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Abstract| This paper presents a realistic modeling frame-
work for evaluating the performance of location management
schemes in PCS networks. The framework captures complex
human behaviors and has been validated through analysis of
actual call and mobility data. Simulation results, showing the
performance of IS-41, are presented.

I. Introduction

Personal Communications Services (PCS) [2] presents many
challenging problems in network data management [6;18].
A key problem in this area is location management. Loca-
tion management refers to accessing and maintaining user
information for call routing purposes. Important per-user
information, such as current location, authentication infor-
mation, and billing information, are stored in user pro�les.
From an operational perspective, location management re-
lies on two functions: pro�le lookups and pro�le updates. The
performance of any location management scheme is a func-
tion of the underlying database architecture and the location
management algorithms. Performance variables of interest
are: pro�le lookup and update response times, memory cost,
and system equipment price. Previous studies [10] have
shown that for projected numbers of PCS users, existing
location management standards, IS-41 [4;11] and GSM [12],
will incur a large increase in database loads over the current
levels. In recent years, many sophisticated location man-
agement schemes [7;14] have been proposed to reduce pro-
�le lookup and update response times and signaling tra�c.
These methods utilize techniques such as data replication
and caching. It is important to note that actual performance
of these proposals depends strongly upon user behavior. For
example, the merits of caching and data replication schemes
are functions of user mobility and calling patterns. As a re-
sult, realistic user behavior models are a critical aspect in
performance evaluation.
In this paper, we present a framework for modeling and

evaluating location management schemes in a PCS environ-
ment. The main contributions are that we have developed
and validated models, through analysis of real call and mo-
bility data, that can capture complex human behaviors. Our
callee distribution and movement models are more realistic
than the models commonly used in this area of research.
We illustrate the importance of our detailed user behav-
ior models by showing how other simpler models produce
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signi�cantly di�erent results in key performance variables.
In addition, our framework models time-varying behaviors
which allow us to investigate transient, peak, and average
performance. Our framework therefore, unlike other syn-
thetic ones, provides a platform for generating more realistic
simulation results. We have developed a discrete event sim-
ulator, Pleiades, based on our framework. Using Pleiades,
we have compared our models with other simpler ones and
studied the performance of IS-41, over a 24-hour period, for
a large number of PCS subscribers on a model of the San
Francisco Bay Area. Comparisons and simulation results are
presented in terms of database transaction requirements and
signaling tra�c loads.
The rest of the paper is organized as follows. Section 2

describes our modeling framework. Section 3 presents our
model comparisons and Bay Area simulation results. Section
4 concludes the paper.

II. Modeling Framework

We have developed a modeling framework for realistic
performance evaluations of sophisticated location manage-
ment schemes. Our framework is divided into the following
components: Basic Topology Model, Call Model, and
Movement Model. The Basic Topology Model speci�es
the geographical and network topologies independent of lo-
cation management schemes. Call and Movement Models
characterize call and movement behavior of individual users.

A. Basic Topology Model

The Basic Topology Model is composed of the following
objects.

User represents a human user. A user object contains in-
formation describing the user's current geographical lo-
cation, the user's home location, and the database(s)
currently containing a copy of the user pro�le.

Site represents a geographical area. All Site objects to-
gether de�ne the physical geography for user movements.
A Site usually corresponds to the area covered by one
pro�le database.

Database represents any form of user pro�le database. A
Database is often associated with a Site. Each database
object maintains access statistics relating to number of
database reads and writes, database messages sent, and
total cost of sending all database messages (e.g. in hop
counts).



Link represents a direct communication link between two
databases. It has a link cost describing the cost of send-
ing a message through it. It maintains tra�c statistics
in terms of number of messages.

Geographical topology is de�ned by a movement connec-
tivity matrix which speci�es, for each Site, its neighbors and
the probabilities of users crossing into each of them. Network
topology for communications between databases is speci�ed
through the Link objects.

B. Call Model

Our call model generates call tra�c for each individual
user. The model is divided into two parts: the Call Tra�c
Model and the Callee Distribution Model. We have
corroborated our models using encrypted call tra�c data [15]
from our local university telephone exchange. This exchange
serves the entire campus including university o�ces, student
housing, and faculty and sta� residential households.

A. Call Tra�c Model

The call tra�c model describes how often individual users
place calls to other people and characterizes the duration of
each call. Very little is known about the tra�c character-
istics of future PCS networks. However, on �xed telephone
networks, tra�c is modeled accurately. Mean call arrival
rate and mean call duration during busy hours have been
reported in [10]. Our call tra�c model is an extension of the
�xed telephone tra�c model to PCS. It generates call ar-
rivals (i.e., calls initiated) for di�erent classes of tra�c and
models time-varying user behavior. Each call tra�c class
is characterized by its probability of occurrence, call arrival
rate, mean call duration, and distribution.
We have investigated time-of-day call tra�c volume pat-

terns because we need to use corresponding mobility pat-
terns in performance evaluation. Figure 1 shows the tra�c
volume patterns derived from [15]. These patterns and call
arrival rates in [10] provide guidelines for us when specifying
the parameters in our Call Tra�c Model.

N
um

be
r 

of
 c

al
ls

Clock Time [24 hr.]

Ave. hourly call volume over 9 months

0 2 4 6 8 14 20

200
400
600
800

1000
1200
1400
1600
1800
2000

1012 1618 2224

Weekday
7 day avg.
Weekend

Fig. 1. Average Number of Call Arrivals Per Hour

Time Scale A p mean sq. error

1 Day 0.778 2.61 0.000010
1 Week 0.574 1.84 0.000028
1 Month 0.383 1.34 0.000030

Table 1. Fitted Power Law Parameters

B. Callee Distribution Model

The callee distribution model characterizes how the callee is
generated for each call. It is an important modeling issue
because of its e�ects on performance evaluation, especially
for schemes with caching or data replication. To the authors'
knowledge, there has not been any previous research in this
area.
We have developed a callee distribution model that mod-

els the behavior of each individual caller. It accounts for
such real life behaviors as users calling a group of people
(e.g., business associates and friends etc.) more frequently.
In our model, each user is associated with its own callee list.
When a call is generated for a user, the callee is selected ei-
ther randomly from all users or from among the user's callee
list according to a speci�ed probability distribution. To ob-
tain reasonable parameters, we have investigated empirical
probability distributions using the notion of callee rank. The
rank k callee of a caller is the caller's kth most frequently
called person within a reference period. For each caller i
in [15], we calculate the call probability to the rank r callee
(P̂ i

r) over the periods of 1 day, 1 week, and 1 month. We
observe that the mean call probability to the rank r callee,
�Pr, can be modeled using a power or generalized Zipf's law
at all three reference time periods: �Pr '

A

rp
, where A is the

scaling parameter and p is the exponent parameter. Table 1
shows the �tted parameters and mean square errors of the
�ts. Figure 2 and Figure 3 are linear and log-log plots of �Pr
versus callee rank for the three reference periods.
We have investigated distributions around �Pr because we

want to include in our model callers that deviate from the
\average" behavior. Figure 4 shows the distributions of P̂ i

1

for the three reference periods. We modeled each empirical
distribution with a truncated normal distribution. Figure 5
shows the cumulative distributions of P̂ i

1 and their �ts to our
model. For the higher rank call probabilities, we looked at
the relative probabilities to the rank r callee, P̂ i

r=P̂
i
r�1; r > 1.

We also modeled the distributions of P̂ i
r=P̂

i
r�1 by truncated

normal distributions. Figure 6 shows graphically the cu-
mulative distributions of relative call probabilities for a few
higher rank cases and their �ts to our model. We have im-
plicitly assumed in our call model that callee distributions
are not dependent on call arrival characteristics. We have
veri�ed this assumption by observing that low correlation
exists between callers' average call arrival rates and their
observed call probabilities. Table 2 summarizes this result
in terms of correlation coe�cients between average call ar-
rival rates of users over the reference time periods and their
respective call probabilities.
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Fig. 2. Mean Call Probability vs. Callee Rank
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Fig. 3. Log-Log Plot of Mean Call Probability vs. Callee
Rank
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Fig. 4. Distributions of Call Probabilities to First Rank
Callee (for three reference time periods)
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Fig. 5. Cumul. Distribution of Call Probabilities to First
Rank Callee
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Fig. 6. Cumul. Distribution of Relative Call Probabilities
to Higher Rank Callees

Time

period P̂1 P̂2=P̂1 P̂3=P̂2

1 Month -0.0009 0.0014 0.0018
1 Week 0.0016 0.0004 0.0003
1 Day 0.0033 -0.0011 -0.0027

Table 2. Correlation between Average Call Arrival Rates
and Call Probabilities

C. Movement Model

Our movement model characterizes user movements within
the geography de�ned by the Basic Topology Model. Instead
of a simple Markovian model as in [1], we have developed a
more detailed model, which includes the Markovian model
as a special case, because most proposed location manage-
ment schemes optimize their performance for certain move-
ment characteristics. For example, return home movements
are important when studying schemes with home location
registers (such as IS-41 and GSM). Our model generates
movements corresponding to di�erent classes of mobility be-
havior: simple move, roundtrip move, return home move,
and stationary move. Each of the movement classes is char-
acterized by its probability of occurrence, mean velocity and
distribution, mean number of site crossings and distribution.
We have investigated actual user movement behavior us-

ing survey results from [3;5;8] and actual movement statis-
tics from [13]. Figure 7 is a summary of the time-of-day
tra�c volume patterns we obtained from [5;13]. From the
data in [5], we have derived statistics (see Table 3) relating
to mode of transportation, travel distance, and travel time
statistics for various movement types and their percentages
of occurrence. In our movement model, we then represent



Trip Purpose % of
Trips

Ave. Trip
Len. (mi)

Ave. Vel.
(mi/hr)

To/From Work 20.2 10.65 31.3
Work-Related 1.4 28.20 81.3
Personal 52.9 6.74 28.3
Social/Other 25.3 11.53 39.2
Vacation 0.2 218.22 261.5

Table 3. Movement Statistics

each trip purpose in Table 3 as a movement class with their
appropriate mean move velocity and distance.

III. Simulation Results

We have developed a discrete event simulator, Pleiades,
based upon the framework described above. Pleiades con-
tains modules which perform the functions of various loca-
tion management schemes, such as IS-41, GSM, and other
novel proposals. The architecture of Pleiades is shown in
Figure 8; further details on Pleiades can be found in [9].
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Fig. 8. Simulator Architecture

We now show that our callee distribution and movement

Parameter Set
Parameters 1 2 3

# users 16200
Geography 9x9 square grid
Callee Proposed Random Proposed
Model 8 callees 8 callees
Move 25% no move 25% no move
Model 25% simple 25% simple Markov

25% roundtrip 25% roundtrip
25% return home 25% return home

Table 4. Simulation Parameters for Model Comparisons

Perf. vars. Percentage Di�erence
(Global) Set 1 (Set2-Set1)/Set1 (Set3-Set1)/Set 1

ave. lookup 26.02 21.1% 18.2%
rates (per sec)
ave. update 42.74 � 0% 19.8%
rates (per sec)
ave. message 52.00 21.1% 34.5%
rates (per sec)
ave. msg-hop 112.9 49.8% 31.8%
count per sec

Table 5. Simulation Results and Percentage Di�erence for
IS-41

models are critical to performance evaluation. Table 4 shows
the simulation parameters. Tables 5 and 6 are summaries
of simulation results for two location management schemes,
IS-41 and centralized database. In the centralized database
scheme, all user pro�les are stored in one single centralized
database. If the caller and the callee are not in the same
registration zone, then a pro�le lookup is required at the
centralized database. We observe that using our proposed
models, signi�cantly di�erent results were obtained in the
key performance measures. We note that, in the centralized
database scheme, global average update rates are indepen-
dent of the models because we need to update the same
number of pro�les per user movement.
Using Pleiades, we have investigated the performance of

IS-41 on a geography that models the San Francisco Bay
Area, which is composed of four area codes. Figure 9 is a
map of the Bay Area. Regions corresponding to di�erent
area codes are represented by di�erent shades in the �gure;
bridges, ferries and public transportation are also included.

Perf. vars. Percentage Di�erence
(Global) Set 1 (Set2-Set1)/Set1 (Set3-Set1)/Set 1

ave. lookup 20.65 17.0% 12.3%
rates (per sec)
ave. update 18.47 � 0% � 0%
rates (per sec)
ave. message 31.51 9.93% 46.7%
rates (per sec)
ave. msg-hop 68.54 40.4% 46.3%
count per sec

Table 6. Simulation Results and Percentage Di�erence for
Centralized Database Scheme



Area Code
region

Counties 1990
Population

Sim.
subreg.

Bord.
subreg.

North Bay
(707)

Solano, Napa,
Sonoma

839,408 8 4

Peninsula
(415)

S. F.,
San Mateo

1,603,978 14 7

East Bay
(510)

Alameda,
Contra Costa

2,082,914 17 7

South Bay
(408)

Santa Clara,
San Jose

1,497,577 11 2

Totals 9 counties 6,023,877 50 NA

Table 7. Population Figures

Simulated Times
Perf.vars (Global) 12:45 p.m. 13:00 p.m. 15:25 p.m.

lookup 4,745.9 4,745.8 4,002.6
rate (per sec)
update 529.5 558.3 741.2
rate (per sec)
total 5,375.4 5,304.1 4,743.8
rate (per sec)

Table 8. Access Rate at Three Selected Simulation Times

Figure 10 [17] is an overlay map that shows the relationship
between our simulation model and the actual geography of
the Bay Area.
Using actual tra�c volume statistics from [13], we have

estimated movements between area codes [9]. Using an ad
hoc approach, we speci�ed the movement connectivity ma-
trix to produce corresponding movement behavior between
the area code regions in our simulation.
We simulated a 24-hour period for 3,025,000 users cor-

responding to approximately 50% of the current Bay Area
population. We distributed the user population in our Ba-
sic Topology Model according to the census information ob-
tained from [16] (see Table 7). Figure 11 and Figure 12 show
systemwide database and network activities throughout the
simulation. We note that in the following summary, peak
lookup and update rates occur at di�erent times. This is
revealed only through our detailed time-varying models and
suggests possible optimizations in the utilizations of network
resources. The following summarizes the results.

� We observe peak access rate for lookups at 4,746 TPS,
for updates at 741 TPS, and their combined total at
5,304 TPS. These peak rates occurred at 12:45 p.m.,
3:15 p.m., and 1 p.m. in our simulated day, respectively.
Table 8 shows lookup, update, and total access rates at
these peak times.

� We observe a peak signaling bandwidth of 4,401 mes-
sages per second and 12,721 message-hops per second
at 1 p.m. in our simulated day.

IV. Conclusions

We have presented a framework for modeling and evalu-
ating the performance of location management schemes in
PCS. Our framework incorporates realistic behavior mod-

Fig. 9. Map of the San Francisco Bay Area

Fig. 10. Overlay of Simulation and Network Topologies
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Fig. 12. Number of Database Messages

els that we corroborated using measurements and surveys
of actual human activities. We have compared simulation
results with some commonly used models and showed that
our framework produced signi�cantly di�erent results in per-
formance measures of key interest. We have developed a
software system capable of simulating a large population of
users and have presented results of a detailed 24-hour sim-
ulation of the San Francisco Bay Area. At a time when
large scale wireless communication networks have not yet
been implemented, our work provides a practical way to
evaluate the performance of various location management
proposals and to assess database transaction and network
bandwidth requirements for providing PCS. Our simulation
results suggest that, for a projected population of PCS sub-
scribers, database and signaling requirements can be high
and research on more e�cient location management schemes
is necessary.
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