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Abstract

The evaluation of path expression queries on semi-structured data in a distributed
asynchronous environment is considered. The focus is on the use of local information
expressed in the form of path constraints in the optimization of path expression queries.
In particular, decidability and complexity results on the implication problem for path
constraints are established.

1 Introduction

Navigational queries on data represented in a graph-like manner have proven to be useful in
a variety of database contexts, ranging from hypertext data to object-oriented databases.
Typically, navigational queries are expressed using regular expressions denoting paths in
the graph representing the data. Such path queries have assumed renewed interest in the
context of semi-structured data such as that commonly found in the Web (e.g., [QRS+95,
AQM+96, BDHS96, MMM96, Suc96]). In this paper, we consider the processing of path
queries in a distributed asynchronous environment. We focus on path query evaluation that
takes advantage of local knowledge about the data graph, of the kind that might be available
on the Web. We consider such local knowledge represented as path constraints. The main
contribution of the paper is the study of the implication problem for path constraints, and
its use in optimizing the distributed evaluation of path queries.

We use here an abstraction of the Web as a set of objects linked by labeled edges. An ob-
ject represents a page (and possibly a site), and the labeled edges represent hypertext links.
We focus on path queries [CM90, KKS92, dBV93, CACS94, MW95, AQM+96, BDHS96,
MMM96, Suc96], which have emerged as an important class of browsing-style queries on
the Web. Path queries are of the form �nd all objects reachable by paths whose labels form
a word in r, where r is a regular expression over an alphabet of labels.

We present a basic scenario for evaluating such queries in a distributed context, based
on simple communication between sites. We show that our technique correctly evaluates
the answer, and provide a protocol that also detects termination whenever possible. We
also point to an analogy between our evaluation technique and the magic-set [BMSU86] or
query-subquery [Vie87] evaluation of a Datalog program (see also [AHV95]).
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The distributed processing of path queries can be greatly enhanced by taking advantage
of path constraints. Path constraints are local; they capture structural information about
a Web site (or a collection of sites) or about its physical organization (e.g., cached infor-
mation). A path constraint is an expression of the form p � q or p = q, where p and q are
regular expressions. A path constraint p � q holds at a given site if the answer to query p
applied to that site is included in the answer to q applied to the same site (and similarly
for p = q). The following are some self-explanatory examples of path constraints:

CS-Department DB-group Member Ullman Classes-Taught cs345

= CS-Department Courses cs345

CS-Department * Back-To-CS = CS-Department

CS-Department Faculty Publications � .netscape cache 07.

Taking advantage of such information in query processing turns out to be nontrivial.
This is the focus of our results. The central technical problem that we address is to decide
equivalence (or inclusion) of regular path queries under such constraints. This problem lies
at the con
uence of language theory, rewriting systems, and logic. We are able to prove
that the general implication problem for regular path constraints is decidable in expspace

(with respect to the size of the constraints). This result is rather surprising, since closely
related problems in logic and rewriting systems are known to be undecidable. We obtain
improved decision procedures of complexity ptime and pspace for two important special
cases, and develop along the way several technical tools related to implication. We lastly
apply these techniques to the boundedness problem for regular path expressions. We show
that it is decidable whether a given regular path query is equivalent to a path query without
recursion, assuming that a given set of equalities among words is satis�ed.

Related work Path queries in graphs have been studied formally in [CM90, MW95]. The
language GraphLog, introduced in [CM90], expresses queries using graph patterns, where
paths are speci�ed by regular expressions. GraphLog is shown equivalent to strati�ed
linear Datalog and other languages. The complexity of path queries in graphs is studied in
[MW95]. Speci�cally, the problem of �nding all pairs of nodes connected by a simple path
satisfying a given regular expression is shown to be NP-complete in the size of the graph, and
tractable subcases are identi�ed. Path queries in object-oriented databases are considered
in [dBV93]; they focus on the concise speci�cation of path queries and the inference of
completions of partially speci�ed paths from schema information. Query languages for
semi-structured data, that include path expressions, are considered in [KS95, BDHS96,
MMM96, Suc96]. The language UnQL and its optimization are discussed in [BDHS96];
the optimizations involve loop fusion and a form of pushing selection. [Suc96] provides
an evaluation procedure of UnQL queries in a distributed web-like environment. Using a
decomposition technique, it is shown that UnQL queries can be evaluated by shipping the
query exactly once to every site, returning the local results to the client site, and assembling
the �nal result at the client site. [MMM96] considers the language WebSQL, which also
incorporates path expressions, and provides a theory of query cost based on the notion of
query locality.

To our knowledge, no previous work considers path constraints and their use in path
query optimization.
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The paper is organized as follows. Section 2 provides the background and motivation,
and presents a distributed evaluation algorithm for path queries. The implication problem
for path constraints is studied in Section 3. Most proofs are provided in an Appendix.

2 Path queries

We �rst present a simple abstraction of the Web, and introduce path queries expressed using
regular expressions. We consider a scenario for the distributed evaluation of such queries,
motivated by the Web.

The Web We view the Web as a labeled graph, i.e., as an instance of the relational
schema:

Ref (source: oid, label: label, destination: oid)

where oid and label are (countable) in�nite, disjoint sorts. Intuitively, an object corre-
sponds to a Web page. Labeled edges model labeled links among pages. More precisely,
Ref(o1; l; o2) indicates that there is an edge/link labeled l >from o1 to o2. The graph rep-
resented by Ref is not restricted to be �nite (see discussion below). However, in agreement
with what is found on the Web, each vertex is of �nite outdegree. More precisely, for each
object o there are (at most) �nitely many tuples in I with o in the �rst column. The descrip-
tion of o in I consists of this �nite set of tuples. Thus, the description of an object provides
its outgoing links. On the other hand, there may be in�nitely many objects pointing to
some object o, i.e., o may have an in�nite indegree.

We call a relation I over Ref restricted as above a Web instance (an instance). We say
that object o0 is reachable >from object o if there is a directed path from o to o0 in the
labeled graph given by I . The distance between two objects is also de�ned with respect to
the I graph.

Note that we consider in�nite instances, a departure from database custom. It turns
out that viewing the Web as in�nite may have certain advantages, as discussed at length
in [AV97]. The in�niteness assumption captures the intuition that exhaustive exploration
of the Web is (or will soon become) prohibitively expensive. Such a model leads to a focus
on querying and computation where exploration of the Web is controlled. However, unlike
[AV97], the investigation in the present paper is not tied to the in�niteness assumption. We
consider instead both the �nite and in�nite cases. It turns out that most of our results are
independent of (in)�niteness assumptions.

Regular path queries We next recall the notion of regular path query. In the paper,
we assume familiarity with basic notions of formal language theory, such as regular expres-
sions and regular languages, (nondeterministic) �nite state automata (n)fsa, context-free
languages, and pushdown automata (pda), see [HU79].

Let I be a Web instance. A (regular) path query is a regular expression over some �nite
alphabet � included in label. In keeping with usual notation for regular expressions, \+"
represents union and \*" the Kleene closure. Examples of path queries are:
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section subsection ( paragraph + figure ) caption

engine ( subpart )* name

Path queries on the Web are navigational, and are posed relative to some designated
source vertex. Thus, the semantics of a path query is determined by an input pair (o; I),
where I is a Web instance and o is an object in I . The answer of a path query p on input
(o; I) is the set of all objects o0 reachable from o by some path whose labels spell a word in p.
More precisely, o0 is in p(o; I) if there is a directed path from o to o0 whose edges are labelled
l1; :::; lm for some word l1:::lm in L(p) (where L(p) denotes the regular language de�ned by
the regular expression p). Two path queries p and q are equivalent if p(o; I) = q(o; I) for
every input (o; I). Clearly, this holds if only if L(p) = L(q).

Note that if I is �nite, p(o; I) is �nite and computable (in polynomial time). If I is
in�nite, p(o; I) may be �nite or in�nite, and p(o; I) is no longer computable in the usual
sense. To model this situation, we developed in [AV97] the notion of eventually computable
query. The intuition is as follows. Recall that although I is in�nite, the description of each
object is �nite. We also assume that given the description of an object o, one can e�ectively
obtain the description of any object o0 such that there is a link from o to o0. Thus, one can
follow links from one object to another. A path query p can then be evaluated on input
(o; I) by following links starting from o. In general, the possibly in�nite answer to the query
is never fully computed. However, every object in the answer is eventually produced given
enough time. Thus, we say that p is eventually computable. The formal de�nitions can be
found in [AV97].

Extended path queries Our model provides a bare-bones abstraction of the Web and of
some query languages recently proposed for the Web. It is worth noting that our framework
can be easily adapted to capture some additional aspects not explicitly included in the
model. For example, some languages with path expressions (such as Lorel [AQM+96])
view labels as strings of characters, and use regular expressions that work at two levels of
granularity: the label (viewed as a string of characters) and the path (viewed as a sequence
of labels). For instance, consider the following extended path expression:

"doc" ( "[sS]ections?" "text" + "[pP]aragraph" )

which speci�es a path starting with an edge labeled doc either followed by an edge labeled
section(s) (possibly with a capital S to start) and a text-edge, or followed by an edge labeled
paragraph (possibly with a capital P ).

We used here a syntax based on grep E-regular expressions for string patterns, and
quotes to separate labels (strings of characters) from paths (sequences of labels).

Call such queries extended path queries. We claim that these can essentially be captured
by our framework, modulo some preprocessing of labels. Let q be an extended path query
and let � be the set of string patterns occurring in q. We will reduce the problem of the
evaluation of the extended path query q on an instance I with possibly in�nitely many
labels, to the problem of the evaluation of a regular path query �(q) on an instance �(I)
with �nitely many labels. For this, consider the equivalence relation on strings de�ned by:
v � v0 if v and v0 satisfy precisely the same patterns in �. For each equivalence class [v],
let l[v] be a distinct new label and let � be the set of such labels. Observe that � is �nite.
Now � is de�ned as follows:
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1. for each label/string v, �(v) = l[v] and �(o) = o for each vertex o in I . This de�nes
�(I).

2. for each string pattern s, let �(s) = l[v1]+:::+l[vk] where [vl]; :::; [vk] are the equivalence
classes of words satisfying s (i.e., [vj ] � L(s)). This de�nes �(q).

Now we have:

Fact: For each q; o; I and � as above, q(o; I) = �(q)(o; �(I)):

This allows us to reduce the problem of the evaluation of an extended path query
involving potentially in�nitely many labels to the evaluation of a regular path query on a
�nite alphabet of labels, via preprocessing of labels. In the remainder of the paper, we only
consider regular path queries.

To conclude this section, we brie
y mention another extension. In the Web, pages have
content. In our context, a page with a string w as content can be modeled by a vertex o with
outgoing edge labeled "content=w" pointing to o itself. Now content-based selections can
be speci�ed using the extended path expressions just discussed. For instance, the reachable
vertexes that contain the word \SGML" can be retrieved using the extended path query

( "(.)*" )* "content=(.)*SGML(.)*"

where \(.)*" indicates some arbitrary sequence of characters.

Distributed evaluation of path queries

We next outline a distributed evaluation algorithm for path queries, motivated by the
distributed nature of the Web.

We �rst recall some concepts for regular expressions. For each regular expression p over
some � and each label l in �, the set fw j l w 2 L(p)g is regular. We denote by ljp (the
left-quotient of p by l) a regular expression for that language. Observe that L(p) = L(l q)
if q = ljp and that the set of languages that one can construct from a regular language
by repeatedly taking such quotients is �nite (indeed, an fsa for ljp is obtained simply by
changing the start state of the fsa for p).

As outlined in the introduction, we are motivated by a natural scenario for processing
path queries in a distributed environment with asynchronous communication. In this sce-
nario, objects represent sites. A path query p on input (o; I) is initiated by sending the
query to site o. The processing of a path query involves local processing at each site and
simple communication between sites. To simplify, we consider the processing of a single
query. (If more queries are processed simultaneously, it su�ces to pre�x all messages with
an identi�er for the query.) To start with, we assume communication is by messages of the
following form:

Q (query source, subquery) and A (result).
We assume that every message eventually reaches its destination. The computation of a
query p on input (o; I) is initialized by sending to o the message Q(o; p). Each object keeps
a list of the messages it receives. When object o1 receives a subquery Q(o; q) that it has
not already processed:

� it sends A(o1) to o if " is in L(q).
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� for each label l such that L(ljq) 6= ;, and for each o2 with an l-edge from o1 to o2, o1
sends Q(o; ljq) to o2.

Thus, objects return themselves to the source whenever they �nd out that they are in the
answer to the original query; then they process the �rst letter(s) of the query and ask their
neighbors accesible by links labeled with the appropriate letter to continue the work.

Fact: On input I , for a query q(o; I), object o will receive a (possibly in�nite) sequence
A(!1); A(!2); ::: of messages and q(o; I) = f!ig:

The basic algorithm just described ensures that all objects in the answer to the query
are eventually returned to the source. On the other hand, it does not detect termination.
This can be �xed with a slight modi�cation of the basic algorithm, described in Appendix
A.1.

Remark 2.1 The distributed algorithm outlined above is in the spirit of a Java crawler.
In contrast, existing Web crawlers take, for the time being, a centralized approach. In
particular, the http protocol does not allow carrying information when travelling from site
to site. 2

Path queries and Datalog

We point to an analogy between the evaluation of path queries and Datalog evaluation
techniques. It is clear that a path query can be expressed as a program in Datalog aug-
mented with some built-in relations providing information related to regular expressions.
Two such relations are su�cient: contains-" and quotient. For regular expressions p; q and a
label l, contains-"(p) indicates that " 2 L(p) and quotient(p; l; q) indicates that q = ljp (i.e.,
L(p) = L(l q)). Using these predicates, one can write the following Datalog program P1

(P;Q are variables standing for regular expressions and X;X 0; X 00 are variables representing
objects) that de�nes the answer to p(o; I):

answer(X,P,X) :- contains-"(P)
answer(X,P,X") :- Ref(X,L,X'), quotient(P,L,Q), answer(X',Q,X")
result(X) :- answer (o,p,X)

Here answer(X;Q;X 0) indicates that X 0 2 Q(X; I). Clearly, the result relation de�ned
by the program is p(o; I). However, the �xpoint bottom-up evaluation of this program is
not \practical": it involves vertexes and queries that are completely irrelevant to p(o; I);
furthermore, even if p(o; I) is �nite, the above query may not terminate. A more practical
program is obtained by a rewriting of the �rst in the spirit of Magic Set rewriting [BMSU86]
or Query-Subquery evaluation [Vie87]. This would yield the following Datalog program P2:

interesting(o,p) :-
interesting(X',Q') :- interesting(X,P), Ref(X,L,X'), quotient(P,L,Q)
result(X) :- interesting(X,P), contains-"(P)

The relation result de�ned by this program is again p(o; I). However, its bottom-up evalu-
ation now involves only potentially relevant objects reachable from o by pre�xes of words
in L(p). In fact, its bottom-up evaluation proceeds much like our distributed evaluation

6



algorithm. In particular, it terminates if p(o; I) is �nite. We note that such properties were
studied in detail in [AV97]. In particular, we characterized there Datalog programs which
can be evaluated by following links from a source object. This led to a syntactic restriction
called source safety, which ensures this property. For example, the second program above
is source safe.

Optimization of path queries

The basic distributed processing algorithm can be improved in many ways by taking into
account additional information that might be available. In keeping with the spirit of the
distributed scenario, we assume such information is local to each site. More precisely, we
assume that an object o may have local information of the form p = q or p � q, meaning
that p(o; I) = q(o; I) or p(o; I) � q(o; I). We refer to such properties as path constraints.

Path constraints may re
ect various kinds of information. First, they may re
ect struc-
tural information about neighboring Web pages. For example, consider the two paths:

p1 = CS-Department DB-group Member Ullman Classes-Taught cs345

p2 = CS-Department Courses cs345

It may be the case that starting from some site Stanford, the paths p1 and p2 lead to the
same object. Thus, the path constraint p1 = p2 holds at site Stanford. Similarly, at the
site CS-Department one could have the constraint �� CS-Main-Page = � stating that all
paths starting at site CS-Department whose �nal label is CS-Main-Page lead back to that
site.

Path constraints also naturally arise from caching frequently asked queries. More pre-
cisely, the answer to query q at site o could be saved and accessed from o by links labeled
lq. This would yield the equation q = lq and a rapid way to evaluate q by simply evaluating
lq. Similar constraints arise from the presence of \mirror sites", which are duplications of
frequently accessed sites.

How can path constraints be used? The hope is that they may allow more e�cient
evaluation of path queries. For instance, the query may ask for the page p1 (as above) and
the system may decide to substitute it with the page p2 if this page is available locally and
it is known that it contains the same information.

So, in general, the query processor at each site may use the path constraints holding at
the site to replace the query to be executed by a simpler query. We are not concerned here
with what \simpler" means; this could potentially involve a cost measure using information
not captured by our basic model, such as locality information, cost of accessing di�erent
sites in the network, etc. Regardless of the cost measure, the basic problem laying at the
core of this approach is testing implication of relationships among queries by the given
constraints. Thus, we must be able to answer the following question:

given a �nite set E of path constraints of the form pi = qi or pi � qi and two
path queries p; q, is it true that p(o; I) = q(o; I) or p(o; I) � q(o; I) for each
(o; I) satisfying E?

We examine this problem in detail in the next section. In the remainder of this section we
illustrate how such inferences might be used in query optimization.
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Examples

1. Suppose we know that every path ending in l returns to the source site, i.e. ��l = ".
Suppose query p = (la+ lb)�d must be executed at this site. It can be shown that
p is equivalent to (a + b)d. This query is likely to be simpler than the original; in
particular, it is non-recursive and so is guaranteed to terminate.

2. Suppose the path constraint ll � l holds at the source site. Consider the query
p = l�. It can be shown that l� = l + " so p can be replaced by the query l + ".

3. Suppose the query (ab)� has been cached and labeled l, so that the constraint l = (ab)�

holds. Consider the query p = a(ba)�c. One can show that p = lac. In other words,
p can be evaluated by sending the query ac to the cached objects.

4. Suppose query (aa)� has been cached. Suppose that the queries (aaa)� and a� are
launched at this site. Cached data is not su�cient to answer the two new queries.
However, a� = a+(aa)�+(aaa)�. Thus it su�ces to evaluate (aaa)� and a and then
use the cached data to evaluate a�.

3 Implication of regular path constraints

In this section, we consider the implication problem for path constraints. We �rst formalize
the problem and relate it to well-known problems in rewrite systems and logic. We show
the decidability in the general case with expspace complexity. We then study several nat-
ural special cases. These concern constraints between \words" instead of arbitrary regular
expressions. We are able to obtain decision procedures of complexity ptime for the impli-
cation of word constraints, and of complexity pspace for implication of path constraints
by word constraints. As a side e�ect we develop tools that are of interest in their own
right. For example, we use them to show that, given a �nite set of word equalities, the
boundedness problem for path queries is decidable; that is, it is decidable if a path query
is equivalent to a non-recursive path query given a �nite set of word equalities.

Path constraints

We now formalize the implication problem for path constraints and mention related prob-
lems in logic and rewriting systems. In the following we �x a �nite set of labels � (See
Section 2.)

De�nition 3.1 A (regular) path inclusion is an expression of the form p � q where p; q
are regular expressions over �. An instance (o; I) satis�es a path inclusion p � q, denoted
(o; I) j= [p � q], if p(o; I) � q(o; I); (o; I) satis�es a set E of path inclusions, denoted
(o; I) j= E, if it satis�es each inclusion in E. A �nite set of path inclusions implies a
constraint p � q, denoted E j= [p � q], if for each instance (o; I) such that (o; I) j= E,
(o; I) j= [p � q]:

If p; q are words, i.e., simply sequences of labels, the path inclusion p � q is called a
word inclusion (e.g., a b c � d e). The expressions obtained by replacing � by = are called,
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respectively, path equalities (e.g., a (b + c)� = d e) and word equalities (e.g., a b c = d e).
A path constraint is a path inclusion or a path equality, and similarly for word constraint.
Equality constraints can of course be expressed by inclusions constraints, but equality is an
important and well-behaved special case.

We start by pointing to two problems in rewrite systems and logic that are related to
the implication problem for path constraints.

Rewrite systems Consider �rst word inclusions. Suppose that we know u1 � u2 and
u2u3 � u4. Then it seems natural to infer, for instance, that u1u3u5 � u2u3u5 � u4u5. One
can look at this as rewriting the word u1u3u5 using rewrite rules u1 ! u2 and u2u3 ! u4.
We will present a rewrite system that is sound and complete for word constraints. This will
then be used to obtain a decision procedure for this case. Note that in the general case, one
cannot decide whether a word can rewrite into another word using an arbitrary system of
rewrite rules (a semi-Thue system) [HU79]. Our case di�ers from the general case in that
rewrite rules are applied only to pre�xes of words. See [DJ90] for a comprehensive survey
of rewrite systems.

First-order logic with 2 variables In the particular context of word constraints, the
implication problem can be stated in terms of �rst-order logic. Moreover, only two variables
are needed. Then the decidability of the implication problem for word constraints follows
from known results about �rst-order logic with two variables (FO2). Indeed, satis�ability
of FO2 sentences is decidable [Mor75], and the implication problem for word constraints
can be reduced to satis�ability of an FO2 sentence. However, the complexity of testing FO2

satis�ability is doubly exponential in the formula [Mor75] and exponential in the model size
[GKV]. In contrast, our direct proof provides a ptime test for word constraint implication
(in the size of the words). Furthermore, results about FO2 and its extensions are no longer
of help for implication of full path constraints, where recursion is present in the form of the
Kleene closure. Indeed, for the extensions of FO2 with recursion/�xpoint that have so far
been studied, satis�ability was shown to be undecidable [GOR]. In this light, decidability
of implication for path constraints comes as a welcome surprise.

Path constraint implication

In this section, we study path constraint implication. We �rst prove that implication of
path constraints is decidable (in expspace). The idea of the proof is to show that if an
implication E j= p � q is violated by an instance (�nite or in�nite), then one can �nd
a �nite instance witnessing the violation whose size is bounded by an exponential in the
size of E; p; q (the construction of such an instance is outlined in the Appendix). Observe
that this also demonstrates that for path constraints, �nite and unrestricted implication
coincide.

Theorem 3.2 (1) If [^i2[1::m] pi � qi] 6j= p0 � q0, then there is some instance (!; J), of
size exponential in the total size of fpi; qigi2[0::m], such that (!; J) j= [^i2[1::m] pi � qi] and
(!; J) 6j= p0 � q0. (2) Implication of path constraints is decidable in expspace.
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Although the above result shows the decidability of implication, the test of implication
it provides has some drawbacks. First, its complexity is high. Second, it does not provide
real insight into the interplay of path constraints. Such insight might be better served by
a sound and complete axiomatization of path constraint implication. However, obtaining
such an axiomatization appears to be highly nontrivial. Note that even an axiomatization
of classical regular expression equivalence (in the absence of constraints) is far from obvious
(see the set of axioms provided in [Sal66]).

Word constraints We next consider some particular cases of the implication problem.
We show that for word constraints, implication is decidable in ptime. We are then able to
extend this result to implication of full path constraints by word constraints, with pspace

complexity. Note that deciding the equivalence of regular expressions is by itself pspace-
complete (in absence of constraints) [GJ79], so this is the best one can do. Finally, we
consider the special case of word equality.

Whenever we consider a �nite set E of word inclusions, we will assume that if u � � is
in E, the constraint � � u is also in E. This is convenient because �(o; I) always consists of
the single vertex o, so u � " and " 6� u would imply that u = ;. This would introduce a
new category of emptiness constraints that we wish to avoid.

We will prove the following:

Theorem 3.3 (i) Implication of a word constraint by a set if word constraints can be tested
in ptime. (ii) Implication of a path constraint by a set of word constraints can be tested
in pspace.

The proof of the theorem requires four lemmas and involves a rewrite system of words.

We associate to each inclusion u � v in E a rewrite rule u
E
! v. Let

E
! be the binary

relation on words de�ned as follows: z
E
! t i� there is a �nite sequence of words w1 : : :wn

(for n � 1) such that z = w1; t = wn, and for each i; 1 � i < n, wi = xw and wi+1 = yw

for some x � y in E and some word w 2 ��. It is useful to note that
E
! is the re
exive,

transitive, right-congruent closure of E.
The �rst lemma we prove provides a connection between implication of word constraints

and derivation by the corresponding rewrite system.

Lemma 3.4 Given a �nite set E of word constraints,
E
! is sound and complete for impli-

cation of word constraints. That is, for each E and u; v 2 ��, E j= u � v i� u
E
! v.

The soundness of rewriting is immediate. Completeness is proved by constructing an
instance (o; I) that essentially captures implication u � v for u; v of length bounded by some
�xed k. More precisely, (o; I) satis�es E and for all u; v of length at most k, (o; I) j= u � v

i� u
E
! v. Note that the boundedness restriction cannot be removed. Indeed, there exists a

�nite set of constraints E such that there is no (�nite or in�nite) instance satisfying exactly
the constraints implied by E. To see an example, let E = fa2 � ag. Observe that E implies
in particular: ::: � ai � ai�1::: � a but not ai = ai�1. However, in each �xed instance there
are only �nitely many outgoing edges from the source, so each instance satisfying a2 � a

must also satisfy ai = ai�1 for some i.
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The ptime bound on testing word implication is obtained using the next lemma that
focuses on the set of all words that rewrite to a particular word v. More precisely, consider

the set of words RewriteTo(v) = fu j u 2 ��; u
E
! vg. The lemma shows that RewriteTo(v)

is a regular language. To see this, note �rst that one can easily build a pushdown automaton
(pda) that accepts RewriteTo(v). The pda works as follows. It �rst puts the input word u
on the stack, then starts simulating the rewrite rules by rewriting pre�xes of the stack (using
pda moves). The pda is very particular in that it �rst reads its entire input and places it
on the stack. The crux of the proof consists in showing that such a pda can actually be
simulated by an nfsa (see Appendix).

Lemma 3.5 Let E be a �nite set of word constraints and v a word in ��. The set
RewriteTo(v) = fu j u 2 ��; u

E
! vg is a regular language recognized by an nfsa con-

structible in polynomial time from E and v. In particular, u
E
! v can be decided in ptime.

Lemmas 3.4 and 3.5 together provide the ptime test for implication of word constraints,
and thus prove (i) of Theorem 3.3. To show part (ii) of the theorem, we use two additional
lemmas. The �rst relates implication of path constraints to implication of word constraints:

Lemma 3.6 Let E be a �nite set of word constraints and p; q regular expressions. If
E j= p � q then for each u 2 L(p) there exists v 2 L(q) such that E j= u � v.

It is worth noting that generally an instance (o; I) may satisfy p � q without it being the
case that each word u in L(p) is included in some word v in L(q) (e.g., consider a � b + c,
or a � b�). The above lemma shows however that this must happen if p � q is implied by
a �nite set of word constraints.

The pspace bound is obtained using an extension of Lemma 3.5:

Lemma 3.7 Let E be a �nite set of word constraints and p a regular expression over �.

The set RewriteTo(p) = fu j u 2 ��; 9v 2 L(p)(u
E
! v)g is a regular language recognized

by an nfsa constructible in polynomial time from E and v.

By Lemmas 3.6 and 3.7, E j= p � q i� L(p) � RewriteTo(q). This provides the pspace
test of implication and proves part (ii) of Theorem 3.3.

Word equalities What is di�erent about equality? Obviously, decidability of the im-
plication problem for path inclusions yields a decision procedure for implication of path
equalities. More precisely, this yields a ptime test for implication of word equalities, a
pspace test for the implication of path equalities by word equalities, and an expspace test
for implication of path equalities. However, it turns out that equality has some remarkably
nice properties. These are due to the following technical facts:

1. for each �nite set E of word equalities there exists a \true" Armstrong instance for
E, i.e. an in�nite instance that satis�es precisely the path equalities implied by E;
and,

2. the interesting information contained in the Armstrong instance for E occurs at
bounded distance from the source, which allows to compute a �nite \summary" of the
Armstrong instance.

11



The existence of the Armstrong instance is shown next.

Proposition 3.8 Let E be a �nite set of word equalities. There exists an instance (o; I)
(that we call the Armstrong instance of E) such that for each u; v, u(o; I) = v(o; I) i�
E j= u = v.

Proof: The instance (o; I) is built as follows. Let � be the smallest equivalence relation
over �� that contains E and is a right-congruence. The set of vertexes in I consists of the
equivalence classes of �, and o = o

b�. For each u; a, there is an a-edge from bu to cua.
First observe that this is indeed an instance, i.e., it has �nitely many outgoing edges

from every vertex: if bu = bv, then cua = cva (right congruence), so there is a single outgoing
a-edge from every vertex. Also note that u(o; I) = bu. Therefore u(o; I) = v(o; I) i� bu = bv

i� u
E
$ v. By Lemma 3.4 u

E
$ v i� E j= u = v. Thus, u(o; I) = v(o; I) i� E j= u = v. 2

The Armstrong instance for E is generally in�nite. However, we show that all interesting
information is contained at some bounded distance from the source. Given an instance (o; I),
let the K-sphere (around o) consist of the restriction of I to vertexes at distance at most K
from o. Using this, the structure of the Armstrong instance is very particular and can be
captured as follows (see Figure 1):

Lemma 3.9 Let E be a �nite set of word equalities and (o; I) the Armstrong instance for
E. There exists an integer K such that each vertex outside the K-sphere has indegree 1,
and there is no edge with tail outside and head inside the K-sphere.

The signi�cance of the above property is that all word equalities implied by E follow by
right-congruence from equalities of words leading to vertexes inside the K-sphere. Thus, all
\interesting" information can be found within the K-sphere around o.

This provides a valuable tool for reasoning about implication of path equalities by word
equalities, and dramatically simpli�es a number of problems. Due to space limitations, this
cannot be explored in detail here. We show however how the Armstrong relation can be
used to solve the question of boundedness of a path query under given word equalities. We
prove that it is decidable whether a path query is equivalent to a query without recursion
assuming a given set of word equalities. Furthermore, an equivalent �nite query can be
e�ectively constructed if such a query exists. As illustrated in Section 2, this a problem of
signi�cant practical interest.

Theorem 3.10 It is decidable, given a �nite set E of word equalities and a regular path
expression p, whether E j= [p = q] for some regular path query q where L(q) is �nite.
Furthermore, such q can be constructed in exptime from E and p.

Proof: (sketch) Consider the Armstrong relation (o; I) associated with E, and the
K-sphere constructed in Lemma 3.9. Recall that all vertexes outside the K-sphere have
indegree one and no path that leaves the K-sphere ever returns. This means that all paths
leaving the K-sphere which are distinct outside the K-sphere lead to distinct vertexes. So
p is bounded i� the set of words in p that yield distinct paths outside the K-sphere is �nite.
This can be tested by associating an fsa F with (o; I) as follows. Its states are all the
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vertexes in the K-sphere plus one new state out. Its transitions are all the labeled edges
within the K-sphere plus, for each o0, one a-edge (o0; out) if there is an a-edge going from o0

to some vertex outside the K-sphere. Finally, for each a, there is an a-edge from out to out.
The start state of F is o and the accepting state is out. It is easily seen that p is bounded
i� L(p)\ L(F )j�� is a �nite language. This is decidable, and yields an exptime algorithm
to �nd an equivalent �nite path query if p is bounded. 2

It remains open whether boundedness of a path query assuming a set of full path con-
straints is decidable.
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Appendix

A.1 Protocol for termination detection

We describe an extension of the basic distributed algorithm for evaluation of path queries
which detects termination whenever possible. We assume that all messages have distinct
identi�ers and we require that messages be acknowledged. When an object o1 receives a
message hmessageX ; Q(o; p)i from some object o0, if it has already received that same query,
o1 simply acknowledge the message to o0 and does nothing else. Otherwise, it generates a
number of messages and when they have all been acknowledged, it sends an acknowledge-
ment for messageX to o0. Note that the source query o should also send acknowledgements
for each A message it receives. The processing of p(o; I) now works as follows: one sends
Q(o; p) to o and when o acknowledges (if it does), terminatation is detected. A possible run
of this algorithm with a graph I consisting of 4 vertices o1; o2; o3; o4 with an a-edge from o1
to o2, and b-edges from o2 to o3, and from o3 to o2 and o4; and with the query ab�(o1; I) is
as follows:

#01(! o1) Q(o1,ab�)
#11(o1 ! o2) Q(o2,b�)

#21(o2 ! o1) A(o2) ack#21
#22(o2 ! o3) Q(o3,b�)

#31(o3 ! o1) A(o3) ack#31
#32(o3 ! o2) Q(o2,b�) ack#32
#33(o3 ! o4) Q(o4,b

�)
#41(o4 ! o1) A(o4) ack#41
ack#33

ack#22
ack#11

ack#01/termination detected

Fact: The previous algorithm terminates i� the instance is �nite or if the set of o0 such that
for some pre�x u of some word in p there is a path from o to o0 is �nite. Furthermore the
message termination-detected occurs exactly when the algorithm terminates, after having
computed the proper answer.

A.2 Proof sketches

Proof of Theorem 3.2 Let (o; I) be an instance (possibly in�nite) such that (o; I) j=
[^i2[1::m] pi � qi] and (o; I) 6j= p0 � q0.

Consider the nfsa's for the pi; qi, i 2 [0::m], and the nfsa F that is the product of these
nfsa's. Let f be the start state of F and �F be its transition function. For each set S of
states in F , let oS be a distinct new vertex. For each vertex o0 in I , let states(o0) = fs j
there is a path u from o to o0 such that s 2 �F (f; u)g. Consider the graph homomorphism
� that replaces each vertex o0 by oS where S = states(o'). Let �(o) = ! and �(I) = J .

We prove that for each p = pi or qi, 0 � i � m, and each o0, (y) o0 2 p(o; I) i�
�(o0) 2 p(!; J). For suppose that this holds. Then for i � 1, pi(!; J) = �(pi(o; I)) �
�(qi(o; I)) = qi(!; J); and for o0 in p0(o; I)� q0(o; I), �(o0) in p0(!; J)� q0(!; J), so (1) is
proved.
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Consider (y). Clearly, it is su�cient to show that for each vertex o0 in I , states(o0) =
states(�(o0)). The inclusion states(o0) � states(�(o0)) follows immediately by the de�nition
of homomorphism. Consider the inclusion states(�(o0)) � states(o0). Let s 2 states(�(o0)).
There exists a path u from ! to �(o0) such that s 2 �F (f; u). We prove by induction on
juj that s 2 states(o0). If u = " then s = f and o0 = o. Since f 2 states(o) it follows that
s 2 states(o0). Now suppose u = v a with a 2 �, and the statement holds for words shorter
than u. Let f 0 be a state in �(f; v) such that s 2 �(f 0; a)). There exist vertexes o1; o2 in
I such that there is an a-link from o1 to o2, �(o2) = �(o0), and �(o1) 2 v(!; J). By the
induction hypothesis, states(�(o1)) � states(o1) so there exists v0 such that f 0 2 �F (f; v

0)
and o1 2 v0(o; I). Consider the path v0a in I ; we have that s 2 �F (f; v0a) and v0a is a path
from o to o2. Thus, s 2 states(o2) = states(o0). This proves (y).

To summarize, we constructed a �nite instance (!; J) satisfying ^i2[1::m] pi � qi] and
violating p0 � q0. Furthermore, the size of (!; J) is bounded by an exponential in jEj +
jp0j+ jq0j. Thus, one can test implication by considering all instances up to this size, which
takes expspace. 2

Proof of Lemma 3.4 It is quite obvious that if u
E
! v then E j= u � v (soundness of

rewriting). To prove the converse (completeness), we show that

(y) for each k, there is a �nite instance (o; I) that satis�es E and such that for each u; v

shorter than k, if (o; I) j= u � v then u
E
! v.

For suppose (y) holds and E j= u � v. Let k be larger than u; v and (o; I) the instance

provided for by (y). Since E j= u � v and (o; I) j= E, (o; I) j= u � v. By (y), u
E
! v.

To prove (y), let � be the equivalence relation on �� de�ned by u � v i� u
E
! v and

v
E
! u. Let bu denote the equivalence class of a word u with respect to �. Let � be the

partial order on the equivalence classes of � de�ned by bu � bv i� u
E
! v (note that this is

well de�ned).
Let C = fbu j juj � kg. We build an instance (o; I) by \populating" each class bu of C

with a �nite set of vertexes obj(bu) such that u(o; I) = obj(bu), as follows. For each � 2 C,
let o� be a distinguished vertex. Let obj(�) = fo j  2 C;  � �g, for each � 2 C. The
instance (o; I) is de�ned as follows: (i) the vertexes are fo� j � 2 Cg; (ii) o is o

b�; and (iii) for
each u, juj < k and a in �, there is an a-edge from o

bu to each o0 in obj(cua). It is su�cient
to show that

(+) for each u 2 ��, juj � k, u(o; I) = obj(bu).

For suppose that (+) holds. Then (o; I) j= u � v implies u(o; I) � v(o; I) implies obj(bu) �

obj(bv) implies u � v implies u
E
! v.

We prove (+) by induction. First observe that b� is a least element for � since for each
u � �, we also have � � u. So obj(b�) = fog and �(o; I) = obj(b�) = fog. Now suppose (by
induction on the size of u) that u(o; I) = obj(bu) for juj < k and let a be in �. Then ua(o; I)
contains obj(cua) by construction of (o; I). Now, let o0 be in ua(o; I). Then there exists
v � u (so that o

bv is in obj(bu)) and an a-edge from o
bv to o

0. By (iii), o0 is in obj(cva). But
since v � u, va � ua, so obj(cva) � obj(cua). Thus, o0 is in obj(cua), and ua(o; I) = obj(cua).
This proves (+). 2
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Proof of Lemma 3.5 It is convenient to consider the language that consists of the reverse
of the words in RewriteTo(v): Lv = fuR j u 2 RewriteTo(v)g. We show that Lv is context-
free, so RewriteTo(v) is context-free. Indeed, a pushdown automaton (pda) accepting Lv
works as follows. First, it places the input uR on the stack, thus reversing it. Once u is on
the stack, the pda nondeterministically performs a sequence of pre�x substitutions using
the rewrite rules of E. Lastly, the pda guesses that v has been constructed and pops the
stack to check this. The computation accepts if v is found on the stack.

To see that Lv is actually regular, so RewriteTo(v) is regular, consider the computation
of the pda once u is on the stack. Suppose that at this time the pda is in some state q0.
The pda then adds and removes symbols from the stack until the stack is empty, at which
time the pda accepts or rejects. Thus, each symbol x in u eventually becomes the top of the
stack and is popped. So, consider the triples move(q; x; q0) meaning that the pda, starting
in state q with x on the stack, can reach state q0 after popping x. We can compute the
relation move and then simulate the pda with u on the stack by an nfsa that reads u and
has move for transition function.

We still have to show that this can be done in ptime. The construction of the pda
is clearly in ptime. Now, for each states q; q0, symbol x on the stack, we have to decide
whether the pda A in state q, with x on the stack may (eventually) reach state q0 after
popping x. To check that, we transform the pda A into another pda A(q; q0; x) that has a
s as start state and f as �nal state (both s; f new). Automaton A(q; q0; x) never reads any
letter; it �rst puts x on its stack and goes to state q; it then simulates A; �nally, it moves
to f when it has an empty stack and is in state q0. Observe that move(q; x; q0) holds if � is
accepted by A(q; q0; x), which can be checked in ptime. So, the nfsa can be constructed in
ptime. Finally, one can checked whether u is accepted by the nfsa in ptime. 2

Proof of Lemma 3.6 Suppose E j= p � q. Consider a word u 2 L(p). Evidently,
E j= u � q. We must show that there is some v 2 L(q) such that E j= u � v. Let k be
an integer larger than the lengths of u and of any word in E. Consider the instance (o; I)
constructed for E and k in the proof of Lemma 3.4, and recall the notation developed there.
Since (o; I) satis�es E, it must also satisfy u � q. Note that u(o; I) 6= ; and w(o; I) = ; for
each w such that bw 62 C. It follows that

(?) u(o; I) � [fw(o; I) j w 2 L(q); ŵ 2 Cg:

Recall that by construction there is a distinguished vertex oû in u(o; I) such that for all
words w with ŵ 2 C, oû 2 w(o; I) i� u(o; I) � w(o; I). This together with (?) imply that
there must exist v 2 q such that v̂ 2 C and oû 2 v(o; I), so u(o; I) � v(o; I). It follows that

u � v, so u
E
! v and E j= u � v. 2

Proof of Lemma 3.7 To show that RewriteTo(p) is regular, we use the same technique
as in Lemma 3.5. We place uR on the stack, nondeterministically perform rewritings using
E, guess that a word v in L(p) has been constructed and �nally check whether v is in L(p).
This shows that RewriteTo(p) is a regular language and that an nfsa recognizing it can be
constructed in ptime.

By Lemma 3.6, to verify that E j= p � q it su�ces then to check that L(p) �
RewriteTo(q). We can construct an nfsa Fp for L(p) and Fq for RewriteTo(q) in ptime with
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K sphere

M sphere

Figure 1: The Armstrong instance

respect to p and q. Next, we can construct in ptime an nfsa Fp+q for L(p) [ RewriteTo(q). It
now su�ces to check whether L(Fq) = L(Fp+q). This can be achieved in pspace. (Note that
fsa inequivalence is pspace-complete by reduction from regular expression non universality
[GJ79].) 2

Proof of Lemma 3.9 We proceed in two stages. We build a �rst sphere and then extend
it to the desired one (see Figure 1). Let M be the maximum length of of word in E. We
prove that:

(*) each vertex outside the M -sphere has indegree 1.

Suppose bu is outside the M -sphere and has an incoming a1-edge from cv1 and another
incoming a2-edge from cv2. We can assume w.l.o.g. that v1 and v2 are the shortest words
in their equivalence class. Observe that jv1j � M and jv2j � M ; otherwise bu would be in

the M -sphere. Since dv1a1 = dv2a2 = bu, v1a1
E
! v2a2. Consider the derivation of v2a2 from

v1a1. Observe that v1a1 is not allowed to shrink in the course of the derivation, since then
bu would be in the M -sphere. Since jv1j is larger or equal than the maximal length of a
word occurring in E, the rewriting of v1a1 never replaces the last letter. Thus, a1 = a2 and

v1
E
! v2, so cv1 = cv2.
From (*), one can see that each vertex out of the M -sphere has indegree 1. The lemma

is not complete since a path may return to the M -sphere after having left it. However,
we show that such paths have bounded length. Then we can �nd a yet larger sphere that
satis�es the lemma.

Consider a path leaving the M -sphere and returning back to it. Let bu be the last vertex
on the path which is in the M -sphere before the path leaves the M -sphere, and bv be the
�rst vertex on the path which is next inside the M -sphere. (so juj =M; jvj �M). Suppose
the path from bu to bv spells the word w. Thus, no vertex along w is in the M -sphere except
the last one which is bv. We know that the regular language RewriteTo(v) is accepted by
an nfsa F that can be constructed from E and v in ptime. The number N of states in F
is polynomial in E and v, i.e. it is polynomial in M . Let us �x K =M +N .

We will prove that jwj � N , so that any point on the path is within the K-sphere. As-
sume towards a contradiction that jwj > N . Observe that cuw = bv, so uw 2 RewriteTo(v).
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Consider the run of F on input uw. The automaton accepts uw and since jwj is larger
than the number of states of F , F goes twice through the same state, say after reading
ux and uxy where w = xyz and y 6= ". We use a pumping argument. The word uxyyz is

also accepted by F so uxyz
E
$ uxyyz. Consider the derivation of uxyyz from uxyz. Recall

that juj = M and u is the shortest word in bu. Thus u cannot shrink in the derivation and

u
E
$ uv0 for some v0 such that uv0xyz = uxyyz. It follows that v0 is a pre�x of xy and so

uv0 leads to a vertex along the path w. But duv0 = bu so that vertex is in the M -sphere,
which contradicts our assumption that all vertexes along w are outside theM -sphere. Thus
jwj � N , which concludes the proof. 2
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