
Graph Structured Views and Their Incremental Maintenance�

Yue Zhuge and Hector Garcia-Molina

Computer Science Department

Stanford University

Stanford, CA 94305-2140, USA

fzhuge,hectorg@cs.stanford.edu

Abstract
We study the problem of maintaining materialized

views of graph structured data. The base data consists
of records containing identi�ers of other records. The
data could represent traditional objects (with methods,
attributes, and a class hierarchy), but it could also rep-
resent a lower level data structure. We de�ne simple
views and materialized views for such graph structured
data, analyzing options for representing record identity
and references in the view. We develop incremental
maintenance algorithms for these views.

1 Introduction
Relational views are useful for controlling data ac-

cess, specifying contents of caches (or remote copies),
and other data management tasks. In this paper we
study how to extend this view concept and the associ-
ated maintenance algorithms to what we call a graph
structured database (GSDB). Informally, a GSDB is
a collection of \objects" that may contain \pointers"
(graph edges) to other objects. A GSDB can represent
Web pages, Lotus Notes documents, or other semi-
structured information; it can also represent graph
data structures such as a PERT chart, or a circuit
design.

Example 1: Graph structured database
Figure 1 shows a graph structured database. Each

A

B

C D

E

F

G

Figure 1: A graph structured database

node in the graph represents an object, each directed
edge (pointer) represents a parent-child relationship
between two objects. Users can traverse the graph by

�This work was supported by the Advanced Research and
Development Committee of the Community Management Sta�,
as a project in the Massive Digital Data Systems Program.

starting from an object and following the edges. We
assume each object in the graph has an object identi-
�er (OID) and some other �elds that we will describe
in Section 2. 2

Views on a GSDB can be used for at least two tasks:
de�ning cache contents and query �ltering. For exam-
ple, consider a set of interrelated Web pages. For now,
assume that each page is an object, and the URLs in
pages are the graph edges. Say that a user is inter-
ested in all Web pages containing the word \ower"
and would like to copy them to his local disk for faster
access. Using the constructs we de�ne in this paper,
a user will be able to de�ne a materialized view to se-
lect the objects (and possibly edges) that should be
copied. When the original objects change, the materi-
alized view needs to be updated, and the incremental
maintenance algorithm we discuss in Section 4 will
keep the view up to date (at least for certain simple
types of views).

A view can also be used to \�lter" the objects that
are accessed by a query. For example, a parent may
wish to restrict access by his children to a particular
subset of Web pages. For this he can de�ne a virtual
view (not materialized) that contains the allowed Web
pages. Similarly, a user may have identi�ed an inter-
esting set of Web pages, and would like to use this set
as a starting point for future queries. Again, a virtual
view, de�ned using the constructs we will present, can
be used for this purpose.

The data model we use in this paper is a
\lightweight" one, without notions of object classes
and inheritance. In particular, in Figure 1, objects A,
B, ... are indistinguishable as far as the system is con-
cerned. We believe that this makes our model more
generic and widely applicable (e.g., to Web pages).
Furthermore, even if an application requires classes or
inheritance, the underlying data will most likely be
stored by the database system as a GSDB. For exam-
ple, the system may identify the class of an object by
adding a special system �eld or tag to each object. (It
could also link together all objects in a class.) An ob-
ject A that inherits from another object B could have
a special system pointer to B, for instance. Thus, the
same view machinery we discuss in this paper could
be used to cache or control access to the underlying
data structures used to implement a more structured
model.

Even though the notion of a GSDB view is simi-
lar to that of a relational view, there are a number of
new challenges due to the richer nature of the GSDB
model. For example, what exactly is a view on a
GSDB? Is it just a collection of objects, or does it also
include the edges between the objects? For instance,
in Figure 1 say that our view includes the portion of
the graph enclosed by the dotted line. Is the edge from
B to C o�cially part of the view? In this case, per-
haps a user that is given access to the view should not
see the link from B to D. However, it is not clear how
to achieve this, since the user could anyway retrieve
the contents of B which somewhere contains the C, D
pointers. Saying that the view simply contains objects
B and C is simpler (no need to track edges), and if the
view is materialized, then one could modify the con-
tents of B so that it no longer contains the pointer to
D. However, arbitrary \editing" of the materialized
objects complicates view maintenance.

In a materialized view there is also the question of
object identi�ers. In our example, what should the
OID of the copy of B be, and how can we identify
the original object? Should the materialized copy of
B contain a pointer to object C, or to the copy of
C in the materialized view? Whatever the choice for
materializing views, there is also the problem of in-
crementally maintaining them as the original data is
modi�ed. This is a much harder problem than for re-
lational views. In particular, if we modify a tuple in a
relation, we know that only views de�ned on that re-
lation may be impacted. In a GSDB, a simple change
like adding a link between two objects can dramati-
cally change the set of objects in a view. (This will
become clearer once we discuss how views are de�ned.)
Thus, as we will see, incremental view maintenance is
more complex and more expensive for GSDBs. As a
matter of fact, it may only be feasible for relatively
simple views.

In this paper we address some of these challenges.
In particular, our contributions are:

� We formallyde�ne the notion of virtual and mate-
rialized views for GSDBs (Section 3). With these
de�nitions, the result of a view de�nition on a
GSDB is another GSDB, making it possible to
de�ne views on views and to query views in the
same way GSDB are queried. (This same prop-
erty holds for relational views and makes them
especially useful.)

� We present a simple language for de�ning GSDB
views, and mechanisms for restricting access to
objects \within" a view. (Section 3). We also
discuss implementation issues related to querying
and materializing GSDB views.

� We present an algorithm for incrementally main-
taining simple materialized views (Section 4).
The algorithm takes as input a view de�nition
and a sequence of updates to the base data, and
propagates the changes to the copied data, query-
ing the base data when necessary.

1.1 Related Work
Our work is based on previous work on materi-

alized view maintenance [7], object technology [5],
querying object oriented database [6, 9, 10], and semi-
structured data models [16, 13]. In the rest of this
subsection we speci�cally compare our GSDB views
to relational views and object views de�ned using ob-
ject classes.

Most of the incremental view maintenance work fo-
cuses on the relational model(see [7] for references).
GSDB views are di�erent from relation views in at
least three major ways: (1) As mentioned earlier, in
a GSDB view there is no schema to constrain changes
to a particular \region;" with relational views, on the
other hand, changes to a relation only impact views
that refer to that relation. (2) In a GSDB view, there
are relationships among objects that need to be pre-
served in the view. (3) View data may contain point-
ers and thus \lead access" to base data, those access
need to be controlled. Instead of de�ning incremental
view maintenance algorithms for GSDBs, one could in-
stead represent the graph data as relations (e.g., with
a relation storing all edges), and then simply use ex-
isting relational maintenance algorithms. However, as
we discuss in Section 4.4, directly using the relational
algorithms on graph data is not very e�ective.

Most previous research on object views (e.g., [1, 3,
14]) use object databases with classes. Views are de-
�ned by adding and hiding attributes to base classes.
In contrast, since there is no class concept in a GSDB,
views in a GSDB need to be de�ned by query expres-
sions (as we do here). Views de�ned by adding and
hiding attributes over a object classes are a subset of
possible views de�ned using path expressions [9]. Also,
most of the views considered by researchers so far are
virtual views. In our work we consider both virtual
and materialized views.

There is, nonetheless, some recent work on materi-
alized object views by the MultiView group at Univer-
sity of Michigan [14]. The major di�erence between
their approach and ours, besides that they de�ne views
as virtual classes, is that in their system each real
value (attribute value or method of an object) has only
one single physical copy. A materialized view stores
only OIDs (pointers) of the base value. So their view
maintenance algorithms do not need to worry about
duplicating or propagating values of updated objects.
However, the performance advantage of querying ma-
terialized views is reduced because each access to an
object in a materialized view is decomposed into sev-
eral accesses to the \real data". For the same reason,
their approach is di�cult to adapt to a distributed
environment. On the contrary, the materialized views
we design in this paper have the ability to duplicate
both object pointers and values, and are able to inde-
pendently maintain the relationship between an object
and its duplicate.

Another work that is related to this paper is the
view maintenance methods proposed in [15]. Their
data model is edge-labeled trees without OIDs, which
is similar to our model. They use a query language
UnQL [4] to de�ne their views, and use an algebraic
approach to maintain the views. That is, they �nd ex-

pressions that can compute delta views corresponding
to the changes of base data. However, their approach
only works for views that are de�ned using \join free"
queries, and updates that are either concatenation or
replacement of two disjointed graphs. In their case, a
view is always self-maintainable. In contrast, we de�ne
our views using an extension of OQL [5] and designing
incremental view maintenance algorithms using com-
mon insertion, deletion and update operations. Views
de�ned in this paper can not generally be handled by
techniques discussed in [15].

2 Data model
In this section we introduce our object and database

model. For objects, we use the OEM model [12]. Each
object contains four �elds: an OID, a label, a type
and a value. The OID of an object is a universally
unique identi�er. The label is a string that explains
the meaning of the object and does not need to be
unique. Each object either has an atomic type, such
as integer or string, or has a set type. The value of
a set object is a set of OIDs of other objects. The
following example shows a collection of objects.

Example 2: A collection of database objects
We enclose each object within a pair of angle brack-
ets and show the OID, label, type and value �elds in
order.1 We use indentation as a visual aid to show the
hierarchical relationship of the objects.

< ROOT, person, set, {P1,P2,P3,P4} >
< P1, professor, set, {N1, A1, S1, P3} >

< N1, name, string, `John' >
< A1, age, integer, 45 >
< S1, salary, dollar, $100,000 >
< P3, student, set, {N3, A3, M3} >

< N3, name, string, `John' >
< A3, age, integer, 20 >
< M3, major, string, `education' >

< P2, professor, set, {N2, S2} >
< N2, name, string, `Sally' >
< ADD2, address, string, `Palo Alto' >

< P4, secretary, set, {N4, A4} >
< N4, name, string, `Tom' >
< A4, age, integer, 40 >

In this database, object ROOT (we refer to an object
by its OID) is an example of a set object. It has four
children objects, representing two professors (i.e., with
those labels), one student and one secretary. Notice
that the subobjects of one professor are structured
di�erently from those of the other professor. Object A1
is an example of an atomic object. We use label(O) to
refer to the label of object O and use value(O) to refer
to O's value. For example, label(P2) =professor and
value(P2) = fN2; S2g.

This set of objects can also be represented by the
graph in Figure 2. For an atomic object, we omit the
type since it can be inferred by its value. For a set
object, we show the OID and label within brackets,
and show its value by outgoing edges. 2

1In our examples we try to use meaningful OIDs; in general,
they can be arbitrary.

<S1,salary,100k>

<A3,age,20><N3,name,‘John’>

<P1,professor>

<M3,major,‘edu’>

<N1,name,‘John’>

<A1,age,45>
<P3,student>

<P2,professor>

<N2,Name,‘Sally’>

<ROOT,person>

<ADD2,address,‘PA’>

<N4,name,‘Tom’>

<A4,age,40>

<P4,secretary>

Figure 2: A graph structured database

Next we introduce the notion of a database in this
data model. A graph-structured database(GSDB) is an
object whose set value contains the OIDs of all objects
in this database. Thus, a database is simply a way to
group objects together. Objects can be grouped into
a database for various reasons, for example, because
they are semantically related, they are frequently ac-
cessed together, or they are physically located at the
same site. If all the objects in Example 2 compose a
database PERSON, then the object PERSON is:

< PERSON, database, set,
{ ROOT, P1, P2, P3, N1, A1, S1, N2,
ADD2, N3, A3, M3, P4, N4, A4 }>

Notice that a database is not a special type of ob-
ject; it is simply a conceptual aid and will be helpful
when we discuss views.

We have selected this particular data model because
it is simple, and yet will let us study the important
view management issues. Furthermore, we believe
that the model and the algorithms we will present
easily generalize to other models. For example, ob-
jects with multiple �elds can be represented in our
model by several objects. For instance, a multi-�eld
employee object < name:`Joe', salary:50k > can
be represented as

< E1, employee, set, {N1, S1} >
< N1, name, string, `Joe' >
< S1, salary, dollars, 50k >

As another example, �xed format records can be
represented in our model by repeating the �eld names
(as labels) in each object. For instance, say that a
schema de�nes the �rst �eld of a record to be a name
and the second �eld to be a salary. Then the record
<`Joe', 50k> can be represented by the same object
above. As a third example, some graph structured
data models (e.g., [4],[13]) have values or labels on
edges. These models can be mapped to ours [4].

Incidentally, note that our model is a conceptual
one. The actual implementation could di�er. For ex-
ample, the OID �eld may not be stored in the record,
and could be inferred from the record's location on
disk. Repeated labels or values could be compressed
in various ways. The database objects we de�ned may

or may not be physical objects; for instance, objects
in a database could simply be those contained in a
particular region of a disk.

We now de�ne some GSDB terminology that will be
used in this paper. A path is a sequence of zero or more
object labels separated by dots: p = l1:l2 : : : ln. For
example, professor.student is a path. We use N:p
to denote the set of objects that can be reached fol-
lowing path p from object with OID N . If N2 2 N1:p,
then N1 is an ancestor of N2, and N2 is a descendent
of N1. In this case, the �rst label in p is the label
of one of N1's direct children, and the last label in p
is the label of N2. If N2 2 N1:p1 and N3 2 N2:p2,
then N3 2 N1:p1:p2. In the Figure 2 example, node
A1 is a descendent of ROOT and can be reached from
node ROOT following path professor.age, that is, A1
2 ROOT.professor.age.2

A path expression is a regular expression of paths.
For example, �, professor:� and professor:? are path
expressions. A path is also a (constant) path expres-
sion. We say that a path p is an instance of path
expression e if the wild cards in e can be substituted
by paths to obtain p. For any path expression e, we
de�ne N:e to be the union of all objects in N:p for all
instances p of e.

We allow set operations on objects of type set. In
particular, let S1 and S2 be two set objects. We
de�ne union(S1; S2) to be an object whose value is
fvalue(S1) [value(S2)g, and de�ne int(S1; S2)
to be an object whose value is fvalue(S1) \
value(S2)g. We assume that these resulting objects
have an arbitrary unique OID and take on the label
of S13. These operations are mainly used to manip-
ulate database objects and query answers, although
they could apply to any set objects.

Many languages have been proposed for querying
object-oriented databases [9, 4, 5, 13, 2]. Here we use
a simple but representative language that lets us study
view management issues. Its basic syntax is:

(2.1)SELECT OBJ.sel path exp X
WHERE cond(X.cond path exp)
[WITHIN DB1]
[ANS INT DB2]

A query answer is also an object, with the
format <ANS, answer, set, value(ANS)>, where
value(ANS) is a set of OIDs. To evaluate the above
query without the last two optional clauses, the sys-
tem considers all objects in OBJ.sel path exp. For
each object X in this set, the system checks if it satis-
�es condition cond(X:cond path exp). Boolean func-
tion cond() accepts a set of atomic objects, and returns
true if one of those object values satisfy the condition.
When the condition is true, X is placed in value(ANS).
For example, the query SELECT ROOT.professor X
WHERE X.age > 40 will return <ANS, answer, set,
fP1g> as answer. To write a query, the user must pro-
vide an entry point(OID) like ROOT. This entry point
could be obtained from a previous query, or it could

2We use the terms node and object interchangeably.
3Typically set operations are only meaningful when objects

S1 and S2 has the same label.

somehow be known to the user. A database name DB
can also be used as the entry point. Using DB.? means
that the search starts at all objects in DB.

Notice that the above query can span multiple
databases. In Example 2, say that all objects are
in database D1 except for A1 which is in database
D2. In this case P1 points to a \remote" object.
The query SELECT ROOT.professor X WHERE X.age
> 40 will still return the same answer, since the query
is insensitive to the \location" of objects. (Contrast
this to relational queries where the relation a tuple
belongs to is important.) The two optional clauses we
now de�ne attempt to control the \scope" of a query.
As far as we know these clauses are not part of tradi-
tional object-oriented query languages, but as we will
see, they will be useful for posing queries on views.

The WITHIN DB1 clause limits the search to a single
database DB1. The e�ect is that any OIDs that are not
in DB1 are completely ignored by the query. For our
example where all nodes are in D1 except A1, then our
sample query with the clause WITHIN D1 will have an
empty result.

The clause ANS INT DB2 speci�es that the answer
object should be intersected with the DB2 object to
yield the �nal answer. This means that the answer ob-
jects are constrained to be in DB2, but the evaluation
of the WHERE clause can follow remote pointers. For
the example in Figure 2, if all nodes are in D1 except
A1, then the query with ANS INT D1 will return <ANS,
answer, set, fP1g>. However, if all nodes except
P1 are in D1, the same query will return an empty
set. The ANS INT clause is mainly used to restrict a
query answer to objects within a certain database. As
we will see in the next section, we can use this clause
to restrict user queries to return only objects within
certain views.

Finally, we want to stress that we have selected a
simple language, not because other features are not
useful, but because these other features are not neces-
sary for discussing simple view management. Features
such as FROM clauses (e.g., in OQL [5] or Lorel [2]),
multiple paths in SELECT clauses, or multiple condi-
tions in WHERE clauses could easily be added to our
language. However, some of these features wouldmake
incremental view management (Section 4) more com-
plex.

3 Views and materialized views
A view is a set of imaginary objects de�ned in a pre-

cise way from real objects. A view can be used to hide
or restructure objects from the underlying database.
A view can also be used to specify what objects to
cache for performance reasons.

As discussed in Section 1, de�ning views on GSDBs
introduces some challenging problems regarding the
structure of a view, how it can control access, and how
it can be materialized. However, now that we have de-
�ned query answers to be the same as databases, we
can think of views as other databases, available for
querying. However, the situation is still di�erent from
a relational context because a query answer simply
contains a set of OIDs that are not meaningful with-
out the original data. In a relational view, on the other

hand, the view contains all the relevant data. Another
di�erence with relational views is that with the richer
nested object model, view processing and view main-
tenance algorithms are substantially di�erent.

3.1 Virtual Views
We start by de�ning virtual views to be the results

of queries, as illustrated by the following example.

Example 3: A view on GSDB
Suppose that we are interested in all persons named
`John' from the database PERSON. We write:

define view VJ as: (3.2)
SELECT ROOT.* X
WHERE X.name = `John'
WITHIN PERSON

In this case, objects P1 and P3 are selected, so
value(VJ)= fP1, P3g. The view VJ is an object <VJ,
view, set, value(VJ)>. Notice that we used a new
label view for the view object, although this label will
generally not be seen by queries. 2

In general, a virtual view is de�ned by a view def-
inition query. A view is an object <V, view, set,
value(V)> where value(V) is the set of OIDs re-
turned by the view de�nition query. We say that an
object O is in a view V if O is in value(V). We also
refer to the objects that are examined during query
evaluation for a view as the base objects of the view;
if those objects belong to some databases, we refer to
them as base databases.

Virtual views can be used by queries in two ways.
First, views can be used to constrain query results by
using an ANS INT clause. For example, query

(3.3)
SELECT ROOT.professor X
ANS INT VJ

will return fP1g as its answer. Object P2 is in
ROOT.professor, but was excluded from the query
answer because it is not in value(VJ).

In our example the ANS INT clause was added by the
query writer. We can also envision an authorization
system where user queries are automatically expanded
to include ANS INT or WITHIN clauses for the union
of views the user is authorized to access. This way
users would only be able to access authorized data (or
retrieve authorized data). Since views can be changed,
it is easy to dynamicallymodify the privilege of a user.

A second way virtual views can be used is as \start-
ing points" for queries. For instance, view VJ de�ned
in Example 3 contains the set of person objects con-
taining subobjects with value `John'. If we are inter-
ested in the age of those persons named `John', we do
not need to write the full query. Instead we can write
the query SELECT VJ.?.age, which gives us all sub-
objects of objects in view VJ with label age. Thus,
views can be used as important intermediate results
that can be further processed by follow-on queries on
the views. This can clearly make the follow-on queries
much simpler.

Our view concept is quite simple: views only con-
tain sets of objects, and do not \restructure" the ob-
jects in any way. Yet, by de�ning views on views, one
can essentially add new structure that may be use-
ful to applications. To illustrate, consider the views
de�ned on the objects in Figure 2:

define view PROF as: (3.4)
SELECT ROOT.*.professor X

define view STUDENT as: (3.5)
SELECT PROF.?.student X

In the original database, professor and student ob-
jects were reachable from ROOT, in any possible depth.
Now we have created a database PROF that only con-
tains professors, and one (STUDENT) that contains only
their students. (A student who is not a subobject of
some professor would not be included in STUDENT.)
Queries can now access this new \professor{student"
hierarchy by using the views as starting points (e.g., by
starting at STUDENT we only reach information on stu-
dents with professors), or by constraining the queries
with the views (e.g., by using a ANS INT clause we
restrict our answer to students with professors).

3.2 Materialized views
A materialized view is a stored copy of the objects

in a view. The materialized copy of a view can be
stored either physically close to the base databases,
or at a remote site. Views are typically materialized
to improve query performance and data availability,
e.g., data that is expected to be accessed frequently is
included in the materialized view. However, material-
ized views can also be used for access control and as
query starting points, just as virtual views.

For a view V, each base object in value(V) has a
delegate object in the corresponding materialized view.
A delegate object is a real object with the same label
and type of its original object. For now, we assume
that a delegate has the same value as the original ob-
ject; we will discuss some variations later. A delegate
object will have a new OID as described in the follow
paragraph.

We need to relate the delegate of an object back
to its original. Keeping this relationship is crucial for
view maintenance. We use the OIDs of view objects
to record this relationship. For a base object O, the
OID of O's delegate object in a materialized view is
obtained by concatenating the view OID with O. For
example, in a materialized view MV, the delegate of
base object P1 has OID MV:P1. This approach is
similar to semantic OIDs as used in [11, 8, 9].

Since object identi�ers in a materialized view have
meaning, they cannot be changed arbitrarily. Some
storage systems may not allow semantic OIDs (e.g.,
the system assigns its own OIDs). In such cases, the
view management system can generate a table that
maps the local OIDs used by the storage system to
the semantic OIDs needed for view management.

A materialized view is again an ordinary GSDB,
i.e., it is an ordinary object <MV, mview, set,
value(MV)>, where MV is the OID of the view and
value(MV) contains the OIDs of delegate objects. Our
next example illustrates a materialized view.

Example 4: A materialized view
The following expression de�nes the materialized copy
of the view in Example 3.

define mview MVJ as: (3.6)
SELECT ROOT.* X
WHERE X.name = `John'
WITHIN PERSON

We use the keyword mview to specify that the view
is materialized. The materialized view MVJ is shown
in Figure 3. Each object in obj(VJ) has a delegate
in the materialized view. The view object MVJ is also
shown in the �gure. 2

<MVJ.P1,professor,
{N1,A1,S1,P3}>

<MVJ.P3,student,
{N3,A3,M3}>

<MVJ,view>

Figure 3: Materialized view database

Whether a view is materialized or not should not
a�ect query results, as long as values in delegates are
the same as in the original object. For example, a
query posed to MVJ should return the same results as
when the query is posed to VJ. Notice that making del-
egates contain the same value as their original means
that delegates may contain OIDs of base objects. For
example, N1 in view MVJ is an OID of an object in
database PERSON. A user query on MVJ can access N1
if the query allows access to remote objects (e.g., no
WITHIN MVJ clause).

Relationships (edges) between objects in a mate-
rialized view are implicitly kept. For example, P3
is a child object of P1 in database PERSON. In MVJ,
value(MVJ:P1) contains P3. It is possible for the sys-
tem that implements this view to detect the existence
of MVJ.P3 in the view, then change P3 in value(MVJ:P1)
to MVJ.P3. We call this operation swizzling the edge
from MVJ.P1 to MVJ.P3. It means changing a base
OID to the OID of its delegate. Swizzling should not
a�ect the results of queries.

The system or its manager may decide to swizzle
edges to improve performance. In particular, there
are two scenarios where swizzling is very useful. One
is when the materialized view is stored at a site dif-
ferent from the base databases. In this case edge
swizzling may enhance query performance by allow-
ing local access to the referenced objects. A second
scenario is when a query uses a materialized view MV
as a starting point and also contains a WITHIN MV
clause. In this case swizzling makes it easier to enforce
the WITHIN MV clause. For example, a query SELECT
MVJ.professor.student WITHIN MVJ should return
MVJ.P3 in the answer object. If edge swizzling is done,
it is easy to check that the edges traversed are in MVJ
(i.e., check that pointers start with the MVJ identi�er).
Without swizzling, when the system decides to follow
the link in MVJ.P1 to P3, it must then check if the del-
egate for P3 is in MVJ. Since it is (i.e., MVJ.P3 exists),
then MVJ.P3 is added to the answer.

Since a materialized view is stored independently
from the base data, it is possible to \manually" change
the object values without a�ecting base objects. How-
ever, this has to be done with care since queries on the
modi�ed view may give di�erent results from the orig-
inal materialized view (or from the equivalent virtual
view). Furthermore, changing the view in an arbi-

trary way makes it impossible to maintain the view
automatically.

Nevertheless, there may be cases where modi�ca-
tion of materialized views could be useful. For exam-
ple, say we chose to swizzle all edges in a materialized
view MV, and then remove all remaining base OIDs
that appear in delegate objects. As a result, any later
user query using objects in MV will be restricted to ac-
cess only MV objects. This \access control" is similar
to attaching a WITHIN MV clause to all queries, but is
not identical. (With the WITHIN clause, a query can
still retrieve a view object that contains OIDs of base
objects.) A second use of view modi�cation could be
to add timestamps or other auxiliary information to
delegate objects. Queries can then refer to this auxil-
iary information, something they could not do on the
equivalent virtual view.

Notice that if a remote site de�nes several views
that share common objects, it may end up with mul-
tiple delegates for the same base object. Sharing dele-
gate objects of interrelated views is an interesting idea
that we plan to investigate further.

3.3 Querying views
Conceptually, a view is the same as an ordinary

database, and objects in a view can be queried just
like those in a GSDB. How the system processes a
query on a view depends on whether the view is ma-
terialized or not. If the view is materialized, then the
system accesses the stored objects and there is really
no di�erence over normal query processing. (A mate-
rialized view must be kept up to date as the base data
changes. This is the topic of the following section.)

When a view is virtual, one way to process a query
over the view is to rewrite the query into an equiva-
lent query that uses base objects only, just like query
rewriting for relational views. However, since we
lack an algebraic representation of queries, brute force
rewriting may result in huge queries that are di�cult
to optimize.

Another method for answering queries on virtual
views is to materialize the view when it is queried.
Then the query is evaluated using the materialized
view. The problem with this method is that the view
could contain a large number of objects and the query
could access a small number of them, thus resulting in
a lot of wasted work.

In summary, we make view de�nition relatively sim-
ple. For virtual views, simplicity makes query rewrit-
ing feasible. For materialized views, as we will see,
simplicity makes maintenance feasible. More complex
views and relationships may be break into multiple
simple stages (multiple simple views).

4 Incremental maintenance algorithm
for simple views

An incremental view maintenance algorithm pro-
duces changes to a view given the changes to base ob-
jects. Incremental view maintenance algorithms have
been developed for the relational model in both cen-
tralized and distributed cases [7]. In this section we
develop an algorithm for GSDB views in a centralized

system, where the base databases and the material-
ized view reside at the same site. In this environment,
the view maintenance algorithm has direct access to
the base data. We �rst briey review basic updates
in a GSDB, then describe the type of view that we
will develop a maintenance algorithm for. We then
design the incremental view maintenance algorithm,
illustrate it by examples and discuss why this new al-
gorithm is necessary.

4.1 Basic updates of GSDB
We consider three types of basic updates on a

GSDB. Let N , N1 and N2 be OIDs.

1. insert(N1; N2) adds the OID of N2 into
value(N1), N1 must have a set type; object N2

becomes a child of N1 after this operation.

2. delete(N1; N2) removes OID N2 from value(N1),
assuming that N2 was a child object of N1. (If no
objects point to N2 any more, N2 may be garbage
collected. However, we do not discuss garbage
collection here.)

3. modify(N; oldv; newv) changes the value of
atomic object N from oldv to newv.

The insertion and deletion operations add and
delete edges in the base database graph. There are
other possible update operations on a GSDB, for in-
stance, the creation of a new object. Creating a new
object that is not pointed at by any other object will
have no impact on any queries, hence it has no e�ect
on any views. Adding a new object O to a database
DB can be modeled as insert(DB;O). Most of other
update operations on a GSDB can be represented as
a series of base updates. For example, changing the
value of a set object can be treated as insertions and
deletions of its components. Changing the value of a
label is also possible but not considered here.

4.2 Simple materialized view
We focus on a group of simple views, where the

view de�nition query involves only tree paths instead
of path expressions. We believe that studying this
simple type of view illustrates the fundamental prob-
lems of view maintenance. A few examples of those
problems are: When does a base update cause a mate-
rialized view to be changed? How can one determine
which object(s) are to be inserted into or deleted from
a view? Is incremental view maintenance more e�-
cient than recomputing the entire view? In Section 5
we briey discuss how to relax our assumptions and
maintain more general views.

In this section, a materialized view MV is de�ned by
the following expression.

define mview MV as: (4.7)

SELECT ROOT.sel path X
WHERE cond(X.cond path)

In the above expression, the selection path starts
from object ROOT. The two paths sel path and
cond path each contains a sequence of object labels
without wild cards. Function cond() is as de�ned in

Section 2; it returns true if any of the object values in
X.cond path makes the condition true.

As stated above, we assume that the base database
has tree structure. This assumption is not crucial but
simpli�es the algorithm. The materialized view MV
contains a set of delegate objects. From Section 3,
we know that a new view object will be generated for
each view de�ned. View object MV has type set and its
components are all the delegate objects in this view.

Example 5: Basic update and corresponding
view maintenance
Say we are interested in professors who are younger
than 45. We de�ne a view YP using the objects in
Example 2.

define mview YP as: (4.8)
SELECT ROOT.professor X
WHERE X.age � 45

The current materialized view is shown on the left
hand side of Figure 4. The view YP includes a view
object YP and an object YP.P1 which is the delegate
of base object P1.

<YP.P1,professor,
{N1,A1,S1,P3}>

<YP.P2,professor,
{N2,A2,AD2}>

<YP.P1,professor,
{N1,A1,S1,P3}>

<YP,view> <YP,view>

Figure 4: Change of materialized view

Assume that an update insert(P2; A2) occurs where
A2 is an atomic object <A2, age, 40>. Now P2 be-
comes an object that satis�es the condition in the de�-
nition of view YP. Therefore, YP.P2 should be inserted
into YP. Figure 4 shows the correct view after process-
ing this update. 2

Notice that in a GSDB, labels of an object can be
arbitrary and can be repeated. In this example, object
P2 does not have a child object with label age until A2
is inserted. In other cases, one object may have two
or more subobjects with the same label. Therefore
there might be more than one \derivations" of a view
object. The maintenance algorithm needs to consider
all those scenarios.

4.3 Incremental maintenance algorithm
When base objects are changed, intuitively, either

some new delegate objects need to be inserted into the
view, or some existing delegates need to be deleted
from the view. The task of an incremental view main-
tenance algorithm is to discover those delegates. With
our model of materialized views, a view is just a col-
lection of objects, so the maintenance algorithm need
not worry about maintaining edges.

We �rst de�ne a few constructs used by the algo-
rithm. In a database with tree structure, it is clear
that there is at most one path between two objects, so
we use path(N1; N2) to represent the path from N1 to
N2. This path starts from the label of one of N1's di-
rect children and ends with the label ofN2. IfN1 is not

Algorithm 1: Incremental maintenance of GSDB view MV
> When insert(N1; N2) occurs:

If sel path:cond path = path(ROOT;N1):label(N2):p where p is an arbitrary path
then

Let S = eval(N2; p; cond);
For all X 2 S do V insert(MV;MV:Y) where Y = ancestor(X; cond path).

> When delete(N1; N2) occurs:
If sel path:cond path = path(ROOT;N1):label(N2):p where p is an arbitrary path
then

Let S = eval(N2; p; cond);
For all X 2 S, let Y = ancestor(X; cond path);
If p = p1:cond path where p1 is an arbitrary path

then do V delete(MV;MV:Y);
else if eval(Y; cond path; cond) = ;, then do V delete(MV;MV:Y).

> When modify(N; oldv; newv) occurs:
If path(ROOT;N) = sel path:cond path
then

Let Y = ancestor(N; cond path));
If cond(newv)4, then do V insert(MV;MV:Y);

else if (cond(oldv) and eval(Y; cond path; cond) = ;), then do V delete(MV;MV:Y).
End Algorithm 1

an ancestor of N2, then path(N1; N2) = ;. Let p1; p2
be two paths: p1 = l1l2 : : : lm and p2 = k1k2 : : :kn.
We say p1 = p2 if m = n and li = ki for all 1 � i � n.

De�nition: De�ne ancestor(N; p) to be the ancestor
object X of N that satis�es path(X;N) = p. If there
does not exist such an object, ancestor(N; p) = ;. 2

De�nition: De�ne eval(N; p; cond) to return the set
of objects in N:p that make cond(N:p) true. The func-
tion returns ; when no such object satis�es the condi-
tion. 2

In Example 5, eval(P1; age; cond) = fA1g because
A1 is in P1.age and the value of A1 satis�es the condi-
tion given in the view de�nition, i.e., value(A1) � 45.

When a delegate for object X is created and added
to a view V as part of view maintenance, we must
copy the contents of X and make the OID of the new
object V:X. For objects with type set, we assume that
OIDs in value(V:X) are not swizzled, i.e., the values
in value(V:X) are base OIDs.

De�nition: De�ne V insert(V N1; V N2) to be the op-
eration that creates delegate object V N2 and inserts
it into value(V N1). We assume if an object with OID
V N2 was already a child of V N1, then the insertion
will be ignored and V N1 stays the same. 2

De�nition: De�ne V delete(V N1; V N2) to be the op-
eration that removes object V N2 from value(V N1).
It is the same as the delete operation but it operates
on view objects. If V N2 is not a child of V N1, then
nothing happens to V N1 after the operation. (Again,
V N2 may be garbage collected if necessary.) 2

Algorithm 1 shows how to identify objects whose

4The argument of cond() here is a value; the function returns
true if that value satis�es the condition speci�ed.

delegate is to be inserted into or deleted from MV.
There is more than one way to identify those objects.
Since we intend to develop algorithms that will eventu-
ally apply to a distributed warehousing architecture,
the algorithm we provide here isolate the computa-
tions that need access to the base databases from
those that can be done without base data. Speci�-
cally, the operations that may need to examine base
data are encapsulated into functions path(ROOT;N),
ancestor(N; p) and eval(N; p; cond).

The algorithm is triggered once by each update on
the base objects. In a centralized environment, view
maintenance can be performed by the same transac-
tion as the triggering update, so the algorithm uses
the the base databases right after the triggering up-
date and before any further updates.

N1

N2

Y

X N

sel_path

cond_path

sel_path

cond_path

ROOT ROOT

X

N1

N2

cond_path

sel_path

ROOT

Y

Y

To locate objects whose delegates are potentially
a�ected (inserted into or deleted from the view)
by a base update, Algorithm 1 examines sel path,
cond path and the updated objects. In the algorithm,
Y represents an object whose delegate is potentially
a�ected, and X is Y 's atomic descendent on which the
condition is tested. After the algorithm locates Y , it
tests whether the original condition that makesMV:Y

appear or not appear in the view has been changed be-
cause of this recent update. If so, MV:Y is inserted
into or deleted from the view as appropriate. Notice
that when a deletion occurs and Y is an ancestor of
N1, we can not simply delete MV:Y from the view,
because other descendents of Y may also make the
condition true. This is a result of our non-unique label
assumption. In this case, the condition on Y is reex-
amined. The following �gures shows the relationship
between the paths and objects used by Algorithm 1.
The left two �gures correspond to two possible objects
layout scenarios when the base update is an insertion
or a deletion, the rightmost �gure corresponds to the
base update modify().

Example 6: Incremental view maintenance
The following example illustrates the execution of Al-
gorithm 1 on the scenario of Example 5.

Step 1: Update insert(P2; A2) occurs.

Step 2: Since path(ROOT; A2) = professor:age,
sel path = professor and cond path =
age, it is true that sel path:cond path =
path(ROOT; P2):label(A2):p where p = ;.

Step 3: Let S = eval(A2; ;; cond) = fA2g, object
A2 is in S because value(A2) = 40 < 45. So
the insertion of A2 will enable one of A2's
ancestor to be inserted into the view.

Step 4: Let Y = ancestor(A2; age) = N2, do
V insert(YP; YP:N2). After the insertion, node
YP.N2 appears in the view as a child of YP.

2

To prove that Algorithm 1 is correct, we need to
show that starting from an initially correct material-
ized view, the view will be consistent with the base
data after processing each update. That is, the dele-
gates of all view objects are in MV, and there are no
extra objects in MV. The details of the correctness proof
are omitted here.

4.4 Discussion
An important issue is the cost of incremental main-

tenance, especially as compared to recomputation of
the entire view. In Algorithm 1, the major cost lies in
evaluating functions such as ancestor(N; p) that may
involve access to the base databases. However, re-
computing the view also involves access to the base
databases. Thus, the cost of each approach actu-
ally depends on the speci�cs of each scenario, such
as the size of the databases, the type of view, the
cost of query processing and the index structure of
base databases. For example, if the base database has
an \inverse index" such that from each node we can
�nd out its parent, then evaluating ancestor(N; p) is
straightforward. If there does not exist such an index,
evaluating the same function may require a traversal
from ROOT to N . In general, incremental mainte-
nance will be superior to recomputing the entire view
if the view contains many delegate objects (in which
case recomputation will be very expensive), and up-
dates only impact a few, easily identi�able objects.

Another question is whether using our incremen-
tal view maintenance algorithm is better than using
a relational model to represent both base data and
views and then applying existing relational view main-
tenance algorithms. It is possible to represent objects
of a GSDB in a relational fashion by \attening" the
object tree, as shown in the following example.

Example 7: GSDB Relational representation
We can represent a GSDB using three tables. The �rst
table contains the OIDs and labels of all objects, the
second table contains the OIDs of all objects of type
set and their children OIDs, and the third one con-
tains the OIDs of all atomic objects and their values.
For simplicity, we assume that the VALUE attribute
of the third relation can hold di�erent data types (it
is a union type). The three-table representation of
database PERSON in Example 2 is the following.

OID LABEL
ROOT person
P1 professor
P2 professor
P3 student
: : : : : :

PARENT CHILD
ROOT P1
ROOT P2
ROOT P4
P1 N1
: : : : : :

OID TYPE VALUE
N1 string `John'
A1 integer 45
: : : : : : : : :

Using this relational representation, one could in
principle incrementally maintain the view, but there
are disadvantages. First of all, with the relational rep-
resentation, a single object update can involve mul-
tiple tables. For example, an insertion of an atomic
object needs to modify all three tables. This would re-
quire several invocations of the relational incremental
maintenance algorithm, and could lead to inconsisten-
cies when only some of the updates are reected on the
materialized view. For example, it would be incorrect
to have a tuple (A;B) in the PARENT-CHILD ta-
ble without having both A and B in the OID-LABEL
table.

Furthermore, a view de�ned using paths as in Sec-
tion 3 needs to be de�ned by a Select-Project-Join ex-
pression with (many) self-joins. Incrementally main-
taining such a view is not trivial, and we believe
it could be more expensive to evaluate because the
\path semantics" are hidden in the relations. Simi-
larly, caching paths as suggested earlier will be harder
to implement, again because the notion of a path is
not explicit in the representation. 2

4.5 View maintenance in a warehouse
Incremental maintenance for materialized views is

very useful when the view is stored in a site separate
from data sources, such as in a data warehouse. We
discuss in [17] how to handle related issues. For exam-
ple, how to realize function such as eval(N; p; cond) in
Algorithm 1 by communicating with a remote source,
and how to cache relevant information to reduce query
costs of view maintenance.

5 Conclusion
In this paper we studied the de�nition and real-

ization of GSDB views. We provided a procedural
algorithm for maintaining one type of view. We be-
lieve that our method for view de�nition, materialized
view storage and management serve as a �rst step in
solving the practical problem of GSDB views.

We only developed an incremental view mainte-
nance algorithm for a group of simpli�ed views to il-
lustrate the fundamental problems. Due to space lim-
itation, we cannot describe in detail how more general
materialized views can be maintained. However, note
that relaxing some of the restrictions we imposed on
the view de�nition in Section 4 is easy. For example,
handling views with more than one select path or more
than one condition is straightforward. On the other
hand, relaxing the following two assumptions (which
we believe is important to do for some applications) is
not simple:

� Allow the sel path and cond path to be gen-
eral path expressions with wild cards. To main-
tain this type of view, the maintenance algorithm
needs to be able to test path containment for gen-
eral path expressions. For example, any path p
is contained in path expression �. If a view is
de�ned by expression SELECT ROOT.*, then any
insertion of a ROOT's descendent node will cause
delegate objects to be inserted into the view.

� Allow more complex structure of base databases,
for example, allow base databases to be arbitrary
graphs. The maintenance algorithm will be simi-
lar to Algorithm 1, except that now there may be
more than one path between two objects. There-
fore, the actual implementation of the algorithm,
e.g., computing ancestor(X; p), is more di�cult.

In addition to the maintenance algorithms for more
general views, there are other open challenging issues
for GSDB views that we are starting to address. In
closing, we illustrate some of these issues.

� How does one de�ne and maintain views whose
edges (relationships) can be explicitly shown or
hidden?

� How does one de�ne and handle views in which
the value of one delegate object is obtained from
more than one base objects, for example, aggre-
gate views?

� How does one de�ne and maintain partially ma-
terialized views, for example, views that materi-
alize a few levels of objects and leave the rest as
pointers back to base data? This type of views
may be useful for caching some but not all data
of interest.

� How does one maintain materialized views when
not only the updated base objects, but also the
update query that generated them is known? For
example, we may know what the salary of each
person named `Mark' was increased by $1000.
Then a view containing the salary of persons
named `John' should be una�ected.

References
[1] S. Abiteboul and A. Bonner. Objects and views.

In SIGMOD, pages 238{247, 1991.

[2] S. Abiteboul, D. Quass, J. McHugh, J. Widom,
and J. Wiener. The lorel query language for
semistructured data. Journal of Digital Libraries,
1(1), Nov. 1996.

[3] F. Bancilhon, C. Delobel, and P. Kanellakis, ed-
itors. Building an Object-Oriented Database Sys-
tem: The Story of O2. Morgan Kaufmann, 1992.

[4] P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A query language and optimization
techniques for unstructured data. In SIGMOD,
pages 505{516, June 1996.

[5] R. Cattell, editor. The Object Database Standard:
ODMG{93. Morgan Kaufmann, 1994.

[6] S. Cluet and C. Delobel. A general framework
for the optimization of object-oriented queries. In
SIGMOD, pages 383{392, June 1992.

[7] A. Gupta and I. Mumick. Maintenance of mate-
rialized views: Problems, techniques, and appli-
cations. IEEE Data Engineering Bulletin, Special
Issue on Materialized Views and Data Warehous-
ing, 18(2):3{18, June 1995.

[8] R. Hull and M. Yoshikawa. Ilog: Declarative cre-
ation and manipulation of object identi�ers. In
VLDB, pages 455{468, Aug. 1990.

[9] M. Kifer, W. Kim, and Y. Sagiv. Querying object
oriented databases. In SIGMOD, pages 393{402,
June 1992.

[10] D. Konopnicki and O. Shmueli. W3qs: A query
system for the world wide web. In VLDB, pages
54{65, Sept. 1995.

[11] Y. Papakonstantinou, S. Abiteboul, and
H. Garcia-Molina. Object fusion in mediator sys-
tems. In VLDB, Sept. 1996.

[12] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object exchange across heterogeneous
information sources. In ICDE, pages 251{260,
Mar. 1995.

[13] D. Quass, A. Rajaraman, J. Ullman, and
J. Widom. Querying semistructured heteroge-
neous information. In DOOD, pages 319{344,
Dec. 1995.

[14] E. Rundensteiner. Multiview: A methodology
for supporting multiple views in object-oriented
databases. In VLDB, pages 187{198, Aug. 1992.

[15] D. Suciu. Query decomposition and view mainte-
nance for query language for unstructured data.
In VLDB, pages 227{238, Sept. 1996.

[16] D. Suciu, editor. Proceedings of the Workshop on
Management of Semistructured Data, May 1997.

[17] Y. Zhuge and H. Garcia-Molina. Graph struc-
tured views and their incremental maintenance.
Technical report, Stanford University, Oct. 1997.
www-db.stanford.edu/pub/papers/gsvfull.ps.

