Sahami, Mehran and Hearst, Marti and Saund, Eric (1996) Applying the Multiple Cause Mixture Model to Text Categorization. In: 1996 AAAI Spring Symposium on Machine Learning in Information Access..
BibTeX | DublinCore | EndNote | HTML |
| PDF 131Kb |
Abstract
This paper introduces the use of the Multiple Cause Mixture Model to automatic text category assignment. Although much research has been done on text categorization, this algorithm is novel in that is unsupervised, that is, does not require pre-labeled training examples, and it can assign multiple category labels to documents. In this paper we present very preliminary results of the application of this model to a standard test collection, evaluating it in supervised mode in order to facilitate comparison with other methods, and showing initial results of its use in unsupervised mode.
Item Type: | Conference or Workshop Item (Paper) | |
---|---|---|
Additional Information: | Previous number = SIDL-WP-1996-0033 | |
Subjects: | Computer Science > Digital Libraries | |
Projects: | Digital Libraries | |
Related URLs: | Project Homepage | http://www-diglib.stanford.edu/diglib/pub/ |
ID Code: | 209 | |
Deposited By: | Import Account | |
Deposited On: | 28 Oct 2001 16:00 | |
Last Modified: | 09 Dec 2008 09:34 |
Download statistics
Repository Staff Only: item control page