Optimizing Queries across Diverse Data Sources

Laura M. Haas Donald Kossmann Edward L. Wimmers Jun Yarig
IBM Almaden Research Center
San Jose, CA 95120

Abstract similar capabilities. The price of this simplification is that

. . - iali a manipulation capabilities of
Businesses today need to interrelate data stored in diverse systeansy specialized search or dat P P

o o) . : the underlying systems cannot be exploited when they are
with differing capabilities, ideally via a single high-level query . g
. . - accessed through the middleware. Thus this first genera-
interface. We present the design of a query optimizer for Gar=

lic [C T95], a middleware system designed to integrate data from gon of middleware is not extensible to the arbitrary systems

broad range of data sources with very different query ca| abilitiesWhiCh may exist in a given business.
9 y query cap " Several projects are addressing the problem of mid-

Garlic’s optimizer extends the rule-based approach of [Loh88] todleware for increasingly diverse systems [Day83.98
work in a heterogeneous environment, by defining generic rulest;leIW95 TRV96 ngg96] Many)/l of the dat):el S,our’ces

the middleware and using wrapper-provided rules to encapsulat[ese svstems intearate have limited or specialized quer
the capabilities of each data source. This approach offers grea y 9 P query

. . i ilities. ries in this environment var
advantages in terms of plan quality, extensibility to new sourcegroce‘e’Slng capabilities. Queries in this environment vary

. : . .Y\’ndely in performance depending on how and where their
incremental implementation of rules for new sources, and the abil- .

. g . perations are executed. One key challenge for these sys-
ity to express the capabilities of a diverse set of sources. We det ~ ™. .

tems is thus to develop a general-purpgaery optimizer

scribe the design and implementation of this optimizer, and illus-", . . . -
. . which can use information about the capabilities of a new
trate its actions through an example. o
data source to produce correct plans that efficiently answer
gueries ranging over data in multiple sources, with differing
guery capabilities. This paper takes up that challenge.
Businesses today rely on data stored in diverse systems within this paper we present the design of a cost-based op-
differing capabilities. Some data are in traditional databas#@mizer for heterogeneous middleware systems. We have
systems with a powerful query language and efficient inmplemented our approach in Garlicf@5], a middleware
dices for parametric data. Others are in spreadsheets aydtem designed to integrate data from a broad range of
file systems with limited query capabilities, or in legacy apeata sources, with very different query capabilities. Our
plication systems which provide specialized ways to accesgproach extends Lohman’s [Loh88] grammar-like rules to
and manipulate data. The emergence of protocols suchwerk in a heterogeneous environment. Data sources are
CORBA, OLE DB and Java/JDBC makes it easier to accegsonnected to the middleware engine vimappers The
this range of sources, while database middleware systemystimizer is given a set of rules that capture the engine’s
or mediators [Wie93] offer the possibility of interrelating query execution strategies. Among these are several generic
their data via a single high-level query interface. The firstules, which produce source-specific plans using matching
generation of commercial middleware systems has gainegtapper-provided rules that encapsulate the capabilities of
rapid acceptance in the marketplace. However, these praglparticular data source. A normal dynamic-programming
ucts typically connect only a limited set of data sources, preenumerator fires rules to generate all possible alternative ex-
dominantly relational, and generally model all data sourcescution plans for a query.
as relational systems. This simplifies the middleware con- We have pursued and implemented our approach be-
siderably, as it can assume that all the data sources ha#use it has several crucial advantages. First, since our op-
*Current address: University of Passau, 94030 Passau, Germany timizer is ,an extension of ,a Sta’?d‘?rd optimizer we get all
tCurrent address: Stanford University, Stanford, CA 94305 the benefits _Of advanc_es In optimizer technology, as well
Permission to copy without fee all or part of this material is granted pro—a-S the benefits of considering the entire search space, lead-
vided that the copies are not made or distributed for direct commerciaing to high quality, efficient plans. We believe ours is the
advantage, the VLDB copyright notice and the title of the pub_lication anfirst solution based on traditional dynamic-programming
its date appear, and notice is given that copying is b_y permission of .thf:echniques. Second, the system is extensible. Regardless
Very Large Data Base Endowment. To copy otherwise, or to republish, . . e
requires a fee and/or special permission from the Endowment. of their data model and query processing capabilities, new
Proceedings of the 23rd VLDB Conference wrappers can be integrated without affecting other wrappers
Athens, Greece, 1997 or the middleware. Third, wrappers can evolve gracefully.

1 Introduction

vided,i.e., at least one access rule. We will discuss wrapper
rules in Section 4.

A system catalog records the global schema. When a
new data source is added to a Garlic system, it is associ-
ated with a wrapper. This association, as well as the data
source’s local schema and any available statistics for its
data, is recorded in the catalog as part of the registration
process for a data source. The catalog also contains infor-
Figure 1: Garlic System Architecture mation such as view definitions and information about the
. L : ' system configuration needed as input to the cost model dur-
At any time, it is possible to refine or add wrapper rules to

. !) &ng guery optimization.
improve the performance of queries over the wrapper’s data At the heart of Garlic are its query services, which play

sources. Finally, this approach is extremely flexible, makfhe same role as a mediator in the architecture of other

ing it possible to integrate wrappers of strange data sourcg%temS [Wie93]. Garlic’s query services have two ma-

with unusual query processing capabilities. . ; .
or components: a query language processor, and a dis-

The remainder of this paper is structured as follows: Seé'ibuted Lerv execution engine. The query lanauade oro-
tion 2 describes the Garlic architecture. Section 3 presents query gine. query language p

the Garlic query optimizer and its built-in rules. Section %cessor takes a query as input and obtains an execution plan

shows how easy it is to model the query behr;lviorofdiversgr the query through parsing, semantic checking, query

sources. Section 5 shows by example how the Garlic Orewnte, and query optimization (as in Starburst'§®)).

L : S Rhe job of the optimizer is to construct and select an “opti-
timizer uses Garlic and wrapper rules to optimize a query

across very different sources. Section 6 discusses rela egln plan for a given query, based on a cost model. Tradi-
y anm) Elonal query optimizers build plans based on detailed, built-
work, and Section 7 concludes the paper.

in knowledge of the full set of execution strategies available
. and their costs. This is true even in distributed systems;
2 The Garlic System the optimizer must know the capabilities and costs for each
Figure 1 shows the architecture of Garlicl{@5]. The ar- remote data source to decide which operations to execute
chitecture is typical of many heterogeneous database sy-a source and which at the query site [FIK96]. Garlic,
tems, e.g., [Day83, PGMW95, TRV96]. At the bottomhowever, must be able to find good plans without built-in
are data sources, which store, access and manipulate d&owledge of data sources’ capabilities and costs; how it
Above every data source is a wrapper. A wrapper hides ttf&gcomplishes this is the subject of this paper.
details of the data source’s interface and enables access tdonce the plan has been determined by the optimizer, its
the data source using Garlic’s internal protocols. The wragxecution is coordinated by Garlic’s query execution en-
per describes the data stored in the source using Garlig#e, which passes subqueries to the wrappers and assem-
data model, an object-oriented model based on the ODM@es the final query result. Garlic’s execution engine is a
standard [Cat96, €95]. Data in the source are viewed aspowerful system able to perform joins, apply predicates, in-
objects, and Garlic refers to these objects using an OID oke methods, sort, aggregate, and so on. This allows Gar-
manufactures based on the source, the object’s type, anticato compensate for functionality not present in the data
uniquekey determined by the wrapper. This OID allowssources or not reflected by their wrappers, and to execute
Garlic to apply methods on objects; from the OID, Garlidgtself those operations it can do more efficiently.
can determine the appropriate wrapper, and the wrapper can
locate the necessary data and apply the method. Wrappgrs
provide methods to get the value of each attribute of an ob-
ject, and to encapsulate any specialized search capabilities optimize a query, Garlic uses a setS¥rategy Alterna-
of the source. (These methods are typically implemented &ise Rules or STARYLoh88], which construct plans that
commands in the native language or programming interfacan be handled by Garlic’s query engine. Garlic’s enumera-
of the underlying source.) The wrapper also defines objetir fires appropriate STARs, following a dynamic program-
collectionswhich are the targets of queries in Garlic. ming model, to build plans for the query bottom-up. Garlic
The wrapper further provides a description of its quergliffers from [Loh88] in that some of Garlic's STARs are
processing capabilities in the form of a set of rules (ergeneric These STARs are fired during enumeration when
capsulated aglanning methodfRS97]). Different sources a piece of work is found that can or must be done by a
may vary greatly in their query processing capabilities, andrapper. Generic STARs consult the appropriate wrapper
thus will provide different rules. A wrapper does not have tao build their piece of the plan. From the resulting set of
reflect the full query functionality of its data sources. How-complete plans for the query, the optimizer selects the win-
ever, in order for the data in that data source to be accessiloimg plan based on cost. This plan will then be translated
through queries, some minimum functionality must be pranto an executable (or interpretable) format.

Garlic Query Services Catalog

7

Data
Source

1

Data
Source

Query Optimization in Garlic

| Property | Description | Project

Tables | set of tables that have been accessed and joined | 1ables: {Inbox m, Classesjc
Columns | set of columns of the output of the plan Columns:{m.Body})

Preds | setof predicates that have been applied in the plan | Preds: {c.Prof="Aho’, m.Subject=c.Courge
where the output is produced; i.e., tide Source: {Garlic}

SOUIC® | ¢ 4 data source or Garlic's execution engine ,(\)Aac:: _ fl?lllie
Mat TRUE if the output of the plan is materialized; raer.
FALSE otherwise ‘
Order a sort expr. if the tuples of the output are ordered Join

NIL otherwise
Cost estimated cost of the plan
Card estimated number of tuples of the output of the plan

Tables: {Inbox m, Classesjc
Columns:{m.OID,m.Subject,m.Body,c.OID,c.Couise
Preds: {c.Prof="Aho’, m.Subject=c.Cour$e
Source: {Garlic}

Mat: false

3.1 Plansin Garlic Order: NIL

Figure 2: Garlic Plan Properties

Plans in Garlic are trees of operatorsP@Ps(Plan OPera- ‘

tors). Each POP works on one or more inputs, and producdsetch(m {Subject, Bod})

some output (usually a stream of tuples). The inputto a POPraples: {Inbox m}

may include one or more streams of tuples. In a plan, thesgcolumns:{m.OID,m.Subject,m.Body
are produced by other POPs. Garlic's POPs include opefPreds: {}

ators for join, sort, filter (to apply predicates), fetch (to re-| Source: {Garlic}

trieve data from a data source), temp (to make a temporafMat: false

collection) and scan (to retrieve locally stored data). GartOrder: NIL

lic also provides a generic POP, callBdshDown which ‘

encapsulates work to be done at a data source. PushDown(Mail) PushDown(DB2)

Plans are characterized by a set of gleoperties 'Prop- [Tables: {Inbox m} Tables: {Classes b
erties are a common way to track the work that is done in Columns:{m.OID} Columns:{c.0ID,c.Coursk
a plan [GD87, Loh88, M96]. Itis particularly important | peqs: 0 Preds: {c.Prof’:'Aho’}
to characterize plans with a fixed set of properties in Gart goyrce: {Mail} Source: {DB2}
lic, because Garlic plans are (in part) composed of generiguat: false Mat: false
PushDownPOPs. The actual work being done by these/Order: NIL Order: NIL
POPs depends on the wrapper where the work takes place
and the query, and is not understood by Garlic or any other Figure 3: One Possible Query Plan for:

wrapper in the system. However, the properties provide suf- SELECT m.Body FROM Inbox m,Classes ¢
ficient information about what is done to allow Garlic to WHERE m.Subject=c.Course AND c.Prof="Aho’

properly incorporate thBushDowrPOP in a plan. SubjectandBodyfor each OID returned by the firstush-

We characterize plans and their output by the eight promownPOP, compensating for the inability of Mail to return
erties described in Table 2. The properties of one POP agigese values directly Hence,FetchHs properties include
typically a function of the properties of its input POP(s), ifthese two additional columns. Note that it HBsurce=
any. Properties are computed as the POPs are created, G¥rlic’, reflecting the fact that it will be executed by Gar-
STARs. The properties assigned to a plan are the propéie. The Join POP’s properties reflect the two tables of its
ties of the topmost POP of the plan. Most of these propeinput streams, the union of the columns from those streams,
ties are equivalent to those used by optimizers of traditionahd the predicate applied by its (second) input, as well as
database systems. An exception is$mirceproperty. Itis the join predicate. The fin&roject POP ensures that only
used to record where the output stream comes from (Garlige Bodycolumn is returned as specified in the query.
or a particular data source); ti®urceproperty is compa- Once the optimizer chooses a winning plan for the query,
rable to theSiteproperty used by R[Loh88]. the plan is translated into an executable form. Garlic POPs

For example, Figure 3 shows one possible plan for exre translated into operators that can be directly executed by
ecuting the query “select m.Body from Inbox m, Classes the Garlic execution engine. Typically each Garlic POP is
where m.Subject = c.Course and c.Prof = 'Aho’”, assumtranslated into a single executable operatorPéshDown
ing Inboxis defined by a simple mail wrapper that only anOP is usually translated into a query or set of API calls to
Swers queries of the form “select OID from Inbox", and IThis is possible because (1) the assignment (and retrieval during query
that Classescomes from a DB2 databa.se' The I.eaves op]:rocessing) of Garlic OIDs allows Garlic to go back to the data source to
the plan are botRPushDowrPOPs, but with quite different yeyieve missing information and (2) wrappers must provide “get” methods
properties. AFetchPOP retrieves from Mail the attributes for any attribute they define.

the wrapper’s underlying data source. Wrappers are, how- Garlic defines a fixed set of roots with fixed interfaces,
ever, free to translate tHtushDowrPOPs in whatever way corresponding to the different language functions it sup-

is appropriate for their system. ports. There are roots faelect, group-by, insert, delete
andupdate which are invoked by the plan enumerator de-
3.2 Using STARs to Produce Plans pending on the kind of query. In this paper we focus

Garlic's STARs are closely based on the work of [Loh88]°,n select-project-joiqueries. These queries involve 'Fhree
in fact, we have implemented the Garlic optimizer as alfinds of roots:AccessRoot - (STARs for single-collection
extension of the DB2 CS [G93] version of STARs. We accesses)oinRoot (for joins) andFinishRoot (for
begin this section with a review of this work, and then focu§"SUring that the plan is complete). _
on how we have extended STARSs to meet Garlic's needs. 10 allow the Garlic optimizer to plan queries when data
STARS can be seen as the production rules of a gramn&qmes from sources Wlth_dlfferlng guery capabilities, Gar-
that generates plans. We call the topmost non-terminal sylft includes several generic STARs. These STARs construct
bols of the grammarots A STAR determines how POPs 1€ genericushDowrPOP described above. We will pre-
can be combined in a plan. A simple STAR may build onlyi* e names of these generic STARs witepoto remind
a single POP, by invoking its constructor. The constructdfS that they represent work that will take place in a data
allocates space for the POP, initializes various fields, angurce (repository). There is a generic STAR correspond-

calls the property function to compute the properties of thi'd {0 €ach root STAR (excejinishRoot , which is a
new POP (includingardinality andCos). purely Garlic function). Thus, there is RepoAccess

Of course, few STARs are that simple. Most include & AR and aRepoJoin STAR. When these STARs are

condition function; if the condition is true, then the STARINstantiated, they invoke rules the wrapper may have pro-
builds its plan, otherwise, no plan is built. Also, a singlevided, then use the results to buildPashDownPOP and
STAR may construct multiple POPs, and multiple planscompute its properties. If there is no appropriate wrapper
Multiple POPs are built by calling the POPs’ constructor§TAR, they simply return no plan. In many cases, Garlic
in sequence. Multiple plans result when the STAR is instarill find other ways of accomplishing the same function.
tiated with a set parameter, and creates a plan for each ele-\we jjjustrate this using Garlic'RepoAccess STAR,

ment of the set—in this case, the condition (if any) is evaluspown in Figure 4. This STAR invokes téan _access
ated for every element of the set separately. Finally, STA ; - N
can also invoke other STARs. Thus, STARs are rules of the le, if any, defined by the wrapper of the data source that

following form (wheref; is the name of a STAR or a POP): contains the collection to be accessed. That rule returns a
’ " list of zero or more “wrapper plans”. These are simply data

STARparams$::= Ve € set: fi(f2(...), f3(...),other args structures, uninterpreted by Garlic, that provide information
[if condition(args)] (1) the wrapper needs to execute the access if Garlic requests

Note that when a STAR is instantiated, all properties of 'ater. Also retumed are the properties for each wrapper
all the resulting plans are computed automatically, as tH¥an: these will typically be (a subset of) the properties re-
various POP constructors are called. questgd when the STAR was mstan_tlated. The Source prop-

For example, the following STAR can be used to retriev&MY Will be computed by thes function provided by Gar-
columns that are needed by some other STAR, but whidi§- The GarlicRepoAccess STAR uses these properties
have not yet been retrieved from the relevant wrapper. 1o set the properties of tfeushDowrPOPs that it creates.

, For purposes of this paper, we assume that wrappers con-
FetchCols (T, C,Plan ::= Fetch(T, C", Plan struct their plans using STARs. Note, however, that since
if ¢'#0, C'=C - PlanColumns (2) Garlic does not interpret the wrapper plans (only their prop-

This STAR constructs &etch POP, if there are columns erties), wrappers are actually free to' construct their plap S
needed that are not already present in the properties of tR@Wever they wish, as long as the interface to Garlic is
input plan. It builds at most one plan, depending on th® TAR-like. Interested readers may consult [RS97] for the
value of the condition function. In the following example,Wrapper's perspective on this process. STARs provide a
multiple plans may be returned (depending on the cardinakseful means of capturing the wrappers’ query capabilities,
ity of the set of input plans), and multiple POPs are unconegardless of implementation. Thus, when we need to char-
ditionally constructed. acterize the work done in a plan by a wrapper, we will use
“wrapper STARs” and “wrapper POPs” to do so. We will
use wrapper STAR names that start witlhn_ and are all
DamStream is called when an intermediate result must béower case in order to distinguish wrapper STARs from Gar-
stored. It is given a set of plans which produce that resulic STARs.

and addsScanandTempPOPs to each. Examples of more

complex STARs for a single-source DBMS can be found

in [Loh88]. We will look at some of Garlic’s more complex

STARSs in Section 3.5 below.

DamStream ({Plan}) ::= Vp € {Plar} : ScanTemp(p)) (3)

RepoAccess (T, C, P) ::= Vp € plan_access(T,C, P) : PushDown(p)

Condition: plan _access (T, C, P) has been defined by the wrapper of the data source that stores T.
Functions:none

Figure 4: Garlic’'sRepoAccess STAR
T atable;C columns ofT" used in the queryP restrictions oril” defined in the query

3.3 Plan Enumeration and Dynamic Programming Garlic functions using constants stored in Garlic's catalog.

. i o The local processing costs of the operators of Garlic’'s query
Garlic’s cost-based [S79] optimizer enumerates plans byengine are estimated by a cost model provided by Garlic.

invoking the appropriate root STARs of Section 3.2. Plan his model includes CPU and 1/O costs, and models fairly

for selectqueries are enumerated bottom up in three phas%?bsel the actions of the Garlic execution engine. The local
In the first phase, the enumerator appliesAlbeessRoot y gine.

STAR to every collection used in the query. Since at thig'Ocessing costs qf wrappers and their data sources, how—
.) . ever, must be estimated by cost models that are defined
time Garlic stores no datéccessRoot basically serves

t0 call RepoACCess . for each wrapper individually because there is no univer-

In the second phase, the enumerator applies tﬁal’ generic cost model that is valid for all wrappers and

JoinRoot STAR, which invokes th&epoJoin STAR a?l data sources. We are working on a framework to help
. . : wrapper writers create these models. Today, they must be
as well as various other join STARs, each of which re

resents one Garlic join method. It applies tf@nRoot Phand-written and hand-calibrated.
. . Join me ' PP - . An important parameter of any kind of cost model is the
STAR iteratively, passing it two plans and a join predlcat%

each time. Initially, each plan is one of those enumerated mardmahty of input and output collections. As with other

phase one for a single table access. When all possible mpropertiespardinality is computed after every application

way join plans have been examined, the enumerator invoké)fazrST?ORV'WCaard;?alr?t/e?g?zgisn?;g i';glﬁa ?_LZE}?}[S::SSSHO; tt:::t
theJoinRoot STAR to combine single table access pIanéq Y, pp P

with two-way join plans to create the three-way joins, and ompute this property. However, they must provide ways to

. o . ather statistics on the cardinality of the stored collections,
so on, until plans which join all the collections of the queryg . .
) . and on values of their attributes.
have been created. The enumerator considebmahyjoin
orders. Since Garlic is a distributed system, bushy plans are
particularly efficient in many situations. 3.5 More Complex Garlic STARs
Garh.cs optimizer employs dynamic programmingin °"We now describe the Garlic join STARs. Garlic's
der to find the best plan with reasonable effort {3]. In . o P
. .. o . JoinRoot STAR, which is applied in the second phase
every step of plan enumeration, Garlic’s optimizer applies

‘ . - . of plan enumeration, is defined in Figure 5. It specifies that
runing; thatis, the optimizer does not use pleas a build- .. : . }
i?]g blogck for other rrr)mre complex plans A has higher joins can be evaluated in Garlic in one of three ways: (1) by

cost than another plan afis properties are a subset Ofpushingthejoin down to a data source, (2) via a nested-loop

that plan’s. Only plans whose properties are included inig'n 1N Garlic, or (3) by means of ind join (defined be-

cheaper plan’s are pruned: for example, if Plan 1 has high@?’v)' For each of these three join methods, Garlic defines

cost than Plan 2, but thBourceof Plan 1 is Garlic (i.e., d separate STAR which is called by GarlidsinRoot

Sourceproperty is “Garlic”) and theSourceof Plan 2 is STAR in order to produce the corresponding join plan.

some data source, then Plan 1 may not be pruned becausé?:iirhe simplest of the actual join STARs RepoJoin

might be a building block for a winning plan that execute Igure 6). This STAR produces plans ”,1 which the join
. - . is done by a data source if that source’s wrapper has a
most operators of the query in Garlic's query engine.

In the third phase the enumerator applies GarIiC,Elan _join STAR and if both the outer and inner of the
P ' PP join are available at the data source. Like BepoAccess

FinishRoot STAR to get a final query plan that 'nCIUdeSSTAR, GarlicsRepoJoin STAR creates a generfeush-

all projections, selectlong and ordermg; specified in thBownPOP to track the properties of the wrapper plan.
qguery and not so far achieved. When this rule completes, Garlic's NestedLoopJoin ~ STAR is shown in Fig-

all remaining p!ans will have the same properties, and tht?re 7. Using a plan for the outef’) and a plan for the
least cost plan is chosen for execution.

inner (I;) as building blocks, it constructs a new plan with
aNLJ POP at the root and &canPOP to iteratively read

the inner, which is materialized vial®mpPOP. The third

In Garlic, the cost of a plan is the sum of local processparameter oNLJ is the set of join predicates. For thitJ

ing costs, communications costs, and the costs to initiaBOP to function, all the attributes needed to evaluate those
subqueries and methods. The communication costs and fhredicates must have been retrieved. To ensure this, we use
costs to initiate subqueries and methods are estimated &yariant of thd=etchCols STAR defined in Section 3.2,

3.4 Costing Plans

JoinRoot (T1,Ts, P) ::= RepoJoin (T4,T>, P) costs to ship intermediate results. Therefore, binding plans
JoinRoot (T1,T», P) ::= NestedLoopJoin (Ti,T>, P) should be enumerated and costs evaluated in addition to the
JoinRoot (T1, T, P) ::= BindJoin (T1,T3, P) other two alternatives. ThBindJoin STAR checks that

N the wrapper for the data source which produces the inner
Conditions:none plan accepts bindings (provideptan _bind STAR), and
Functions: none if so, asks the wrapper to re-plan the inner with the addi-

, _ L tional bind predicates. For each resulting wrapper plan, the
Figure 5: Garlic'sloinRoot STARs BindJoin STAR produces a neRushDownPOP as the

inner. Using our variant ofFetchCols , BindJoin en-
sures that all the attribute values needed from the outer for
the join predicates are retrieved, so that Bied POP can

RepoJoin (T1,T», P) ::=
Vp € plan_join(Th, T2, P) : PushDown(p)

C.: T1.Source= T.Source T} .Source 'Garlic’; pass them to the inner.
plan _join (T1,T2,P) defined by the wrapper @%.Source
F.+ none 3.6 Discussion
Figure 6: Garlic’'sRepoJoin STAR We have implemented the STAR framework, and STARs
and cost models for wrappers of several data sources, in-
NestedLoopJoin (T1,T2, P) ::= cluding DB2, Oracle, ObjectStore, an image processing
NLJ (FetchCols (71, NeedAtt(T}, P)), system called QBIC [N93], two Lotus Notes databases,
Scar(Temp(FetchCols (T3, NeedAtt(Tz, P)))), and two Web sources. Our implementation extends the
P) DB2 CS V2 optimizer with the STARs and POPs described

C.: none above. During plan enumeration, tRepoAccess STAR

F.: NeedAtt(Plan, Pred§ computes the attributes of collectios IS invoked once for each colle,ction in the query, and in-
of Planthat are needed to compute the predicaté@raus vokes the appropriate wrappepkan _access STAR. All

of Garlic’s join STARs are applied in every step of the

Figure 7: GarlicsNestedLoopJoin ~ STAR second phase of plan enumeration to ensure that all pos-
sibilities are considered. However, the conditions on the
BindJoin (Ty,Ts, P) ::= Vp € plan_bind(T%, P) : RepoJoin andBindJoin rules ensure that they will re-

Bind(FetchCols (T%, NeedAtt(T:, P)), PushDown(p)) turn plans only when such plans are possible.
In the current system, all STARs and POPs are imple-
C.: T;.Source# 'Garlic’ mented in C++. An alternative would be to implement
plan _bind (7', P) defined by the wrapper @%.Source STARSs as declarative rules and interpret the STARS as pro-
F.. NeedAttras in Figure 7. posed in [LFL88]. This might simplify the implementation
of STARSs, especially for wrapper writers; hard-coding all
STARs in C++, however, provides significantly better per-
formance during plan enumeration.
which returns thé’lan without an attacheé&etch POP if Our approach to optimization has several key advan-
no columns are missing. The ability to invoke other STAR$ages. It is a simple extension of traditional optimizer tech-
to enforce certain properties is powerful; it allows Garlic tmology, allowing us to both enumerate a full set of plans and
detect discrepancies between what a plan provides and whatake advantage of any and all advances in optimization
is needed, and to compensate. Thus, Garlic can providad execution strategies. Since we enumerate all possible
powerful queries against even very limited data sources. plans, we are guaranteed to find the optimal plan as defined
The third Garlic join rule, the one for bind joins, is by our cost model; as with all optimizers, however, this may
shown in Figure 8. Abind join is a nested loop join in not be the actual best execution plan if the cost model used
which Garlic passes intermediate results (e.g., values fby the optimizer is not sufficiently accurate. The extensions
the join predicate) from the outer objects to the wrappexre make are isolated and few in number, consisting of one
for the inner, which uses these results to filter the data it rggenericPushDowrPOP and a few generic STARSs.
turns. If the intermediate results are small and indexes are As a further consequence of this design, our system is
available at data sources, bindings can significantly reduegtremely flexible. Wrappers for new data sources can be
the amount of work done by a data source. Furthermoradded at any time without considering the capabilities of
bindings can reduce communication cost in the same wather wrappers, and without changing the optimizer code.
that a semi-join does in distributed databases. On the otH@ecause Garlic does not have to understand the wrapper
hand, bindings result in poor plans if intermediate resultslans, relying only on a fixed set of properties to describe
are large: high processing costs at Garlic’s query engintlyem, a wide range of data sources can be wrapped. These
the wrapper and the data source, plus high communicatigources may differ in data model and vary widely in query

Figure 8: Garlic’'sBindJoin STAR
T1, T» plans for outer and innef? potential join predicates

processing abilities, yet no special properties have beeplan _access (T, C, P) = Quantifier (T, ds(T))
added to deal with heterogeneity.

Finally, STARs are a powerful construct for a distribute
system. In addition to standard relational function, Garlic
STARs can handle approximate search, replicated collec-
tions, and gateways [K96]. An example involving approx-
imate search is given in Section 4.

jC.: none
SF.: dgy(T') returns thed of the data source that storgs

Figure 9: Mail Wrapper STAR

plan _access (T, C,P) = R_ScanT,C, P,ds(T))

4 Modeling Wrapper Query Capabilities C.: none
Using STARs F.: d5(T’) returns the id of the rel. data source that stdfes
In addition to making optimization simple for Garlic, therI;n__bi_nd_(;,c?,};,p;m_) -

STAR framework makes it easy to describe wrapper quely R scanT, C, P U plan.Preds, ds(T))
capabilities, and allows wrappers to start simply, and evolye
over time. While Garlic STARs may be complicated, due inC.: none

part to their use of other STARs to enforce needed properF.: dsas defined above.

ties, wrapper STARs tend to be simple. Indeed, we haye
found no need for wrapper STARSs to invoke other STARS,plan _join (Ty,T, P) = R.Join(Ty, T, P)

or even to build multiple wrapper POPs. In this section, w
demonstrate the power and simplicity of the STAR frame-C:: T1.Source= T>.Source
work for heterogeneous systems, by means of an example: "°ne
involving three very different data sources. In the next sec-

tion, we extend our example to show how the Garlic opti-

mizer would optimize a query involving these three sourcesources can be processed, but it does not model a wrap-

Consider a university with a relational database stoper’s query processing capability, and therefore, plans gen-
ing basic information on each course offered, course derated by this STAR often show poor performance. Initially
scriptions in a special text store, and an on-line complaist wrapper writer might define only this STAR to integrate a
mechanism that sends mail to an ombudsman. These themeirce quickly; later (s)he could add more powerful STARs
sources (relational, text, and mail) are integrated using Gao improve performance. For example, we could initially
lic. In the following, we provide relevant details of theseuse this STAR to integrate the relational database, and then,
wrappers and define STARs for them. once we had made the relational data accessible, replace it

The mail wrapper exports@omplaintscollection of ob- with the STARs of Figure 10 to exploit the relational en-
jects of typeMessage Messages each ha@ender, Date, gine’s query processing power, improving performance.
BodyandSubjectttributes. The wrapper provides onlythe The relational wrapper exports @lassescollection.
ability to iterate through a collection, retrieving the OIDs.Classobjects have attributeSourse, Professoetc. The
To model this ability, it defines the simpfdan _access relational data source supports the usual relational opera-
STAR shown in Figure 9. Like everplan _access tions, and the wrapper provides STARs for access, bind and
STAR, this STAR takes as parameters the identifier of @in. These STARs are shown in Figure 10. They construct
collection ('), a set of attributes({), and a set of predi- a set of POPs which model the relational source’s opera-
cates P) that are used in the query. Regardlesg'ond tions. Their properties are given in Tabledlan _access
P, this STAR always returns one plan consisting of a singenerates aR_ScanPOP which models the execution of a
gle QuantifierPOP. TheQuantifier POP models the exe- single-table query, aggressively applying all predicates and
cution of the query “select OID from T” in the data sourceretrieving all necessary columnplan _bind also builds
that stored". The values of the properties (excepstand anR ScanPOP, adding the binding predicates to the set. Fi-
cardinality) of the Quantifier POP are defined in Table 1; nally, plan _join constructs arR_Join POP, which mod-
the RepoAccess STAR would get these values from theels the relational source’s ability to join two tables, again
wrapper plan to create itBushDownPOP. Query plans applying all predicates and fetching all columns.
generated using this STAR are executed as follows: the The text wrapper exports a single collectiddescrs
OIDs of all messages of a collection are passed from thehich contains objects of typ#&lurb, with attributes
wrapper to Garlic's execution engine, which uses methodame and Description The text data source supports
calls to the wrapper to get the attributes of the messages.single-collection queries with methods of the foran-

The simple STAR of Figure 9 could be used as a startains(string)or is_about(string)modeling its search capa-
ing point for wrappers of many different sources. (Theréilities. containsreturns a boolean value, depending on
is nothing Mail-specific about it.) This STAR guaranteesvhether the document it is applied to contains the words
that any query that accesses data from one of a wrappeirsthe string.is_about(string)returns a rank between 0 and

D

Figure 10: Relational Wrapper STARs

| | Table(t) | Column(c) | Preds(p) | Order (o) | Mat (m) | Source(s) |

Quantifier’, S) T oid] NIL FALSE S
T_Rank(, C,e, P, S) T CU scorde) P scorde) FALSE S
T_Scan(’, C, P, S) T C P NIL FALSE S
R_Scanl, C, P, S) T C P NIL FALSE S
R_Join(Tl, Ts, P) TitUTs.t Ti.cUTs.c Tl.pUTg.pUP NIL FALSE Ti.s

Table 1: Properties (except cost and cardinality) of POPs used in Wrapper STARs
T a collection;S an id of a data source;anis_aboutpredicateC' a set of attributesP a set of predsT:, T> plans

plan _access (T, C, P) = T_ScanT, C, P;,dT)) functionality to Garlic. This makes it easy to modify and
evolve wrappers. Third, each wrapper's STARs were de-
fined independently of the others’, and without affecting
Garlic STARs or Garlic’'s query services, making it easy
to add new wrappers to the system. Modeling power, low
————————————————————— “entry-cost” for writing wrappers, evolvability, and extensi-

plan _access (T,C, P) = -
Ve € C': T_Rank(T,C, e, P, dS(T)) bility are key advantages of our approach.

C.: P, C P are all predicates of the form
contains(stringor Name = string
F.: dyT) returns thed of the text data source that stofEs

C.: e is anis.aboutexpression off'. P; C P as above. 5 Optimizing a Query
F.. dsas above.

To see how the whole framework works, we now describe

, how a query against the sources of Section 4 would be
Figure 11: Text Wrapper STARs processed by the Garlic optimizer using Garlic’s built-in

1 indicating how closely the document matches the terms BTARs (Section 3) and the wrapper STARs defined above.

the argument string. STARs defining this wrapper’s planSuppose that the ombudsman has just received a complaint

are found in Figure 11. The POPs for these STARs are alé®out an Ancient Studies course. She remembers receiv-

described in Table 1. Note that this wrapper provides twi'd @ number of complaints about courses concerning the

plan _access rules: one, which producesaScanPOP, ancient world recently, and wants to see what faculty are

simply scans the documents, returning whatever attributd®/0ved. She poses the following query:

are asked for, and applying any “contains” or other Stringsg ecT ¢.Course, C.Prof

predicates, and the other, which producesTitiRankPOP, From Classes C, Descrs D, Complaints P

returns the results in order of rank computed as a result ofyHERE D.Name = C.Course AND

anis_aboutmethod in theorder byclause. C.Course = P.Subject

¢From these three examples, we can see that the b&RDER BY D.isabout(“ancient world, Greece, Rome”)

sic query power of wrappers and data sources with vastly L -

different querying abilities can be modeled easily with a " Phase one of optimization, GarlicsccessRoot

handful of simple, single-POP STARs. There are two rea> "R iS invoked once for each collection of the query.

sons why wrapper STARs can be so simple. First, Garlifl €ach case, it invokes the appropriate wrapper's

provides a powerful query engine which can make up fp/an -access STAR, and then createsrushDowrPOP.

missing query function in the wrappers. Second, wrappdiS results in four plans, shown in Figure 12, one from

STARs model “what” can be executed by a wrapper ndtach of the Mail and Relational wrappers, and two from the

“how”. For example, the relational wrapper exported a siml €Xt Wrapper. Their properties will be those of the wrapper
OPs in Table 1.

pleplan _join STAR to model that joins can be executed”)] o)
by its data sources: it did not need to enumerate alterna- N Phase two, Garlic'sloinRoot = STAR s fired, first
tive plans with different join methods because plans witl® Make all possible two-collection joins, and then to look
anR.JoinPOP are translated into a multi-table (SQL)query"‘t,a” three-cqllgctlon plans. This entails .four calls to
and the optimizer of the relational data source automaticalfPiNRoot to join Classesand Descrs(one with each of
determines the most efficient join methods. Precise modd€ Plans foiDescrsas the outer, and two witBlassesas
ing of join methods may be required in the wrapper’s codf'€ Outer, using the different plans forescrsas the in-
model in order to estimate the cost of join processing in tHaers), four more foDescrsand Complaints and two for
data source, but it is not required in the wrapper's STARsJ0iNing Classesand Complaints Each time it is called,
These examples also demonstrate three further advap41: pushDown(RScan(Classe§Course,Prof, 0, RDB))
tages of our approach. First, we defined a simple minimab2: PushDown(Quantifier(Complaints, Mail))
STAR that might be the first STAR a wrapper would export.P3: PushDown(IScan(Descrs{Name,scorg, 0, Text))
This makes it easy to get a wrapper up and running. Sgd4: PushDown(TRank(Descrs{Name,scor, §, Text))
ond, wrapper writers can add STARs or alternatives for an
existing STAR at any time, to expose more wrapper query Figure 12: Plans from Phase 1 of Optimization

P5: NLJ(P1, Scan(Temp(P3))Course = Namp) rewrite rules to decompose a query, but have no cost model
P6: NLJ(P4, Scan(Temp(P1)})Course = Namp) to evaluate alternative plans (e.g., [FRV95]). [CS93] uses
P7: NLJ(P3,Scan(Temp(Fetch(P2,Subjectilibject=Namg) rewrite rules to generate alternative versions of a query in-
P8: NLJ(P4,Scan(Temp(Fetch(P2,Subjectflibject=Namg) | yolving foreign tables and functions. Each version can
P9: Bind(Fetch(P2,Subject), P {Course = Namp) then be optimized, and the least cost plan overall is cho-
sen. Most work on cost-based query optimization in het-
erogeneous systems is limited to specific classes of data

: sources [DKS92, GST96]. The works most closely related
P10: NLJ(P5, S T Fetch(P2,Subject))), !

(Subocanag T eien(Ez Sublect) to ours are [TRV96] (DISCO) and [PGHI6]. These two ap-
P11: NLJ(P4, Scan(Temp(P9{)Name = Coursp) proaches also use grammars to describe the capabilities of
wrappers; however, the types of grammars used and how
Figure 14: Three-Way Join Plans Surviving Pruning they are used are significantly different. .

DISCO addresses problems beyond the scope of Garlic,

JomRoF?t |\l]’|s_tant|ates aIItthree Gar“? join rules. ::or th'lswith an emphasis on operating when not all data sources
query,RepoJoin NEVEr returns any plans, as no o Col, e qyajjaple. DISCO uses a wrapper grammamgich
lections are co-located.NestedLoopJoin always re-

¢ | Garll | ¢ the ioi ueries. The DISCO optimizer enumerates query plans as
ten nesied loop plans are retuned. Since only the el /2PPerS could handle any kind of query, then uses the

) : . : . . rapper grammar to parse each plan to determine whether
tional wrapper defines plan _bind STAR, BindJoin bperg b b

i | v wheal ‘s the i Thi . it can be handled by the wrapper. Thus, DISCO enumer-
returns a pian only w assess e inner. ThiS0CCUISIN o0y plans, including many invalid ones. The Garlic op-

three plans, so in total, thirteen join plans are considered Wnizer by contrast, constructs only valid plans, and it is

this phase. However, only five plans survive pruning (F'gaquickerto construct a plan using STARSs than to parse a plan

Figure 13: Two-Way Join Plans Surviving Pruning

ure 13). The others are eliminated because they have t ging a grammar

same properties as another.plan, and cpst at least as muc [PGH96] proposes a set of algorithms that decompose
Fi Notel}‘zha; each plaln ofIFlggrse 13 tz)wlds oln tht;glanz 9 guery based on a novlational query description lan-
Igure . For example, plan o Combines plans = an agethat describes the capabilities of wrappers. Their al-

storing the results of P3, and adding the join operator with) . :
- S . orithms push down as much work as possible to wrappers
a scan of the new collection. Plan P8 similarly builds o b P PP

. . 0.minimize the amount of processing in the middleware
plans P4 and P2, but discovers that it needs to add a fetch Qf . . query engine. However, this work gives no guid-

subjectbefore making the temporary collection, in order toance on how to execute the remaining query pieces in the

apply the join predicate during join Processing. .middleware, or how to choose between alternative plans.
Plans P7 an.d PB demonstrate the benefits of EXte.n.dngecently, other ways to describe capabilities of het-

well-known optlmlzer technolqu. Both plans apply aJOInerogeneous wrappers or data sources have been proposed.

predicate that did not appear in the query, but could be dﬁi [LRO96], capability recordsare used to describe which

duced from it by taking the transitive closure of the predi; indings ca'n be passed to a source. Howeverapability

cates [Gro3]. These plans required no new rules, nor di ecord mechanism is not powerful enough to describe the

the new, generic Garlic rules disturb them; the existing Opc'apabili'[ies of, say, Garlic’s relational or image wrappers.

timi;er computed transitive cIosure; of predicates, and triﬁ other work viewsare used to describe which queries can
Garlic optimizer therefore (automatically) does S0- be handled by a wrapper/data source; e.g., [Qia96, LRU96].
. In the next step qf phase wo, these two-way join plan§\/hile flexible, decomposing a query using views requires
will be combined with the smgle—table_apcess pla_ns fror‘Qolving the query subsumption problem. Thus, these ap-
phase one to generate the three-way joins. In this pha ffoaches are typically limited to simple conjunctive queries

fourteen plans are created, but only two survive prunin : ;)
. ' nd cannot easily be extended to handle ordering, grouping,
one ordered bys_about(P11) and one not ordered (PlO).Or aggregate functions.

These two plans, shown in Figure 14, are the input to phase
three. In this phase, theéinishRoot = STAR is invoked

to complete both plans. P11 is already complete, so it 8 Conclusion
returned as is, biinishRoot adds é&SortPOP to P10 to
complete it. As both plans now have the same properties
winner is chosen on the basis of cost.

Ir&this paper, we presented the design of a query opti-
mizer for heterogeneous middleware systems designed to
integrate data sources with different data models and query
processing capabilities. A query optimizer is a critical
6 Related Work component of any such middleware system, because dif-
Despite its importance, there is little related work on optiferences in cost between alternative plans for executing a
mization and decomposition of queries across data souragsery can easily be several orders of magnitude, and there
with different query capabilities. Some systems use quegre generally many possible plans. Our optimizer is based

on dynamic programming and Lohmar8rategy Alter- [DKS92] W. Du, R. Krishnamurthy, and M.-C. Shan. Query opti-
native Rulespr STAR. We have extended Lohman’s ap- mization in heterogeneous DBM& VLDB Conf, Vancouver,
proach to encompass generic and wrapper STARs, and im-1992.

plemented this in the Garlic middleware system. Garli€"JX96] M. Frankiin, B. &hsson, and D. Kossmann. Perfor-
uses STARs to construct its query execution plans, in which gec‘;“’a%gaggs:fiﬂ Lonft ri::;ntl-sg(rsver query processirig.ACM

a generidPushDownPOP represents work done by a dat y AN .)
SO%rce. Garlic's generic STKRS constrlimshDowrgOPs EIFRV95] D. Florescu, L. Raschid, and P. Valduriez. Using het-

. ; erogeneous equivalences for query rewriting in multidatabase
and invoke wrapper-provided STARSs to construct the wrap- systemsIn CooplS Conf.1995.

per portion of the plan. We illustrated our approach withgpsg7] G. Graefe and D. DeWitt. The EXODUS optimizer gen-

both Garlic and wrapper STARs, and described how they erator.in ACM SIGMOD Conf.San Francisco, 1987.

would be used to optimize a query. In a small set of experjct93] P. Gassner et al. Query optimization in the IBM DB2

ments [K-96], we have further shown the importance of op- family. IEEE Data Engineering Bulletirl6(3), 1993.

timization in this environment, and how alternative wrappelGST96] G. Gardarin, F. Sha, and Z.-H. Tang. Calibrating the

STARSs impact query processing in Garlic. query optimizer cost model of IRO-DB, an object-oriented fed-
The advantages of our approach lie in its extensibility erated database system.VLDB Conf, Bombay, 1996.

and evolvability, the expressiveness of the powerful STA 89] L. Haas et al. Extensible query processing in starburst

T In ACM SIGMOD Conf.Portland, 1989.
syntax, the simplicity of wrapper STARs, and the fact th *96] D. Kossmann et al. | can do that! using wrapper input

it can be implemented as an extension of an existing opti- for query optimization in heterogeneous middleware systems.
mizer, leading to high quality plans. The approach is exten- Technical report, IBM Almaden, 1996.

sible, as new wrappers and their STARsS can be integrat@icFL88] M. Lee, J. Freytag, and G. Lohman. Implementing an
without affecting other wrappers or Garlic’s query engine. interpreter for functional rules in a query optimizen VLDB
The STAR syntax is powerful, as it enables wrapper writers Conf, Los Angeles, 1988.

to precisely model the capabilities of wrappers even for veliy-0h88] G. Lohman. Grammar-like functional rules for repre-
unusual data sources. It is typically easy to define STARS éi”;;“%rﬂgzg Olrgg";'za“o“ alternativesin ACM SIGMOD
because STARs simply model “what” kind of queries ca : : . . .

be handled by a Wre?p)[;er rather than SpecifyicrI19 precise yR096] A. Levy, A. Rajaraman, and J. Ordille. Querying het-

. . . erogeneous information sources using source descriptions.
how” these queries are executed by the data sources. The,, pg conf Bombay, 1996.

approach is efficient, as it employs well-known optimizag ruge] A. Levy, A. Rajaraman, and J. Ullman. Answering
tion techniques such as dynamic programming with pruning queries using limited external query processbrACM PODS
to find good plans with reasonable effort. Conf, Montreal, 1996.

In the future, we want to continue to integrate and expefM*t96] W. McKenna et al. EROC: a toolkit for building NEATO
iment with new kinds of data sources in order to get more query optimizersin VLDB Conf, Bombay, 1996.
general insight into the design tradeoffs for wrapper STAREN 793] W. Niblack et al. The QBIC project: Querying images by
We are considering wrappers for a digital library product content using color, textu_re and shap.SPIE San Jose, 1993.
and for OLE automation servers. We are also examining C'/9¢] Y- Papakonstantinou, A. Gupta, and L. Haas.

Capabilities-based query rewriting in mediator systenis.
whether we can develop cost models for broad classes ofIEEE PDIS Cont.Miami, 1996.

data sources, so that modeling the cost of wrapper pla[rsGMW%] Y. Papakonstantinou, H. Garcia-Molina, and

can be simplified for the wrapper writer. J. Widom. Object exchange across heterogeneous information
sourceslIn IEEE ICDE Conf, Taipeh, 1995.

8 Acknowledgments [Qia96] X. Qian. Query foldingIn IEEE ICDE Conf, New Or-
leans, 1996.

We thank Guy Lohman, Yannis Papakonstantinou and AfiRS97] M. Tork Roth and P. Schwarz. Don’t scrap it, wrap it! A
thony Tomasic for their helpful comments, and our Garlic wrapper architecture for legacy data sourcksVLDB Conf,

teammates for their support and assistance. Athens, 1997. o
[ST79] P. Selinger et al. Access path selection in a rela-

tional database management systémACM SIGMOD Conf.
References Boston, 1979.

[CT95] M. Carey et al. Towards heterogeneous multimedia in[S"94] M.-C. Shan etal. Pegasus: A heterogeneous information
formation systems.In IEEE RIDE WorkshopTaipeh, 1995. management system. In W. Kim, editbtodern Database Sys-

. tems chapter 32. ACM Press, Reading, 1994.
[Cat96] R. G. G. Cattell. The Object Database Standard _[TRV96] A.Tomasic, L. Raschid, and P. Valduriez. A data model

ODMG-93 Morgan-Kaufmann Publishers, San Mateo, 1996. and query processing techniques for scaling acccess to dis-

[CS93] S. Chaudhuri and K. Shim. Query optimization in the tripyted heterogeneous databases in DISCO, 1996. Submitted
presence of foreign functionsn VLDB Conf, Dublin, 1993. for publication.

[Day83] U. Dayal. Processing queries over generalization hiefwie93] G. Wiederhold. Intelligent integration of informatiolm
archies in a multidatabase systetm. VLDB Conf, Florence, ACM SIGMOD Conf.Washington, DC, 1993.
1983.

