
Project Synopsis: Evaluating STRIP �

Brad Adelbergy Hector Garcia-Molinaz

Abstract

Ths paper describes preliminary e�orts at evaluating the performance of the Stanford real-
time informationprocessor (STRIP v2.0). We desribe a benchmark for active real-time databases
based on a program trading application and report STRIP's performance on this benchmark.

Keywords: derived data, view maintenance, active database system, transaction scheduling,
program trading, real-time database system.

1 Introduction

The Stanford real-time information processor (STRIP) is a soft real-time main memory database

system with special facilities for importing and exporting data as well as handling derived data.

Data can be imported into (and exported from) STRIP using the stream interface, which allows

STRIP to maintain materialized views of remote and very rapidly changing data. In addition, a

sophisticated rule system supports the e�cient maintenance of derived data over rapidly changing

base data. This paper summarizes our e�orts to benchmark the performance of STRIP v2.0. It

also presents a sample of the preliminary performance results we are obtaining, focusing on the

performance of STRIP's import and active data capabilities. For more details on the STRIP

project, the reader is directed to [AKGM96].

One of the challenges of designing a database system with new functionality is to �nd a suitable

benchmark to test it with. For STRIP, we have designed a benchmark based on a program trading

application. Program trading is the use of a computer to automatically identify and act on market

imperfections to make money. A program trading system is built from many components, including

a source of information about market activity, a database, an expert system, and a system to

execute electronic trades, as shown in Figure 1. We are primarily concerned with the function of

the database component of this system, although we consider the other components where they

impact the requirement on the database. As shown in Figure 1, a program trading application uses

three kinds of data. First, it must maintain the current prices of all of the �nancial instruments it

can trade.1 As the market changes, this data can be changed as well using price reporting feeds

�This work was supported by the Telecommunications Center at Stanford University, by Hewlett Packard and by

Philips.

yStanford University Department of Computer Science. e-mail: adelberg@db.stanford.edu

zStanford University Department of Computer Science. e-mail: hector@db.stanford.edu

1It might also store additional information about each instrument, such as historical prices or trading volume, but

those are details that will be abstracted away for now.

1



Instrument
Prices

Computed
Prices

Rules

Expert SystemTrading System

Database

Financial
Market

Other Data

$
Price Feed

Figure 1: A high level model for a program trading application.

available from several di�erent vendors. Next, data computed from the instrument prices must be

maintained. This can include the theoretical prices of derived instruments, predictions for future

prices, etc. Often, trading decisions can be made more easily on these types of derived data rather

than on the underlying price data. Finally, the trading system will keep additional information not

derived in any way from the external environment, such as the current holdings in its portfolio.

The database component of such a system needs to support both active rules and real-time

scheduling. Active rules are necessary so that the expert system can be triggered when pre-speci�ed

price changes occur. The alternative, polling, is not feasible. Real-time scheduling is required since

trading opportunities last only a short time and naive scheduling algorithms may result in too many

missed deadlines. Currently, no published system uses real-time scheduling because the overhead

of sophisticated scheduling is greater than the available gains. The challenge then of building a

database system to support program trading or like applications, then, is not just to support active

rules and real-time scheduling, but to do so in a way that does not degrade the system performance.

2 A simple stock benchmark

In this section we describe the program trading \application" used to benchmark STRIP. In prac-

tice, program trading systems are custom built by each trading �rm and their market models and

trading algorithms are closely held secrets. Thus the benchmark we present here is simpli�ed both

out of necessity, since very little information is publicly available, and also to focus our attention on

the important issues of data management without getting lost in the details of �nancial modeling.

Still, we feel that the application model that results captures the important features of the real

problem and will point out how to extend it where appropriate.

The benchmark requires the database to maintain three types of prices: stock prices, composite

index prices, and theoretical option prices. The stock prices can be simply updated in the database

according to the market feed but the composite and option prices must be computed from the stock

2



prices. In fact, the current trend of feed providers is to send more than stock prices with the feeds,

including popular composite prices (e.g. DJIA) and other derived values. Still, additional derived

data, such as that related to proprietary market models, will always have to be computed by the

database. Because composite averages and theoretical option prices have known functions, are easy

to understand, and reasonably re
ect the types of data that need to be computed, we choose to

compute them as part of the benchmark rather than some purely �ctional data.

The formula to compute a composite average composed of n stocks is comp price =
P

n

i=1wipi

where pi and wi are the price and weighting of the ith stock respectively. For theoretical option

prices, we use the Black-Scholes pricing model [BS73], which although known to under value options,

is still commonly used and reported. The model computes the price of an option as a function of

�ve parameters:

� the current price of the underlying stock,

� the exercise (strike) price of the option,

� the annualized continuously compounded risk-less rate of return,

� the time remaining before expiration expressed as a fraction of a year,

� the standard deviation of the annualized rate of return of the underlying stock.

The database for the benchmark contains the following six tables:

stocks(symbol,price) - contains the price of every stock as reported by the wire service.

stock stdev(symbol,stdev) - contains the standard deviation of the annualized rate return of
every stock. This information is required to compute theoretical option prices.

comp prices(comp,price) - contains the computed price of every composite average (i.e., Dow
Jones Industrial Average (DJIA)). Refer to the formula above.

comps list(comp,symbol,weight) - describes the many-many relation between stocks and com-
posites.

option prices(option symbol,price) - contains the computed price of every listed option. (See
[BS73] for the full equation).

options list(option symbol,stock symbol,strike,expiration) - describes the one-many rela-
tion between stocks and options.

The tables comp prices and option prices are actually materialized views with the following de�ni-

tions:

create view comp prices as
select comp,sum(price*weight)
from stocks,comps list
where stocks.symbol = comps list.symbol
group by comp

3



create view option prices as
select option symbol,fblack�scholes(price,strike,expiration,stdev) as price
from stocks,stock stdev,options list
where stocks.symbol = options list.stock symbol and stocks.symbol = stock stdev.symbol

A program trading application is driven by changing stock prices as reported by a market feed.

For the benchmark, we use the consolidated quote �le provided as part of the New York Stock

Exchange's TAQ database [New94]. The quote �le lists all of the stock price quotes made during

actual days of trading on all of the major U.S. exchanges. Each entry contains the symbol of the

stock being quoted, the bid and ask prices, and the time of the quote to the nearest second. As

the stock prices in the database change as dictated by the quote �le, the database must recompute

the prices of the composite indexes and the options. In STRIP, this is done by writing rules that

are triggered by changes to the attribute price in table stocks.

3 Performance model

The stocks table is populated from data provided by the New York Stock Exchange as part of

their TAQ database [New94] and contains 6600 stocks. The experiment is driven by the actual

price changes recorded during trading in January of 1994. The trace is loaded into memory before

the experiment begins to remove the I/O costs from the results. Each run lasts for 30 minutes

during which the price changes that occurred during real trading on the exchange are applied to

the system in real-time. The quote rate varies signi�cantly over the 30 minute run but the average

rate is 24 changes per second. The table comp prices contains 400 composites, each calculated from

200 stocks. The component stocks in each composite are chosen randomly but in direct proportion

to their trading activity as measured by the number of price changes in a day of trading. We

feel that this is indicative of the distribution of real stocks in real composites: the stocks of large

companies which trade frequently are most often used in composites since they tend to be good

indicators of entire industries. The table option prices contains 50,000 entries. As with composites,

these are randomly generated but in relation to the frequency of trading of the underlying stocks.

Hence the expected number of listed options for a particular stock is the total number of options

times the fraction of the entire trace due to the particular stock.

The performance numbers reported here are for STRIP running on a HP-735 under HP-UX

9.03 with 144Mb of main memory. No other user processes were run on the system during the

experiments. Response times are measured using the Unix function gettimeofday. The fraction of

the CPU required for an experiment was measured using the Unix call times. In order to understand

the reported results, some basic timing measurements on STRIP v2.0 are reported in Table 1.

4



Action Time (�sec)
begin task 10
end task 5

begin transaction 1
commit transaction 10

open cursor 60
fetch cursor 15
update cursor 10
close cursor 25
get lock 10

release lock 30
run scheduler 5

Table 1: Basic performance number for STRIP 2.0

Task # of times run External Queue Time (ms) Internal Queue Time (ms) Execution Time (ms)
Import 44710 11.3 (40.6) 0.026 (0.008) 3.0 (4.9)

Compute composite 40695 34.4 (67.8) 0.026 (0.014) 10.9 (10.2)
Compute option 41270 25.2 (66.3) 0.026 (0.013) 8.4 (9.2)

Table 2: Average task timing results for STRIP v2.0 (s.d. in parenthesis)

4 Results

Maintaining the 400 composite averages and the 50,000 option prices used 82% of the cpu capacity.

The timing results for each type of task in the system are reported in Table 2. The import task

changes the prices of stocks based on the market feed which is connected to STRIP through its

stream interface (see [AKGM96]). Rule condition checking occurs within this task which may

trigger other tasks to recompute the composites or options derived from the altered stock. For

each type of task, we report the number of times it executed as well the average amount of time

it spent (and standard deviation of the time) in the external queue, internal queue (process pool),

and executing.

The early performance results of STRIP v2.0 are promising. The system is able to handle large

amounts of derived data at the full market feed rate. The external queueing times are relatively

long but that is mainly due to the system being so highly loaded. In addition, the experiments

reported here do not use the unique transaction facilities of STRIP which can greatly reduce the

recomputation load. The one area of concern is that the variation in execution times is high. This

is primarily due to interference from HP-UX which we hope to reduce with further tuning of the

STRIP scheduler.

References

[AKGM96] B. Adelberg, B. Kao, and H. Garcia-Molina. Overview of the STanford Real-time Information
Processor (STRIP). SIGMOD Record, 25(1):34{7, 1996.

[BS73] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of political
economy, 81(3):637{54, 1973.

[New94] New York Stock Exchange, Inc. The TAQ database, 3.0 edition, June 1994.

5


