di�er in their aggregation functions and the joins they

performwith the fact tables1. Further, some views may do aggregation on columns used as dimension attributes

in other views. We will call these views generalized cube views, and de�ne them as traditional cube-style views

that are extended in the following ways:

� di�erent views may compute di�erent aggregate functions,

� some views may compute aggregate functions over attributes that are used as group-by attributes in

other views,

� views may join with di�erent combinations of dimension tables (note that dimension-table joins are

always along foreign keys).

3.3 Dimension Hierarchies and Lattices

As mentioned in Section 2, the various dimensions represented by the group-by attributes of a fact table often

are organized into dimension hierarchies. For example, in the stores dimension, stores can be grouped into

cities, and cities can be grouped into regions. In the items dimension, items can be grouped into categories.

The dimension hierarchy information can be stored in separate dimension tables, as we did in the stores

and items tables. In order to group by attributes further along the dimension hierarchy, the fact table must be

joined with the dimension tables before doing the aggregation. The joins between the fact table and dimension

tables are always along foreign keys, so each tuple in the fact table is guaranteed to join with one and only

one tuple from each dimension table.

A dimension hierarchy can also be represented by a lattice, similar to a data-cube lattice. For example,

Figure 4(b) shows the lattices for the store and item dimension hierarchies. Note that the bottom element

of each lattice is \none," meaning no grouping by that dimension. Furthermore, although the store and item

dimensions depicted here are total orders, partial orders where some elements in the hierarchy are incomparable

are also possible|such as in the time dimension, where weeks and months do not strictly contain each other.

We can construct a lattice representing the set of views that can be obtained by grouping on each combi-

nation of elements from the set of dimension hierarchies. It turns out that a direct product of the the lattice

for the fact table along with the lattices for the dimension hierarchies yields the desired result [HRU96]. For

example, Figure 5 shows the lattice combining the fact table lattice of Figure 4(a) with the dimension hierarchy

lattices of Figure 4(b) (ignore the edge annotations for now).

3.4 Partial Lattices

A partial lattice is obtained by removing some nodes of the lattice, to represent the fact that the corresponding

views are not being materialized. When a node n is removed, all incoming and outgoing edges from node n

are also removed, and new edges are added between nodes above and below node n. For every incoming edge

1They may also di�er in the WHERE clause, but we do not consider di�ering WHERE clauses in this paper.

10

(storeID, itemID, date)

(storeID, category, date) (city, itemID, date)(storeID, itemID)

(storeID, date)(storeID, category) (city, category, date)(city, itemID) (region, itemID, date)

(storeID) (city, category) (region, category, date)(city, date) (itemID, date)(region, itemID)

(city) (itemID)(region, category) (category, date)(region, date)

(category)(region) (date)

()

i
s

i s
s

i

s
i

i

s

i

i

i

s

Figure 5: Combined lattice.

(n1; n), and every outgoing edge (n; n2), we add an edge (n1; n2). The query de�ning view n2 along the edge

(n1; n2) is obtained from the query along the edge (n; n2) by replacing view n in the FROM clause with view

n1. Note that if the top and/or bottom elements of the lattice are removed, the resulting partial lattice may

not be a lattice - it represents a partial order between nodes without a top and/or a bottom element.

4 Basic summary-delta maintenance algorithm

In this section we show how to e�ciently maintain a summary table given changes to the base data. Speci�cally,

we give propagate and refresh functions for maintaining a generalized cube view of the type described in

Section 3.2, including joins with dimension tables. We require that the aggregate functions calculated in

the summary table either be self-maintainable, be made self-maintainable by adding the appropriate COUNT

functions as described in Section 3.1, or be MIN or MAX aggregate functions (in which case the circumstances

under which they are not self-maintainable are detected and handled in the refresh function). For simplicity,

we start out by considering changes (insertions and deletions) only to the base fact table. We consider changes

to the dimension tables in Section 4.1.4.

4.1 Propagate Function

As described briey in Section 2, the general intuition for the propagate function is to create a summary-delta

table that contains the net e�ect of the changes on the summary table. Since the propagate function does

not a�ect the summary table, the summary table can continue to be available to readers while the propagate

function is computed. Therefore, the goal of the propagate function is to do as much work as possible so that

the time required by the refresh function is minimized.

11

4.1.1 Preparing changes

In order to make the computation of the summary-delta table easier to understand, we split up some of

the work by �rst de�ning three virtual views: prepare-changes, prepare-insertions and prepare-deletions. The

prepare-changes virtual view is de�ned simply as the union of prepare-insertions and prepare-deletions, which

are described below. In Section 4.1.2 we will see that the summary-delta table is computed from the prepare-

changes virtual view.

The prepare-insertions and prepare-deletions virtual views return the changes to the aggregate functions

caused by individual insertions and deletions, respectively, to the base data. They take a projection of the

insertions/deletions to the base data, after applying any selections conditions and joins that appear in the

de�nition of the summary table. The projected attributes include

� each of the group-by attributes of the summary table, and

� aggregate-source attributes corresponding to each of the aggregate functions computed in the summary

table.

An aggregate-source attribute computes the result of the expression on which the aggregate function is

applied. For example, if the summary table included the aggregate function sum(A*B), the prepare-insertions

and prepare-deletions virtual views would each include in their select clause an aggregate-source attribute

computing A �B (prepare-deletions actually includes �(A �B)). We will see later that when the summary-

delta table is computed, the aggregate-source attributes are aggregated.

The aggregate-source attributes are derived according to Table 2. The column labeled prepare-insertions

describes how they are derived for the prepare-insertions view; the column labeled prepare-deletions de-

scribes how they are derived for the prepare-deletions view. The COUNT(expr) row uses the SQL-92 case

statement [MS93].

prepare-insertions prepare-deletions

COUNT(*) 1 �1

COUNT(expr) case when expr is null then 0 else 1 end case when expr is null then 0 else �1 end

SUM(expr) expr �expr

MIN(expr) expr expr

MAX(expr) expr expr

Table 2: Deriving aggregate-source attributes

EXAMPLE 4.1 Consider the SiC sales view of Figure 1. The prepare-insertions, prepare-deletions, and

prepare-changes virtual views for SiC sales are shown in Figure 6. The prepare-insertions view is pre�xed by

\pi ," prepare-deletions is pre�xed by \pd ," and prepare-changes is pre�xed by \pc ." The aggregate sources

are named count, date, and quantity, respectively.

4.1.2 Computing the summary-delta table

The summary-delta table is computed by aggregating the prepare-changes virtual view. The summary-delta

table has the same schema as the summary table, except that the attributes resulting from aggregate functions

in the summary delta represent changes to the corresponding aggregate functions in the summary table. For

this reason we name attributes resulting from aggregate functions in the summary-delta table as the name of

the corresponding attribute in the summary table, pre�xed by \sd ."

Each tuple in the summary-delta table describes the e�ect of the base-data changes on the aggregate

functions of a corresponding tuple in the summary table (i.e., a tuple in the summary table having the same

12

CREATE VIEW pi SiC sales(storeID, category, count, date, quantity) AS

SELECT storeID, category, 1 AS count, date AS date, qty AS quantity

FROM pos ins, items

WHERE pos ins.itemID = items.itemID

CREATE VIEW pd SiC sales(storeID, category, count, date, quantity) AS

SELECT storeID, category, -1 AS count, date AS date, -qty AS quantity

FROM pos del, items

WHERE pos del.itemID = items.itemID

CREATE VIEW pc SiC sales(storeID, category, count, date, quantity) AS

SELECT *

FROM (pi SiC sales UNION ALL pd SiC sales)

Figure 6: Prepare changes example

values for all group-by attributes as the tuple in the summary-delta table). Note that a corresponding tuple

in the summary table may not exist, and in fact it is sometimes necessary in the refresh function to insert a

tuple into (or delete a tuple from) the summary table due to the changes represented in the summary-delta

table.

The query to compute the summary-delta table follows from the query computing the summary table, with

the following di�erences:

� The from clause is replaced by prepare-changes.

� The where clause is removed. (It is already applied in the de�nition of prepare-insertions and prepare-

deletions.)

� The expressions on which the aggregate functions are applied are replaced by references to the aggregate-

source attributes in prepare-changes.

� COUNT aggregate functions are replaced by SUM.

EXAMPLE 4.2 Consider again the SiC sales view of Figure 1. The query computing the summary-delta
table for SiC sales is shown below. It aggregates the changes represented in the prepare-changes virtual view,
grouping by the same group-by attributes as the summary table.

CREATE VIEW sd SiC sales(storeID, category, sd Count, sd EarliestSale, sd Quantity) AS

SELECT storeID, category, sum(count) AS sd Count, min(date) AS sd EarliestSale, sum(quantity) AS sd Quantity

FROM pc SiC sales

GROUP BY storeID, category

The astute reader will recall that in Section 2.2 the summary-delta table for SiC sales was de�ned using the

summary-delta table for SID sales. In this example we de�ned the summary-delta table using instead the

changes to the base data.

4.1.3 Pre-aggregation

As a potential optimization, it is possible to pre-aggregate the insertions and deletions before joining with

some of the dimension tables. In particular, joins with dimension tables whose attributes are not referenced in

the aggregate functions, can be delayed until after pre-aggregation. Delaying joins until after pre-aggregation

reduces the number of tuples involved in the join, potentially speeding up the computation of the summary-

delta table. The decision of whether or not to pre-aggregate could be made in a cost-based manner by a query

13

optimizer. The notion of pre-aggregation presented here follows essentially from the idea of pushing down

aggregation presented in [CS94, GHQ95, YL95].

We illustrate the notion of pre-aggregation by changing the de�nition of prepare-changes, prepare-insertions,

and prepare-deletions, along with the summary-delta table computation as follows. Joins with dimension ta-

bles whose attributes are not referenced in the aggregate functions are moved from prepare-insertions and

prepare-deletions to the summary-delta table computation. An aggregation step is added to prepare-changes:

The aggregate functions are identical to those computed by the summary-delta table; The group-by attributes

are the ones in the summary-delta table, less group-by attributes coming from dimension tables that have

been moved up to the summary-delta computation, plus fact-table attributes that are used to join into the

dimension tables that have been moved up to the summary-delta computation. Finally, in the de�nition of the

summary-delta table, if we need to compute SUM(A) or COUNT(A) on an attribute A that becomes a group-by

attribute in prepare-changes, we need to use SUM(A � Y) and SUM(Y) respectively, where Y is the result of

COUNT(*) in prepare-changes.

CREATE VIEW pi SiC sales(storeID, category, count, date, quantity) AS

SELECT storeID, category, 1 AS count, date AS date, qty AS quantity

FROM pos ins

CREATE VIEW pd SiC sales(storeID, category, count, date, quantity) AS

SELECT storeID, category, -1 AS count, date AS date, -qty AS quantity

FROM pos del

CREATE VIEW pc SiC sales(storeID, category, count, date, quantity) AS

SELECT storeID, category, sum(count) AS count, min(date) AS date, sum(quantity) AS quantity

FROM (pi SiC sales UNION ALL pd SiC sales)

GROUP BY storeID, itemID

CREATE VIEW sd SiC sales(storeID, category, sd Count, sd EarliestSale, sd Quantity) AS

SELECT storeID, category, sum(count) AS sd Count, min(date) AS sd EarliestSale, sum(quantity) AS sd Quantity

FROM pc SiC sales, items

WHERE pc SiC sales.itemID = items.itemID

GROUP BY storeID, category

Figure 7: Pre-aggregation example

EXAMPLE 4.3 It is possible to apply pre-aggregation to the summary-delta table computation for SiC sales.

Since none of the attributes in the items dimension table are referenced in the aggregate functions, the join

with items can be moved up into the summary-delta table computation. The modi�ed de�nitions for prepare-

insertions, prepare-deletions, prepare-changes, and the summary-delta are shown in Figure 7.

4.1.4 Changes to dimension tables

Up to now we have considered changes only to the fact table. Changes also to the dimension tables can be

easily incorporated into our method. Due to space constraints we will only give the intuition underlying the

technique.
Using the incremental view-maintenance techniques of [GMS93, GL95], we can start with the changes

to a dimension table, and derive dimension-table-speci�c prepare-insertions and prepare-deletions views that
describe the tuples being inserted into and deleted into a table that gets aggregated. to a dimension ta-
ble. For example, the following view de�nition calculates prepare-insertions for SiC sales due to insertions to
items (made available in items ins).

14

CREATE VIEW pi items SiC sales(storeID, category, count, date, quantity) AS

SELECT storeID, category, 1 AS count, date AS date, qty AS quantity

FROM pos, items ins

WHERE pos.itemID = items ins.itemID

Prepare-changes then takes the union of all insertions and deletions to the set of tuples to aggregate due

to changes to the fact table and all dimension tables, and the summary-delta computation proceeds as before.

4.2 Refresh Function

The refresh function applies the changes represented in the summary-delta table to the summary table. Each

tuple in the summary-delta table causes a change to a single corresponding tuple in the summary table (by

corresponding we mean a tuple in the summary table having the same values for all group-by attributes as

the tuple in the summary delta). The corresponding tuple in the summary table is either updated, deleted,

or if the corresponding tuple is not found, the summary-delta tuple is inserted into the summary table.

The refresh algorithm is shown in Figure 8. It generalizes and extends the example refresh function given in

For each tuple �t in the summary-delta table,
% get the corresponding tuple in the summary table
Let tuple t = tuple in the summary table having the same values

for its group-by attributes as �t
If t is not found,

% insert tuple
Insert tuple �t into the summary table

Else
% check if the tuple needs to be deleted
If �t.COUNT(*) + t.COUNT(*) = 0,

Delete tuple t
Else

% check if the min/max values needs to be recomputed
recompute = false
For each MIN and MAX aggregate function m(e) in the summary table,

If ((m is a MIN function AND �t:MIN(e) � t:MIN(e) AND t.COUNT(e) + �t.COUNT(e) > 0) OR
(m is a MAX function AND �t:MAX(e) � t:MAX(e) AND t.COUNT(e) + �t.COUNT(e) > 0))
recompute = true

If (recompute) % min/max values of tuple t needs to be recomputed
Update tuple t by recomputing its aggregation functions from the base data for t's group.

Else
% update the tuple
For each aggregate function a(e) in the summary table,

If t.COUNT(e) + �t.COUNT(e) = 0,
t:a = null

Else If a is COUNT or SUM,
t:a = t:a+ �t:a

Else If a is MIN,
t:a = MIN(t:a; �t:a)

Else If a is MAX,
t:a = MAX(t:a; �t:a)

Figure 8: The Refresh function

Section 2.1, by handling the case of nulls in the input and MIN and MAX aggregate functions. In the algorithm,

15

for each tuple �t in the summary-delta table the corresponding tuple t in the summary table is looked up. If

t is not found, the summary-delta tuple is inserted into the summary table. If t is found, then if COUNT(*)

from t plus COUNT(*) from �t is zero, then t is deleted.2 Otherwise, a check is performed for each of the

MIN and MAX aggregate functions, to see if a value less than or equal to the minimum (greater than or equal

to the maximum) value was deleted, in which case the new MIN or MAX value of t will probably need to be

recomputed. The only exception is if COUNT(e) from t plus COUNT(e) from �t is zero, in which case the new

min/max/sum/count(e) values are null.

As the last step in the algorithm, the aggregation functions of tuple t are updated from the values in

�t, or (if needed) by recomputing a min/max value from the base data for t's group. For simplicity in the

recomputation, we assume that when a summary table is being refreshed, the changes have already been

applied to the base data. However, an alternative would be to do the recomputation before the changes have

been applied to the base table by issuing a query that subtracts the deletions from the base data and unions the

insertions. As written, the refresh function only considers the COUNT, SUM, MIN, and MAX aggregate functions,

but it should be east to see how any self-maintainable aggregation function would be incorporated.

The above refresh function may appear complex, but conceptually it is very simple. One can think of it as

an outer-join between the summary-delta table and the summary table. Each summary table tuple that joins

with a summary-delta tuple is updated or deleted as it joins, while a summary-delta tuple that does not join

is inserted into the summary table. The only complication in the process is an occasional recomputation of a

min/max value. Such a summary-delta join needs to be implemented in the database server, and should be

implemented by database vendors that are targeting the warehouse market.

4.3 Optimization of the refresh function

It is possible to speed up the refresh function of Figure 8 if certain integrity constraints are known to hold on

the changes.

First, if the changes are known to contain only inserted tuples, the checks to see if tuple t needs to be

deleted or recomputed need not be performed. Either �t is inserted into the summary table if t is not found,

or t is updated from the existing value of t and �t.

Second, if it is known that tuples in the changes have di�erent values for at least one of the group-by

attributes of the summary table than existing tuples in the summary table, then the query to locate the

corresponding tuple in the summary table need not be performed. Instead, tuples in the summary-delta table

are simply inserted into the summary table. For example, if it is known that base-data changes are always

for a new date, then tuples in sd SID sales would simply be inserted into SID sales. This optimization can

lead to a signi�cant reduction in the refresh times. The performance graphs (comparing Figure 10(a) with

Figure 10(c) and Figure 10(b) with Figure 10(d)) illustrate the savings dues to this optimization.

Along the same line, if it is known that tuples in the summary-delta table usually have di�erent values for

at least one of the group-by attributes, and a unique key is declared on the group-by attributes of the summary

table, then it is probably more e�cient to attempt to insert tuples from the summary-delta table into the

summary table straightaway. If a unique key conict is generated due to the insertion, then the corresponding

tuple in the summary table can instead be fetched and updated.

Finally, if it is known that the changes are weakly minimal [GL95], meaning that the set of deleted tuples

is guaranteed to be a subset of the existing base-data tuples, or in other words, that a tuple cannot be inserted

and subsequently deleted in the same batch of changes, then the recomputation test in the refresh function

can be made tighter. Speci�cally, we can change the �t:m � t:m and �t:m � t:m tests to the more restrictive

test �t:m = t:m. To explain, for a MIN aggregate function, if �t:m < t:m then we know that a tuple must

have been inserted with a lower value for m than existing tuples in the summary table. Since inserted tuples

2Note that COUNT(*) from t plus COUNT(*) from �t can never be less than zero, and that if COUNT(*) from �t is less than zero,

then the corresponding tuples t must be found in the summary table.

16

cannot be deleted due to the weak minimality constraint, �t:m must be the new minimum value; therefore,

recomputation is not necessary. A similar argument holds for MAX.

5 E�ciently maintaining multiple summary tables

In the previous section we have shown how to compute the summary-delta table for a generalized cube view,

directly from the insertions and deletions into the base fact table.

We have also seen that multiple cube views can be arranged into a (partial) lattice (Section 3.3). We will

show that multiple summary tables, which are generalized cube views, can also be placed in a (partial) lattice,

which we call a V-lattice. Further, all the summary-delta tables can also be written as generalized cube views,

and can be placed in a (partial) lattice, which we call a D-lattice. It tuens our that the D-lattice is identical

to the V-lattice, modulo renaming of tables.

5.1 Placing Generalized Cube Views into a Lattice

The principal behind the placement of cube views in a lattice is that a cube view v2 should be derivable from

the cube view v1 placed above v2 in the cube lattice. The same principle can be adapted to place a given

set of generalized cube views into a (partial) lattice. We will show how to de�ne a derives relation v2 � v1

between the given set of generalized cube views. � can be used to impose a partial ordering on the set of

generalized views, and to place the views into a (partial) lattice, with v1 being an ancestor of v2 in the lattice

if and only if v2 � v1.

For two generalized cube views v1 and v2, let v2 � v1 if and only if view v2 can be de�ned using a single

block SELECT -FROM -GROUP BY query over view v1 possibly joined with one or more dimension tables on the

foreign key. The v2 � v1 condition holds if

1. each group-by attribute of v2 is either a groupby attribute of v1, or is an attribute of a dimension table

whose foreign key is a groupby attribute of v1, and

2. each aggregate function a(E) of v2 either appears in v1, or E is an expression over the groupby attributes

of v1, or E is an expression over attributes of dimension tables whose foreign keys are groupby attributes

of v1.

If the above conditions are satis�ed using dimension tables d1; : : : ; dm, we will superscript the � relation as

�d1;:::;dm .

EXAMPLE 5.1 For our running retailing warehouse example, we can derive the following precedence re-

lations: sCD sales �stores SID sales, SiC sales �items SID sales, sR sales �stores SID sales, sR sales �stores

sCD sales, and sR sales �stores SiC sales. SID sales is the top and sR sales is the bottom of the lattice.

The query associated with an edge from v1 to v2 is obtained from the original query for v2 by making the

following changes:

� The original WHERE clause is removed (it is not needed since the conditions already appear in v1).

� The FROM clause is replaced by a reference to v1. Further, if the � relation between v2 and v1 is

superscripted with dimension tables, these are joined into v1. (The dimension tables will go into the

FROM clause, and the join conditions will go into the WHERE clause.)

� The aggregate functions of v2 need to be rewritten to reference the aggregate function results computed

in v1. In particular,

{ A COUNT aggregate function needs to be changed to a SUM of the counts computed in v1.

{ If v1 groups by an attribute A and v2 computes SUM(A), then SUM(A) will be replaced by SUM(A�Y),

where Y is the result of COUNT(*) in v1. Similarly COUNT(A) will be replaced by SUM(Y).

17

5.2 Making Summary Tables Lattice-Friendly

It is also possible to change the de�nitions of summary tables slightly so that the derives relation between

them grows larger, and we do not repeat joins along the lattice paths. The summary tables are changed by

adding joins with dimension tables, adding dimension attributes, and adding aggregation functions used by

other summary tables.

Let us consider the case of dimension tables and dimension attributes. Are joins with dimension tables

all performed implicitly at the top-most view, or could they be performed lower down just before grouping

by dimension attributes? Because the joins between the fact table and the dimension tables are along foreign

keys|so that each tuple in the fact table joins with one and only one tuple from each dimension table|either

approach, joining implicitly at the top-most view or just before grouping on dimension attributes, is possible.

Now, consider a dimension hierarchy. An attribute in the hierarchy functionally determines all of its

descendents in the hierarchy. Therefore, grouping by an attribute in the hierarchy yields the same groups as

grouping by that attribute plus all of its descendent attributes. For example, grouping by (storeID) is the

same as grouping by (storeID, city, region).

The above two properties provide the rationale for our approach: joining the fact table with all dimension

tables at the top-most point in the lattice. At each point in the lattice, instead of grouping only by the group-

by attributes mentioned at that point, we include as well each dimension attribute functionally determined by

the group-by attributes. For example, the top-most point in the lattice of Figure 5 groups by (storeID, city,

region, itemID, category, date).

The end result of the process can be to �t the generalized views into a regular cube (partial) lattice where

all the joins are taken once at the top-most point, and all the views have the same aggregation functions.

EXAMPLE 5.2 For our running warehousing example, we can de�ne all four summary tables as a groupby

over the join of pos, items, and stores, computing COUNT(*), SUM(qty), and MIN(date) in each view, and

retaining some or all of the dimension attributes City, Region, and Category. The resulting lattice represents

a portion of the complete lattice shown in Figure 5.

5.3 Optimizing the lattice

Although the approach of Section 5.2 is always correct, it does not yield the most e�cient result. An important

question is where best to do the joins with the dimension tables. Further, assuming that some of the dimension

columns and aggregation functions have been added to the views just so that the view �ts into the lattice,

where should the aggregation functions and the extra columns be computed? Optimizing a lattice means

pushing joins, aggregation functions, and projections as low down into the lattice as possible.

There are two reasons for pushing down joins: First, as one travels down the data cube, the number of

tuples at each point is likely to decrease, so fewer tuples need to be involved in the join. Second, joining with

all dimension tables at the top-most view results in very wide tuples, which require more room in memory and

on disk. For example, when computing the data cube in Figure 5, instead of joining the pos table with stores

and items to compute the (storeID, itemID, date) view, it may be better to push down the join with stores

until the (city, itemID, date) view is computed from the (storeID, itemID, date) view, and to push down the

join with items until the (storeID, category, date) view is computed from the (storeID, itemID, date) view.

EXAMPLE 5.3 Applying the above reasoning to the lattice of Figure 5, we have pushed each join as far

down as possible. The top (storeID, itemID, date) is de�ned without any joins with the dimension tables.

The lattice edges are labeled with the dimension join required when deriving the lower view. An edge from

v1 to v2 is labeled s if v1 needs to be joined with stores to derive v2. An edge labeled i implies a join with

the items table. An unlabeled edge implies that v2 can be obtained from v1 without any joins.

EXAMPLE 5.4 For the running retail warehousing example, optimization derives the lattice shown in Fig-

ure 9. The view sCD sales is extended by adding the region attribute so that the view sR sales may be derived

18

sRsales
(region)

 SiCsales
(storeID,category)

 SIDsales
(storeID,itemID,date)

stores

stores

items

 sCDsales
(city,region,date)

Figure 9: The V-lattice for the retail warehousing example

from it without (re-)joining with the stores table.

Appendix B gives an algorithm to optimize a lattice by pushing down joins, aggregations, and projections

as much as possible. The queries along each edge of the resulting lattice are derived as explained at the end

of Section 5.1.

5.4 Summary-Delta Lattice

Following the self-maintenance conditions discussed in Section 3.1, we assume that any view computing an

aggregation function is augmented with COUNT(?). A view computing SUM(E), MIN(E), and/or MAX(E) is

further augmented with COUNT(E).

Given the set of generalized cube views in the partial V lattice, we would like to arrange the summary-

delta tables for these views into a partial lattice (the D lattice). The hope is that we can then compute the

summary-delta tables more e�ciently by exploiting the D lattice structure, just as the views can be computed

more e�ciently by exploiting the V lattice structure.

The following theorem follows from the observation that the query de�ning each a summary-delta table

sd v (Section 4.1) is similar to the query de�ning the view v, except that some of the tables in the FROM clause

are uniformly replaced by the prepare-changes table. The theorem gives us the desired D-lattice.

Theorem 5.1 The D-lattice is identical to the V-lattice, including the join annotations and the queries along

each edge, modulo a change in the name of table.

Thus, each summary delta table can be derived from the summary-delta table above it in the partial

lattice by a join with any annotated dimension table, followed by a simple groupby operation. The queries

de�ning the topmost summary-delta tables in the D-lattice are obtained by de�ning a prepare-changes virtual

view (Section 4.1).

EXAMPLE 5.5 The summary-deltaD-lattice for our warehouse example is the same as the partial V-lattice
of Figure 9. The query de�ning sd SID sales in terms of prepare-changes appears in Section 2.1, where the
union subquery in the FROM clause should be interpreted as the prepare-changes view. The queries de�ning
the summary-delta tables along three of the edges of the lattice are the same as those in Figure 3. For the
fourth edge from sd SiC sales to sd sR sales, the query is

CREATE VIEW sd sR sales(region, sd Count, sd Quantity) AS

SELECT region, sum(sd Count) AS sd Count, sum(sd Quantity) AS sd Quantity

FROM sd SiC sales, stores

19

WHERE sd SiC sales.storeID = stores.storeID

GROUP BY region

5.5 Computing the summary-delta lattice

The beauty of our approach is that the summary table maintenance problem has been partitioned into two

subproblems | computation of summary-delta tables (propagation), and the application of refresh functions

| in such a way that the subproblem of propagation for multiple summary tables can be mapped to the

problem of e�ciently computing multiple aggregate views in a lattice.

Propagation of changes to multiple summary tables involves computing all the summary-delta tables in

the D-lattice derived in Section 5.4. The problem now is how to compute the summary-delta lattice e�ciently,

since there are possibly several choices for ancestor summary-delta tables from which to compute a summary-

delta. It turns out that that this problem maps directly to the problem of computing multiple summary

tables from scratch, as addressed in [AAD+96, SAG96]. We can use their solutions to derive an e�cient

propagate strategy on how to sort/hash inputs, what order to evaluate summary-delta tables, and which of

the incoming lattice edges (if there is more than one) to use to evaluate a summary-delta table. The algorithms

of [AAD+96, SAG96] would be directly applicable but for the fact that they do not consider join annotations

in the lattice. However, it is a simple matter to extend their algorithms by including the join cost estimate in

the cost of the derivation of the aggregate view along the edge annotated with the join. We omit the details

here as the algorithms for materializing a lattice are not the focus of this paper.

6 Performance

We have implemented the summary-delta algorithm on top of a common PC-based relational database system.

We have used the implementation to test the performance improvements obtained by the summary-delta table

method over recomputation and the counting method, and to determine the marginal gains to the propagate

function from exploiting the lattice structure when maintaining multiple summary tables.

The implementation was done in Centura SQL Application Language (SAL) on a Pentium PC. The test

database schema is the same as the one used in our running example described in Section 2. We varied the size

of the pos table from 100,000 tuples to 500,000 tuples, and the size of the changes from 1,000 tuples to 10,000

tuples. The pos table had a composite index on (storeID, itemID, date), and each of the summary tables had

composite indices on their groupby columns. We found that the performance of the refresh operation depended

heavily on the number of updates/deletes vs inserts to the summary tables. Consequently, we considered two

types of changes to the pos table:

� Update-Generating Changes: Insertions and deletions of an equal number of tuples over exist-

ing date, store, and item values. These changes mostly cause updates amongst the existing tuples in

summary-delta tables.

� Insertion-Generating Changes: Insertions over new dates, but existing store and item values. These

changes cause only inserts into two of the four summary-delta (for whom date is a groupby column),

and mostly cause updates into the other two summary-delta tables.

The insertion-generating changes are very meaningful since in many data warehousing applications the only

changes to the fact tables are insertions of tuples for new dates, which leads to insertions, but no updates,

into summary tables with date as a groupby column.

Figure 10 shows four graphs illustrating the performance advantage of using the summary-delta table

method. The graphs show the time to rematerialize (using the lattice structure), and maintain all four

summary tables using the summary-delta table method (using the lattice structure). The maintenance time

is split into propagate and refresh, with the lower solid line representing the portion of the maintenance time

20

taken by propagate when using the lattice structure. The upper solid line represents the total maintenance

time (propagate + refresh). The time taken by propagate without using the lattice structure is shown with a

dotted line for comparison.

30

60

90

120

150

180

210

240

270

300

1 2 3 4 5 6 7 8 9 10

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

on
ds

)

Change Set Size (Thousands)

Propagate
Summary Delta Maint.

Rematerialize
Propagate(w/o lattice)

30

60

90

120

150

180

210

240

270

300

1 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

on
ds

)

pos Size (Hundred Thousands)

Propagate
Summary Delta Maint.

Rematerialize
Propagate(w/o lattice)

(a) Varying change size for update-generating changes (b) Varying pos size for update-generating changes

30

60

90

120

150

180

210

240

270

300

1 2 3 4 5 6 7 8 9 10

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

on
ds

)

Change Set Size (Thousands)

Propagate
Summary Delta Maint.

Rematerialize
Propagate(w/o lattice)

30

60

90

120

150

180

210

240

270

300

1 1.5 2 2.5 3 3.5 4 4.5 5

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

on
ds

)

pos Size (Hundred Thousands)

Propagate
Summary Delta Maint.

Rematerialize
Propagate(w/o lattice)

(c) Varying change size for insertion-generating changes (d) Varying pos size for insertion-generating changes

Figure 10: Performance of Summary-Delta Maintenance algorithm

Graphs 10(a) and 10(c) plot the variation in elapsed time as the size of the change set changes, for a

�xed size (500,000) of the pos table. While 10(a) considers update-generating changes, graph 10(c) considers

insertion-generating changes. We note that the incremental maintenance wins for both types of changes,

but it wins with a far greater margin for the insertion-generating changes. The di�erence between the two

scenarios is mainly in the refresh times for the views SID sales and sCD sales; The refresh time going down by

50% in 10(c). The graphs also show that the summary-delta maintenance beats rematerialization, and that

propagate bene�ts by exploiting the lattice structure. Further, the bene�t to propagate increases as the size

of the change set increases.

Graphs 10(b) and 10(d) plot the variation in elapsed time as the size of the pos table changes, for a �xed

size (10,000) of the change set. Graph 10(b) considers update generating changes, and graph 10(d) considers

insertion generating changes. We see that the propagate time stays virtually constant with increase in the size

of pos table (as one would expect, since propagate does not depend on the pos table); However interestingly

the refresh time goes down for the update generating changes. A close look reveals that when the pos table

is small, refresh causes a signi�cant number deletions in addition to updates to the materialized views. When

the pos table is large, refresh causes only updates to the materialized views, and this leads to a 20% savings

21

in refresh time.

Counting Algorithm The counting algorithm applied to summary tables turned out to be a big disap-

pointment. We found it to be uniformly worse than recomputation by one order of magnitude for the update

generating changes, and worse than summary-delta algorithm by a factor of 1� 2 for the insertion generating

changes, even on the views with date as a groupby column. The reason is that the counting algorithm causes

a signi�cant fraction of the summary table to be deleted, and then recomputed using expensive accesses to

the pos table.

7 Related Work and Conclusions

Both view maintenance and data warehousing are active areas of research, and this paper is in the intersection

of the two areas, proposing new view maintenance techniques for maintaining multiple summary tables (ag-

gregate views) over a star schema using a new summary-delta paradigm.

Earlier papers on view maintenance [BLT86, CW91, QW91, GMS93, GL95, JMS95, ZGHW95, CGL+96,

HZ96, Qua96] have all used the delta paradigm - compute a set of inserted and deleted tuples that are then

used to refresh the materialized view using simple union and di�erence operations. The new summary-delta

paradigm is to compute a summary-delta table that represents a summary of the changes to be applied to the

materialized view. The actual refresh of the materialized view is more complex than a union/di�erence in the

delta paradigm, and can cause updates, insertions, and/or deletions to the materialized view. Amongst the

above work on view maintenance algorithm, [GMS93, GL95, JMS95, Qua96] are the only papers that discuss

maintenance algorithms for aggregate views. While a detailed comparison of the summary-delta table method

against these is made in Section 2.3, it is worth noting that the previous papers do not consider the problem

of maintaining multiple aggregate views, and are not as e�cient as the summary-delta table method.

A formal split of the maintenance process into propagate and refresh functions was proposed in [CGL+96].

We build on the propagate/refresh idea here, extending it to aggregate views and to more complex refresh

functions. Our notion of self-maintainable aggregation functions is an extension of self-maintainability for

select-project-join views de�ned in [GJM96, QGMW96].

[GBLP96] proposed the cube operator linking together related aggregate tables into one SQL query, and

starting a mini-industry in warehousing research. The notion of cube lattices and dimension lattices was

proposed in [HRU96], along with an algorithm to determine a subset of cube views to be materialized so as

to maximize the querying bene�t under a given space constraint. Algorithms to e�ciently materialize all or a

subset of the cube lattice have been proposed by [AAD+96, SAG96]. Next, we need a technique to maintain

these cube views e�ciently, and our paper provides the summary-delta table method to do so. In fact, we

even map a part of the maintenance problem into the problem addressed by [AAD+96, SAG96]

Our algorithms are geared towards cube views, as well as towards generalizations of cube views that are

likely to occur in typical decision-support systems. We have developed techniques to place aggregate views

into a lattice, even suggesting small modi�cations to the views that can help generate a fuller lattice.

Finally, we have tested the feasibility and the performance gains of the summary-delta table method by

implementing it on top of a relational database, and doing a performance study comparing the propagate

and refresh times of our algorithm to the alternatives of doing rematerializations or using an alternative

maintenance algorithm. We found that our algorithm provides an order of magnitude improvement over the

alternatives. Another observation we made from the performance study is that our refresh function, when

implemented outside the database system, runs much slower than what we had expected (while still being

fast). The right way to implement the refresh function is by doing something similar to an outer-join of the

summary-delta table with the materialized view, identifying the view tuples to be updated, and updating

them as a part of the join. Such an operation, which we will call a summary-delta join should be built into

the database servers that are targeting the warehousing market.

22

References

[AAD+96] S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi. On

the computation of multidimensional aggregates. In Vijayaraman et al. [TMB96], pages 506{521.

[AL80] M. Adiba and B. Lindsay. Database snapshots. In Proceedings of the sixth International Conference on

Very Large Databases, pages 86{91, Montreal, Canada, October 1980.

[BC79] P. Buneman and E. Clemons. E�ciently monitoring relational databases. ACM Transactions on Database

Systems, 4(3):368{382, September 1979.

[BLT86] J. Blakeley, P. Larson, and F. Tompa. E�ciently Updating Materialized Views. In Proceedings of ACM

SIGMOD 1986 International Conference on Management of Data, pages 61{71, May 1986.

[CGL+96] L. Colby, T. Gri�n, L. Libkin, I. Mumick, and H. Trickey. Algorithms for deferred view maintenance. In

Jagadish and Mumick [JM96].

[CS94] S. Chaudhuri and K. Shim. Including groupby in query optimization. In Proceedings of the 20th Interna-

tional Conference on Very Large Databases, pages 354{366, Chile, September 1994.

[CS95] M. Carey and D. Schneider, editors. Proceedings of ACM SIGMOD 1995 International Conference on

Management of Data, San Jose, CA, May 23-25 1995.

[CW91] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance. In Proceedings of the

Seventeenth International Conference on Very Large Databases, pages 108{119, Spain, September 1991.

[DGN95] U. Dayal, P. Gray, and S. Nishio, editors. Proceedings of the 21st International Conference on Very Large

Databases, Zurich, Switzerland, September 11-15 1995.

[GBLP96] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator gener-

alizing group-by, cross-tab, and sub-total. In Proceedings of the Twelfth IEEE International Conference on

Data Engineering, pages 152{159, New Orleans, LA, February 26 - March 1 1996.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: A powerful approach to aggregation.

In Dayal et al. [DGN95].

[GJM96] A. Gupta, H. Jagadish, and I. Mumick. Data integration using self-maintainable views. In Proceedings of

the Fifth International Conference on Extending Database Technology, Avignon, France, March 1996.

[GL95] T. Gri�n and L. Libkin. Incremental maintenance of views with duplicates. In Carey and Schneider [CS95].

[GMS93] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining views incrementally. In Proceedings of ACM

SIGMOD 1993 International Conference on Management of Data, Washington, DC, May 26-28 1993.

[Han87] E. Hanson. A performance analysis of view materialization strategies. In Proceedings of ACM SIGMOD

1987 International Conference on Management of Data, pages 440{453, San Francisco, CA, May 1987.

[HRU96] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes e�ciently. In Jagadish and

Mumick [JM96], pages 205{216.

[HZ96] R. Hull and G. Zhou. A framework for supporting data integration using the materialized and virtual

approaches. In Jagadish and Mumick [JM96].

[JM96] H. Jagadish and I. Mumick, editors. Proceedings of ACM SIGMOD 1996 International Conference on

Management of Data, Montreal, Canada, June 1996.

[JMS95] H. Jagadish, I. Mumick, and A. Silberschatz. View maintenance issues in the chronicle data model. In

Proceedings of the Fourteenth Symposium on Principles of Database Systems (PODS), San Jose, CA, 1995.

[LMSS95] J. Lu, G. Moerkotte, J. Schu, and V. Subrahmanian. E�cient maintenance of materialized mediated views.

In Carey and Schneider [CS95].

[MS93] J. Melton and A. Simon. Understanding the New SQL: A Complete Guide. Morgan Kaufmann, 1993.

[QGMW96] D. Quass, A. Gupta, I. Mumick, and J. Widom. Making views self-maintainable for data warehousing. To

Appear in PDIS 1996.

[Qua96] D. Quass. Maintenance expressions for views with aggregation. Presented at the Workshop on Materialized

Views, June 1996.

23

[QW91] X. Qian and G. Wiederhold. Incremental recomputation of active relational expressions. IEEE Transactions

on Knowledge and Data Engineering, 3(3):337{341, 1991.

[RK86] N. Roussopoulos and H. Kang. Principles and techniques in the design of ADMS+. IEEE Computer, pages

19{25, December 1986.

[SAG96] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the data cube. Research report rj 10026, IBM

Almaden Research Center, San Jose, California, 1996.

[SI84] O. Shmueli and A. Itai. Maintenance of Views. In Proceedings of ACM SIGMOD 1984 International

Conference on Management of Data, pages 240{255, 1984.

[SP89] A. Segev and J. Park. Updating distributed materialized views. IEEE Transactions on Knowledge and

Data Engineering, 1(2):173{184, June 1989.

[TMB96] T. Vijayaraman, C. Mohan, and A. Buchman, editors. Proceedings of the 22nd International Conference

on Very Large Databases, Mumbai, India, September 3-6 1996.

[YL95] W. Yan and P. Larson. Eager aggregation and lazy aggregation. In Dayal et al. [DGN95], pages 345{357.

[ZGHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing environment.

In Carey and Schneider [CS95], pages 316{327.

A Details behind Table 1

In this section we will describe the details of the database and analytical computations used to derive the

number of tuple reads and writes in Table 1.

We chose a database with the number of tuples in the pos fact table, stores and items dimension tables,

and the four summary tables as given in Table 3. The \# changes" column records the number of changes

Table name # tuples # changes summary-delta table

pos 1,000,000 10,000

stores 100

items 1000

SID sales 100,000 1,000

sCD sales 10,000 100

SiC sales 2,000 1,000

sR sales 10 10

Table 3: Table statistics

received to the pos table, and the \summary-delta table" column records the number of tuples that the changes

would cause to be generated in each summary-delta table.

Assuming the statistics in Table 3, Table 1 showed the number of tuple accesses(reads and writes) required

to recompute and incrementally maintain each of the summary tables.

When counting the number of accesses needed to recompute a summary table s, we assume that each tuple

in the table used to compute s must be accessed, possibly joined with dimension tables, and hashed or sorted

on the values of its group-by attributes to perform the aggregation. The tuples in s must also be written to

disk.

When maintaining a summary table by using the summary-delta algorithm directly from the changes to

the pos table, we read each tuple in the changes to the pos table, join it with any dimension tables, and hash

or sort on its group-by attributes to perform the aggregation. Then, each tuple in the summary-delta table is

used in the refresh function to update (or insert or delete) a corresponding tuple in the summary table. The

24

tuple accesses count the number of tuples read by the propagation function and the number of tuples updated

(inserted, deleted) in the refresh function.

When maintaining the four summary tables together, the summary-delta tables created for one summary

table are re-used in the creation of summary-delta tables for other summary tables, as shown in Figure 3. The

summary-delta table for SID sales is used to create the summary-delta tables for sd sCD sales and SiC sales,

and the summary-delta table for sd sCD sales is used to create the summary-delta table for sR sales. As in

the second column, the tuple accesses count the number of tuples read by the propagation function and the

number of tuples updated (or inserted) by the refresh function.

For the counting algorithm applied directly to the changes to the pos table, we count the number of delta

tuples accessed, the number of tuples deleted in the view, the number of base pos tuples accessed to recompute

the new tuples to be inserted into the view, and the number of tuples inserted into the view.

B An Algorithm to Optimize Lattices

We assume we are given a partial cube lattice, with a query de�ning each edge of the partial lattice, and the

original query de�ning the generalized cube view at each node.

We start by annotating each node n in the partial lattice as follows:

� Mark each aggregation function in the original de�nition of the view as essential at node n.

� If the original view de�nition has an aggregation function involving an expression using attributes from

a dimension table di, mark the table di as essential at node n.

� If the original view de�nition has a groupby column a from a dimension table di, where a is not available

in the fact table, mark the table di, and the attribute a as essential at node n.

Pushing Joins Consider an edge from view v2 above to view v1 below (v1 is to be derived from view v2).

If a dimension table di is not essential for view v2, then it can be dropped from the de�nition of v2, and

the edges out of v2 are labeled with di, meaning that the de�nition of the query along the edge requires a join

of v2 with the dimension table di.

We use this rule in a single top down traversal of the lattice to push down join annotation as much as

possible. As the dimension table is removed from v2, the query de�ning v2 is modi�ed by removing all groupby

columns coming from the dimension table (except that the key of the dimension table that is also available in

the fact table is retained), and any aggregation function involving the dimension attributes.

An edge from view v2 above to view v1 below is annotated if computing v1 from v2 requires dimension

hierarchy information not required to be present in v2. Speci�cally, if computing v1 requires dimension

hierarchy information from a dimension table d, and v2 does not already contain the information by an earlier

join with d, then v2 must be joined with d to compute v1.

Pushing aggregation functions If an aggregation function is over a groupby column, then it is not

essential, and should be removed from the view de�nition.

Any edge deriving the aggregation function in a lower view must now aggregate over the groupby column.

If the aggregation function is SUM(A) or COUNT(A), these must be replaced by SUM(A � Y) and SUM(COUNT(Y))

where Y is the attribute with the COUNT(*) value in the higher view.

If an aggregation function is not essential at a node n, then it is not essential for all its incoming edges. If

an aggregation function is not essential for all outgoing edges, then it is not essential at the node, and should

be removed from the view de�nition.

A single breadth �rst traversal in reverse topological order is enough to prune all non-essential aggregation

functions, and rewrite the queries de�ning the views.

25

Pushing Projections If a (dimension) attribute is not essential at a node n, it should be removed from

node n, and it is not essential for the incoming edge.

If a (dimension) attribute is not essential for all outgoing edges, then it is not essential at the node, and

should be removed from the view de�nition.

A single breadth �rst traversal in reverse topological order is enough to project out all non-essential

attributes from groupby and SELECT clauses, and rewrite the queries de�ning the views. then it is essential in

all its ancestors. This graph traversal can be overlapped with the elimination of aggregation functions.

26

