
Metadata for Digital Libraries: Architecture and Design Rationale �

Michelle Baldonado Chen-Chuan K. Chang Luis Gravano

Andreas Paepcke

Computer Science Department

Stanford University

Stanford, CA 94305-9040, USA

fmichelle,kevin,gravano,paepckeg@db.stanford.edu

Abstract

In a distributed, heterogeneous, proxy-based digital li-
brary, autonomous services and collections are accessed
indirectly via proxies. To facilitate metadata compati-
bility and interoperability in such a digital library, we
have designed a metadata architecture that includes
four basic component classes: attribute model prox-
ies, attribute model translators, metadata facilities for
search proxies, and metadata repositories. Attribute
model proxies elevate both attribute sets and the at-
tributes they de�ne to �rst-class objects. They also al-
low relationships among attributes to be captured. At-
tribute model translators map attributes and attribute
values from one attribute model to another (where pos-
sible). Metadata facilities for search proxies provide
structured descriptions both of the collections to which
the search proxies provide access and of the search ca-
pabilities of the proxies. Finally, metadata repositories
accumulate selected metadata from local instances of
the other three component classes in order to facilitate
global metadata queries and local metadata caching. In
this paper, we outline further the roles of these compo-
nent classes, discuss our design rationale, and analyze
related work.

Keywords: Metadata architecture, interoperabil-
ity, attribute model, attribute model translation, meta-
data repository, InfoBus, proxy architecture, heterogene-
ity, digital libraries, CORBA.

1 Introduction

Travelers rely upon various types of information to point
them to where they might want to go and what rules
they need to follow. Maps, guidebooks, signs, and phrase

�This material is based upon work supported by the Na-
tional Science Foundation under Cooperative Agreement IRI-
9411306. Funding for this cooperative agreement is also provided
by DARPA, NASA, and the industrial partners of the Stanford
Digital Libraries Project. Any opinions, �nding, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily re
ect the views of the National
Science Foundation or the other sponsors.

books are just a few examples. Not surprisingly, users
of digital libraries also require information about what
networked resources and services to consult, as well as
information about how to use them. Generically, we call
this information metadata. In an earlier paper [1], we
analyzed the needs of our digital library InfoBus archi-
tecture [2] in order to determine what types of metadata
are important in this environment.

Our InfoBus architecture provides the infrastructure
for a distributed, heterogeneous, proxy-based digital li-
brary. At its core are proxies|or wrappers|that pro-
vide uniform access to existing, autonomous digital li-
brary repositories and services. We implement these
proxies as CORBA distributed objects [3]. These ob-
jects can be placed on any machine on the network and
can be accessed remotely from anywhere. Clients use re-
mote method calls to access these proxies conveniently.
The proxies communicate with the services they rep-
resent via the native service access protocols, such as
telnet, Z39.50, or HTTP. Examples of the diverse ser-
vices we have wrapped with proxy objects are Knight-
Ridder's Dialog Information Service, World-Wide Web
search engines, automatic document summarizers, bib-
liography maintenance tools, OCR services, and others.

Within the InfoBus, we have designed a variety of
services, including services for �nding resources likely
to satisfy a given query [4], for formulating queries that
are appropriate for multiple sources [5], for translating
queries [6], and for making sense of query results [7].
Analyzing these services leads to a list of metadata re-
quirements (see [1]). However, addressing these meta-
data requirements on a service-by-service basis is prob-
lematic. We have a need for metadata compatibility
and interoperability among these services. Accordingly,
we have chosen to develop a metadata architecture for
our digital library that addresses these requirements in
a general fashion.

Our resulting metadata architecture sits on top of
our InfoBus. It makes extensive use of its objects and
services, especially those that pertain to documents and
collections. Documents on the InfoBus are represented
as objects. We use the CORBA property service [3]
to store document attributes. For example, the Title
attribute of a document is attached to the document ob-
ject as a property of name Title. In addition, various
methods allow us to extract metadata from document
objects, such as a list of all the document's attributes.
The contents of a document are represented as the value
of a content attribute. For example, the full text of

a textual document would be included as the value of
its Full Text attribute. The InfoBus collection service
allows users to build their own repositories from docu-
ments they have created, located, or received. A collec-
tion is a CORBA object that allows users to store other
objects, including documents or, recursively, other col-
lections. Collections support querying through a special
protocol that we have de�ned [8].

In our earlier paper [1], we analyzed our metadata
needs and presented our initial metadata architecture
for addressing those needs. In this paper, we outline the
architecture, discuss its design rationale, and analyze
related work.

2 Metadata Architecture Design

The foundation for our metadata architecture design is
currently based upon four component classes and the
communication pathways among them. The architec-
ture is extensible, allowing for additional component
classes to be introduced as the need arises. Each in-
dividual component instance is implemented by one or
more CORBA objects. Figure 1 shows the current com-
ponent classes, communication pathways, and InfoBus
connections. The component classes include attribute
model proxies, attribute model translators, metadata
facilities for search proxies, and metadata repositories.
We describe the speci�cation of each component class
and its associated communication pathways in turn.

2.1 Attribute Model Proxies

In the digital library environment, we build structured
descriptions of resources and services out of attributes
and attribute values. One level of aggregation beyond
the individual attribute is the attribute model|a self-
contained collection of attributes. Well-known attribute
models include the USMARC set of bibliographic at-
tributes (referred to as \�elds" in the USMARC com-
munity) [9], the Dublin Core set of attributes [10], and
so on.

In our metadata architecture, we reify both attributes
and their encompassing attribute models as �rst-class
objects. Attributes are instances of class Attribute-
Item. Attribute model proxies are implemented as In-
foBus collections. Attribute model proxies represent
real world attribute models, just as search proxies rep-
resent real world search services.

An AttributeItem's properties include the follow-
ing: model name, attribute name, aliases usable for
queries, value type, documentation, various other in-
formation used by query translators, and so on.

The model name and attribute name are both strings
that serve to identify the AttributeItem uniquely. As
an example, an attribute might have the model name
\Dublin Core" and the attribute name \Title." The
model name is repeated in all items to make them self-
contained. This is important when the items are passed
around the system to components other than the \home"
attribute model proxy. When examining an Attribute-
Item, a client can always determine to which attribute
model it belongs.

The attribute value type information in an Attribute-
Item dictates the data type that can be contained in
�elds described by the AttributeItem. We use the in-
terface speci�cation language that is part of our CORBA
implementation to specify these types. It is up to each

search service proxy to ensure that the values it returns
conform to these type speci�cations. If the external
service that the proxy represents natively returns a dif-
ferent type, then the proxy is expected to transform the
value into the speci�ed type before returning it.

Attribute model proxies make attribute models �rst-
class objects in our computational environment. They
allow us to store and search over attribute-speci�c infor-
mation that is independent of the capabilities possessed
by any particular search proxy. Since an attribute model
proxy is a collection, it is accessible via the same inter-
face as all other search service proxies. In other words,
the attribute model proxy has a search method that re-
sponds to a query by returning the appropriate subset of
the included AttributeItems. Furthermore, attribute
model proxies record what relationships hold among the
included attributes. This is important for some ser-
vices, such as sophisticated user interface services, that
require structured attribute models. Figure 2 depicts
a structured attribute model that encodes \is-a" rela-
tionships among its attributes. In our architecture, the
attribute model proxy for this attribute model would
be a collection containing AttributeItems subclassed to
include is-a() methods. Other relationships between
the attributes in an attribute model, like \has-a," can
be treated analogously.

A search service proxy that supports this attribute
model could use its relationship information when pro-
cessing queries. For example, a search service proxy
might determine that items match the query Creator
contains Ullman if they contain \Ullman" in the value
of the Creator attribute or if they contain \Ullman" in
the value of descendant attributes (i.e., in the value of
Reporter or Author).

2.2 Attribute Model Translators

In heterogeneous environments, many di�erent attribute
models co-exist. This inevitably leads to mismatches
when InfoBus components that support di�erent at-
tribute models attempt to communicate with each other.
For example, consider a bibliographic database proxy
and a client of that proxy. The bibliographic database
proxy might support only the Dublin Core attribute
model, while the client might support only the US-
MARC bibliographic data attribute model. In order
for this client and this proxy to communicate with each
other, they must be able to translate from USMARC
attributes to Dublin Core attributes and vice versa. In
other words, they require intermediate attribute model
translators. Attribute model translators serve to me-
diate among the di�erent metadata conventions that
are represented by the attribute model proxies. These
translation services, available via remote method calls,
translate attributes and their values from one attribute
model into attributes from a second attribute model.

Of course, in some cases, translation may not be pos-
sible: consider translating from an attribute model de-
signed for chemistry databases into an attribute model
designed for ancient Greek texts. Similarly, Dublin Core
is a much smaller set than USMARC, so some informa-
tion that can be tagged in USMARC �nds no equiva-
lence in Dublin Core.

Even when translation is appropriate, the transla-
tion from one attribute model to another is often di�-
cult and lossy. For example, the Dublin Core describes
authorship using the single attribute Author. However,

Stanford InfoBus

Attribute Model
Translation Service

USMARC <-> Dublin Core

Metadata
Repository

Metadata
Information Facility

Search Service Proxy
Dialog

Constrain
 Facility

Dialog
Dublin Core

AltaVista

Attribute
Model Proxy

USMARC

USMARC
Push/pull
metadata

Push/pull
metadata

Push/pull
metadata

Figure 1: The Metadata Architecture Design

Reporter

is-ais-a
Creator

Author

Figure 2: A complex attribute model with the \is-a" relationship among its attributes.

USMARC distinguishes among several di�erent types of
authors, including Corporate Author (recorded in the
100 attribute) vs. Individual Author (recorded in the
110 attribute). When translating an AttributeItem
from Dublin Core to USMARC, a decision must be
made whether to translate the Dublin Core Author at-
tribute value into a USMARC 100 attribute value or a
USMARC 110 attribute value. This may be hard-coded,
or the translation may be performed heuristically and
may take into account the other attribute values present
in the item being translated.

Translation services do more than map source at-
tributes onto target attributes. They must also convert
each attribute value from the data type speci�ed for
the source attribute into the data type speci�ed for the
target attribute. This conversion can be quite complex.
For example, one attribute model might call for authors
to be represented as lists of records, where each record
contains �elds for �rst name, last name, and author
address. Another model might call for just a comma-
separated string of authors in last-name plus initials for-
mat. When translating among these values, some infor-
mation may again be lost if, for example, the address is
simply discarded.

Our attribute model translation services may be ac-
cessed by a variety of other InfoBus components, includ-
ing search service proxies. For example, a search service
proxy might choose to use attribute model translators to
be attractive to more clients, because it can then adver-
tise that it deals in multiple attribute models. On the
other hand, clients might use attribute model transla-
tors in order to ensure their ability to communicate with
a wide variety of search services.

2.3 Metadata Facilities for Search Proxies

The metadata facility that we attach to each search ser-
vice proxy is responsible for exporting metadata about
the proxy as a whole, as well as for exporting metadata
about the collections to which it provides access. Col-
lection metadata includes descriptions of the collection,
declarations as to what attribute models are supported,
information about the collection's query facilities, and
the statistical information necessary for resource dis-
covery services like GlOSS [4] to predict the collection's
relevance for a particular query. Clients can use the in-
formation to determine how best to access the collection
maintained by the search service (i.e., what capabilities
the search service supports).

We have decided to make the interface for access-
ing the metadata facility of search service proxies very
simple in order to encourage proxy writers to provide
this information. Search service proxy metadata is ac-
cessed via the getMetadata() method, which returns
two metadata objects. Alternatively, each proxy may
opt to \push" these metadata objects to its clients. The
�rst metadata object (Table 1) contains the general ser-
vice information, and it is based heavily on the source
metadata objects de�ned by STARTS [11]. The general
service information includes human-readable informa-
tion about the collection, as well as information that
is used by our query translation facility. Examples for
the latter are the type of truncation that is applied to
query terms, and the list of stopwords. Our current
query translation engine is driven by local tables con-
taining this kind of information about target sources.

An interesting attribute of our �rst metadata ob-

ject is contentSummaryLinkage. The value for this at-
tribute is a URL that points to a content summary of
the collection. Content summaries are potentially large,
hence our decision to make them retrievable using ftp,
for example, instead of using our protocol. The content
summary follows the STARTS [11] content summaries,
and consists of the information that a resource-discovery
service like GlOSS needs. Content summaries are for-
matted as Harvest SOIFs [12].

Example 2.1 Consider the following content summary
for a collection:

@SContentSummary{
Version{10}: STARTS 1.0
Stemming{1}: F
StopWords{1}: F
CaseSensitive{1}: F
Fields{1}: T
NumDocs{3}: 892

Field{5}: Title
DocFreq{11023}: "algorithm" 53

"analysis" 23
...

Field{6}: Author
DocFreq{1211}: "ullman" 11

"knuth" 15
...
}

This summary indicates that the word \algorithm" ap-
pears in the Title of 53 items in the collection, and
\ullman" as an Author of 11 items in the collection, for
example. The numbers in braces indicate the length of
the �eld values, to facilitate parsing.

The second metadata object returned by the get-
Metadata()method (Table 2) contains attribute access
characteristics. This is attribute-speci�c information for
each attribute that the proxy supports. Recall that at-
tribute model proxies contain only information that is
independent from any particular search services. At-
tribute access characteristics complement this informa-
tion in that they add the service-speci�c details for each
attribute.

For example, some search services allow only phrase
searching over their Author attributes, while others al-
low keyword searching. Similarly, some search services
may index their Publication attributes, while others
may not. The attribute access characteristics describe
this information for each attribute supported by the col-
lection speci�ed in the getMetadata() call. The query
translation services need this information to submit the
right queries to the collections.

Notice that this design does not allow clients to query
search service proxies directly for their metadata. Search
service proxies only export all their metadata in one
structured \blob." The reason for this is that the In-
foBus includes many proxies, and more are being con-
structed as our testbed evolves. We therefore want
proxies to be as lightweight as possible. Querying over
collection-related metadata as exported by search ser-
vice proxies is instead available through a special com-
ponent, the metadata repository.

Metadata Attribute Description
version Version of the metadata object

collectionName Name of the collection being described
attrModelNames Attribute models supported

attrNames Attributes supported
booleanOps Boolean operators supported
proximity Type of word proximity supported
truncation Truncation patterns supported

implicitModifiers Modi�ers implicitly applied (e.g., stemming)
stopWordList Stopwords used
languages Languages present (e.g., en-US, for American English)

contentSummaryLinkage URL of the content summary of the collection
dateChanged Date the metadata object last changed
dateExpires Date the metadata object will be reviewed
abstract Abstract of the collection

accessConstraints Constraints for accessing the collection
contact Contact information of collection administrator

Table 1: The attributes present in the �rst metadata object for a collection, describing general service characteristics.

Access Characteristic Description
collectionName Name of the collection being described
attrModelName Model of the attribute

attrName Name of the attribute
searchRetrieve Whether the attribute is searchable, retrievable, or both

modifierCombinations Legal combinations of modi�ers (e.g., stemming, >) for the attribute

Table 2: The attribute access characteristics for one search attribute, as described in the second metadata object for
a collection.

2.4 Metadata Repositories

Metadata repositoriesare local, possibly replicated data-
bases that cache information from selected attribute
model proxies, attribute model translators, metadata
facilities for search proxies, and other InfoBus services
in order to produce one-stop-shopping locations for lo-
cally valuable metadata. We allow for metadata repos-
itories to pull metadata from the various facilities, as
well as for the facilities to push their metadata to one
or more repositories directly. The intent is for these
repositories to be a local resource for �nding answers
to metadata-related questions and for �nding special-
ized metadata resources. A metadata repository has a
search-service-proxy interface, and includes:

� The AttributeItems from locally relevant attribute
model proxies. This data is useful, for example, to
search for attribute models that contain concepts
of latitude and longitude.

� Translator information for locally relevant attribute
models. This data is useful, for example, to search
for translators to or from particular models. Searches
return pointers to the translator components.

� General service information for locally relevant search
service proxies. This data is obtained through
getMetadata() calls on the proxies, as discussed
in the previous section, and is useful, for example,
to search for collections whose abstracts match a
user's information need. It is also useful for more
technical inquiries, such as for �nding search prox-
ies that support a given attribute model, or proxies
that support proximity search.

� The attribute access characteristics of the locally

relevant search proxies. This data is primarily use-
ful to the query translators. Translators can, for
example, �nd out which proxies support keyword-
searchable Dublin-Core Author attributes.

2.5 Implementation Status

We have implemented prototype instances of all four
component classes of our metadata architecture: sev-
eral attribute model proxies, two attribute model trans-
lators, a metadata repository, and a metadata facility
for a search proxy.

Our attribute model proxies include implementations
of proxies for Z39.50's Bib-1, Dublin Core, Refer, Bib-
TeX, GILS, and a subset of USMARC. We can, for
example, search over our USMARC proxy for all at-
tributes containing the word Title in their description.
This returns �ve entries, including attributes for Title
Statement, Varying Form of Title, and Main Entry
-- Uniform Title. This information will be used in our
user interface, for example, to help users select proper
attributes for search.

Our �rst attribute model translators provide attribute
translations between Refer and BibTeX, and between
our subset of USMARC and BibTeX. We have not im-
plemented the value type translations yet.

Our implementation of a metadata facility for search
proxies works over our NCSTRL proxy, which communi-
cates with the NCSTRL collection of Computer Science
technical reports.

Our initial metadata repository implements an in-
formation pull model. It currently maintains metadata
information from the attribute model proxies and at-
tribute model translators. We have not yet integrated
information from the metadata facilities for search prox-

ies. When the repository starts up, it �nds all running
instances of attribute model proxies and attribute model
translators and extracts relevant information from them.

3 Design Rationale

As we have designed and implemented the metadata ar-
chitecture outlined in this paper, we have broadened our
understanding of the complex tradeo� space in which
digital library systems are embedded. In the ensuing
sections, we discuss and situate some of our fundamen-
tal design decisions. We also articulate some of the di�-
cult challenges that must still be addressed by metadata
architectures.

3.1 Attribute Model Proxy Issues

We decided to implement attribute model proxies as
simple, searchable collections of AttributeItemobjects.
This implementation is a good re
ection of the pur-
pose behind attribute model proxies: to represent ex-
ternal attribute set standards, which consist of sets of
attribute elements. Representing these elements as ob-
jects gives us the modeling
exibility we need. Earlier,
we mentioned our ability to subclass AttributeItem to
add inter-attribute relationships. There are other rea-
sons why we need such extensibility. For example, while
Bib-1 elements are
at, Dublin Core and USMARC el-
ements may each contain subordinate additional infor-
mation. When this information is to be modeled as well,
subclassing is an easy mechanism allowing us to do that.

Our implementation of attribute models as search-
able collections allows us to interact with the models
just as we interact with our search proxies (e.g., Al-
taVista). In fact, our use of the same protocols for
communicating with both attribute models and search
proxies has contributed to the simplicity of our archi-
tecture.

Another design decision around attribute model prox-
ies concerns the form in which the admissible values for
each attribute in an attribute model are speci�ed. At-
tribute value types are frequently not speci�ed in at-
tribute set standards. Sometimes, some of the types are
speci�ed, while others are not. For example, some at-
tribute sets specify that dates are to be maintained in
some standard form, but they may not specify the ex-
act form in which publisher addresses are to be entered.
We wanted our attribute model proxies to isolate client
programs from the variations in attribute values. Spec-
ifying admissible value types in the model, and making
sure the corresponding value translations occur when
values are extracted from the underlying sources is one
way of accomplishing this isolation. But how should the
value types be speci�ed?

A spectrum of type speci�cation formality is pos-
sible. At one extreme, we could introduce an entire
extensible type system to describe how values for each
attribute are constructed. We could then build value
parsers that transform values to convenient formats.
This would provide for maximum stability in system
maintenance because all code changes could be veri�ed
against the type speci�cations. It would also enable
completely separate development of code implementing
information sources and code implementing informa-
tion clients. Unfortunately, this solution is expensive

in terms of supporting code, and in building metadata
models.

At the other extreme, we could have a typeless sys-
tem. A hybrid system might allow attribute type spec-
i�cations as hints to help make implementations less
verbose. For example, a Date �eld value could just be
described as String. This solution is easier to imple-
ment and maintain, and it would allow implementations
at least to guard against basic type faults and related
crashes; but it would limit the usefulness of the type
information.

In our initial prototype, we are experimenting with
specifying attribute value types in the same CORBA
interface language we are using to specify the types of
parameters passed to methods in our larger distributed
object system. We are also considering an adaptation
of the MIME standard [13] to let us describe complex
attribute values, such as values consisting of multiple
parts. Neither of these is satisfactory in describing the
details of how basic types are used. For example, while
we can express concisely that a value is to be of type
Integer, we cannot say formally in our current proto-
type that the integer is to represent a date in \seconds
since 1970." Similarly, we cannot describe whether the
String holding a document's authors is organized as
last-name �rst or vice versa. This information can, of
course, be included in the human readable description
slot of each AttributeItem. While we could borrow
from knowledge representation technologies to accom-
plish more re�ned value typing, we need to weigh the
usefulness of such descriptions against the complexity of
the code that deals with them throughout the system.

The �nal design decision we discuss in the context
of attribute model proxies concerns their relationship
to each other. In our initial prototype we decided not
to model such relationships at all. For example, the
emerging Geo1 attribute set [14] is a superset of the
GILS attribute set, which in turn subsumes Bib-1. If
we allowed attribute model proxies to reference each
other, we could model these subsumption relationships.
Instead, we construct each attribute model proxy from
scratch, replicating all common AttributeItems.

This approach has the standard drawbacks of repli-
cated data: if an evolving standard changes, or if we de-
cide to change the description of a Bib-1 AttributeItem,
we must propagate this change manually. Similarly, we
cannot currently express that the value type of attribute
A in attribute model X is to be the same as the value
type of attribute B in attribute model Y .

We decided to experiment with our simpler design in
the interest of controlling overall complexity. It remains
to be seen whether we will need to revise this decision
as we gain more experience with the system.

3.2 Attribute Model Translator Issues

Attribute model translation has some intrinsic limita-
tions. We have described how translation can lose infor-
mation when multiple attributes of one model map into
a single attribute of another (the many-to-one problem).
The one-to-many problem is the dual: if an attribute
in one model has multiple, �ner granularity equivalents
in another, automated translation is di�cult because it
requires analysis of the attribute value, or of other at-
tributes in the same document. For example, one could
imagine a heuristic that checks whether an author value
is an individual or a company. We indeed do similar

heuristic analyses when we parse Web pages returned
from search engines to extract attribute values. We
also use such heuristics when converting untyped Refer
records to BibTeX records, which are typed. However,
the current implementation of our attribute translators
does not employ such techniques for dealing with the
one-to-many problem.

Instead, when asked to map an AttributeItem from
a source model to its equivalent in a target model, our
translators return lists of target attributes when multi-
ple attributes in the target model may be correct trans-
lations. The translator client then needs to decide what
to do. For example, our BibTeX to USMARC translator
returns several USMARC AttributeItems as possible
translations for a BibTeX Author. Varying approaches
for making this decision are appropriate under di�erent
circumstances. For example, when the client's goal is to
create a document tagged according to the target model,
the client might set all the related target attributes to
the same value|the value of the single source attribute.
If instead the goal is to create a document representa-
tion using the simpler source model, the value of the
single relevant attribute could simply be set to a con-
catenation of relevant values in the target. For example,
if a Dublin Core Author �eld in one document represen-
tation is to be initialized from another document repre-
sentation organized according to the USMARC model,
all USMARC shades of Author-like �elds might be com-
bined and separated by semi-colons. While our transla-
tors do not make this decision, they at least inform the
client which target attributes are relevant.

Apart from these intrinsic di�culties of attribute
model translation, there is the cost of writing trans-
lators to translate from n attribute models to m other
models. Initially, this does not seem to be a big prob-
lem, because there are only a rather limited number of
o�cial attribute set standards in common use. But once
our metadata components began to come online, it be-
came clear that we wanted to build specialized attribute
models for use locally within our own applications. For
example, we quickly discovered that our metadata ar-
chitecture would be handy also for attribute models con-
cerned with online �nancial transactions.

In order to keep the cost of translator generation
in check as the number of attribute models increases,
we initially constructed one large, generic, intermediate,
attribute model. When translating from model X to
model Y , we �rst translated from X to the rich interme-
diate model, and from there to model Y . This approach
served us well for quite a while. It does make trans-
lation easier. But, of course, the intermediate model
becomes too unwieldy as the number of attribute mod-
els grows. We are now planning to experiment with
another variant of two-stage translation. We will �rst
pick one representative in each group of similar models.
For example, we will select one rich model that handles
geo-spatial material. We pick another for bibliographic
data. Then, instead of always translating to a single rich
model, we will translate to one of a handful of models,
and from there to the �nal target.

A particularly sophisticated approach to translation
is possible for the hierarchical attribute models we de-
scribed earlier (Figure 2). If the translation of a leaf
attribute fails, we will �rst attempt to generalize to a
level higher in the hierarchy, and then repeat the trans-
lation attempt.

3.3 Service Proxy Metadata Facility Issues

Our speci�cation of how metadata can be obtained from
search service proxies, and which format it will be deliv-
ered in is an important �rst step towards dealing with
source heterogeneity. We need collection content sum-
maries to predict which of a potentially large number of
sources is most likely to contain results relevant to some
given query. Services such as our query translator also
need information about which operations are supported
by each service.

Naturally, data source content summaries provided
by proxies are only as good as the information that
can be obtained from the actual sources they represent.
The STARTS speci�cations [11] are intended to allow
search engine providers and their customers to deliver
the content summaries. Carl Lagoze at Cornell Univer-
sity has built a reference implementation of STARTS
in Java that provides the STARTS information for free-
WAIS services. This will make it easier for informa-
tion providers to deliver the meta-level information de-
scribed in Section 2.3.

The metadata called for from proxies in Section 2.3
is still rather text oriented. Our content summaries, for
example, contain information about occurrence statis-
tics of keywords. Similarly, the descriptions of service
functionality are geared towards text search related op-
erations, like stemming, or stop word elimination. More
and more innovative metadata is coming on line that
goes beyond text. For example, Carnegie-Mellon's Dig-
ital Library project provides small, automatically gen-
erated sequences of low-resolution images to summarize
the contents of a video (http://www.informedia.cs.-
cmu.edu/). Over time, we will need to add such ad-
vanced notions to the repertoire of metadata that can
be requested from our service proxies. For the initial
step reported on here, we decided to focus on the more
traditional text medium, because there is a longer tra-
dition, and broader common understanding of standard
search related operations.

Limiting functionality related service metadata to
information about operations related to text is actu-
ally not enough to maintain a manageable degree of
complexity. There are many advanced capabilities that
search engines might provide, but that our proxy meta-
data format does not include. One example that came
up in discussion is the ability to search for all docu-
ments that are written in one language, but that con-
tain some particular word in another language. Our
STARTS metadata format does not make it easy to ad-
vertise this capability, although the format could eas-
ily be extended. Again, the decision to address only
commonly available operations initially is grounded in
our goal of getting a �rst version of all four metadata
component classes working, so that we can study the
e�ect they have on our overall system. Since the ulti-
mate success of STARTS depends on the participation
of information providers, simplicity in this part of our
metadata facilities was especially important.

Our self-imposed guideline of keeping metadata com-
ponents simple is also particularly relevant for all as-
pects of search service proxies. Our overall InfoBus sys-
tem bene�ts greatly from keeping service proxies sim-
ple. We want it to be easy for third parties to construct
proxies to their services, so that InfoBus clients can take
advantage of them. Therefore, any metadata facilities
added to proxies had to be easy to implement. This

is why we decided against making service metadata on
proxies searchable. We did not want to require a search
engine to be included in all the proxies. Each proxy
just needs to support the getMetadata() method. To
make up for this low functionality interface, our meta-
data repositories provide for searching over source con-
tent summaries. They accumulate metadata from the
proxies and prepare it for searching as necessary. This
presents no additional implementation expense, since
metadata repositories need search engines anyway, and
because we do not expect others to construct di�erent
kinds of metadata repositories on a regular basis.

We will, of course, always need to accommodate
sources that are not equipped to deliver the search ser-
vice related metadata we like to have. We are construct-
ing our clients and the metadata repository such that
they are tolerant of these de�ciencies.

3.4 Metadata Repository Issues

The notion of our metadata repositories is rather straight-
forward. Their purpose is to provide for local caching of
metadata and to enable querying across metadata from
multiple sources. In spite of this simplicity, there are
design decisions we needed to make, and further inves-
tigations to undertake.

One question concerns the system-wide usage of meta-
data repositories. We have not yet gathered enough
experience to know how many local repositories will
be desirable, and how much information they will each
cache. If metadata repositories cache most of the sys-
tem's metadata, and if the total amount of metadata
is large, we may need to organize metadata repositories
hierarchically. It is possible that the Internet's domain
name service (DNS) could serve as a model. So far, we
have not seen a need for such a step.

If there are many metadata repositories and sources
of metadata, the problem of cache consistency may be-
come a problem. We do not expect this to be an imme-
diately pressing issue, because metadata generally does
not tend to change as frequently as other data. A re-
lated problem that is more likely to demand attention
arises when services that provide metadata come online
after a metadata repository wishing to store their meta-
data has already been started. In this case, our pull
model implementation will not acquire the new meta-
data. Our design does support metadata pushing, as
well as pulling. We decided to start with a pull model,
because without further facilities, it is not clear which
metadata repositories a newly started metadata source
should push its data to. We would in this case need to
add a registration facility where metadata repositories
could advertise their interest. Alternatively, we can re-
tain the pull model, and have metadata repositories scan
for new services periodically. We can do this through
the use of our object name service.

Our current implementation supports very simple
queries over repositories, in the sense that only one
class of metadata can be addressed by a single query.
For example, while we can respond to queries asking
for attribute models containing AttributeItems related
to authorship, we cannot ask for all search services that
support attribute models containing AttributeItems re-
lated to authorship. This question would need to be an-
swered in two steps. First, we would �nd the attribute
models, then we would �nd all services that support
these models. If we moved our metadata implementa-

tion to a database that supports joins, we could make
the query facility more powerful. Again, for now we
opted for simplicity.

4 Related Work

Much recent work has focused on the speci�cation of
attribute sets intended for the metadata description of
information objects. The Bib-1 attribute set [15, 16]
registers a large set of bibliographic attributes, while
the Dublin Core [10] is intended to be a simple yet us-
able set of attributes. These standard metadata sets are
represented as attribute models in our architecture. Our
attribute models go beyond these metadata sets because
they can optionally include structures and because they
are rei�ed as searchable collections.

Given the existence of various metadata sets for in-
formation objects, and the fact that no single set cov-
ers all the possible aspects, there have also been sig-
ni�cant e�orts in developing architectures that support
the integration and interoperation of various metadata
sets. The Warwick Framework, for example, is essen-
tially an encoding scheme to integrate various meta-
data packages. Another framework, proposed by the
Alexandria Digital Library [17], models document meta-
information with attribute-value pairs, in which multi-
ple \languages" can be used. Common to these architec-
tures and ours is the support of multiple metadata sets
in modeling documents. However, because we repre-
sent documents as a
at set of attribute-value pairs, the
encoding scheme of the Warwick Framework is more so-
phisticated because its structure supports recursion and
indirection. On the other hand, our work complements
the Warwick Framework in that we do provide attribute
models as searchable registries for metadata attributes.

In addition to the work on metadata for information
objects, there are also proposals that support metadata
for search services. For instance, the GILS pro�le for
Z39.50 [18], while including all of the Bib-1 attributes,
de�nes many attributes for describing search services.
The University of Michigan Digital Library Conspectus
describes the contents and capabilities of the available
search services using a special language [19]. The e�orts
that are probably closest to ours are the Explain facility
of Z39.50-1995 [15] and Stanford's STARTS [11], both
of which require services to export their \source meta-
data."

Z39.50 servers present metadata about their services
via the Explain facility so that clients can dynamically
con�gure themselves to match individual servers. The
metadata is structured as another database that can
be queried by the clients via the Z39.50 protocol. The
Explain facility provided by Z39.50 servers corresponds
to the metadata information facility supported by our
service proxies. The major distinction is that our prox-
ies support simpler interfaces for accessing the service
metadata. We have decided to shift the more complex
functionalities (e.g., searchable metadata) to the meta-
data repositories, to make proxies as lightweight as pos-
sible and therefore easy to implement. On the other
hand, this simplicity may not be an issue for Z39.50
because both their clients and servers will necessarily
have most of the required capabilities [20]. However,
our architecture can bene�t from the Explain facility;
it should be relatively easy to build proxies to Explain-
compliant services that will support our proposed meta-
data facility.

Another relevant e�ort on top of which we built our
architecture is STARTS [11]. STARTS, coordinated by
Stanford, is an informal \standards" e�ort whose main
goal is to facilitate the interoperability of search engines
for text. STARTS speci�es what metadata should be
exported by each collection of text documents. This in-
formation is essentially what the search proxies export
through their metadata facility (Section 2.3). STARTS
does not describe, however, a more sophisticated meta-
data architecture. It just speci�es the information that
the collections should provide. As with the Explain
facility, the architecture that we present in this paper
bene�ts from STARTS-compliant services: for such ser-
vices, it is easy to build proxies that will satisfy our
metadata requirements.

Finally, our proposed metadata repository has roots
in the WAIS \directory of servers." However, our meta-
data repository has a more sophisticated structure, more
complex update mechanisms, and a broader scope.

5 Conclusion

Our experience in designing and implementing a meta-
data architecture has illustrated once again the impor-
tance and complexity of metadata issues. As many
digital library builders have observed, there are many
classes and uses for metadata. In this paper, we have
outlined a metadata architecture that addresses a broad
class of the needs found in a distributed, heterogeneous,
proxy-based digital library. The component classes around
which the architecture is built|attribute model prox-
ies, attribute model translators, metadata facilities for
search proxies, and metadata repositories|facilitate the
sharing of both document and service metadata. On the
document side, attribute model proxies, attribute model
translators, and metadata facilities for search services
combine to enable clients to understand and make use
of structured document descriptions that are encoded
according to a wide array of standards. On the service
side, the content summaries and attribute access charac-
teristics available from the metadata facilities for search
services help clients to make \smart" choices of search
services and to tailor their service requests according to
the services' capabilities. Our metadata repositories or-
ganize both document and service metadata so that it
can be easily found.

In analyzing our design and implementation of this
metadata architecture, we made explicit in this paper
our stances on a variety of metadata issues. On the
architectural level, we have striven for simplicity and
interoperability wherever possible. In this way, we hope
to facilitate the provision and sharing of metadata in our
digital library. In our design of attribute model prox-
ies and translators, we have adopted an approach that
allows us to accommodate a large number of existing
metadata sets. We have also paved the way for the rich,
structured attribute models that will become important
in digital libraries. In our design of metadata facili-
ties for search services, we have balanced the need for
detailed service information with the requirement that
the metadata facilities be both lightweight and easy to
write. Finally, our conceptualization of metadata repos-
itories addresses what we see as the important problem
of where to look �rst for metadata in the intricate web of
services that makes up a large-scale, distributed digital
library.

Acknowledgments

Many useful comments on our work were provided by
TerryWinograd, H�ector Garc��a-Molina, and other mem-
bers of the Stanford Digital Library Project. Carl Lagoze
constructed our STARTS reference implementation, which
is the basis for our NCSTRL collection metadata exper-
iments.

References

[1] Michelle Baldonado, Chen-Chuan K. Chang, Luis
Gravano, and Andreas Paepcke. The Stanford Dig-
ital Library metadata architecture. International
Journal of Digital Libraries, 1(2), February 1997.

[2] Andreas Paepcke, Steve B. Cousins, H�ector Garc��a-
Molina, Scott W. Hassan, Steven K. Ketchpel,
Martin R�oscheisen, and Terry Winograd. Towards
interoperability in digital libraries: Overview and
selected highlights of the Stanford Digital Library
Project. IEEE Computer Magazine, May 1996.

[3] Object Management Group. The Common Ob-
ject Request Broker: Architecture and speci�ca-
tion. Accessible at ftp://omg.org/pub/CORBA, De-
cember 1993.

[4] Luis Gravano, H�ector Garc��a-Molina, and Anthony
Tomasic. The e�ectiveness of GlOSS for the text-
database discovery problem. In Proceedings of the
1994 ACM SIGMOD Conference, May 1994.

[5] Steve B. Cousins. A task-oriented interface to a
digital library. In CHI 96 Conference Companion,
pages 103{104, 1996.

[6] Chen-Chuan K. Chang, H�ector Garc��a-Molina,
and Andreas Paepcke. Boolean query mapping
across heterogeneous information sources. IEEE
Transactions on Knowledge and Data Engineering,
8(4):515{521, August 1996.

[7] Michelle Q Wang Baldonado and Terry Winograd.
SenseMaker: An information-exploration interface
supporting the contextual evolution of a user's in-
terests. In Proceedings of CHI 97, 1997.

[8] Scott W. Hassan and Andreas Paepcke. Stan-
ford digital library interoperability protocol. Tech-
nical Report SIDL-WP-1997-0054, Stanford Uni-
versity, 1997. Accessible at http://www-diglib.-
stanford.edu/cgi-bin/WP/get/-
SIDL-WP-1997-0054.

[9] USMARC format for bibliographic data: Including
guidelines for content designation, 1994.

[10] Stuart Weibel, Jean Godby, Eric Miller, and Ron
Daniel, Jr. OCLC/NCSA metadata workshop re-
port. Accessible at http://www.oclc.org:5047/-
oclc/research/publications/weibel/-
metadata/dublin core report.html, March 1995.

[11] Luis Gravano, Chen-Chuan K. Chang, H�ector
Garc��a-Molina, and Andreas Paepcke. STARTS:
Stanford proposal for Internet meta-searching. In
Proceedings of the 1997 ACM SIGMOD Confer-
ence, 1997.

[12] Darren R. Hardy, Michael F. Schwartz, and Duane
Wessels. Harvest user's manual, January 1996. Ac-
cessible at http://harvest.transarc.com/afs/-
transarc.com/public/trg/Harvest/-
user-manual.

[13] N. Borenstein and N. Freed. MIME (Multipurpose
Internet Mail Extensions) Part One: Mechanisms
for specifying and describing the format of Inter-
net message bodies, September 1993. Internet RFC
1521.

[14] Z39.50 application pro�le for the content speci�ca-
tion for digital geospatial metadata or GEO, Oc-
tober 1995. Accessible at ftp://h2o.usgs.gov/-
wais/docs/AppProfile GEO1.2.ps.

[15] National Information Standards Organization. In-
formation Retrieval (Z39.50): Application Service
De�nition and Protocol Speci�cation (ANSI/NISO
Z39.50-1995). NISO Press, Bethesda, MD,
1995. Accessible at http://lcweb.loc.gov/-
z3950/agency/.

[16] Z39.50 Maintenance Agency. Attribute set Bib-1
(Z39.50-1995): Semantics. Accessible at ftp://-
ftp.loc.gov/pub/z3950/defs/bib1.txt, Septem-
ber 1995.

[17] Terence R. Smith, Steven Ge�ner, and Jonathan
Gottsegen. A general framework for the meta-
information and catalogs in digital libraries. In Pro-
ceedings of the First IEEE Metadata Conference,
Silver Spring, Maryland, April 1996. IEEE. Acces-
sible at http://www.nml.org/resources/misc/-
metadata/proceedings/smith/ieee.html.

[18] Eliot Christian. Application pro�le for the govern-
ment information locator service (GILS), Version
2, October 1996. Accessible at http://www.usgs.-
gov/gils/prof v2.html.

[19] William P. Birmingham. An agent-based archi-
tecture for digital libraries. D-Lib Magazine, July
1995.

[20] Denis Lynch. Implementing Explain. Accessi-
ble at ftp://ftp.loc.gov/pub/z3950/articles/-
denis.ps.

