
Multi-Way VLSI Circuit Partitioning Based on Dual Net Representation

Jason Cong
Department of Computer Science

University of California, Los Angeles, CA 90024

Wilburt Labio and Narayanan Shivakumar
Department of Computer Science

Stanford University, Stanford, CA 94305

Abstract

In this paper, we study the area-balanced multi-way partitioning problem of VLSI circuits based on a new dual netlist

representation named the hybrid dual netlist (HDN), and propose a general paradigm for multi-way circuit partitioning

based on dual net transformation. Given a netlist we first compute a K-way partitioning of nets based on the HDN

representation, and then transform the K-way net partition into a K-way module partitioning solution. The main contri-

bution of our work is in the formulation and solution of the K-way module contention (K-MC) problem, which determines

the best assignment of the modules in contention to partitions while maintaining user-specified area requirements, when

we transform the net partition into a module partition. Under a natural definition of binding function between nets and

modules, and preference function between partitions and modules, we show that the K-MC problem can be reduced to a

min-cost max-flow problem. We present an efficient solution to the K-MC problem based on network flow computation.

We apply our dual transformation paradigm to the well-known K-way FM partitioning algorithm (K-FM) and show that

the new algorithm, named K-DualFM, reduces the net cutsize by 20% to 31% compared with the K-FM algorithm. We

also apply the same paradigm to the K-MFFC-FM algorithm, a K-FM algorithm based on maximum fanout-free cone

(MFFC) clustering reported in [10], and show that the resulting algorithm, K-DualMFFC-FM reduces the net cutsize by

15% to 26% compared with K-MFFC-FM. Furthermore, we compare the K-DualFM algorithm with EIG1[18] and Par-

aboli [26], two recently proposed spectral-based bipartitioning algorithms. We showed that K-DualFM reduces the net

cutsize by 56% on average when compared with EIG1 and produces comparable results with Paraboli.

1. Introduction

The K-way partitioning problem is one of partitioning the modules in a network into K subsets (partitions) of "approxi-

mately" the same size while minimizing the number of interconnections between the K partitions. This problem has

many applications in VLSI circuit design ranging from circuit layout to logic simulation and emulation.

The existing partitioning algorithms in the literature can be classified into two-way partitioning (bipartitioning) algo-

rithms and multi-way partitioning algorithms. The bipartitioning algorithms include the iterative improvement methods,

the analytical methods, the min-cut based method, and the net-based partitioning method. Some of the best known itera-

tive improvement based partitioning methods include the Kernighan-Lin (KL) algorithm [22], the Fiduccia-Mattheyses

(FM) algorithm [15], the FM-algorithm with look-ahead scheme [24], and the simulated annealing approach [23, 17]. The

analytical methods include both the use of a linear placement formulation with the quadratic objective function, which is

solved by computing the second smallest eigenvector of the Laplacian matrix of the given network [14, 2, 4, 18], and the

use of the linear placement formulation with a linear objective function, which is solved by an iterative method in [26].

The min-cut based method uses the maximum flow algorithm to compute a series of minimum cuts in the given circuit in

-2-

order to obtain an area-balanced cut with small cut size [29]. The net-based partitioning approach first computes a bipar-

titioning of the nets, and then transforms the net partitioning solution into a module partitioning solution [20, 9].

The multi-way partitioning algorithms include the recursive bipartitioning by Kernighan and Lin [22], a generalization

of the FM-algorithm with lookahead by Sanchis [27], the primal-dual algorithm [30], and a generalization of the graph

spectral-based partitioning method to multi-way ratio-cut by Chan, Schlag, and Zien [5].

To reduce the computational complexity for partitioning very large circuits, cluster-based partitioning methods have

been introduced. In this approach clusters are identified and collapsed, and the resulting clustered network is partitioned

using existing partitioning methods. Clustering methods include random-walk clustering [8, 19], multicommodity-flow

based clustering [31], clique based clustering [13], geometric embedding with min-diameter clustering [1], and clustering

based on maximum fanout-free cones (MFFCs) [10]. Partitioning with module replication [25, 21] and the

communication-complexity based partitioning method [3] have also been proposed to further reduce the amount of inter-

connections.

Since the objective of the partitioning problem is to minimize the number of nets to be cut, we believe that assigning

nets, instead of modules, to partitions will lead to better partitioning solutions in general. The net-based bipartitioning

algorithm by Cong, Hagen, and Kahng [9] is therefore of particular interest to us. This algorithm first computes a biparti-

tioning of the nets using the graph spectral method, and then transforms a net bipartitioning solution into a module biparti-

tioning solution by solving the module contention problem (to be discussed in Section 3 in detail). It was shown that the

module contention problem for bipartitioning can be solved optimally by computing a minimum vertex covering in a

bipartite graph, and very encouraging experimental results were reported. However, the minimum vertex covering for-

mulation for the module contention problem is inherent to bipartitioning and cannot be easily generalized to multi-way

partitioning.

In this paper, we introduce a new dual netlist representation named hybrid dual netlist (HDN) and propose a general

paradigm for multi-way circuit partitioning based on dual transformation. Given a netlist, we first compute a K-way parti-

tion of the nets based on the HDN representation, and then transform the K-way net partition into a K-way module parti-

tion. The main contribution of our work is the formulation and solution of the K-way module contention (K-MC) prob-

lem. We introduce a binding function between modules and nets, and a preference function between modules and parti-

tions in determining the best assignment of modules in contention to partitions. We show that the K-MC problem can be

formulated as a min-cost max-flow problem, and we present two efficient network flow based algorithms for solving the

K-MC problem under static preference functions and dynamic preference functions.

The rest of the paper is organized as follows. We present the problem formulation and terminologies in Section 2. Sec-

tion 3 presents the hybrid dual netlist representation and our K-way partitioning algorithms based on the dual transforma-

tion paradigm. Section 4 presents experimental results. We conclude the paper in Section 5 with some observations and

directions for future work. An extended abstract of this paper was presented in the 1994 International Conference for

Computer Aided Design (ICCAD’94) [12].

2. Problem formulation

Given a netlist NL to be partitioned into K partitions, we use M = { m 1, m 2, ..., mp } to denote the set of modules in

NL , N = { n 1, n 2, ..., nq } to denote the set of nets in NL , and P 1, P 2, ..., PK to denote the K partitions, where p is the

number of modules, and q is the number of nets in NL . The modules may have different areas.

-3-

An optimal area-balanced K-way partitioning solution of a given netlist NL satisfies the following conditions:

(i) Each module is assigned to exactly one partition.

(ii) The total area of the modules in each partition are within the user-specified area bounds, i.e.

(1 − α). K
Ahh ≤ Ai ≤ (1 + α). K

Ahh

for each partition Pi , where A is the total area of all the modules in NL , Ai is the total area of all the modules in a

partition Pi , and α is a user-specified parameter controlling the allowable slack in the area constraint.

(iii) The number of nets cut is minimized.

Given a netlist NL (for example, shown in Fig. 1(a)), we introduce the following definitions:

(i) Netlist Hypergraph: NHG = (V (NHG), H (NHG)), where each vertex in V (NHG) represents a module mi

(1 ≤ i ≤ p) and each hyperedge in H (NHG) represents a net nj (1 ≤ j ≤ q) (see Fig. 1 (b)).

(ii) Net Intersection Graph (NIG): NIG =(V (NIG), E (NIG)), where each node in V (NIG) represents a net ni

(1 ≤ i ≤ q), and there is an edge in E (NIG) between ni and nj iff ni ∩ nj ≠ φ (i.e. the two nets share common

modules). Note that NIG is a graph instead of a hypergraph (see Fig. 1 (c)).

(iii) Dual Netlist Hypergraph (DNHG): DNHG =(V (DNHG), H (DNHG)) where each node in V (DNHG) represents

a net and each hyperedge in H (DNHG) represents N (mi), the set of nets incident to module mi (1 ≤ i ≤ p) (see Fig.

1 (d)).

1

4

2

3

5

6

7

i

a

b

c

d

e

f

g

h

j
i

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

(a) Netlist (NL) (b) Netlist Hypergraph (NHG)

(c) Net Intersection Graph (NIG) (d) Dual Net Hypergraph (DNHG)

Figure 1 Different Circuit Representations

-4-

3. Multi-way circuit partitioning based on dual transformation

In this section, we first review IG-MATCH, the bipartitioning algorithm based on dual transformation by Cong, Hagen,

and Kahng [9] and discuss its limitations for multi-way circuit partitioning. Then, we describe the K-DualFM algorithm

in detail in Subsections 3.2 to 3.6 and use it to illustrate how to apply our new dual transformation technique to a multi-

way partitioning algorithm. Finally, in Subsection 3.7, we present the K-DualMFFC-FM algorithm, which applies our

dual transformation technique to the K-MFFC-FM algorithm, a K-FM based algorithm with MFFC clustering [10].

3.1. Review of the IG-MATCH algorithm

The IG-MATCH algorithm partitions the NIG using a spectral based method, and then transforms the net partitioning

to a module partitioning solution. Given a netlist shown in Fig. 2(a), and a net bipartitioning solution P 1 and P 2 of the

NIG shown in Fig. 2(b), IG-MATCH assigns all the modules in nets a and b (i.e. modules 1 and 4) to P 1, and all the

modules in nets h and j (i.e. modules 3 and 7) to P 2. This assignment assures that nets a , b , h and j will not be cut in

the resulting module partitioning solution. Note that these three nets are not incident to any edge cut in the partitioning of

NIG . Each of the remaining unassigned modules are part of nets that intersect (i.e. share modules with) another net in the

other partition. When two (or more) nets reside in different partitions and share some module mk , the question arises as to

which partition the contended module mk should be assigned to. This is the module contention (MC) problem: in Fig 2(b),

modules 2, 5 and 6 are in contention since they are shared by nets on both sides. A bipartite graph B was constructed in

[9] as follows. The nodes in B represent the nets on the boundary of the partitioning solution of NIG . For each net ni in

P 1 and net nj in P 2 sharing some module mk , we introduce an edge between ni and nj . For example, Fig. 2(c) shows the

bipartite graph B , a sub-graph of NIG , for the net bipartitioning of NIG in Fig. 2(b). It was shown that for any assign-

ment of modules in contention, the set of nets being cut in the resulting module partitioning solution form a vertex cover

in B . Therefore, the module contention problem is reduced to the one of computing a minimum vertex cover in a bipar-

tite graph, which can be solved optimally in polynomial time. It is easy to see that nets d and g form the minimum vertex

1

4

2

3

5

6

7

i

a

b

c

d

e

f

g

h

j

i

a

b

c

d

e

f

g

h

j

(a) Given Netlist (b) NIGs Net Partitioning

(c) Module Contention Resolution (d) Final Module Partitioning

P1 P2

1

4

2

3

5

6

7

i

c

d

g

e

f

P1
P2

Figure 2 Illustration of the IG-MATCH Algorithm

-5-

cover of the bipartite graph shown in Fig. 2(c). Therefore, we decide to allow nets d and g to be cut while keeping nets

i , c , e , and f intact in solving the module contention problem, which leads to the module bipartitioning solution shown

in Fig. 2(d).

It is clear that the minimum vertex covering formulation for the module contention problem is inherent to bipartitioning

and cannot be easily generalized to multi-way partitioning. Also, the minimum vertex cover formulation cannot handle

the area balance constraint effectively. The objective of [9] was to minimize ratio-cut size, and therefore, the area balance

constraint was not an issue in their formulation. Our work to be presented in the remainder of this section gives a novel

and more general formulation of the module contention problem for area-balanced multi-way partitioning that leads to

efficient solutions. In the next a few subsections, we shall present the K-DualFM algorithm in detail and use it to illus-

trate our dual transformation technique for multi-way circuit partitioning.

3.2. Overview of K-DualFM algorithm

Our dual netlist based K-FM partitioning algorithm, named K-DualFM, consists of the following phases:

(1) We first convert the net hypergraph to a dual net representation. The dual net representation used in K-DualFM,

named hybrid dual netlist (HDN), is a combination of NIG and DNHG .

(2) Assign nets to partitions. We use the K-FM partitioning algorithm [27, 15] to partition the nets into K partitions.

(3) We transform the net partitioning solution into a module partitioning solution by solving the K-way module conten-

tion problem (K-MC). We show that the K-MC problem can be formulated as a min-cost max-flow problem and

we present two efficient algorithms to solve the K-MC problem.

(4) We further improve the module partitioning solution using again the K-FM iterative improvement algorithm.

The subsequent subsections describe these phases in detail.

3.3. Generating dual netlist representations

The net intersection graph (NIG) was used in [9] since the graph spectral based algorithm used in their net partitioning

algorithm applies only to graphs and cannot be used for hypergraphs. However, we notice that for many test circuits,

there are a number of nets incident to the same module (see Fig. 3(a)), and these nets will form a large clique (complete

graph) in the NIG (see Fig. 3(b)). In this case, the memory requirement for storing NIG is high and partitioning NIG also

tends to be more difficult and time intensive. Moreover, since NIG can be very dense when large nets exist in the circuit,

iterative improvement based partitioning algorithms may easily be trapped in local optima. On the other hand, the dual

net hypergraph (DNHG) (Fig. 3(c)) defined in Section 2 is more economical in terms of memory requirement when com-

pared to the NIG . However, our study shows that use of DNHG directly as the dual representation does not give the best

partitioning results since DNHG representation does not distinguish the number of nets contending for a module. To

avoid these problems, we introduce a threshold parameter CF when constructing the net intersection graph. When the

number of nets incident to the same module is more than CF , we connect these nets by a hyperedge instead of a large

clique. The resulting dual netlist representation is called the hybrid dual netlist (HDN) representation. Note that if we set

CF to be 2, then the HDN is the same as the DNHG . In general, HDN (shown in Fig. 3(d)) is a combination of NIG and

DNHG . Our experimental results confirm that net partitioning based on HDN produces better results than those based on

NIG or DNHG representations. The HDN was constructed in two steps:

-6-

(i) Construct the Dual net hypergraph.

(ii) For each hyperedge with no more than CF nodes, replace it with a clique.

In our implementation, CF was chosen to be 5. Note that the HDN is a hypergraph in general. Since we use the K-FM

algorithm for net partitioning (see next sub-section), a hypergraph representation presents no problem to us.

3.4. Partition of dual netlist representation

After constructing the HDN hypergraph, we use the K-FM algorithm to compute a K-way partitioning of HDN to

obtain a K-way partitioning of the nets in the original netlist. We want to minimize the number of edges cut in HDN so

that the subsequent module contention is easier to solve. For example, a "bad" net partitioning shown in Fig. 4(a) may

result in all the modules in all nets being in contention. However, for a good net partitioning as shown in Fig. 4(b),

modules in nets a , f , and g can be assigned according to the net partitioning, and only the shared modules in nets b , c , d

and e will be in contention. Therefore, it is very important to obtain a good net partitioning based on the K-way partition-

ing of HDN . In our algorithm, we compute an initial net partitioning, using the following simple deterministic, greedy

algorithm.

(i) Sort the nets in descending order of their sizes (in terms of the number of modules).

(ii) Assign the largest unassigned net to the partition where most of its assigned modules reside (without violating area

constraints).

(iii) Move the unassigned modules that are a part of the selected net to the same partition determined in step 2.

a

g

h

b

c

d

e

f

a

h

g

b

c

d

e

f

b c d e f g

h

a

b c d e f g

h

a

(a) Partial Netlist (b) Net Intersection Graph

(c) Dual Net Hypergraph (d) Hybrid Dual Netlist (CF=5)

Figure 3 Advantage of Hybrid Dual Netlist

-7-

(iv) Repeat steps 2 and 3 until all nets are assigned.

In addition, we also generate a number of random initial net partitions if sufficient CPU time remains. We then apply

the K-FM algorithm to the net partitions (greedy and random) to improve the K-way partitions of HDN .

3.5. Solution to the K-Way Module Contention problem (K-MC)

The main contribution of this paper is the general formulation of the K-way module contention (K-MC) problem and

the efficient methods of solution, which allow us to transform a K-way net partition (obtained by any partitioning algo-

rithm) to a K-way module partition such that the number of nets cut is minimized. We shall discuss our formulation and

the methods of solution in detail in this subsection.

3.5.1. Problem statement

We say that a module m is in contention if there exist two nets ni and nj containing m such that ni and nj are in two

partitions in the net partitioning solution. We use Mcont to denote the set of modules in contention.

The K-MC problem is to assign modules in Mcont to proper partitions so that the total number of nets being cut is

minimized. If we start with a good net partitioning (which is usually the case after applying K-FM algorithm on HDN),

the size of Mcont is much smaller than the number of modules in the original netlist. From our experiments, we see that

for the MCNC benchmarks, the percentage of modules in contention ranges from 50 - 62% for K = 2, 45 - 60% for K = 3,

40 - 50% for K = 4, and 30 - 42% for K = 5. Therefore, the K-MC problem is much simpler than the original K-way parti-

tioning problem, and judging by the trend of our results, it gets simpler with increasing K.

3.5.2. Binding function and preference function

Good solutions to the K-MC problem should minimize the number of nets being cut under the area constraint. Since

this problem is NP-Hard in general, we resort to efficient heuristic algorithms. We introduce a function to estimate the

number of nets cut when a module is assigned to partition Pi . Intuitively, a net nj has a high affinity for a module mk in

contention if it has a high probability of being satisfied (uncut) after attracting mk into its partition, and a low affinity if it

is most likely to be cut even after obtaining mk . We introduce a binding function (bf) to measure this affinity between a

a

b

f

d

c

e

g

a

b

d

f

c

e

g

(a) (b)

Figure 4 Comparison of two net-partitioning solutions

-8-

net and a module. Let nj be a net and mk ∈ nj be a module in contention. The binding function bf (nj , mk) should

depend on the following factors:

(i) S (nj), the number of modules in nj : As the number of modules in a net increases, the probability of the net being

satisfied (uncut) is reduced. So the bf (nj , mk) should be inversely proportional to the net size S (nj).

(ii) C (nj), the number of modules in contention in net nj : If C (nj) is high, the probability of the net being satisfied is

low. Hence, the bf (nj , mk) should be inversely proportional to C(nj).

(iii) S (nj) − C (nj), the number of modules of net nj in its partition already, i.e. the number of modules in nj not in con-

tention. The bf (nj , mk) should be directly proportional to this factor since the probability of the net being satisfied

increases as this number increases.

Therefore, we consider the ratios S (nj)
S (nj) − C (nj)hhhhhhhhhhhhh and C (nj)

S (nj) − C (nj)hhhhhhhhhhhhh to be of primary importance in determining the

binding function. From the two ratios, we define the binding f unction of net nj for module mk to be

bf (nj , mk) = S (nj)× C (nj)
(S (nj) − C (nj))2
hhhhhhhhhhhhhhhh

We define that bf (nj , mk) = 0 if mk is not in nj. Also, if two modules mk and ml in net nj are already assigned to two

different partitions (i.e. nj is already cut), then bf (nj , mi) = 0 for any m ∈ nj . Based on the definition of the binding

function, we define the preference function pf (Pi , mk) between a module mk in contention and a partition Pi as follows:

pf (mk , Pi) =
n ∈ Pi

Σ bf (n , mk)

That is, the preference function between module mk and partition Pi is the sum of binding function values between mk

and all nets in partition Pi . Our objective is to find an optimal assignment of the modules in Mcont to the partitions such

that the cumulative preference over all assignment edges is maximized.

3.5.3. Flow-based formulation of the K-MC problem

We use the min-cost max-flow algorithm[16, 11] to compute the optimal module assignment. First, we construct an

assignment network (AN) as follows. We construct a bipartite graph in which the nodes represent the modules in Mcont

and the partitions in P and each directed edge (mk , Pi) connects module mk to partition Pi . Then, we add a source node

s to AN and connect it to every module node mk in AN . Similarly, we add a sink node t to AN and connect every parti-

tion node Pi to the sink t . Fig. 5 shows an example of the assignment network. For each edge e in the assignment net-

work, we define its capacity cap (e) and cost cost (e) as follows:

(i) if e = (s , mk), cap (e) = 1, cost (e) = 0;

(ii) if e = (Pi , t), cap (e) = cap (Pi), cost (e) = 0, where cap (Pi) is the number of modules that partition Pi can accept

without violating its area constraints.

(iii) if e = (mk , Pi), cap (e) = 1, cost (e) = MAX − pf (Pi , mk), where MAX is a positive constant larger than any

preference function value.

-9-

s t

a

b

c

d

e

1

2

3

4

Modules M Partitions P

Figure 5 Assignment Network (AN)

Let m = c Mcont c. In general, we have

(C1)
i =1
Σ
q

cap (Pi) ≥ mcont (= | Mcont |).

That is, the total excess capacity in all partitions is larger than the number of modules in contention. (It is easy to show

that when all modules are uniform in size, condition C1 is always true.) When module sizes vary significantly, we can

only use cap (Pi) to estimate the maximum number of modules allowed in Pi without violating the area balance con-

straint, and such estimation usually tends to be conservative (based on the largest or average module size). In principle, if

we relax the area slack parameter α as defined in Section 2, we can always satisfy condition C1. In the cases where C1 is

not satisfied, we shall present a dynamic area updating scheme in Section 3.5.4 that satisfies the area balance constraint.

Lemma 1 The value of the maximum flow in the assignment network is mcont when condition C1 is true.

Proof According to the min-cut max-flow theorem, we need only to show that the size of a min-cut in the assignment

network is mcont . First, we show that the size of a min-cut is at least mcont . Let (X , Xdd) be a min-cut where s ∈X and

t ∈Xdd. Let MX be the set of module nodes in X and MXdd be the set of module nodes in Xdd. Let mX = c MX c.

Case 1: Suppose that there exists a partition node Pi in Xdd. Then, the total capacity of the edges between Pi and nodes

in MX is mX and the total capacity of the edges between the source and the edges in MXdd is mcont − mX . Therefore, the cut

size of (X , Xdd) is at least mX + (mcont − mX) = mcont .

Case 2: Suppose that there is no partition node in Xdd. Then, the min-cut must be a cut between the sink node and the

remaining nodes in AN . Since condition C1 is satisfied, the cut size is at least m .

Hence, in both cases, the cut size of (X , Xdd) is at least m . Moreover, it is easy to see that the size of a min-cut is no

more than m since the cut between the source and the remaining nodes is of size m . Therefore, we conclude that the size

of any min-cut in AN is m when condition C1 is satisfied. `

Theorem 1 The min-cost max-flow in the assignment network induces a module assignment whose total preference

function is maximum, when condition C1 is true.

Proof According to Lemma 1, when condition C1 is true, the value of a max-flow in N is m . Given a max-flow f , we

can induce a module assignment as follows: Because of the capacity constraints in N and the integer flow property, it is

easy to show that a max-flow f of value m satisfies the following property: for each mi , there is exist a unique Pj such

-10-

that f (mi , Pj) = 1 and f (mi , Pk) = 0 for k ≠ j . We assign module mi to partition Pj if f (mi , Pj) = 1, and obtain a

module assignment solution. Moreover, the module assignment solution satisfies the partition area constraints due the

capacity constraints on edges (Pj , t)’s.

On the other hand, given a module assignment solution satisfying the partition area constraints, we can derive a max-

flow f as follows: If module mi is assigned to partition Pj , we define f (s , mi) = f (mi , Pj) = 1 and f (mi , Pk) = 0 for

k ≠ j . Furthermore, we define f (Pj , t) to be the sum of all incoming flows at node Pj . It is easy to verify that f is a

max-flow of value m .

Therefore, each max-flow f in N induces a K-MC module assignment solution satisfying the partition area constraints,

and vice versa. Moreover, the cost of the max-flow f is

cost (f) = m .MAX −
m ∈ Mcont , p ∈ P , f (m ,p)=1

Σ pf (m , p).

Since MAX is a constant, maximizing the total preference in a module assignment solution is equivalent to minimizing

cost (f). Hence, a min-cost max-flow in N induces a module assignment with the maximum total preference function. `

We use the augmenting path algorithm [16, 11] for computing a minimum-cost maximum-flow in the assignment net-

work. We start with a flow of value zero. At each step, we compute the minimum cost augmenting path in the residual

graph of the assignment network. Then, we augment the flow value by one, and update the residual graph of the assign-

ment network. The augmentation process stops after m steps. It can be shown that the time complexity of the minimum-

cost maximum-flow computation is O (K .m 2 + m 2.logm) using Fibonacci heaps. Our implementation has time complex-

ity O (K .m 3) using a simple shortest path algorithm. After we obtain a min-cost max-flow, we can determine the assign-

ment of modules in contention in linear time.

When condition C1 is not satisfied (it occurs in rare cases when the area slack parameter α is very small and/or the

module sizes vary significantly), the max-flow in the assignment network has a value less than m , which means that some

modules in Mcont are left unassigned. One option would be to recompute the actual residual capacities at the termination

of the flow algorithm, and repeat the min-cost max-flow algorithm until all modules are assigned. In theory, we may have

to go through several such iterations of flow computation until all modules are assigned. In the next sub-section, we

present a dynamic area updating scheme that requires exactly one flow computation.

3.5.4. Dynamic updating of area constraint

The flow-based algorithm for the K-MC problem presented in the previous sub-section computes the capacity of the

edge from a partition to the sink using the number of modules that a partition could accommodate based on the average

module size. This scheme works well when all modules are more or less uniform in size. However, in some circuits (such

as Test02 in the MCNC benchmark suite), there exist a few modules (such as macro blocks) whose areas are much larger

than the rest of modules. In order to effectively handle the case when module sizes vary considerably, we introduce an

area balancing scheme which first removes and assign the modules of excessively large areas from contention, and then

assigns the remaining modules in contention based on an accurate area capacity constraint which is dynamically updated

during flow computation.

-11-

Let A be the cumulative area of all modules, K be the number of partitions and α the user-specified slack. We first

compute Ex = { m | area (m) ≥ (1 + α). K
Ahh}, which is the set of modules that cannot be accommodated even into the

largest allowed partition size. We then assign each of these modules to a single partition since combining any of them

with other modules in the same partition will further violate the area balance constraint1. The residual area (total area of

remaining modules), denoted by Ares , is A − area (Ex) where area (Ex) is the cumulative area of the modules in Ex . Our

new area balance constraint will then require that the K − | Ex | partitions satisfy

(1 − α). K − | Ex |
Areshhhhhhhhhh ≤ Ai ≤ (1 + α). K − | Ex |

Areshhhhhhhhhh

It is easy to see that | Ex | < K when α > 0.

Observe that each augmenting path in our min-cost max-flow computation assigns one more module to a partition with

possible re-assignment of some other modules. For example, Fig. 6 (a) shows a simple augmenting path in the residual

graph of the assignment network, which assigns module a to partition y . Fig. 6 (b) shows a more general augmenting

path, which assigns module b to partition y and reassigns module a from partition y to partition x . Hence, after each

augmenting path computation, we know the assignment of the new module and (possible) reassignments of other

modules. Therefore, we can update the area capacity constraints of all affected partitions.

We modify our flow algorithm as follows. We use the same definitions for capacity and flow as earlier, but we are

selective about augmenting flow along min-cost augmenting paths in the residual graph. We define two extra arrays

current [Pi] and capacity [Pi] to denote the actual total area of the modules assigned to Pi so far, and the actual max-

imum allowable area of Pi , respectively. The new min-cost max-flow algorithm from a conceptual point of view can be

described as follows:

While there exists an augmenting path in the residual graph

Find the min-cost augmenting path p = (s , mi 1
, Pj 1

, mi 2
, ..., mit

, Pjt
, t) such that

for all assignments mi → Pj specified by p , (current [Pj] + area (mi)) > capacity [Pj] holds

Augment flow along path p and update the residual graph

Update current [Pj] for all affected partitions as follows

if (mi , Pj) ∈ p then current [Pi] = current [Pi]+area (mi)

if (Pj , mi) ∈ p then current [Pi] = current [Pi]−area (mi)

Update capacity [Pj] for all affected partitions accordingly

End-while

That is the modified min-cost max-flow algorithm accepts augmenting paths specifying assignments that satisfy the

actual partition area constraints by maintaining two arrays reflecting the areas due to the current module assignment. One

concern is the number of augmenting paths that we have to reject before we find one which satisfies the area constraint. In

fact our algorithm incorporates checking of area constraint into the best-first search process for computing the min-cost

augmenting path, so that we generate only the min-cost augmenting path which satisfies the area constraint. This is based

on a simple observation that there are three types of edges in the residual graph of the assignment network:
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 Given an area balance constraint specified by a slack parameter α as shown in Section 2, it is NP-complete to decide if there is a partitioning solu-
tion satisfying such a constraint when the modules are not uniform in size. As a result, it is not always possible for the user to specify a slack parameter
which guarantees an area-balanced partitioning solution. The best any practical partitioning algorithm can do is to try to minimize the violation of area
balance constraint.

-12-

s

a

b

x

y

ts

a

b

y

t

(a) Simple Assignment of a Module (b) Assignment of a Module by Reassignment
of other modules

Figure 6 Augmenting paths in the residual graph of the assignment network

(i) the edges between the source and module nodes

(ii) the edges between module nodes and partition nodes

(iii) the edges between partition nodes and the sink

The min-cost augmenting path algorithm is based on the Dijsktra’s shortest path algorithm [11], which performs a

best-first search starting from the source and keeps expanding the node reachable from the source with the minimum path

cost in the residual graph. A min-cost source-to-sink path is found when the sink is reached in the best-first search pro-

cess. In our modified augmenting path algorithm, we follow the edges of type (i) and type (ii) in the residual graph during

best-first search, but not the edges of type (iii). Instead, we use the values maintained in capacity and current arrays

when deciding if we can extend the current min-cost path from a partition node to the sink. If extending the path to the

sink (which will form an augmenting path) does not violate the area balance constraint of the partitions involved in the

path, we obtain a min-cost augmenting path which satisfies the area balance constraint. Otherwise, we continue to pro-

cess the next node in the best-first search ordering. With this modification, we can guarantee to generate a min-cost aug-

menting path which satisfies the actual area capacity constraint for each partition and the complexity of the algorithm is

the same as that for regular min-cost max-flow using the shortest path algorithm.

3.5.5. Dynamic updating of binding functions during flow computation

One problem with the flow-based solution presented in an earlier sub-section is that the static preference functions are

not reflective of the changes of the binding functions of the nets as more and more modules are assigned during flow com-

putation. In Fig. 7, when m 1 is assigned to P 2 based on n 3’s strong affinity, it is clear that bf (n 4, m 2) should increase

since the probability of its net being satisfied is increased, and hence the pf (P 2, m 2) increases. Also, bf (n 1, m 2) should

be assigned zero since n 1 is being cut, and pf (P 1, m 2) should be updated accordingly.

Binding functions can be updated efficiently as follows after module mk is assigned to partition Pi . Let

N (mk) = N 1 ∪ N 2, where N 1 is the subset of nets that are placed in Pi and N 2 are the subset of nets that are not in Pi . Let

Mcont be the set of modules that are still in contention.

(i) Remove module mk from the set of modules in contention.

Mcont ← Mcont − {mk }

-13-

P1 P2

n3

n4

n1

n2

m1

m2

Figure 7 Example of dynamic update of binding factors

(ii) For each net n ∈ N 1, recompute the bf ’s and update the pf ’s associated with Pi incrementally.

for each net n ∈ N 1

for all modules mj ∈ n, and mj ∈ Mcont

pf (Pi , mj) = pf (Pi , mj) − (bf old (n , mj) − bf new (n , mj))

(Note that bf old (n , mj) < bf new (n , mj) since C (n) is reduced by one)

(iii) For each net n ∈ N 2, assign its bf ’s to zero, and update the pf ’s of all the partitions but Pi incrementally as fol-

lows:

for each net n ∈ N 2

for each mj ∈ N 2, and mj ∈ Mcont

pf (Pi , mj) = pf (Pi , mj) − bf old (n , mj)

(Note that bf new (n , mj) = 0)

Such dynamic updating of binding functions and preference functions can be easily incorporated in our min-cost max-

flow algorithm after each flow augmentation. As noted earlier, each flow augmenting path assigns one more module to a

partition and also possibly specifies re-assignment of some other modules (see Figures 6 (a) and (b)). Therefore, after

finding each augmenting path Qi , we can update the binding functions related to the modules in Qi , and then update the

related preference functions accordingly. Therefore, the edge costs in the assignment network may change after each

flow augmentation. Even with dynamic updating of edge costs in the assignment network, we can still show that flow

augmentation stops after m steps. So, we have the following results:

Theorem 2 Assume that each module has a constant average degree in the netlist. With dynamic updating of area con-

straints, binding functions and preference functions, the K-MC problem can be solved in O (K .m 2 + m 2.logm) time based

on min-cost max-flow computation in the assignment network, where K is the number of partitions and m is the number

modules in contention.

Proof Since we do not update edge capacity in flow computation, according to Lemma 1, the value of a maximum flow

is still m and the algorithm stops after m flow augmentations. After each flow augmentation, we need to update the

preference functions of the modules along the augmenting path, which takes at most O (K .m) time The overall complex-

-14-

ity2 is then O (m .(K .m + m 2.logm + K .m)), which is still O (K .m 2 + m 2.logm). `

In real-life CMOS VLSI designs, modules are connected on average to a few nets and hence our assumption of a con-

stant average degree for modules is valid. The K-DualFM algorithm with dynamic updating of area constraints, binding

functions in the flow computation is denoted as K-DualFM/DF, and the flow computation with static binding functions is

denoted as K-DualFM/SF. From the results shown in the next section, we shall see that in general K-DualFM/DF pro-

duces better partitioning solutions compared to K-DualFM/SF. The increase in computation time due to dynamic updat-

ing of edge costs is negligible due to the incremental updating.

3.6. Refinement of module partitioning solution

After solving the K-MC problem we apply another pass of the K-FM partitioning algorithm to further refine the module

partitioning solution. However, we observe that in all test cases the K-FM based refinement step converges very quickly

with very few module moves, which is a strong indication that the K-FM module partitioning solution obtained from K-

way net partitioning and module contention resolution is of very high quality.

3.7. K-DualMFFC-FM algorithm

Subsections 3.2 to 3.6 described the K-DualFM algorithm in detail and illustrated how to combine our dual netlist

transformation based multi-way partitioning paradigm with the K-FM algorithm. To further demonstrate the power and

effectiveness of our multi-way circuit partitioning paradigm based dual netlist representation, we present in this subsec-

tion how to apply our paradigm to the K-MFFC-FM algorithm by Cong, Li and Bagrodia [10].

To reduce the computational complexity of partitioning very large circuits, and to take the advantage of the signal

direction information, Cong, Li and Bagrodia proposed a clustering method based on maximum fanout-free cones

(MFFCs) [6, 7] as a preprocessing step to their partitioning algorithm. The MFFC decomposition technique was first pro-

posed for combinational circuits [6] for duplication-free technology mapping of lookup-table based FPGAs. Let input (v)

denote the set of nodes which are the fanins of node v , and let output (v) denote the set of nodes which are the fanouts of

node v . For a node v in the network, a cone of v denoted Cv , is a subgraph of logic gates (excluding primary inputs (PIs))

consisting of v and its predecessors such that any path connecting a node in Cv and v lies entirely in Cv . We call v the

root of Cv . A fanout-free cone (FFC) at v , denoted by FFCv , is a cone of v such that for any node u ≠v in FFCv ,

output (u) ⊆ FFCv . The maximum fanout free cone (MFFC) of v , denoted by MFFCv , is a FFC of v such that for any

non-PI node w , if output (w) ⊆ MFFCv , then w ∈ MFFCv . It is not difficult to show that MFFC is unique for every

node, and any FFC of v is contained in MFFCv . Clearly, if a gate u is in MFFCv , its value is used solely for generating

the output at gate v (and its descendants). Therefore, it is very natural to cluster u and v together. In general, all the gates

in a single MFFCv can be considered to be closely related, since they are used solely for computation of v . The MFFC-

based clustering algorithm considers both signal direction and logic dependency, and produces a natural clustering solu-

tion in linear time. The K-MFFC-FM algorithm reported in [10] applies the K-FM algorithm directly on the clustered cir-

cuits to get very promising results.

We applied our dual net transformation paradigm to K-MFFC-FM and obtained the K-DualMFFC-FM algorithm. In

the K-DualMFFC-FM algorithm, modules were clustered using the MFFC algorithm, and then a net partitioning of the

HDN of the clustered network was obtained using the K-FM algorithm. Then, the K-MC problem was solved using the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 This complexity analysis is based on using a Fibonacci heap. It is easy to see by similar analysis that dynamic updating does not increase the com-

-15-

min-cost max-flow technique, and the solution was further improved using the K-FM algorithm. By our convention, the

algorithm with dynamic updating of binding functions is named K-DualMFFC-FM/DF and the algorithm with static bind-

ing functions is named K-DualMFFC-FM/SF. The experimental results for both K-DualFM and K-DualMFFC-FM are

reported in the next section.

4. Experimental results

We have implemented both the K-DualFM/SF and K-DualFM/DF algorithms on SUN SPARC workstations. We com-

pared the two algorithms with the conventional K-FM algorithms on a set of MCNC benchmark circuits (Test02-06,

PrimGA1, PrimGA2) and 5 large circuits provided by the Hewlett-Packard Research Lab (CPU, GA, FPU, GA2, FPU2).

Circuits CPU, GA and FPU consist of lookup-tables (for multi-FPGA implementation). Circuits FPU2 and GA2 are the

original netlists of FPU and GA before technology mapping.

Table 1 shows the characteristics of the benchmark circuits, including the number of modules (gates and I/O pads) ,

number of nets, maximum module area versus total module area, the maximum number of modules in a net (max net),

and the maximum number of nets incident to the same module (deg).

Tables 2(a)-2(d) show the comparison of K-DualFM/SF and K-DualFM/DF with the K-FM algorithm for K ranging

from 2 to 5. For each example, the K-FM algorithm was run 20 times, each on a random initial module partitioning. In

order to obtain a fair comparison, we make sure that the runtimes of K-DualFM/SF and K-DualFM/DF are comparable

with that of the K-FM algorithm. As a result, the K-DualFM algorithms were run once with the greedy net partition, and

then approximately 10 times3, each on a random initial net partitioning of the dual netlist representation (HDN). The area

slack parameter α was set to be 10% in both K-FM and K-DualFM algorithms.

iii
Circuit # Modules * # Nets Max module/ Total area Max net Degii
Test02 1724 1721 18776/57051 306 57iii
Test03 1664 1618 5295/22229 225 54iii
Test04 1541 1658 19928/42040 422 60iii
Test05 2650 2751 33509/71895 608 59iii
Test06 1813 1674 22/16968 388 6iii
PrimGA1 914 902 9/3432 18 9iii
PrimGA2 3121 3029 9/8373 37 9iii
cpu 947 1729 1/947 115 8iii
GA 6198 11049 1/6198 330 8iii
FPU 8046 15901 1/8046 245 8iii
GA2 25452 25628 **1/25452 337 57iii
FPU2 30669 33826 **1/30669 330 129iicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 1. Characteristics of the Test Circuits.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
plexity of min-cost max-flow even if regular heaps or linear searches are used for choosing the min-cost node to expand.

*The number of modules include the I/O pads.

**For GA2 and FPU2 module areas were not given. The areas were assumed to be 1.0.
3 The number of runs varies from example to example in order to match the runtime of 20-run K-FM algorithm on the same example in order to ob-

tain fair comparison. The MCNC circuits and circuits CPU, GA, and FPU from HP usually ranged from 10 - 12 runs, while the unmapped circuits FPU2
and GA2 from HP ranged between 5 and 8 runs.

-16-

ii
Circuit K-FM K-DualFM/ SF K-DualFM/ DFii
Test02 245 130 130ii
Test03 175 140 137ii
Test04 46 60 60ii
Test05 42 59 43ii
Test06 219 106 106ii
PrimGA1 104 77 42ii
PrimGA2 585 246 214ii
cpu 263 341 175ii
GA 496 157 214ii
FPU 488 409 344ii
GA2 448 440 492ii
FPU2 450 632 570ii
overall 1.527 1.229 1.0iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2 (a) Comparison of K-DualFM against K-FM for K = 2

iii
Circuit K-FM K-DualFM/ SF K-DualFM/ DFii
Test02 114 97 97iii
Test03 271 219 199iii
Test04 1017 817 823iii
Test05 1069 898 767iii
Test06 476 424 408iii
PrimGA1 209 188 175iii
PrimGA2 767 270 231iii
cpu 951 882 796iii
GA 2270 2127 2038iii
FPU 1238 1468 1383iii
GA2 5772 4181 2829iii
FPU2 5673 2860 3776ii
overall 1.466 1.081 1.0iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2 (b) Comparison of K-DualFM against K-FM for K = 3

ii
Circuit K-FM K-DualFM/ SF K-DualFM/ DFii
Test02 1013 796 796ii
Test03 589 518 496ii
Test04 1143 913 876ii
Test05 1809 1665 1103ii
Test06 723 519 487ii
PrimGA1 292 270 231ii
PrimGA2 1303 907 821ii
cpu 716 682 626ii
GA 3917 3263 3021ii
FPU 3178 1654 1654ii
GA2 10112 4915 2968ii
FPU2 7300 5684 5552ii
overall 1.568 1.148 1.0iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2 (c) Comparison of K-DualFM against K-FM for K = 4

-17-

ii
Circuit K-FM K-DualFM/ SF K-DualFM/ DFii
Test02 963 700 637ii
Test03 645 618 598ii
Test04 1213 1052 933ii
Test05 1743 1563 1013ii
Test06 868 629 592ii
PrimGA1 290 251 206ii
PrimGA2 1104 907 821ii
cpu 734 631 601ii
GA 4643 3296 3340ii
FPU 4100 3131 3047ii
GA2 11401 7051 5246ii
FPU2 11455 7586 7055ii
overall 1.465 1.139 1.0iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 2 (d) Comparison of K-DualFM against K-FM for K = 5

One can see from Tables 2(a) - 2(d) that the K-DualFM/DF algorithm consistently outperforms the K-FM algorithm by

a significant margin, from about 20% to 31% reduction in net cutsize for K = 2 through 5. The K-DualFM/SF algorithm

produces results with about 12% to 21% cutsize reduction as compared to K-FM for K = 2 through 5. The K-DualFM/DF

algorithm in general outperforms the K-DualFM/SF algorithm for all the circuits tested, and indicates that dynamic updat-

ing of binding functions is indeed useful. In terms of efficiency, the K-DualFM/SF algorithm is generally faster than the

K-DualFM/DF algorithm, and the difference increases as the number of partitions increases. Each run of K-DualFM/SF

for FPU2 took around 6500 seconds and 8200 seconds for K = 3 and K = 4, respectively on a SUN SPARC10 worksta-

tion, while each run for K-DualFM/DF took around 6900 seconds and 9000 seconds, respectively.

There are also improvements, though less dramatic, when the reduction in average net cutsize is considered as opposed

to the minimum net cutsize. For instance, the K-DualFM/DF algorithm reduces the average net cutsize (when compared

to the K-FM algorithm) by 12% for the MCNC circuits for K = 4. Similarly, the K-DualFM/SF reduces the average net

cutsize by 10%. The standard deviations of the net cutsizes from the three algorithms are comparable (of 9% - 13%).

The CF parameter was set to 5 for both K-DualFM algorithms for all the results shown here. The results may vary

considerably if we change the value of CF . As we change the CF parameter from 2 to 10, the cutsize obtained by the

K-DualFM algorithms varies by 18% on average, with a standard deviation 12%. However, the range of the CF parame-

ters is very small since it is related to the degree of the modules in a netlist. For instance, 99% of the modules in all of the

MCNC benchmark and HP Research Lab circuits have a degree of less than 9. Thus one can easily find a good range for

the CF value.

We compared the K-DualFM algorithm with both EIG1 [18] and Paraboli [26], two recently reported spectral-based

methods specialized to solve the bipartitioning problem. EIG1 uses a quadratic objective function, while Paraboli consid-

ers the linear objective function and obtains impressive improvement over EIG1 with considerable longer computation

time. We present comparisons of K-DualFM with these two algorithms in Table 3 for circuits in the ACM/SIGDA

benchmark suite based on the results reported in [26]. The area slack was set to 10%, and the number of runs for K-

DualFM was set to be 10 since it leads to comparable runtime consumed by EIG1. We see that in general the K-DualFM

algorithms produce bipartitioning solutions with comparable net cutsizes as Paraboli while consuming much less compu-

tation time, and consistently outperform EIG1 by a significant margin (56% net cutsize reduction on average) while con-

suming the same amount of time. Moreover, K-DualFM has the following advantages over EIG1 and Paraboli: (i) The

-18-

area balance constraint cannot be modeled naturally in the EIG1 and Paraboli formulation, but is easily accommodated in

K-DualFM. (ii) EIG1 and Paraboli cannot handle some practical constraints such as the pre-assignment of certain

modules to partitions, but K-DualFM can accommodate such constraints easily by pre-assigning these modules in the ini-

tial partitioning solution and marking them ’locked’ throughout all phases of the partitioning. (iii) Furthermore, EIG1

and Paraboli are designed specifically for bipartitioning while K-DualFM is applicable to general multi-way partitioning.

Finally, we report the results obtained by the K-DualMFFC-FM algorithm, which was described in Section 3.7. The

K-MFFC-FM algorithm was developed to partition a circuit to multiple processors for parallel logic simulation. Since the

goal is to minimize inter-processor communication, Cong, Li and Bagrodia [10] modified their objective function to

minimize the number of nets cut while ignoring the connections between gates and input/output pads. (This is because in

their application a primary input variable can be made available for every processor, and generating an output to an out-

put pad is equivalent to a write operation to local disk with no communication overhead.) Our K-DualMFFC-FM algo-

rithm was modified accordingly to use the same objective function for fair and accurate comparison. Tables 4(a)-4(b)

show the comparison of the K-DualMFFC-FM algorithms with the original the K-MFFC-FM4 [10] under the same objec-

tive function for the ICSAC85 benchmark suite (which consist of only combinational circuits and are suitable for MFFC

clustering). The area slack was set to 5%, and K-MFFC-FM was run 20 times, and the K-DualMFFC-FM5 algorithms

were run from 10 - 12 times for comparable runtimes. The β value that bounds the maximum size of the cluster was set to

1/3 for both algorithms since higher values (like 1/2) sometimes did not produce area-balanced partitions for the K-

MFFC-FM algorithm. From Tables 4 (a) and (b), we see that the K-DualMFFC-FM algorithms have on the average 15 to

26% smaller cutsize than K-MFFC-FM for the ICSAC85 benchmark suite.

5. Conclusion and possible future extensions

The results in this paper show convincingly that net partitioning based methods produce better solutions to the multi-

way circuit partitioning problem than direct module partitioning. Our formulation and solution to the K-way module con-

tention problem provide a general and effective frame-work to convert a K-way net partitioning solution to a K-way

module partitioning solution. Both the K-DualFM/SF and K-DualFM/DF algorithms can be extended easily to handle

many practical constraints, such as I/O bound constraint on each partition, pre-specified assignment of modules to

ii
Cicuit EIG1 Paraboli K-DualFM/ SF K-DualFM/ DFii
balu 83 41 27 27ii
struct 102 40 44 38ii
primary1 81 53 72 52ii
biomed 729 135 123 107ii
s13207 241 91 110 110ii
s15850 215 91 140 93ii
s9234 227 74 77 77ii
industry2 620 193 804 493ii

2.85 1.002 1.228 1.0iic
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3 Comparison of K-DualFM against EIG1 and Paraboli for K = 2

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4 K-MFFC-FM is abbreviated to K-MFM in Table 4.
5 K-DualMFFC-FM is abbreviated to K-DualMFM in Table 4.

-19-

iii
Cicuit K-MFM K-DualMFM/ SF K-DualMFM/ DFii
c880 42 21 21iii
c1355 17 17 17iii
c1908 84 68 68iii
c2670 161 162 144iii
c3540 178 153 142iii
c5315 186 111 99ii
overall 1.441 1.046 1.0iicc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 4 (a) Comparison of K-DualMFFC-FM against K-MFFC-FM for K = 4

iii
Cicuit K-MFM K-DualMFM/ SF K-DualMFM/ DFii
c880 60 52 52iii
c1355 43 41 39iii
c1908 119 92 92iii
c2670 208 193 193iii
c3540 229 212 205iii
c5315 260 184 172ii
overall 1.206 1.026 1.0iicc
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Table 4 (b) Comparison of K-DualMFFC-FM against K-MFFC-FM for K = 8

partitions, etc.

Our partitioning results for the test circuits, ranging from 1000 to 31,000 modules, prove that our K-DualFM algorithm

is scalable in terms of the size of the circuit. Other partitioning algorithms (such as the graph spectral based method or

the random-walk based method) may fail to produce solutions for large circuits due to high memory usage (e.g. to store

the Laplacian matrix or a random-walk of quadratic length in terms of the number of modules) or speed inefficiency. The

memory and speed efficiency of the K-DualFM algorithm enables us to handle problems of much larger sizes.

When the problem size is not too large, more elaborate K-way partitioning algorithms other than the simple K-FM

algorithm can also be used to produce a better net partitioning of the dual netlist representation. Improvement on the net

partitioning solutions usually leads to improvement on the resulting module partitioning solution.

In this paper, we concentrated primarily on minimizing the number of nets cut subject to area constraints. Our general

framework is applicable to other objective functions also. For example, our methods can be extended to handle the fol-

lowing two objectives:

(F1) The ‘‘wirability’’ objective function: This is a popular objective function used to minimize the number of inter-chip

wire crossings. Our dual netlist approach can be used to optimize this function by setting binding functions between

a net and any of its contended modules to one. In this case, one can show that a min-cost max-flow in the assign-

ment network corresponds to a module assignment solution with the minimum total wire crossing.

(F2) Performance-based objective function: Some recently proposed objectives optimize for system performance under

timing constraints. For example, Shih, Kuh and Tsay[28] proposed an algorithm to minimize the wirability objec-

tive function subject to thermal, I/O pin, and timing constraints in addition to area constraints. In (F1) we showed

how to minimize the wirability function. The thermal and I/O pin constraints can be handled in a similar way as the

-20-

area constraint. Hence, the algorithm proposed in Section 3.5.4 can be modified to accommodate these two con-

straints (with two additional arrays). The timing constraints can be handled by assigning locations to partitions

such that each pair of partitions will be at a certain distance from each other. We can then ensure that timing con-

straints are satisfied when the preference functions are being updated in the algorithm (as explained in Subsection

3.5.5, Steps (ii) and (iii)). In particular, once a module, belonging to a net n , is assigned to a partition P , the unas-

signed modules of n are constrained to be placed in partitions that are sufficiently "close" to P . This constraint can

be satisfied by making the cost of the edges from these unassigned modules to "distant" partitions prohibitively

high.

We also observed that the choice of CF parameter defined in Subsection 3.3 may affect the partitioning results consid-

erably. We would like to develop effective algorithms to automatically compute the value of CF parameter based on the

characteristics of the circuits so that the K-DualFM algorithm can consistently produce better partitioning results.

6. Acknowledgments

The authors would like to thank Phil Kuekes and Greg Snider at Hewlett-Packard Laboratory for providing benchmark

circuits. This work is partially supported by ARPA/CSTO under contract J-FBI-93-112, the National Science Foundation

Young Investigator Award award number MIP9357582, and grants from AT&T Bell Laboratories, Hewlett-Packard,

Xerox Foundation, Xilinx under the California MICRO program and NY1 Award matching program.

References

[1] C. J. Alpert and A. B. Kahng, ‘‘Geometric Embeddings for Faster (and Better) Multi-Way Netlist Partition-
ing,’’ Proc. ACM/IEEE Design Automation Conf., pp. 743-748, June 1993.

[2] E. R. Barnes, ‘‘An Algorithm for Partitioning the Nodes of a Graph,’’ SIAM J. Alg. Disc. Math., Vol. 3, pp.
541-550, 1982.

[3] M. Beardslee and A. Sangiovanni-Vincentelli, ‘‘Heuristic Methods for Communication-Based Logic Parti-
tioning,’’ 4th ACM/SIGDA Physical Design Workshop, pp. 199-210, April 1993.

[4] R. Boppana, ‘‘Eigenvalues and Graph Bisection: An Average-Case Analysis,’’ IEEE Symp. on Foundations
of Computer Science, pp. 280-285, 1987.

[5] P. Chan, M. Schlag, and J. Zien, ‘‘Spectral K-Way Ratio-Cut Partitioning and Clustering,’’ Proc. 30th
ACM/IEEE Design Automation Conf., June 1993.

[6] J. Cong and Y. Ding, ‘‘On Area/Depth Trade-off in LUT-Based FPGA Technology Mapping,’’ Proc. 30th
ACM/IEEE Design Automation Conf., pp. 213-218, June 1993.

[7] J. Cong and Y. Ding, ‘‘On Area/Depth Trade-off in LUT-Based FPGA Technology Mapping,’’ IEEE Trans.
on VLSI Systems, Vol. 2, pp. 137-148, June 1994.

[8] J. Cong, L. Hagen, and A. B. Kahng, ‘‘Random Walks for Circuit Clustering,’’ IEEE 4th Int’l ASIC Conf.,
pp. P14-2.1, Sept. 1991.

[9] J. Cong, L. Hagen, and A. B. Kahng, ‘‘Net Partitions Yield Better Module Partitions,’’ IEEE 29th Design
Automation Conference, pp. 47-52, June 1992.

[10] J. Cong, Z. Li, and R. Bagrodia, ‘‘Acyclic Multi-Way Partitioning of Boolean Networks,’’ Proc. ACM/IEEE
31st Design Automation Conf., pp. 670-675, June 1994.

-21-

[11] T. Cormen, C. Leiserson, and R. Rivest, Algorithms, MIT Press, Cambridge, MA (1990).

[12] J. Cong, W. Labio, and N. Shivakumar, ‘‘Multi-Way VLSI Circuit Partitioning Based on Dual Net Represen-
tation,’’ Proc. IEEE Int’l Conf. on Computer-Aided Design, pp. 56-62, Nov. 1994. Also available as UCLA
Computer Science Department Tech. Report CSD-940029

[13] J. Cong and M. Smith, ‘‘A Bottom-up Clustering Algorithm with Applications to Circuit Partitioning in VLSI
Designs,’’ ACM/IEEE Design Automation Conf., pp. 755-760, June 1993.

[14] W. Donath and A. Hoffman, ‘‘Lower Bounds for the Partitioning of Graphs,’’ IBM J. Res. Dev., pp. 420-
425, 1973.

[15] C. Fiduccia and R. Mattheyses, ‘‘A Linear Time Heuristic for Improving Network Partitions,’’ ACM/IEEE
Design Automation Conf., pp. 175-181, 1982.

[16] L. R. Ford and D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton, N.J. (1962).

[17] J. Greene and K. Supowit, ‘‘Simulated Annealing without Rejected Moves,’’ Proc. Int’l Conf. on Computer
Design, pp. 658-663, 1984.

[18] L. Hagen and A. B. Kahng, ‘‘Fast Spectral Methods for Ratio Cut Partitioning and Clustering,’’ Proc. IEEE
Int’l Conf. on Computer-Aided Design, pp. 10--13, 1991.

[19] L. Hagen and A. B. Kahng, ‘‘A New Approach to Effective Circuit Clustering,’’ Int’l Conf. on Computer-
Aided Design, pp. 422-427, Nov. 1992.

[20] L. Hagen and A. B. Kahng, ‘‘New Spectral Methods for Ratio Cut Partitioning and Clustering,’’ IEEE Trans.
on CAD, pp. 1074-1085, Sept. 1992.

[21] J. Hwang and A. El Gamal, ‘‘Optimal Replication for Min-Cut Partitioning,’’ Int’l Conf. on Computer-Aided
Design, pp. 432-435, Nov. 1992.

[22] B. Kernighan and S. Lin, ‘‘An Efficient Heuristic Procedure for Partitioning of Electrical Circuits,’’ Bell Sys-
tem Technical J., Feb. 1970.

[23] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Jr., ‘‘Optimization by Simulated Annealing,’’ Science, Vol.
220, pp. 671-680, May 1983.

[24] B. Krishnamurthy, ‘‘An Improved Min-Cut Algorithm for Partitioning VLSI Networks,’’ IEEE Trans. on
Computers, Vol. 33, pp. 438-446, 1984.

[25] C. Kring and A. R. Newton, ‘‘A Cell-Replicating Approach to Mincu-Based Circuit Partitioning,’’ IEEE Int’l
Conf. on Computer-Aided Design, pp. 2-5, Nov. 1991.

[26] B. M. Riess, K. Doll, and F. M. Johannes, ‘‘Partitioning Very Large Circuits Using Analytical Placement
Techniques,’’ Proc. ACM/IEEE 31st Design Automation Conf., June 1994.

[27] L. Sanchis, ‘‘Multiple-Way Network Partitioning,’’ IEEE Trans. on Computers, Vol. 38, pp. 62-81, 1989.

[28] M. Shih, E. Kuh, and R. Tsay, ‘‘Performance-Driven System Partitioning in Multi-Chip Modules,’’ Proc.
ACM/IEEE Design Automation Conf., pp. 53-56, June 1992.

[29] H. Yang and D. F. Wong, ‘‘Efficient Network Flow Based Min-Cut Balanced Partitioning,’’ Proc. IEEE Int’l
Conf. on Computer-Aided Design, pp. 50-55, Nov. 1994.

-22-

[30] C. W. Yeh, C. K. Cheng, and T. T. Lin, ‘‘A General Purpose Multiple-Way Partitioning Algorithm,’’ Proc.
28th ACM/IEEE Design Automation Conf., June 1991.

[31] C. W. Yeh, C. K. Cheng, and T. T. Lin, ‘‘A Probabilistic Multicommodity-Flow Solution to Circuit Cluster-
ing Problems,’’ Int’l Conf. on Computer-Aided Design, pp. 428-431, Nov. 1992.

