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Abstract. The paper introduces a model of the Web as an in�nite,
semistructured set of objects. We reconsider the classical notions of
genericity and computability of queries in this new context and relate
them to styles of computation prevalent on the Web, based on browsing
and searching. We revisit several well-known declarative query languages
(�rst-order logic, Datalog, and Datalog with negation) and consider their
computational characteristics in terms the notions introduced in this pa-
per. In particular, we are interested in languages or fragments thereof
which can be implemented by browsing, or by browsing and searching
combined. Surprisingly, strati�ed and well-founded semantics for nega-
tion turn out to have basic shortcomings in this context, while in
ation-
ary semantics emerges as an appealing alternative.

1 Introduction

The World Wide Web [BLCL+94] is a tremendous source of information which
can be viewed, in some sense, as a large database. However, the nature of the Web
is fundamentally di�erent from traditional databases and raises qualitatively new
issues. Its main characteristics are its global nature and the loosely structured
information it holds. In this paper, we consider some fundamental aspects of
querying the Web.

We use as a model of the Web an abstraction that captures its global nature,
and the semistructured information it holds. Perhaps the most fundamental as-
pect of our model is that we view the Web as in�nite. This point of view is not
new, and has already been suggested by some researchers [AMM96]. We believe
this captures the intuition that exhaustive exploration of the Web is {or will soon
become{ prohibitively expensive. The in�niteness assumption can be viewed as
a convenient metaphor, much like Turing machines with in�nite tapes are use-
ful abstractions of computers with �nite (but potentially very large) memory.
Note that our approach is fundamentally di�erent from previous attempts to
model in�nite data (e.g. [CH93, KKR90]) which focus on �nitely representable
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databases. In contrast, we do not assume the Web is �nitely represented. In-
stead, we view it as a possibly nonrecursive in�nite structure which can never
be entirely explored. Our model leads to a focus on querying and computation
where exploration of the Web is controlled. This raises issues akin to safety in
classical databases.

The data model we use is similar to several models for unstructured data
recently introduced, e.g., [Q+95, CACS94, BDS95]. The Web consists of an in�-
nite set of objects. Objects have a value and/or may reference other objects via
labeled links. The set of labels for each object is not �xed, unlike the attributes
of a relation. Intuitively, an object can be viewed as a Web page; the value is the
content of a page; labels provide links that allow navigating through the Web,
in hypertext style.

We begin by exploring the notion of computable query in the context of the
Web. Our model is along the lines of the computable queries of Chandra and
Harel [CH80]. We introduce a machine model of computation on the Web that we
call a Web machine. This works much like a Turing machine, but takes as input
an in�nite string and may produce an in�nite answer. We also introduce two
particular machine models that capture directly the main styles of computing
used on the Web: browsing and searching. The browser machine model allows
for navigational exploration of the Web. The browse/searchmachine additionally
allows searching in the style of search engines.

Based on the Web machine, we de�ne the notions of computability and even-
tual computability of queries. The latter notion arises from the fact that in�nite
answers to queries are allowed. A query is computable if its answer is always �nite
and computable by a halting Web machine. A query is eventually computable if
there is a Web machine, possibly nonterminating, which eventually outputs each
object in the answer to the query. Interesting connections hold with the browser
machine and with the browse/search machine. We show that every generic and
computable query is in fact computable by a browser machine. This con�rms the
intuition that browsing is in some sense the only way to control computation
on the Web. We also show that the set of generic queries which are eventually
computable by a Web machine is precisely the same as the set of generic queries
which are eventually computable by a browse/search machine. Thus, everything
can be done by a combination of browsing and searching.

To express queries, one needs query languages. We are interested in the abil-
ity of declarative database query languages to express queries on the Web. To
this end, we revisit the classical languages FO (�rst-order logic), Datalog, and
Datalog:. The questions of interest for each language are the following: (i) Are
the queries in the language computable or eventually computable? (ii) Which
fragments of each language can be implemented by browsers and which by a
combination of browsing and searching? We provide syntactic restrictions that
guarantee computability by browsers or by browse/search machines in FO and
Datalog(:).

One of the interesting results of the paper is with respect to negation. The
\positive" fragment of FO is eventually computable. The addition of recursion



yields no problem. However, negation brings trouble, and some simple FO queries
are not eventually computable. The Datalog: languages yield some surprises:
the standard semantics, strati�ed and well-founded [GRS88], are ill-suited for
expressing eventually computable queries, whereas the more procedural in
a-
tionary semantics [AV88, KP88] turns out to be naturally suited to express such
queries, and thus has a fundamental advantage over the �rst two semantics.

Computation on the Web is still in its infancy, and it is premature to propose
a de�nitive model. It is not yet clear what the right abstractions are. We believe
that our model of the Web captures some essential aspects; future developments
may con�rm or invalidate this. Clearly, we have ignored in our investigationmany
important aspects, such as the communication costs associated with browsing
and searching; the notion of locality; the essentially distributed nature of the
Web and the fact that concurrent processes may participate in evaluating a
query; updates; the fact that users are often satis�ed with incomplete, imprecise
or partially incorrect answers.

Query languages for the Web have attracted a lot of attention recently, e.g.,
W3QL [KS95] that focuses on extensibility, WebSQL [AMM96] that provides a
formal semantics and introduce a notion of locality, or WebLog [LSS96] that is
based on a Datalog-like syntax. Since HTML (the core structure of the Web) can
be viewed as an instance of SGML, the work on querying structured document,
e.g., [CACS94, GZC89] is also pertinent, along with work on querying semistruc-
tured data (see [A97]). The work on query languages for hypertext structures,
e.g., [MW95, CM89, MW93] is also relevant.

In the next section, we introduce Web machines, browser machines, and
browse/search machines. We then formalize the notion of (eventually) com-
putable query on the Web. The following section considers FO, Datalog and
Datalog:, and establishes connections to (eventual) computability, browsing,
and searching. Finally, we provide some conclusions.

2 Computation on the Web

We model the Web as a set of semistructured objects in the style of [Q+95,
BDS95]. More precisely, we view the Web as an in�nite database over the �xed
relational schema fObj(oid), Ref(source,label,destination), Val(oid,value)g. The
meaning of the above relations is as follows:

1. Obj provides an in�nite set of objects.
2. Relation Ref speci�es, for some of the objects, a �nite set of links to other

objects, each of which has a label. More precisely, Ref(o1,l,o2) indicates that
there is an edge labeled l between o1 and o2.

3. Relation Val speci�es a value for some of the objects. Thus, Val(o,v) speci�es
that object o has value v.

Intuitively, an object corresponds to a Web page. The value is the content of the
page, and references model labeled links to other pages.



A Web instance is an in�nite structure3 over the above schema, satisfying
the following constraints:

Obj = �source(Ref) [ �oid(V al); Val satis�es the fd source! value;
�destination(Ref) � Obj; 8o 2 Obj, �source=o(Ref) is �nite.

Thus, each object must have a value or some references to other objects. An
object can have at most one value and only �nitely many references to other
objects. Every referenced object must belong to the speci�ed set of objects of
the instance. The set of all Web instances is denoted inst(Web).

Let I be a Web instance. For each object o in I(Obj), the description of o
in I consists of the �nite set of tuples in I whose �rst coordinate is o. Thus, the
description of an object provides its outgoing links and/or its value. It does not
provide the set of in-going links (which can be in�nite). We may regard Ref as a
labeled graph whose vertices are objects. We say that object o0 is reachable from
object o if this holds in the labeled graph given by Ref. The distance between
two objects is also de�ned with respect to the Ref graph.

A �rst attempt

We wish to formalize the notion of a query on the Web. We �rst explore a
straightforward extension of the classical notion of query, which we will soon
re�ne. Let a query be a mapping on inst(Web) which associates to each Web
instance I a subset of I(Obj).

We wish to have a notion of generic and computable query that is appropri-
ate for the Web. As in the classical de�nition proposed by Chandra and Harel
[CH80], a query is generic if it commutes with isomorphisms over inst(Web).
More precisely, a query q is generic if for each I and each one-to-one mapping
� on the domain (extended to I in the obvious way), q(�(I)) = �(q(I)). Intu-
itively, this means that the result only depends on the information in I and is
independent of any particular encoding chosen for I.

The de�nition of computability requires a departure from the classical de�-
nition, because inputs and outputs are possibly in�nite. Let a Web machine be
a Turing machine with three tapes: (1) a right-in�nite input tape, (2) a two-
way-in�nite work tape, and (3) a right-in�nite output tape. Initially, the input
tape contains an in�nite word (an encoding of the Web instance), and the work
and output tapes are empty. The input tape head is positioned at the �rst cell.
The moves are standard, except that the output tape head can only move to the
right (so nothing can be erased once it is written on the output tape).

Web instances can be encoded on the input tape in a straightforward manner.
Let � be a successor relation on all elements occurring in I (including oid's,
labels, and values). For each element e occurring in I, let enc�(e) be the binary
representation of the rank of e in the ordering �. An instance I is encoded as

enc�( bo1)##enc�( bo2)##:::enc�(com)##:::

3 All in�nite structures mentioned in the paper are countable, unless otherwise
speci�ed.



where o1; o2; :::; om; ::: is the list of oid's in I(Obj) in the order speci�ed by � and
for each i, enc�(boi) is a standard encoding with respect to � of the description
of oi. (Recall that the description of oi is the �nite structure.)

Note that in the above encoding, the �nite information about each object is
clustered together. This has nontrivial consequences. Some of the results below
do not hold otherwise. Our encoding presents the advantage that it models
accurately the real situation on the Web (information is clustered around pages).

The output q(I) of a query q on input I is a set of objects, that is encoded
as enc�(oi1 )# : : :#enc�(oik) : : :, where oi1 ; : : : oik : : : are the objects in q(I), in
some order. No particular order is imposed on the presentation of objects in
the answer, so many possible answers are possible. Allowing this 
exibility is
important for technical reasons, since some of the results below would not hold
if we required that objects be output in lexicographical order. (Intuitively, one
could not output an object o before being certain that no \smaller" object is in
the answer). By slight abuse of notation, we denote any such presentation of the
answer by enc�(q(I)).

Let us now make a �rst attempt at de�ning the notion of a computable query.
A query q is 0-computable (we will abandon soon this de�nition) if there exists
a Web machine which on input enc�(I) halts and produces enc�(q(I)) on the
output tape, for each I in inst(Web) and each �. Note that every 0-computable
query produces a �nite answer for each input. A query q is 0-eventually com-
putable if there exists a Web machine whose computation on input enc�(I) has
the following properties:

{ the content of the output tape at each point in the computation is a pre�x
of enc�(q(I)), and

{ for each o 2 q(I), its encoding enc�(o) occurs on the output tape at some
point in the computation.

Note that if q is 0-eventually computable the Web machine is not required to
terminate, even if q(I) happens to be �nite.

It turns out that the above de�nitions need some further re�ning. Indeed, as
things stand, the only queries that are 0-computable are in some sense trivial.
More precisely, we call a query q trivial if q(I) = ; for every Web instance I. We
claim that every 0-computable query is trivial. (Note that there are nontrivial 0-
eventually computable queries on in�nite databases, e.g., the query that outputs
the set of oid's.) The argument for 0-computable queries goes as follows. Suppose
q is a 0-computable query and q(I) 6= ; for some input I. Let W be a Web
machine that computes q. Observe thatW only reads a �nite pre�x ! of enc�(I).
Now consider an instance �I consisting of in�nitely many isomorphic copies of I
over disjoint sets of oid's and an ordering � on the elements of �I such that ! is
also a pre�x of enc�(�I). Clearly, �I and � exist and by genericity q(�I) is in�nite.
This is a contradiction, since q is computable and therefore produces only �nite
answers. Similarly, there is no nontrivial 0-eventually computable query that
always produces �nite answers.

Observe that 0-computability makes sense on �nite databases (and indeed
corresponds to the standard notion of computability). However, we are concerned



here with Web instances, which are in�nite. Since terminating computation re-
mains important in this context, we modify our notion of computability to allow
for meaningful �nite computations.

A second attempt

The source of the problem with our de�nitions so far is that any �nite computa-
tion on enc�(I) sees an arbitrary �nite sample of I, determined by the encoding.
This is unsatisfactory, because we clearly want to allow the possibility of mean-
ingful �nite computations. This leads naturally to the solution adopted all along
in practice, which is to carry out the computation starting from a designated
Web object. This particular object is then part of the input to the query.

This can be formalized as follows. A Web query is a mapping q associating
to each Web instance I and object o 2 I(Obj), a subset q(o; I) of I(Obj).
The object o is called the source (of the query). The de�nitions of computable
and eventually computable query are the same, except that the encoding of the
input on the Web machine input tape is now enc�(o)###enc�(I). We hence-
forth adopt the above de�nitions of Web query, computable query, and eventually
computable query.

Observe that the presence of a source object indirectly allows to refer to more
that one \constant" vertex in a query. This can be done by linking the source
object to other objects we wish to name, by edges with new labels.

Example 1. The notions of computable and eventually computable queries are
illustrated by the following queries on input (o; I):

1. computable:
{ Find the objects reachable from o by a path labeled a.b.c (an a-labeled
edge, followed by a b-labeled edge, followed by a c-labeled edge).

{ Find the objects o0 such that there is a path of length at most k from o

to o0.
{ Find all objects lying on a cycle of length at most 3 which contains o.

2. eventually computable with possibly in�nite answers (so not computable):
{ Find the objects reachable from o.
{ Find the objects referencing o.
{ Find the objects belonging to a cycle.

3. eventually computable with �nite answers, but not computable:
{ Find the objects on the shortest cycle containing o.
{ Find the object(s) at the shortest distance from o that reference o.

4. not eventually computable:
{ Find all objects that do not belong to a cycle.
{ Find all objects which are not referenced by any other object.
{ Output o i� all objects reachable from o have non-nil references4 .

In particular, it is clear from the above examples that computable and eventually
computable properties are not closed under complement.

4 Nil references can be modeled by references to a special object named nil.



Browse and Search

The Webmachine captures a very general form of computation on the Web. How-
ever, two particular modes of computation on the Web are prevalent in practice:
browsing and searching. We next de�ne two machine models that capture more
directly such computation. The �rst, called a browser machine, models brows-
ing. The second, called a browse/search machine models browsing and searching
combined.

The idea underlying the browser machine is to access the Web navigation-
ally, by following object references starting from the input object o. A browser
machine has an in�nite browsing tape, an in�nite work tape, and a right-in�nite
output tape. It is equipped with a �nite state control which includes a special
state called expand. The computation of the machine on input (o; I) is as follows.
Let � be a �xed successor relation on the elements of I. Initially, the browsing
tape contains the encoding enc�(o) of the source object o. If the expand state
is reached at any point in the computation and the browsing tape contains the
encoding enc�(o

0) of some object o0 in I(Obj), this is replaced on the browsing

tape by enc�(bo0) (i.e., the encoding of the �nite description of o0, see earlier
notation for encodings).

A query q is computable by a browser machine if there exists a browser ma-
chine which on input (o; I) halts and produces on the output tape the encoding
of q(o; I). The de�nition of query eventually computable by a browser machine
is analogous.

Obviously, browser machines have limited computing ability, since they can
only access the portion of the Web reachable from the input object. However,
this is an intuitively appealing approach for controlling the computation. We
next prove a result which con�rms the central role of this style of computation
in the context of the Web.

Theorem1. Every generic and computable Web query is browser computable.

Proof. (Sketch): Since our formalism is a departure from familiar terrain, we
provide some detail in this �rst proof. Let q be a generic and computable Web
query and W a Web machine computing q. Let (o; I) be an input for q. Let Io
denote the subinstance of I consisting of descriptions of all objects reachable
from o. If we show that q(o; I) = q(o; Io) we are done, since q(o; Io) is clearly
computable by a browser machine. There is however one di�culty: Io may be
�nite, in which case it is not a Web instance.

To �x this problem, let �Io be Io augmented with an in�nite set New of new
objects with the same new value, say 0, and without references. Now �Io is surely
a Web instance. For technical reasons, we also need to similarly augment I. Let
�I be I augmented with the objects in New. We will show that:

1. q(o; I) = q(o; �I), and
2. q(o; �I) = q(o; �Io).

For suppose that (1) and (2) hold. Then, q(o; I) = q(o; �Io). Now a browser
machine W 0 can compute q(o; I) by simulating the computation of q(o; �Io). The



browser generates on a portion of its work tape an encoding of a pre�x of (o; Io),
and starts simulatingW on this input tape. Whenever W attempts to move past
the right end of the input tape, W 0 extends the tape by either browsing Io or (if
Io is �nite and has already been exhausted), by generating the encoding of an
object in New. Since objects in New are standard, their encodings can simply be
made up by the browser.

To prove (1), let � be a successor relation on all elements of I. The com-
putation of W on enc�(o; I) halts after W has inspected a �nite pre�x ! of
enc�(o; I). Clearly, there exists a successor relation � on the elements of �I such
that ! is also a pre�x of enc�(o; �I). Thus, q(o; I) = q(o; �I).

The proof of (2) is similar, starting from the computation of W on input
(o; �Io).

Remark. (i) Observe that the previous result does not hold without the assump-
tion that Web instances are in�nite. Consider the following query: on input (o; I),
output o1; o2 if I consists precisely of o and two other objects o1; o2 pointing to
o. This would be computable by a Web machine but not by a browser machine.
(ii) In addition to computable queries, browser machines can also compute
queries that are eventually computable but not computable (e.g., \Find all ob-
jects reachable from o"). However, there exist eventually computable queries
which are not eventually computable by a browser machine, such as \Find all
objects in I".

We next augment browser machines with a search mechanism. The search
is essentially a selection operation on a relation in the schema, whose con-
dition speci�es a conjunction of a �nite set of (in)equalities involving an at-
tribute and a constant. Examples of selections are: (i) �value=SGML(Val) that
returns all tuples V al(o,SGML) where o is an object whose value is \SGML";
(ii) �label=Department(Ref) that selects all edges with label \Department"; (iii)
�label=A^destination=556(Ref) that returns all edges with label A and oid 556
as destination; and (iv) �source=source(Ref) that returns all edges. In general, a
search triggers an eventually computable subquery, whose result may be in�nite.
This leads to the problem of integrating nonterminating subcomputations into
the computation of a query. We adopt the following model.

A browse/search machine is a browser machine augmented with a right-
in�nite search-answer tape and a separate search-condition tape. There is a
distinguished search state. The computation of the machine is nondeterministic.
A search is triggered by writing a selection operation on the search-condition
tape, then entering the search state. The search-answer tape functions similarly
to the answer tape of an eventually computable query. Answers to previously
triggered searches arrive on the search-answer tape at arbitrary times and in
arbitrary order. More precisely, suppose the set of selections triggered up to
some given point in the computation is f�1; : : : ; �ng. In any subsequent move
of the machine, a (possibly empty) �nite subset of the answers to some of the
�i's is appended to the search-answer tape. This is non-deterministic. The order
in which answers are produced is arbitrary. Each tuple in the answer to �i is



pre�xed by �i (everything is encoded in the obvious way). It is guaranteed that
all answers to a triggered search will be eventually produced, if the computation
does not terminate. However, note that there is generally no way to know at a
given time if all answers to a particular search have been obtained.

The rest of the computation occurs as in the browser machine. A Web query
q is computable by a browse/search machine if there exists a browse/search
machineW such that each computation ofW on input (o; I) halts and produces
an encoding of q(o; I) on the answer tape5. The de�nition of query eventually
computable by a browse/search machine is analogous.

What is the power of browse/search machines? This is elucidated by the
following result.

Theorem2. (i) A generic Web query is eventually computable i� it is eventu-
ally computable by a browse/search machine.

(ii) A generic Web query is computable i� it is computable by a browse/search
machine.

Proof. (Sketch): For (i), consider �rst a query that is eventually computable by
a browse/search machineM . The expand operations ofM are easy to simulate in
�nite time by a Web machine (but note that this uses the fact that the encodings
of tuples describing a given object are clustered together). Searches are simulated
as follows. For each selection, the Web machine scans the input tape from left
to right in search of answers to the selection. When a tuple in the answer is
found, its encoding is placed on a portion of the worktape that simulates the
search-answer tape of M . The searches (which never terminate) are interleaved
with the rest of the simulation in some standard way.

Conversely, suppose q is eventually computed by a Web machine W . A
browse/search machine can simulate W as follows. First, it triggers a search on
a selection condition true of all objects. As objects arrive on the search-answer
tape, they are expanded and encoded on the work tape using expand. This is
interleaved with a simulation of W on the portion of the input tape constructed
so far.

Part (ii) follows immediately from Theorem 1.

3 Query Languages

It is tempting to use classical declarative query languages in the context of the
Web. However, it is not clear to what extent such languages are appropriate in
this framework. We examine this issue in light of the notions of (eventual) com-
putability discussed so far. Speci�cally, we consider the languages FO (�rst-order
logic), Datalog, and Datalog:. Due to space limitations, we assume familiarity
with the above languages (e.g., see de�nitions in [AHV94]). All programs we

5 However, it should be clear that a browse/search machine that uses the search feature
in a nontrivial way cannot terminate.



consider here use as input the Web relations Obj, Ref and Val, as well as one
constant source that is interpreted as the object o in an input instance (o; I).

For each language, we are interested in the following questions:

(i) are the queries in the language (eventually) computable?
(ii) which fragment of each language can be implemented by browsers?

As it turns out, conventional wisdom cannot be counted upon in this context. To
begin with, FO is no longer a nice, tractable language: it expresses queries that
are not eventually computable. We will see that negation is the main source of
problems in the languages we consider. This is not surprising, given that neither
the (eventually) computable queries nor the queries computable by browser ma-
chines are closed under complement. We therefore begin our discussion with lan-
guages without negation: positive FO (FO without negation or universal quan-
ti�cation, denoted FO+) and Datalog. The following is easily shown.

Theorem3. All FO+ and Datalog queries are eventually computable.

In particular, every FO+ and Datalog query can be implemented by a
browse/search machine. Clearly, the fragments implementable by a browser ma-
chine are of special interest. Note that navigational languages proposed for the
Web are implementable by browsers. In particular, the languages based on spec-
i�cation of paths from the source object using regular expressions (e.g., see
[AMM96]), are fragments of Datalog implementable by browsers. We isolate
fragments of Datalog and FO+ (eventually) computable by browsers by a syn-
tactic restriction on variables which limits their range to values reachable from
the source. We provide the de�nition for Datalog (this induces an analogous
restriction on FO+, since this can be viewed as nonrecursive Datalog).

De�nition4. The set of source-range-restricted variables in a Datalog rule r is
the minimum set of variables in r satisfying:

{ if R(u) occurs in the body of the rule, R is some idb predicate and x is one
of the variables of u, then x is source-range-restricted;

{ if x is the source constant or x is source-range-restricted and Ref(x; y; z)
occurs in the body of the rule, then y; z are source-range-restricted; and

{ if x is the source constant or x is source-range-restricted and V al(x; y) occurs
in the body of the rule, then y is source-range-restricted.

A rule is source-safe (ss) if all its variables are source-range-restricted. A program
is source-safe if all its rules are source-safe.

For example, the �rst Datalog program below is source-safe, and it is eventu-
ally computable by a browser machine. The second program is not source-safe.
It is eventually computable, but not by a browser machine alone.

reachable nodes answer(source)  
answer(t0)  answer(t); Ref(t; x; t0)

nodes leading answer(source)  
to the source answer(t)  answer(t0); Ref(t; x; t0)



We can now show the following.

Theorem i All ss-FO+ queries are computable by a browser machine.
(ii) All ss-Datalog queries are eventually computable by a browser machine.

We next consider languages with negation. As expected, things become more
complicated. Even without recursion, one can easily express queries which are
not eventually computable. Consider the FO query

fx j Ref(source; A; x) ^ :9y(y 6= source ^Ref(y;A; x))g:

This asks for the (�nite set of) objects x which are referenced with an edge
labeled A by source and by no other object. It is easy to see that this query is
not eventually computable.

Besides FO, we will consider Datalog: with strati�ed, well-founded, and in-

ationary semantics. To obtain fragments eventually computable by browser
machines, it is natural to extend the source-safe restriction to these languages.
The de�nition of ss-Datalog: is precisely the same as for Datalog, with the
proviso that all occurrences of predicates required by the de�nition to ensure
source-range-restriction must be positive occurrences. (More precisely, the de�-
nition is obtained by replacing \occurs" by \occurs positively" in the de�nition
of source-safe for datalog.) A de�nition of source-safe FO program in the same
spirit can be given (we omit the details). It is straightforward to show:

Theorem5. All queries in ss-FO are computable by a browser machine.

Consider now ss-Datalog:. This language provides some interesting surprises.
The classical strati�ed and well-founded semantics do not appear to be well-
suited to express eventually computable queries, whereas in
ationary semantics
is quite well-behaved. First, recall that in the �nite case (i) FO is subsumed by
strati�ed-Datalog: which is subsumed by Datalog: with well-founded semantics
[GRS88], and (ii) Datalog: with well-founded semantics (with answers reduced
to their positive portion6) is equivalent to Datalog: with in
ationary semantics
[Gel89]. In the in�nite case, things are di�erent: (i) continues to hold but (ii)
does not.

It is quite easy to see that ss-Datalog: with strati�ed semantics expresses
queries that are not eventually computable. For example, consider the strati�ed
ss-Datalog: program:

R(source) 
R1(t

0)  R(t); R(t0); Ref(t; A; t0)
R(t0)  R(t); Ref(t; x; t0)
answer(t) R(t);:R1(t)

The query asks for all vertices reachable from the source, without in-going edges
labeled \A" from any other vertex reachable from the source. One can show that
the strati�ed semantics (so also the well-founded semantics) of this query is not
eventually computable.

For in
ationary semantics, we are able to show:

6 Recall that well-founded semantics uses a 3-valued model.



Theorem6. Every query in ss-Datalog: with in
ationary semantics is eventu-
ally computable by a browser machine.

Generally, there are queries which are eventually computable (and even com-
putable) by a browser machine, which are not expressible in ss-Datalog: with
in
ationary semantics. An example of such a computable query is \Output o i�
there is an even number of objects x such that Ref(o;A; x)." This is a familiar
di�culty in the theory of query languages, and is due to the lack of an order on
the domain. Let us consider Web instances augmented with a total order relation
on all oid's in Obj. Call such a Web instance ordered. Also, a Web instance (o; I)
is source-in�nite if there are in�nitely many objects reachable from o. Otherwise,
the instance is called source-�nite. We can show the following:

Theorem7. (i) The language ss-Datalog: with in
ationary semantics expresses
exactly the queries eventually computable by a browser machine on ordered,
source-in�nite Web instances.
(ii) The language ss-Datalog: with in
ationary semantics expresses exactly the
queries computable by a browser machine in polynomial time (with respect to the
number of objects reachable from source) on ordered, source-�nite Web instances.

The proof involves a simulationof browser machines. The tape cells of the ma-
chine are encoded using indexes consisting of objects reachable from the source.
Recall that browser machines may not terminate, so in�nitely many cells may
have to be encoded. This only works for source-in�nite instances (even in the
case when the browser machine itself only inspects �nitely many objects reach-
able from the source). On source-�nite instances ss-Datalog: with in
ationary
semantics can only construct polynomially many indexes for tape cells.

Theorem 7 allows to show an interesting connection between the ss-Datalog:

languages with various semantics for negation.

Proposition8. On ordered Web instances, every query eventually computable
by a browser machine that is expressible in ss-Datalog: with well-founded se-
mantics is also expressible in ss-Datalog: with in
ationary semantics.

The proof uses the fact that on source-�nite Web instances every ss-Datalog:

program with well-founded semantics can be evaluated in time polynomial in the
number of objects reachable from the source. Thus, Proposition 8 follows from
a complexity/completeness argument rather than from an explicit simulation.
It remains open to �nd a uniform simulation of ss-Datalog: with well-founded
semantics which are eventually computable by browsers, by ss-Datalog: with
in
ationary semantics. It also remains open whether Proposition 8 holds for
unordered Web instances.

In view of these results, ss-Datalog: with in
ationary semantics emerges as
a particularly appealing language in the context of the Web.

Remark. The notion of source-safety was developed to ensure that programs
can be implemented by a browser. One could develop a less restrictive notion



of safety geared towards eventual computability, which would guarantee that
the program can be implemented by browsing and searching combined. Con-
sider for instance Datalog(:). Recall that Datalog queries (without negation)
are eventually computable with browse and search, while ss-Datalog: programs
with in
ationary semantics are eventually computable with browsers alone. One
could relax the source-safety restriction of ss-Datalog: by allowing a mix of idb's
de�ned by positive rules and idb's de�ned by source-safe rules. Hybrid rules that
are neither positive nor source-safe are allowed if idb's occurring negatively are
de�ned only by source-safe rules and variable occurring under negation are also
bound to positive occurrences of some predicate. Such programs express (with
in
ationary semantics) queries eventually computable by browse and search. We
omit the details here.

4 Conclusions

We explored some basic aspects of querying and computing on the Web. In doing
so, we revisited and adapted fundamental concepts from the theory of database
query languages, such as genericity and computability. There are substantial
di�erences, arising from the fact that we model the Web as a semistructured,
in�nite object. Some of our results can be viewed as a posteriori formal justi�-
cation for much of the computation style adopted in practice in the context of
the Web, based on browsing from a given source object.

We considered FO, Datalog and Datalog: in the context of the Web, and
characterized them with respect to (eventual) computability. We also identi�ed
fragments in each language implementable by browsing alone. There were some
surprises: FO is no longer the nicely behaved language we are used to from
the �nite case. And among semantics for negation in Datalog:, strati�ed and
well-founded semantics have fundamental shortcomings, whereas in
ationary se-
mantics emerges as particularly appealing in this context. Although it is unlikely
that FO, Datalog, or Datalog: will be used as such to query the Web, the results
can guide the design of more practical languages. In particular, we believe that
the nice properties of source-safe Datalog: with in
ationary semantics suggest
useful ways to extend previously proposed languages based on browsing.

As emphasized in the introduction, our abstraction of the Web left out impor-
tant aspects which we plan to include in future investigations. Perhaps the most
important are the communication costs associated with browsing and searching,
and the notion of locality. Locality could be introduced in our model by having
two-sorted edges in the reference graph Ref: local and remote, with the added
condition that each connected component of the subgraph of Ref consisting of
local edges is �nite. The fact that local browsing/searching is guaranteed to
terminate can in turn be exploited at the language level by allowing explicit
reference to local links in the language. Locality is indeed an explicit notion in
some languages proposed for the Web [AMM96]. It is natural then to provide
extended notions of safety based on locality of browsing and searching.
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