Browsing Object Databases Through the Web?

Joachim Hammer, Rohan Aranha, and Kelly Ireland

Computer Science Department
Stanford University
Stanford, CA 94305
{joachim, aranha, kelly} @cs.stanford.edu

As a result of the explosive growth of the Internet, more and more sites have connected their
databases to the WWW, allowing users to retrieve information dynamically and on-demand.
However, most dynamically created HI'ML pages currently available on the WWW, provide the
user with only a flat view of the contents giving little visual help as to how the information is
organized. As part of the TSIMMIS project at Stanford, we have built a system for formatting and
displaying the information that is retrieved from an object-based database as a “web” of hypertext
documents using HTML and HTTP. The contents of these “documents” can then be explored
using the built-in functionality of a WWW browser much in the same way one would explore the
contents of a book. As part of our system, users can customize the formatting of their results by
choosing different layouts, or controlling how much of the object structure is visible in the
browser, for example. In this paper, we illustrate the details of the approach and describe our
prototype implementation called MOBIE that is installed and operational in the TSIMMIS testbed.

1. Introduction

Due to the explosive growth of the Internet, the WWW has become an open, distributed forum in
which people can publish and exchange information treely and without any restrictions in terms of
what hardware or software they use. In order to organize the ever increasing amounts of
information, more and more data 1s gathered and served dynamically from databases rather than
trom static HIML files. This approach combines the advantages of a database management system
(e.g., efficient search and retrieval capabilities, concurrency, recovery, etc.) with the advantages of
the WWW (e.g., ubiquitous, standard interface, etc.). However, most current approaches to

dynamically “publishing” the contents of databases are not fully exploring the fundamental

§ Research sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Material Command, USAF, under Grant
Number F33615-93-1-1339.The US Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon. The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either express or implied, of
Wright Laboratory or the US Government. This manuscript is submitted for publication with the understanding that the US
Government is authorized to reproduce and distribute reprints for Government purposes.

paradigm of the WWW, namely being able to link together information units that are related but
exist in separate documents. Rather, most WWW-based databases provide the user with just a “flat
view” of the entire result, giving little visual help as to how the information s organized. This is
acceptable as long as the information to be displayed is short or has little structure that requires
spectal formatting. However, information sets that are large or very structured (with many levels of
nesting) cannot efficiently be displayed in a flat structure and will result in a lot of scrolling when
viewed on the screen. For this reason, we have built a system for dynamically formatting and
browsing structured information as a “web” of hyperlinked HIML [Berners-Lee and Connolly
1992,Connolly Jdocuments allowing users to explore the structure and content of an information
source much like readers explore the contents of a book: by using the table of contents to find the
chapters and pages that contain the information they are interested in. The only difference 1s that in
our scenario, page numbers are replaced by hyperlinks and the displayed content is dynamic, t.e., it

depends on the query that is producing the result as well as the underlying information source.

In this paper we illustrate our approach to formatting and browsing structured information and
describe the implementation of a fully functional prototype called MOBIE (MOsaic Based
Information Explorer') that we have built as part of the TSIMMIS (The Stanford IBM Manager of
Multiple Information Sources) project [Chawathe et al. 1994,Hammer et al. 1997,Hammer et al.
1995] at Stanford. We argue that this new way of exploring structured information is superior to
existing approaches (focusing mainly on providing WWW connections to commercial database
servers with little or no result buffering and formatting) and can help databases regain some of the
importance they have lost since the advent of the “information superhighway” [DeWitt 1995]. Of
course, the advantages of using the WWW as a front-end to databases also bring some challenges
along with them. In this paper, we describe in detail how we have solved these challenges and
contrast our current solution to how it might be accomplished more elegantly and efficiently in the
tuture using new technologies such as the next generation webservers, browsers capable of

executing mobile code, etc.

The remainder of this paper is structured as follows. In Sec. 2 we describe our approach using
screen snapshots from a sample database interaction to illustrate the functionalities of MOBIE. Sec. 3
describes in detail how we implemented our prototype. We conclude the paper in Sec. 4 with an
evaluation of our current system and some suggestions for how MOBIE could be improved using the

latest WWW technologies.

! The name MOBIE was coined when Mosaic was the only browser available; it is misleading in that our prototype is not dependent
on any one browser.

2. Object Formatting and Browsing in MOBIE

The main idea behind the work described in this paper centers around the need for displaying
nested objects in a way that makes it easy for the user to grasp their structure and explore their
contents, for example, when viewing the result of a database query. By nested objects we mean
objects that contain a top-level (root) object and zero or more subobjects (sometimes referred to as
children). Each subobject may itself be a nested object. In general, nested objects are structured like
trees (or graphs if we allow cycles). In the TSIMMIS project, we are using an object-based model,
called Object Exchange Model (OEM) [Papakonstantinou et al. 1995] for representing nested data.
Besides an Object Identifier (OID), type (either atom or complex), and value field, OEM objects
also contain a label that describes the contents of an object. For example, a book that has a #itle, a
publication date, and authors can be represented as a nested object labeled book with subobjects
labeled title, publication date, and authors. Furthermore, the subobject aut hor s can itselt be a
nested object that contains the names of the participating authors as subobjects, for example. In
MOBIE, labels such as book, title, publication date, etc. are used for identitying and referring to

objects that are displayed in the browser window.

Anybody who has worked with nested objects before can attest to the fact that it becomes
increasingly difticult to understand the contents of a nested object the more its structure increases
in complexity (1.e., the larger the number of sub-objects and the deeper the level of nesting). For

<

this reason, we have built a system that transforms structured data into a “web” of hyperlinked
documents that can be viewed using any WWW browser. An object that 1s selected for viewing 1s
tormatted as an HIML document. If the object is a complex object, the document also includes
hyperlinks pointing to some or all of the object’s substructure depending on the user’s preferences.
It the object is atomuc, it will be displayed by itself. Each document always contains a link to the
parent object, unless the selected object is the root of the entire structure. The main contribution of
our system 1s that it gives the user the option to decide which information is to be displayed, how
much of the chosen information he® wants to see, and when. Information is presented one screen
at a time, allowing the user to browse complex objects, which may be too large to view all at once,

in a “cafeterta-style” (pick-and-choose) fashion. This approach to browsing nested objects is

analogous to how one uses the table of contents to explore the individual chapters of a book.

An important part of the functionality of our system focuses on the layout of information on
individual pages. Since this 1s a process that depends heavily on each user’s individual preferences as
well as the data that 1s being displayed, we have paid caretul attention to design a system that s

tlexible enough so that it can be tailored to satisty many ditferent needs. Our goal was to provide

2 Because of the lack of neuter personal pronouns in English, the terms “he”, “his”, etc. are used throughout this paper to refer to
an individual who may be either male or female.

users with choices as to how information 1s to be displayed: from the overall layout of a screen
down to the format of an individual object. Initially, the system uses default settings that maximize
the amount of information that can be displayed within the given real-estate of the window. The
result can then be improved upon by changing the values of session variables, which control the
document layout, the level of nesting per screen, the number of subobjects per level, etc. By default,
these variables control the formatting for the complete object hierarchy. However, by using the
label names that refer to a particular object in the hierarchy, the scope of session variables can be
limited: from the entire hierarchy, to a specific substructure, to one object. Although customization
of the object display can be tedious and time consuming in certain cases, the state of the session

vartables can be saved on a per-user basis and re-used again during subsequent sessions.

We have implemented a tully functional prototype system called MOBIE which currently provides
the graphical interface to TSIMMIS data sources. However, MOBIE is not limited to browsing only
data from TSIMMIS but can easily be modified for displaying and formatting structured information
from any object-based database’. We now describe the functionality of our system in greater detail
using screen snapshots from a sample interaction with a TSIMMIS source. The source provides
bibliographic information that is represented in the OEM data model. Since we are mainly
concerned here with the formatting and browsing capabilities of MOBIE, we start our description
when the result 1s returned from the database, omitting such details as how to connect to the

database server, transmission of the query and its results, etc.
2.1 Conventions

Betore we go mnto the details of our sample session, we first describe the general layout of our user
interface. Every screen is organized into two basic areas: a navigational bar with buttons that show
the allowable options at any given point in the session, and a result screen where the data is
displayed. We will explain the functionality of most buttons as we go along. However, it 1s
important to note that the need for these navigational aids arose from the fact that WWW browsers
are stateless. Thus MOBIE maintains its own knowledge about the state of a particular session by
trapping all MOBIE-related actions in the browser. Using the browser-supplied Back and Forward
buttons bypasses MOBIE’s control over the session and causes inconsistencies between the session
state inside MOBIE and the actual state. We have much more to say on this in Sec. 3.3.1. When
displaying data, we use the following conventions. Object labels are displayed in bold, object values

are dtalicized. Underlining indicates the existence of a hyperlink.

3 One can either use a translator for converting data into OEM or modify our algorithms to work with other object-based data
models.

2.2 A Sample Session with MOBIE

Let us assume that we have submitted a query asking for all database publications written by author
“Widom”. Let us also assume that the answer to this query consists of 47 publications that are
grouped together under one root object, labeled answer. Figure 1 shows a subset of the answer
object as 1t 1s displayed in MOBIE. Fach object labeled document is a subobject of answer as well as
a complex object exhibiting additional substructure underneath: the objects labeled author, info,
and title. Both the author and title subobjects are atomic meaning they contain no further
substructure. In those cases, the value of the object 1s displayed with no additional links (except for
the parent link). The info subobject on the other hand, 1s a complex object that contains three
additional subobjects: abstract, publication, and keywords. Labels belonging to complex objects

are underlined meaning that a hyperlink exists that will take the user to another screen containing

the subojects.

I New Query IUser Defaultsl Helpl Exit I

Object "answer" contains 47 objects:

Display previous 5 docwments.

document

docunent

document

document

document

D_is y!

author
info

title

next 5 docrowents.

Bargliz, E. (Politecnico o Torino, I...

ahstract Gives & method for Improving the effi. .
publication in Rules in Database Svsiems. Second . ..
rds Active Databases, Attrifute Grammars; ...

Using delts relations to optimize con. ..

Aiken, A. (Californiz Univ., Berkeley. ..

abstract This article gives methods for static. ..
publication ACH Transactions on Database Systems ...
rds Active Databases, Database Theory: Pr. ..

Static analysis tecinigues for predic. ..

Ceri, F. (Dipartimento off Eletironica. ..

abstract We show that production rules and per. ..
publication In IRth International Conference on V...
rds Computationsd Linguiztics; Distribute. . .

Managing semantic heterogencity with ...

Zhuge, Y. (Dept. of Comput. Sci., Sta. ..

abstract A warehouse is a repository of Iintegr. ..
publication SFIGMOD Record (June I885) wvol 24, no. . ..
keywords Dats Integrity. Database Management 5. ..

View maintenance in a Warelhousing env. ..

Wiclom, J. (Dept. of Comp. Sci.)

abstract We address the problem of providing I...
publication In Proceedings of the Eleventh Intern. ..
keywords Data Structures,; Distriduted Database. ..
Active Databases

Figure 1: Query result

There are several important details to note on this first screen. Rather then looking at all 47
document subobjects in their entirety, only a subset is currently displayed at once. This number
(five 1n this case) can be controlled through a session parameter accessible from a separate screen
which 1s shown later. In order to facilitate navigation, a previous and next button (the up and down
arrows on the left side in the figure) are provided to jump to the set containing the previous or
subsequent five documents respectively. By default, immediate suobjects are displayed in sets of 50.
However, in order to improve the readability of our screen snapshots, we have set the value to five.
In addition, three levels of nesting are displayed by default, revealing further substructure. This
means that for each document subobject, its subobjects as well as its sub-subobjects are also

displayed. This so-called fan-out level can be controlled through a session parameter as well.

Formatting also affects labels and values. By default, values longer than 40 characters' and labels
longer than 16 characters are truncated. Truncation is indicated by the appearance of an ellipsis (...)
at the end of the string. For truncated values, a hyperlink points to where the complete value can be
tound. This is similar to a hyperlink that connects a complex object to its subobjects. The display of
values and labels can also be controlled through session parameters. Without any user interaction,
MOBIE will attempt to display the maximum length up to the default limit. In the example in Figure
1, the values for the objects labeled author and title belonging to the fifth document subobject are
displayed in full (hence no hyperlink) since their values are less than 40 characters long. MOBIE will
truncate values that would otherwise extend beyond the edge of the window in order to avoid

horizontal scrolling.

4 All values in MOBIE are converted into strings in order to keep the logic of our display routine simple.

Looking at the navigation bar on top of the screen in Figure 1, we see the following four buttons:
New Query, which exits the current browse mode and returns to the query input screen (not
shown). User Defaults, which provides the user with a fill-ou-torm for altering the values of
session parameters. We will discuss this option in more detail below. The Help button displays
additional semantic information for the current object (in our case the object labeled answer) in
case the information is available. In TSIMMIS for example, help information 1s provided by the data
server that i1s exporting the objects. Finally, the Exit button terminates a session and initiates
miscellaneous clean-up operations within the MOBIE server. In addition, the exit command will
guide the user through a sequence of screens for saving the current state of the session parameters
in case he hasn’t done so on the User Defaults screen. Session values are currently saved in a user

specified file that resides in the file system where MOBIE is running.

mlﬁ User Defaulis I Helpl Exit I

Object "document" contains 3 ohjects:

anthor Barzliz, E. {Politecnico of Torino, I...

info
abstract Gives & method for Improving the effi. .
publication in Eules in Database Systems. Second ..
keywords Active Databases; Atirifute Grammars,. . .

title Using delta relations to optimize con. ..

Figure 2: Query result - subobjects

Except for very small answers, 1.e., objects with little or no substructure, to see the complete result,
the user will move through the structure of the answer object using the activated hyperlinks which
take the user to subsequent result pages. The result of clicking on the first document subobject in
Figure 1 1s shown in Figure 2. This screen displays one document object by itself but reveals no
additional substructure beyond what we have already seen in Figure 1. Everything below the level of
abstract, publication, and keywords 1s an atomic object and their values are too long to be
displayed in full. Clicking on the label abstract, for example, will display the complete value string
(see Figure 3). Clicking on the label info will zoom in on the info object and display its substructure.
Notice that a new button called Parent has been added to the navigation bar in both Figure 2 and
Figure 3. This button allows the user to return to the parent object which is either the document

object or the answer object depending on where we are in the hierarchy.

|Parent| New Query IUserDefaultsI Helpl Exit I

Ohject "abstract"” contains value:

Gives amethod for improving the efficiency of condifion evaluation dwring rile processing in actve database systems. The
method denves, from a mule condition, two new condidons that can be nsed in place of the original condition when a previous
value (e or false) of the orgmal condifon 1 known. The derived condidons sre generally more efficient to evaluate than the
original condition becanse they are incremental- they replace references to entire database relatons by references to delta
relations, which are typically wmmch smaller. Delta relatdons are accessible to mole condidons in almest all current actve
database systems, making this optimization broadly applicable. We descrbe an atibure grammar based approach that we
hiave nzed to implement ovr conditon resiting techmique.

Figure 3: Query result - atomic value

2.3 Formatting Options

As mentioned before, the user can control the formatting of objects through various control
parameters. These parameters are called session variables and can be accessed from the User
Defaults screen shown in Figure 4. Our formatting options fall into two categories: “Global
Settings”, which apply to the whole object structure, and “Label-Based Settings” for which the
scope can be specified based on object labels. By default, “Label-Based Settings” aftect the

complete object structure unless otherwise specitied.

Starting from the top, the following global options are currently available (all options are shown
with their default values). Maxi mum | evel s of sub-obj ects controls the number of visible
levels of subobjects for each object that 1s displayed. The default value is three, meaning that the
object as well as its subobjects and sub-subobjects are displayed (if they exist). Sub- obj ect
i ndent ati on controls the amount of indentation used for subobjects The default value 1s five

(characters).

The label-based settings ofter the following options. Def aul t | ayout controls the overall “look-
and-feel” of the output when it gets displayed in the browser window. As mentioned earlier, we
have designed several layout options for how objects can be organized. So far we have shown the
“list” layout, where objects are organized in lists, using indentations to indicate nesting. This layout
1s well suited for displaying any kind of hierarchical data, such as the publication data shown in our
screen snapshots, or the contents of a file system, for example. In addition to the list template we
have also implemented a “table” layout that displays information in the familiar row and column

format.

The following settings control your MOBIE hrowsing environment for the duration of a session.
Current {archive) settings are shown in the input boxes. You may change any one of the parameters
by entering a non- negative new value in the corresponding input box or by selecting the desired
vadio hutton. You will get the option to save your personal settings to a file prior to leaving MOBIE.
You can also save your settings at any time by pressing the "Save" button on this page.

Global Settings:

Maxiwnn levels of svb-objects:

Sub-object indentation:

Label-Based Settings:

Defanlt layout:

Defanlt mwber of displayed sub-objects:
Default label size:

Defanlt value size:

Bocoept Cancel Changes

List

Eo0
16

A0

m auser default file to load anew set of configuwations.

Saye | urent settings to afile.

m yetwn to the last query or result page and apply changes.

Table

There are currently no formating information on individual labels. You may create one by pressing

on the New button below.

New Label Format

Figure 4: User defaults

This format is best suited for displaying arithmetic data such as financial information or statistical
data, for example. Figure 5 shows the document object from Figure 2 formatted as a table. Since
document is a complex object, each row represents one of its subobjects. Labels are shown on the
lett side. It the subobject i1s an atomic object, e.g., the subobjects labeled author and title, the first
column starting form the lett will contain the subobject’s value. If the subobject 1s a complex
object, e.g., the subobject labeled info, the first column will be empty and subsequent columns will
contain the values of its lower-level subobjects. In case of a complex subobject, the column
headings are the labels of the lower-level subobjects. Note, if there are several complex subobjects
with different substructure, the table will have ditferent headings for each of the complex

subobjects. Also not that it makes no sense to format atomic objects as a table and we do not ofter

this as an option..

Going back to the user default screen in Figure 4, Def aul t nunber of displayed sub-
obj ect s controls the number of first-level subobjects that are displayed on a screen. Def aul t
| abel sizeandDefault val ue size control the length of labels and values respectively.

I Parent I New Query lUser Defaulis I Helpl Exit I

Object "document" contains 3 objects:

Object Value
Ohject .
Child Ohject Lahel
Label Atomic Value T —
ahstract keywords publication
1 Burelis, E. (Politecnico di

= Torino, 1.

info Gives o method for Active Derabases; in Rules in Dezabase

- improving the effi.. Antribuge Gromunors,.. Systems. Second...
title Leing delte relogions o

- oprifize com...

Figure 5: Query result - table layout

As mentioned before, label-based settings either apply to the complete structure or to objects
which are identified through their labels. In order to format an object, a formatting choice
associated with the label that refers to the desired substructure must be defined. This can be done
through the New Label Format command shown on the bottom of Figure 4. The options that
can be specitfied for the selected label are exactly the same as shown before. Using the New Label
Format option, it 1s possible, for example, to display three or more levels of nesting for the root
object, and then reduce the number of visible levels to just one when viewing its subobjects. As
another example, one can display the part of a result that contains numerical values as a table but
leave the part that 1s mostly textual in list format. Finally, the user has the option to save the state of
the session parameters using the Save option near the bottom of the screen so that their values can

be re-use in future sessions.

There are many more possibilities for formatting and displaying objects in MOBIE, many of which
cannot be adequately described in this limited amount of space. The interested reader 1s invited to
demonstrate our prototype implementation which can be accessed via the TSIMMIS home page at
URL http://www-db.stanford.edu/tstmmis / tsimmis.html.

3. Implementation

10

We now describe the implementation of our system. Specifically, we focus on the challenges that
we had to overcome and how we solved them given the technology that was available when we
began this project almost two years ago. At that time, we had two options for implementing a
WWW-based system that can provide the interactive capabilities illustrated in Sec. 2: either to
implement our own WWW server with all the MOBIE-added functionality built-in, or use the
existing server technology and design a separately running MOBIE server. Given our limited
resources and experience, we opted for the second approach. Since then, many improvements to
existing technologies (more extensible WWW servers) as well as new mnventions (e.g., Java [Sun
Microsystems 1995] and Java Script) have opened up additional possibilities that would allow us to
redesign the existing system more etficiently and elegantly if we began today. We have summarized

some of our ideas for improving MOBIE in Sec. 4.

3.1 Initial Problems

In general, MOBIE was built to perform the following tasks: (1) buffer and format the results of a
query so that the information can be displayed in a WWW browser, and (2), give the user the
option to decide which part of the result is to be displayed, how much of the chosen information
he wants to see and when. Since the WWW was not intended to support user interactions that
require the preservation of the browser’s state from request to request, there was no notion of
memory in a WWW browser’ other than the ability to return to a certain number of previously
displayed pages that have been cached by the browser. However, most of the browsing
tunctionality in MOBIE depends on mnformation from previous screens (L.e., the current viewing
location in the object hierarchy, etc.). Generating and preserving this state was our first main
problem. The second problem that we taced had to do with displaying dynamically generated pages
(as opposed to static HI'ML files): each screen has to be generated on-the-tly by MOBIE since its
contents are not known until the user takes an action. A brief review of the way the WWW works

will further illustrate the problems.

WWW clients and servers communicate using the so-called Hypertext Transfer Protocol (HTTP)
[Gettys and Nielson |. The basic procedure for communication between a client and a WWW server
is: a client connects to a server and sends a request’® for a resource; the server sends a response back
to the client, supplying both status code as well as the requested resource (it available); the client
disconnects. With respect to our first problem, HT'TP has the following important characteristics:
HTTP is stateless, meaning that in between two subsequent requests, the server does not maintain

information about the resource being requested, the client who 1s requesting the resource, the status

5 One can argue that nowadays, browsers do have a limited amount of memory through the use of “cookies.”

6 A request contains the name of the resource that the client wants to retrieve, the method of retrieval, the name and version of the
communication protocol, as well as other various items describing data types, encoding method, etc.

11

of server’s response etc. HI'TP is also connectionless, allowing each client one request per connection.
Atfter a client recetves the resource, the server disconnects. Subsequent client requests require a new
connection. Given these two characteristics, we therefore need a mechanism that can continuously
monitor a session and save its state from one connection to the next. In a sense, we need a

transaction capable client rather than just a “request-response” oriented intertace.

With respect to the second problem, to support the creation of dynamic documents (created by an
external program) HTTP uses CGI [McCool NCSA Development Team | (Common Gateway
Interface) as a standard that defines the input and output intertaces through which an HT'TP server
and programs interact. The drawback of CGI is that the HI'TP server will not return the output
from a program to the browser, until the program has exited and closed all of its standard file
descriptors (stdin, stdout, and stderr). Otherwise, the server will assume that more data will be arriving
and waits indefinitely. Thus the process in our system that 1s responsible for generating the output
must terminate every time it wants to display a new screen in a client’s browser (which happens

many times during a typical session).

Based on these requirements, namely to save the state of a session and to terminate the process
after the output 1s ready, we arrived at the following (incorrect) approach: transfer all the data that
makes up the state of the current session to a newly started process whenever output needs to be
sent to the user; terminate the parent process and continue the session with the child process.
However, this solution did not work since is not possible to communicate between an HT'TP server
and a running process using CGI. Therefore, we needed to split up our design into two
components: one continuously running process that monitors and saves the state of a session, and a
second process that serves as a “communicator” between the HTTP server and the running
process. This communicator process is started every time a new request is generated by the user. Its
only purpose is to transfer user requests to the running process and relay the results back the HT'TP
server. We are aware of the fact that the overhead of starting a new process 1s quite high compared
to swapping a running process in and out of memory, and we have several alternative solutions that
we offer to the reader in Sec. 4. There was still one additional hurdle to overcome: the
communicator process needs to know on which port to contact the running process. Since the
communicator process is started by the HI'TP server, the address of the running process must be
preserved at the client side in between invocations of the communicator process. Since the client
has no memory, the only way to achieve this 1s to store the port number as a hidden valne on each
generated HTML page. Hidden values can be included in any HTML document using the hidden

value tag. We now describe the complete process structure of MOBIE in more detail.

3.2 MOBIE Process Structure

12

Figure 6 shows the process structure of MOBIE as well as the interactions with our HT'TP server,
called ww mobi e. st anf or d. edu, and with a hypothetical client in form of a WWW browser.
A MOBIE session 13 started by requesting the execution of a CGI executable called
MOBIE_SERVER from our HTTP server. MOBIE_SERVER does not take any input parameters
and simply initializes the state holder variables for the upcoming session. We discuss the state of a
session in more detail in the next section. The output of the MOBIE_SERVER process 1s always
an HTML document. MOBIE_SERVER also initializes the connection to the database server. This
connection information 1s read from a special configuration file. We will not discuss the issues

related to submitting and receiving data from a database server in this paper.

WWW Browser
(Netscape, ...)

A

port 80 | “www-mobie.stanford.edu”

MOBIE splash screen | HTTP |
1 Daemon,

1t interaction

CGlI all subsequent interactions:

UP, DOWN, New Query,
\\ User Default, etc.
MOBIE

MOBIE_CLIENT

Forked Child Procesq MOBIE CLIEN
MOBIE_SERVER T
n o] IPC
. ooy %, MOBIE_CLIEN

Answer Object
etc.

|

to database server

Figure 6: MOBIE process structure

After the mitialization phase, MOBIE_SERVER generates a spectal MOBIE splash screen as its
output and forks into two processes, thereby duplicating the state that has been set up so far. The
parent process then terminates which causes the HT'TP server to display the splash screen in the
browser window. The forked child process continues to run in the background and becomes the
session monitor for the current session. The port number of the forked MOBIE_SERVER process
1s attached to the document that makes up the splash screen. This first interaction is depicted in the
lett side of Figure 6. From this pomnt on, all further interactions with the running
MOBIE_SERVER have to be handled through an additional “communicator” process labeled
MOBIE_CLIENT in our figure. Every request by the user will start up a new MOBIE_CLIENT

13

which acts as a relay between the HI'TP server and MOBIE_SERVER. MOBIE_CLIENT receives
its input as an encoded string which is appended to the URL that is used to make the request.
When the HTTP server receives the request, it copies the encoded string into an environment
variable called QUERY_STRING. When MOBIE_CLIENT starts, it knows to obtain its input
from this variable. Requests are submitted using the GET method which allows the transmission of
up to 255 characters as part of the URL. For a technical overview of HIML forms and CGI scripts
refer to [December and Ginsburg 1995,Grobe |.

The contents of the QUERY_STRING depend on which action the user wants to perform. Several

scenarios are possible and we illustrate two with examples.

1. The user fills out an HTML form (e.g., for changing session parameters as shown in Figure 4).
In this case, the browser collects the entered data together with our own internal command
(change_def aul t s) and appends both to the URL that invokes MOBIE_CLIENT.

2. 'The user clicks on an object label while browsing. In this case, the URL which has been
generated by the previous interaction already contains the internal command (e.g.,
fetch_chil d) as well as the data that 1s needed to retrieve the desired object: the current
location in the object hierarchy as well as a reference to the object that is to be fetched from
MOBIFE_SERVER.

Other MOBIE-specitic commands include moving up and down in the object hierarchy, requesting
help on an object, and terminating a session. In addition, the QUERY_STRING always contains
the port number on which MOBIE_CLIENT can communicate with the running
MOBIE_SERVER.

After reading the input from QUERY_STRING, MOBIE_CLIENT passes the contents to
MOBIE_SERVER by opening an IPC connection using the transmitted port number.
MOBIE_SERVER processes the request and returns the output back to MOBIE_CLIENT. After
MOBIE_CLIENT terminates, the HT'TP server returns the result in the form of an HTML
document to the browser. We now describe what happens inside MOBIE_SERVER.

3.3 MOBIE_SERVER
The MOBIE_SERVER process provides the main functionality of our system: a means for storing

the state of a session as well as the butfering and formatting ot query results.

3.3.1 Session State

In order to provide a context-sensitive WWW interface, our system must be able to keep track of
user activities as well as the contents that are displayed in the browser window. Furthermore, there
must be a notion of a session with a clearly defined start and end, so that we know when to start

monitoring, when to stop, when to flush the object cache, when to clear the saved state, etc. In a

14

sense, having a session is essential for providing the user with the right context for making

navigational requests.

A session starts when MOBIE_SERVER is invoked by the user. In the beginning, the state of a
session consists of the user 1d of the person who has invoked MOBIE, as well as the contents of the
session parameters that are used for formatting the results. The session parameters are initialized
with their default values. The other state variables which hold the database query, the current
pointer into the result set where the user is browsing, and the MOBIE-specific commands are still
empty. In addition, the result of a query is also part of the state since it may change after every
query. After the MOBIE_SERVER forks, the parent process obtains a port number from the
operating system that the child process will use for communication with future
MOBIE_CLIENTS. The port number is the only state value that 1s continuously passed around:
trom MOBIE_SERVER via MOBIE_CLIENT to the result page inside the browser and back to
MOBIE_CLIENT. This is the only way we could achieve connectivity between the short-lived
MOBIE_CLIENTS and the continuously running MOBIE_SERVER.

When the session is in progress, the state of the system constantly changes which 1s reflected in the
values of the state variables. Specifically, the state changes when the user submits a query, changes
tormatting options, navigates through the object hierarchy, or exits. Each of these events needs to
be “trapped” and an alert must be sent to MOBIE_SERVER so that it can update the state. State-
changing events occur when the user (1) traverses a hyperlink in the object structure, e.g., for
“zooming” in on certain subobjects, (2) submits an HTML form, e.g., in order to change session
parameters, or (3), clicks on one of the MOBIE-supplied buttons, e.g., the EXIT button in the
navigation bar or the UP and DOWN buttons in the result area.

However, there 1s an implicit danger in the way we monitor the state of a sesston. Since we are not
disabling the native functionality of the browser, we have no real control over every single activity
that may occur during a session. For example, if a user decides to use the browser’s own Back or
Forward buttons or leaves the session completely by jumping to a new site, the state inside
MOBIE_SERVER becomes inconsistent with the real state on the client side. Furthermore, since
we have no control over the contents of the cache ot the browser, it may be possible for the user

to return to pages that contain query results that are no longer buftered inside MOBIE,_SERVER.

In order to distinguish between requests for valid data (i.e., the objects that are currently buftered
by MOBIE_SERVER) and stale data (objects from the browser’s cache), some of the session state
1s also stored on each result page as hidden values (similar to the port number). By comparing the

state in the hidden values with the actual state in MOBIE’, our system can determine if it can service

7 The actual comparison is based on a checksum value that is the result of OR’ing the values of the state variables with a number
that is unique to the current session.

15

the request or not. In the latter case, an error is generated. Note that using the browser’s native
buttons to move back or forward in a session does not necessarily cause MOBIE_SERVER to raise
an error. If the cached screen refers to objects that are still in the bufter, MOBIE_SERVER will
use the current pointer (which is stored as a hidden value inside the cached HIML document) to
determine the reference location for the request. In the case when the user unexpectedly leaves the
session, bypassing the Exit command, MOBIE_SERVER will continue running until it 1s eventually

terminated by an internal time-out.

A session ends properly when the user clicks on the Exit button in the navigation bar. This will
cause MOBIE_SERVER to clear its butfer and release all the memory that was claimed during the
sesston. After the clean-up 1s performed, MOBIE_SERVER terminates.

3.3.2 Result Formatting and Browsing

The second service provided by MOBIE_SERVER is the buffering and formatting of query results
to support object browsing. As mentioned before, MOBIE_SERVER stores the complete result
tor the current query in memory, giving users instant access to any part of the object hierarchy.
However, we realize that fetching only complete answers may sometimes result in suboptimal
performance, namely when the result is large and/or the connection to the database setver is slow.
For these cases, 1t may make sense to implement some sort of partial fetch scheme that only returns
a certain number of objects (it the result is suspected to be large) or those components of the
answer that are available within a certain amount of time. Missing objects are replaced by stubs that
indicate to the browser that it has to go to the source rather than its memory for retrieving the
answer. We have implemented partial-fetch in the TSIMMIS protocol that is used for communication

between MOBIE and TSIMMIS sources.

Object browsing in MOBIE i3 implemented as follows: MOBIE_SERVER keeps the complete
object structure in its memory. As an initial result, it will return to the client a top-level view of the
root object together with a default number of subobjects. Additional information can be requested
by the user and 1s then fetched from MOBIE_SERVER. In a sense, MOBIE provides the user with a
“window” through which he can see a pre-determined subset of the result. Fach navigational
request contains the location of where the user has positioned his window in the object hierarchy
(te., the current pointer), the size of the window (i.e., the values of the session parameters that
control number of visible objects), as well as the desired navigational action. A navigation action 1s

one of fetch_parent,fetch_chil d, up, and down.

There 1s an implicit ordering associated with each level in the object hierarchy of an OEM object.
This ordering allows the client to request the #™ subobject for a given parent, for example. When
MOBIE_SERVER receives a request involving navigation, it will use the current pointer as well as

the “window size” to determine at which part of the object hierarchy the user is currently looking.

16

Then MOBIE_SERVER executes the action given the current location as a reference. The result 1s
a new location in the object hierarchy which is used as the root for calculating the new contents of
the browser window. This is done by retrieving the values of the session parameters that determine
the “window size”. For example, the f et ch_par ent action, moves the “window” up one level in
the hierarchy. The f et ch_chi | d action, which must always include the number of the child to be
tetched, repositions the “window” using the new child as the current root object. The up action,
repositions the window on the current level and returns the set of subobjects that occur before the
currently displayed set. For example, if currently subobjects 11-20 are visible and the user clicks on
the up button, MOBIE_SERVER repositions the window so that it will display subobjects 1-10
(using the session vartable nunber _of _subobj ects to determine the size of the set). The
down action positions the window in the other direction. It is important to note that this
navigation only works in a system that maintains session state. As a result, a user can browse the
results of his query without ever having to resubmit the query, assuming unlimited memory at the
server side. This 1s a major improvement over most WWW-based interfaces to database servers

which are still operating under the stateless request-response paradigm.

Once MOBIE_SERVER has determined what the new contents of the browser window should
be, it formats the selected objects using standard HIML commands. However, the look-and-feel of
the result depends on the state of the session variables, e.g., list or table layout, length of values and
labels, etc. In order to generate output, MOBIE_SERVER initializes a temporary result bufter for
holding the formatted result, complete with HITML tags and URLs to the rest of the structure. To
anybody who was inspecting the contents of this bufter, it would look like the source file for a static
HTML page. When the formatting 1s complete, MOBIE_SERVER returns the contents of its result
butter to MOBIE_CLIENT. MOBIE_CLIENT immediately passes the contents to stdont which 1s
where the HT'TP server is waiting to receive output. When MOBIE_CLIENT exits, the HI'TP
server knows the result 1s complete and sends the formatted HITML document to the client for

display.

4. Evaluation and Future Improvements

To summarize our work, MOBIE 1s a user-friendly, WWW-based interface to databases that supports
browsing of nested objects. Specifically, MOBIE buffers the result of a database query and gives the
user the ability to explore the entire object hierarchy, which is formatted as an interconnected
“web” of HITML documents, by clicking on the appropriate hyperlinks in a browser. Users can
customize the formatting of their query results by choosing from a menu of formatting options that

control such characteristics as layout of objects on the screen, number of objects that are visible at

17

the same time, level of nesting, etc. By using MOBIE, the user can decide which information is to

displayed, how much of the chosen information he wants to see, and when.

4.1 Related Work

Despite the relatively young age of the World Wide Web (approx. six years) there has already been

extensive research on bringing together the field of database systems with the Web. This work can

be categorized into several areas depending on the intended usage as follows:

Web organization: Text-based indexes for keyword searches such as WAIS [Kahle and Medlar
1991], for example, W3Objects [Ingham et al. 1996], etc. Here, the focus 1s not so much on
dynamically translating and formatting data into HIML documents but rather on using
database technologies for organizing site addresses and their contents and for providing an

efficient directory service that can keep up with the seemingly boundless growth of the Web.

There are numerous projects that attempt to connect a variety of information sources
(including legacy sources, relational and object-oriented database systems, etc.) to the Web in
order to allow wide-spread and easy access to large amounts of quertable, electronic
information (e.g., [Varela et al. 1995], [Dossick and Kaiser 1996], [Hadjietthymiades and
Martakos 1996]). Here the focus is on using the Web as an ubiquitous front-end to databases
and on dynamically formatting and displaying database objects as HTML pages. Specifically,
Card et al. [Card et al. 1996] have developed two new ways of viewing and organizing WWW

data based on information foraging theory from ecological biology.

In addition, some vendors, such as Microsoft, for example, provide proprietary solutions for
dynamically publishing COM/DCOM objects stored in Microsoft Access or Excel on the
Web (see Microsott DBWeb, for example).

An important area of research s that of keeping stateful connections with the information
source. Since HT'TP 1s a stateless and connectionless protocol, there 1s a need for providing

stateful information services [Perrochon and Fisher 1995, Putz 1994].

18

4.2 Contributions

The main contribution of our work is twofold: First and foremost, MOBIE provides a new way of
viewing and exploring the contents of a database, allowing users to customize their views depending
on the contents and structure of the data. Our model 1s particularly well suited for object-based
systems with deeply nested objects allowing users to zoom in and out of a particular substructure as
necessary. Current database front-ends typically attempt to display nested objects in a tlat view,

making it difficult for users to grasp the contents and structure of their result.

Secondly, MOBIE narrows the gap between the database camp and the WWW, which up until now
has ignored database technologies and built an information space that still relies mainly on the file
system for persistent storage. Experts from both camps agree that database technology and the
WWW should go together, but so far, most approaches have stopped short of providing a real
solution. Although there are numerous approaches to connecting databases to the WWW, we are
not aware of any system that provides the same generic solution to formatting and displaying

persistent data as HI'ML documents in the same way MOBIE does.

4.3 Future Work

MOBIE is a fully functional prototype that we are using for browsing OEM objects in the TSIMMIS
project. It has met all of our mnitial expectations in terms of performance and usability. For example,
browsing object structures that contain several hundreds of subobjects with many levels of nesting
1s as easy as looking at a small object with little substructure. However, given the state-of-the-art in
WWW technology, it 1s now possible to enhance MOBIE in the areas of performance, scalability, as
well as usability, something we were unable to do just a short year ago. In the next sections, we
briefly outline some of the upgrades that we are proposing using criteria such as usability,
performance, and scalability to evaluate each proposal. For a comprehensive collections of technical
reports and specifications describing the latest WWW technologies, refer to the W3 Consortium’s
publication’s page [The World Wide Web Consortrum (W3C)].

1. We consider improvements to the usability of our system the most important kind of
enhancement. For example, we are experimenting with additional layouts, such as a tree-
structured layout, for example, that would allow users to view some hierarchical data in a more
natural top-to-bottom way. In addition, we have noticed that users tend to spend a lot of time
trying to customize the formatting of their result sets. This process could be automated by
implementing so-called “wizards” which would generate HITML templates in way that 1s similar
to visual programming: by assembling templates for what a screen should look like using the

available building blocks from a menu, for example.

Items 2-8 focus mostly on improvements to the efticiency of our implementation.

19

Manage user sesstons in one single MOBIE_SERVER process rather than starting a new one
per user. MOBIE_SERVER would probably be multi-threaded containing the state for each
session in an efficient data structure for fast access (e.g., a hashed heap). Controlling multiple
sessions with one MOBIE_SERVER reduces the number of processes that are running which
1s one of the factors that limits the scalability of our current approach. In addition, by managing

multiple users from within one process, the query results can be shared (see option 2 below).

Bufter more than one query result in MOBIE_SERVER. Currently, a user can only navigate
through the result of the most recently asked query. However, saving the results of the last #»
queries and allowing the user to select which query to browse will enhance performance
(reduced number of roundtrips to the source) as well as the usability (less wait time for source
data to arrive in the cache) of our system. The latter 1s espectally true if one combines proposal
1, multiple user sessions per process, with this one. As a result, users could choose from a set of
available answers which makes good sense if there is a set of frequently asked queries for a
group of users. The drawback 1s that this approach will not work well for highly dynamic
sources, 1.e., where the contents change quickly. In those cases, the butfer contents have to be

refreshed too often, erasing the time that was nitially saved.

Add secure connections, for example, for browsing sensitive data. Security can be achieved in
many ways and at many levels. The most apparent security loop hole involves the HT'TP server.
Security can be improved. by using a secure server and certificates, for example. Providing

security in mobie would enhance the usability for a certain group of users.

Remove the MOBIE_CLIENT process. The use of a separate “relay” process for connecting
the HTTP server with an already running process, i1s very inefficient, especially since
MOBIE_CLIENT is invoked many times during a session. New commercial HI'TP servers
trom Microsoft or Netscape, for example, provide libraries that allow for a direct IPC

connection between the server and running processes resulting in higher efficiency.

Add client-side query parsing and input field validation using Java Script. Currently, the client
browser just gathers user input and transmits the unfiltered data back to MOBIE_SERVER for
processing. So, when the user enters an invalid input (e.g.,, a negative number for a session
parameter or a query with syntax errors), the mustake will not be detected until
MOBIE_SERVER processes the mput. Using Java Script, however, some of the intelligence
that currently resides exclusively on the server side could be relocated to the client. In this case,
the client could filter out some of the simple mistakes reducing the number of connections that
have to be made to MOBIE_SERVER.

Re-implement MOBIE as a Java applet. This is the most drastic proposal but also promises the
highest degree of improvements. The new Java-based MOBIE would be downloaded to a WWW

20

client, where it executes in the user’s process space. From this point on, there 1s no further
connection to the HTTP server needed when interacting with MOBIE. MOBIE will connect
directly to the database and download the result into the users’s filesystem where it resides for
the duration of the session. All formatting and browsing occurs locally and no state holder
process is necessary. This 1s the most efficient of all implementations and the options for

enhancing usability are so far only limited by the capabilities of the Java language.

Acknowledgments

We are gratetul to Hector Garcia-Molina, Jennifer Widom, Kai Hwang, Jiang Wu, and entire

T'SIMMIS team for numerous fruitful discussions and comments.

Bibliography

[Berners-Lee and Connolly 1992]T.]. Berners-Lee, and D.W. Connolly. “Hypertext Markup
Language - 2.0." , HIML Working Group of the Internet Engineering Task Force, 1992.

[Card et al. 1996] S.K. Card, G.G. Robertson, and W. York. “The WebBook and the We Forager:
An Information Workspace for the Wold-Wide Web.” In Proceedings of the Conference on Human
Factors in Computing Systems, 1996.

[Chawathe et al. 1994] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J. Widom. “The TSIMMIS Project: Integration of
Heterogeneous Information Sources.” In Proceedings of the Tenth Anniversary Meeting of the Information
Processing Society of Japan, Tokyo, Japan, 7-18, 1994.

[Connolly |D.W. Connolly. “Hypertext Markup Language.” URL
http:/ /www.w3.org/hypertext/ WWW /MarkUp /MarkUp.html.

[December and Ginsburg 1995] J. December, and M. Ginsburg. HTMIL and CGI Unleashed, Sams.net
Publishing Company, 1995.

[DeWitt 1995] D.J. DeWitt. “DBMS—Roadkill on the Information Superhighway?” In Proceedings of
the International Conference on Very Large Databases, Zirich, Switzerland, 1995.

[Dossick and Kaiser 1996] S.E. Dossick, and G.E. Kaiser. “WWW Access to Legacy Client/Server
Applications.” In Proceedings of the Fifth International World-Wide Web Conference, Paris, France, 1996.

[Gettys and Nielson |J. Gettys, and H.F. Nielson. “HTTP—Hypertext Transfer Protocol.” URL,
http:/ /www.w3.org/pub/WWW/Protocols/.

[Grobe |M. Grobe. “An Instantaneous Introduction to CGI Scripts and HITML Forms.” URL,
http:/ /kuhttp.cc.ukans.edu/info/forms/forms-intro.html.

[Hadjietthymiades and Martakos 1996] S.P. Hadjietthymiades, and D.I. Martakos. “A generic
tramework for the deployment of structured databases on the World Wide Web.” In Proceedings of
the Fifth International World-Wide Web Conference, Paris, France, 1996.

[Hammer et al. 1997] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, and A. Crespo. “Extracting
Semustructured Information from the Web.” In Proceedings of the Workshop on Management of
Semistructured Data, Tucson, Arizona, 1997.

g

21

[Hammer et al. 1995] J. Hammer, H. Garcia-Molina, K. Ireland, Y. Papakonstantinou, J. Ullman,
and J. Widom. “Information Translation, Mediation, and Mosaic-Based Browsing in the TSIMMIS
System.” In Proceedings of the ACM SIGMOD International Conference on Management of Data, San Jose,
California, 483, 1995.

[Ingham et al. 1996] D. Ingham, S. Caughey, and M. Little. “Fixing the "Broken-Link" Problem:
The W3Objects Approach.” In Proceedings of the Fifth International World-Wide Web Conference, Paris,
France, 1996.

[Kahle and Medlar 1991] B. Kahle, and A. Medlar. “An Information System for Corporate Users:
Wide Area Intformation Servers.” Connexions—The Interoperability Report, 5(11), 2-9, 1991.

[McCool | R. McCool. “The Common Gateway Intertace.” URL
http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

[NCSA Development Team | NCSA Development Team. “The Common Gateway Intertace.”
URL, http:/hoohoo.ncsa.uiuc.edu/cgi/intercace.html.

[Papakonstantinou et al. 1995] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. “Object
Exchange Across Heterogeneous Information Sources.” In Proceedings of the Eleventh International
Conference on Data Engineering, Taipel, Tarwan, 251-260, 1995.

[Perrochon and Fisher 1995] L. Perrochon, and R. Fisher. “IDLE: Unified W3-Access to
Interactive Information servers.” In Proceedings of the Third International Conference on the World-Wide
Web, Darmstadt, Germany, 1995.

[Putz 1994]S. Putz. “Interactive information services using World-Wide Web hypertext.” In
Proceedings of the First International Conference on the World-Wide Web, CERN, Geneva, Switzerland,
1994.

[Sun Microsystems 1995] Sun Microsystems. “The Java Language.'
Microsystems, 1995.

[The World Wide Web Consortium (W3C) | The World Wide Web Consortium (W3C). “The
World Wide Web Consortum: Technical Reports and Publications.” URL,
http:/ /www/w3/org/pub/WWW/TR/.

[Varela et al. 1995] C. Varela, D. Nekhayev, P. Chandrasekharan, C. Krishnan, V. Govindan, D.
Modgil, S. Siddiqui, O. Nickolayev, D. Lebedenko, and M. Winslett. “DB: Browsing Object-
Oriented Databases over the Web.” In Proceedings of the Fourth International World Wide Web
Conference: ""I'he Web Revolution”, Boston, Massachusetts, 1995.

g

Technical Report, Sun

22

