Optimizing Queries across Diverse Data Sources

Laura M. Haas Donald Kossmann* Edward L. Wimmers Jun Yang†
IBM Almaden Research Center
San Jose, CA 95120

Abstract

Businesses today need to interrelate data stored in diverse systems with differing capabilities, ideally via a single high-level query interface. We present the design of a query optimizer for Garlic [C+95], a middleware system designed to integrate data from a broad range of data sources with very different query capabilities. Garlic’s optimizer extends the rule-based approach of [Loh88] to work in a heterogeneous environment, by defining generic rules for the middleware and using wrapper-provided rules to encapsulate the capabilities of each data source. This approach offers great advantages in terms of plan quality, extensibility to new sources, incremental implementation of rules for new sources, and the ability to express the capabilities of a diverse set of sources. We describe the design and implementation of this optimizer, and illustrate its actions through an example.

1 Introduction

Businesses today rely on data stored in diverse systems with differing capabilities. Some data are in traditional database systems with a powerful query language and efficient indices for parametric data. Others are in spreadsheets and file systems with limited query capabilities, or in legacy application systems which provide specialized ways to access and manipulate data. The emergence of protocols such as CORBA, OLE DB and Java/JDBC makes it easier to access this range of sources, while database middleware systems or mediators [Wie93] offer the possibility of interrelating their data via a single high-level query interface. The first generation of commercial middleware systems has gained rapid acceptance in the marketplace. However, these products typically connect only a limited set of data sources, predominantly relational, and generally model all data sources as relational systems. This simplifies the middleware considerably, as it can assume that all the data sources have similar capabilities. The price of this simplification is that any specialized search or data manipulation capabilities of the underlying systems cannot be exploited when they are accessed through the middleware. Thus this first generation of middleware is not extensible to the arbitrary systems which may exist in a given business.

Several projects are addressing the problem of middleware for increasingly diverse systems [Day83, S94, PGMW95, TRV96, LRO96]. Many of the data sources these systems integrate have limited or specialized query processing capabilities. Queries in this environment vary widely in performance depending on how and where their operations are executed. One key challenge for these systems is thus to develop a general-purpose query optimizer which can use information about the capabilities of a new data source to produce correct plans that efficiently answer queries ranging over data in multiple sources, with differing query capabilities. This paper takes up that challenge.

In this paper we present the design of a cost-based optimizer for heterogeneous middleware systems. We have implemented our approach in Garlic [C+95], a middleware system designed to integrate data from a broad range of data sources, with very different query capabilities. Our approach extends Lohman’s [Loh88] grammar-like rules to work in a heterogeneous environment. Data sources are connected to the middleware engine via wrappers. The optimizer is given a set of rules that capture the engine’s query execution strategies. Among these are several generic rules, which produce source-specific plans using matching wrapper-provided rules that encapsulate the capabilities of a particular data source. A normal dynamic-programming enumerator fires rules to generate all possible alternative execution plans for a query.

We have pursued and implemented our approach because it has several crucial advantages. First, since our optimizer is an extension of a standard optimizer we get all the benefits of advances in optimizer technology, as well as the benefits of considering the entire search space, leading to high quality, efficient plans. We believe ours is the first solution based on traditional dynamic-programming techniques. Second, the system is extensible. Regardless of their data model and query processing capabilities, new wrappers can be integrated without affecting other wrappers or the middleware. Third, wrappers can evolve gracefully.

*Current address: University of Passau, 94030 Passau, Germany
†Current address: Stanford University, Stanford, CA 94305

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.

Proceedings of the 23rd VLDB Conference
Athens, Greece, 1997
At any time, it is possible to refine or add wrapper rules to improve the performance of queries over the wrapper’s data sources. Finally, this approach is extremely flexible, making it possible to integrate wrappers of strange data sources with unusual query processing capabilities.

The remainder of this paper is structured as follows: Section 2 describes the Garlic architecture. Section 3 presents the Garlic query optimizer and its built-in rules. Section 4 shows how easy it is to model the query behavior of diverse sources. Section 5 shows by example how the Garlic optimizer uses Garlic and wrapper rules to optimize a query across very different sources. Section 6 discusses related work, and Section 7 concludes the paper.

2 The Garlic System

Figure 1 shows the architecture of Garlic [Cat96]. The architecture is typical of many heterogeneous database systems, e.g., [Day83, PGMW95, TRV96]. At the bottom are data sources, which store, access and manipulate data. Above every data source is a wrapper. A wrapper hides the details of the data source’s interface and enables access to the data source using Garlic’s internal protocols. The wrapper describes the data stored in the source using Garlic’s data model, an object-oriented model based on the ODMG standard [Cat96, C+95]. Data in the source are viewed as objects, and Garlic refers to these objects using an OID it manufactures based on the source, the object’s type, and a unique key determined by the wrapper. This OID allows Garlic to apply methods on objects; from the OID, Garlic can determine the appropriate wrapper, and the wrapper can locate the necessary data and apply the method. Wrappers provide methods to get the value of each attribute of an object, and to encapsulate any specialized search capabilities of the source. These methods are typically implemented as commands in the native language or programming interface of the underlying source.) The wrapper also defines object collections which are the targets of queries in Garlic.

The wrapper further provides a description of its query processing capabilities in the form of a set of rules (encapsulated as planning methods [RS97]). Different sources may vary greatly in their query processing capabilities, and thus will provide different rules. A wrapper does not have to reflect the full query functionality of its data sources. However, in order for the data in that data source to be accessible through queries, some minimum functionality must be provided, i.e., at least one access rule. We will discuss wrapper rules in Section 4.

A system catalog records the global schema. When a new data source is added to a Garlic system, it is associated with a wrapper. This association, as well as the data source’s local schema and any available statistics for its data, is recorded in the catalog as part of the registration process for a data source. The catalog also contains information such as view definitions and information about the system configuration needed as input to the cost model during query optimization.

At the heart of Garlic are its query services, which play the same role as a mediator in the architecture of other systems [Wie93]. Garlic’s query services have two major components: a query language processor, and a distributed query execution engine. The query language processor takes a query as input and obtains an execution plan for the query through parsing, semantic checking, query rewrite, and query optimization (as in Starburst [H+89]). The job of the optimizer is to construct and select an “optimal” plan for a given query, based on a cost model. Traditional query optimizers build plans based on detailed, built-in knowledge of the full set of execution strategies available and their costs. This is true even in distributed systems; the optimizer must know the capabilities and costs for each remote data source to decide which operations to execute at a source and which at the query site [FJK96]. Garlic, however, must be able to find good plans without built-in knowledge of data sources’ capabilities and costs; how it accomplishes this is the subject of this paper.

Once the plan has been determined by the optimizer, its execution is coordinated by Garlic’s query execution engine, which passes subqueries to the wrappers and assembles the final query result. Garlic’s execution engine is a powerful system able to perform joins, apply predicates, invoke methods, sort, aggregate, and so on. This allows Garlic to compensate for functionality not present in the data sources or not reflected by their wrappers, and to execute itself those operations it can do more efficiently.

3 Query Optimization in Garlic

To optimize a query, Garlic uses a set of STrategy Alternative Rules, or STARs [Loh88], which construct plans that can be handled by Garlic’s query engine. Garlic’s enumerator fires appropriate STARs, following a dynamic programming model, to build plans for the query bottom-up. Garlic differs from [Loh88] in that some of Garlic’s STARs are generic. These STARs are fired during enumeration when a piece of work is found that can or must be done by a wrapper. Generic STARs consult the appropriate wrapper to build their piece of the plan. From the resulting set of complete plans for the query, the optimizer selects the winning plan based on cost. This plan will then be translated into an executable (or interpretable) format.
3.1 Plans in Garlic

Plans in Garlic are trees of operators, or POPs (Plan OPerators). Each POP works on one or more inputs, and produces some output (usually a stream of tuples). The input to a POP may include one or more streams of tuples. In a plan, these are produced by other POPs. Garlic’s POPs include operators for join, sort, filter (to apply predicates), fetch (to retrieve data from a data source), temp (to make a temporary collection) and scan (to retrieve locally stored data). Garlic also provides a generic POP, called PushDown, which encapsulates work to be done at a data source.

Plans are characterized by a set of plan properties. Properties are a common way to track the work that is done in a plan [GD87, Loh88, M+96]. It is particularly important to characterize plans with a fixed set of properties in Garlic, because Garlic plans are (in part) composed of generic PushDown POPs. The actual work being done by these POPs depends on the wrapper where the work takes place and the query, and is not understood by Garlic or any other wrapper in the system. However, the properties provide sufficient information about what is done to allow Garlic to properly incorporate the PushDown POP in a plan.

We characterize plans and their output by the eight properties described in Table 2. The properties of one POP are typically a function of the properties of its input POP(s), if any. Properties are computed as the POPs are created, by STARs. The properties assigned to a plan are the properties of the topmost POP of the plan. Most of these properties are equivalent to those used by optimizers of traditional database systems. An exception is the Source property. It is used to record where the output stream comes from (Garlic or a particular data source); the Source property is comparable to the Site property used by R* [Loh88].

For example, Figure 3 shows one possible plan for executing the query “select m.Body from Inbox m, Classes c where m.Subject = c.Course and c.Prof = ’Aho’”, assuming Inbox is defined by a simple mail wrapper that only answers queries of the form “select OID from Inbox”, and that Classes comes from a DB2 database. The leaves of the plan are both PushDown POPs, but with quite different properties. A Fetch POP retrieves from Mail the attributes

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>set of tables that have been accessed and joined</td>
</tr>
<tr>
<td>Columns</td>
<td>set of columns of the output of the plan</td>
</tr>
<tr>
<td>Preds</td>
<td>set of predicates that have been applied in the plan</td>
</tr>
<tr>
<td>Source</td>
<td>where the output is produced; i.e., the id of a data source or Garlic’s execution engine</td>
</tr>
<tr>
<td>Mat</td>
<td>TRUE if the output of the plan is materialized; FALSE otherwise</td>
</tr>
<tr>
<td>Order</td>
<td>a sort expr. if the tuples of the output are ordered; NIL otherwise</td>
</tr>
<tr>
<td>Cost</td>
<td>estimated cost of the plan</td>
</tr>
<tr>
<td>Card</td>
<td>estimated number of tuples of the output of the plan</td>
</tr>
</tbody>
</table>

![Figure 2: Garlic Plan Properties](image)

![Figure 3: One Possible Query Plan for:](image)

This is possible because (1) the assignment (and retrieval during query processing) of Garlic OIDs allows Garlic to go back to the data source to retrieve missing information and (2) wrappers must provide “get” methods for any attribute they define.
the wrapper’s underlying data source. Wrappers are, however, free to translate the PushDown POPs in whatever way is appropriate for their system.

3.2 Using ST ARs to Produce Plans

Garlic’s ST ARs are closely based on the work of [Loh88]; in fact, we have implemented the Garlic optimizer as an extension of the DB2 CS [G+93] version of ST ARs. We begin this section with a review of this work, and then focus on how we have extended ST ARs to meet Garlic’s needs.

ST ARs can be seen as the production rules of a grammar that generates plans. We call the topmost non-terminal symbols of the grammar roots. A ST AR determines how POPs can be combined in a plan. A simple ST AR may build only a single POP, by invoking its constructor. The constructor allocates space for the POP, initializes various fields, and calls the property function to compute the properties of the new POP (including Cardinality and Cost).

Of course, few ST ARs are that simple. Most include a condition function; if the condition is true, then the ST AR builds its plan, otherwise, no plan is built. Also, a single ST AR may construct multiple POPs, and multiple plans. Multiple POPs are built by calling the POPs’ constructors in sequence. Multiple plans result when the ST AR is instantiated with a set parameter, and creates a plan for each element of the set—in this case, the condition (if any) is evaluated for every element of the set separately. Finally, ST ARs can also invoke other ST ARs. Thus, ST ARs are rules of the following form (where \(f_i \) is the name of a ST AR or a POP):

\[
\text{STAR}(\text{params}) := \forall e \in \text{set} : f_1(f_2(\ldots), f_3(\ldots), \text{other args})
\]

\[\text{if condition(args)}\]

Note that when a ST AR is instantiated, all properties of all the resulting plans are computed automatically, as the various POP constructors are called.

For example, the following ST AR can be used to retrieve columns that are needed by some other ST AR, but which have not yet been retrieved from the relevant wrapper.

\[
\text{FetchCols}(T, C, \text{Plan}) := \text{Fetch}(T, C', \text{Plan})
\]

\[\text{if } C' \neq \emptyset, \quad C' = C - \text{Plan.Columns}\]

This ST AR constructs a Fetch POP, if there are columns needed that are not already present in the properties of the input plan. It builds at most one plan, depending on the value of the condition function. In the following example, multiple plans may be returned (depending on the cardinality of the set of input plans), and multiple POPs are unconditionally constructed.

\[
\text{DamStream}([\text{Plan}]) := \forall p \in [\text{Plan}] : \text{Scan}(\text{Temp}(p))
\]

DamStream is called when an intermediate result must be stored. It is given a set of plans which produce that result, and adds Scan and Temp POPs to each. Examples of more complex ST ARs for a single-source DBMS can be found in [Loh88]. We will look at some of Garlic’s more complex ST ARs in Section 3.5 below.

Garlic defines a fixed set of roots with fixed interfaces, corresponding to the different language functions it supports. There are roots for select, group-by, insert, delete, and update, which are invoked by the plan enumerator depending on the kind of query. In this paper we focus on select-project-join queries. These queries involve three kinds of roots: AccessRoot (ST ARs for single-collection accesses), JoinRoot (for joins) and FinishRoot (for ensuring that the plan is complete).

To allow the Garlic optimizer to plan queries when data comes from sources with differing query capabilities, Garlic includes several generic ST ARs. These ST ARs construct the generic PushDown POP described above. We will prefix the names of these generic ST ARs with Repo to remind us that they represent work that will take place in a data source (repository). There is a generic ST AR corresponding to each root ST AR (except FinishRoot, which is a purely Garlic function). Thus, there is a RepoAccess ST AR and a RepoJoin ST AR. When these ST ARs are instantiated, they invoke rules the wrapper may have provided, then use the results to build a PushDown POP and compute its properties. If there is no appropriate wrapper ST AR, they simply return no plan. In many cases, Garlic will find other ways of accomplishing the same function.

We illustrate this using Garlic’s RepoAccess ST AR, shown in Figure 4. This ST AR invokes the plan access rule, if any, defined by the wrapper of the data source that contains the collection to be accessed. That rule returns a list of zero or more “wrapper plans”. These are simply data structures, uninterpreted by Garlic, that provide information the wrapper needs to execute the access if Garlic requests it later. Also returned are the properties for each wrapper plan; these will typically be (a subset of) the properties requested when the ST AR was instantiated. The Source property will be computed by the \(ds \) function provided by Garlic. The Garlic RepoAccess ST AR uses these properties to set the properties of the PushDown POPs that it creates.

For purposes of this paper, we assume that wrappers construct their plans using ST ARs. Note, however, that since Garlic does not interpret the wrapper plans (only their properties), wrappers are actually free to construct their plans however they wish, as long as the interface to Garlic is STAR-like. Interested readers may consult [RS97] for the wrapper’s perspective on this process. ST ARs provide a useful means of capturing the wrappers’ query capabilities, regardless of implementation. Thus, when we need to characterize the work done in a plan by a wrapper, we will use “wrapper ST ARs” and “wrapper POPs” to do so. We will use wrapper ST AR names that start with plan and are all lower case in order to distinguish wrapper ST ARs from Garlic ST ARs.
Garlic’s cost-based [S+ 79] optimizer enumerates plans by invoking the appropriate root STARs of Section 3.2. Plans for select queries are enumerated bottom up in three phases. In the first phase, the enumerator applies the AccessRoot STAR to every collection used in the query. Since at this time Garlic stores no data, AccessRoot basically serves to call RepoAccess.

In the second phase, the enumerator applies the JoinRoot STAR, which invokes the RepoJoin STAR as well as various other join STARs, each of which represents one Garlic join method. It applies the JoinRoot STAR iteratively, passing it two plans and a join predicate each time. Initially, each plan is one of those enumerated in phase one for a single table access. When all possible two-way join plans have been examined, the enumerator invokes the JoinRoot STAR to combine single table access plans with two-way join plans to create the three-way joins, and so on, until plans which join all the collections of the query have been created. The enumerator considers all bushy join orders. Since Garlic is a distributed system, bushy plans are particularly efficient in many situations.

Garlic’s optimizer employs dynamic programming in order to find the best plan with reasonable effort [S+ 79]. In every step of plan enumeration, Garlic’s optimizer applies pruning; that is, the optimizer does not use plan A as a building block for other, more complex plans if A has higher cost than another plan and A’s properties are a subset of that plan’s. Only plans whose properties are included in a cheaper plan’s are pruned; for example, if Plan 1 has higher cost than Plan 2, but the Source of Plan 1 is Garlic (i.e., Source property is “Garlic”) and the Source of Plan 2 is some data source, then Plan 1 may not be pruned because it might be a building block for a winning plan that executes most operators of the query in Garlic’s query engine.

In the third phase, the enumerator applies Garlic’s FinishRoot STAR to get a final query plan that includes all projections, selections and orderings specified in the query and not so far achieved. When this rule completes, all remaining plans will have the same properties, and the least cost plan is chosen for execution.

3.3 Plan Enumeration and Dynamic Programming

3.4 Costing Plans

In Garlic, the cost of a plan is the sum of local processing costs, communications costs, and the costs to initiate subqueries and methods. The communication costs and the costs to initiate subqueries and methods are estimated by Garlic functions using constants stored in Garlic’s catalog. The local processing costs of the operators of Garlic’s query engine are estimated by a cost model provided by Garlic. This model includes CPU and I/O costs, and models fairly closely the actions of the Garlic execution engine. The local processing costs of wrappers and their data sources, however, must be estimated by cost models that are defined for each wrapper individually because there is no universal, generic cost model that is valid for all wrappers and all data sources. We are working on a framework to help wrapper writers create these models. Today, they must be hand-written and hand-calibrated.

An important parameter of any kind of cost model is the Cardinality of input and output collections. As with other properties, Cardinality is computed after every application of a STAR. Cardinality depends on logical operations of the query, so wrapper writers need not implement functions that compute this property. However, they must provide ways to gather statistics on the cardinality of the stored collections, and on values of their attributes.

3.5 More Complex Garlic STARs

We now describe the Garlic join STARs. Garlic’s JoinRoot STAR, which is applied in the second phase of plan enumeration, is defined in Figure 5. It specifies that joins can be evaluated in Garlic in one of three ways: (1) by pushing the join down to a data source, (2) via a nested-loop join in Garlic, or (3) by means of a bind join (defined below). For each of these three join methods, Garlic defines a separate STAR which is called by Garlic’s JoinRoot STAR in order to produce the corresponding join plan.

The simplest of the actual join STARs is RepoJoin (Figure 6). This STAR produces plans in which the join is done by a data source if that source’s wrapper has a plan_join STAR and if both the outer and inner of the join are available at the data source. Like the RepoAccess STAR, Garlic’s RepoJoin STAR creates a generic PushDown POP to track the properties of the wrapper plan.

Garlic’s NestedLoopJoin STAR is shown in Figure 7. Using a plan for the outer (T1) and a plan for the inner (T2) as building blocks, it constructs a new plan with a NLJ POP at the root and a Scan POP to iteratively read the inner, which is materialized via a Temp POP. The third parameter of NLJ is the set of join predicates. For the NLJ POP to function, all the attributes needed to evaluate those predicates must have been retrieved. To ensure this, we use a variant of the FetchCols STAR defined in Section 3.2,
The third Garlic join rule, the one for bind joins, is shown in Figure 8. A *bind join* is a nested loop join in which Garlic passes intermediate results (e.g., values for the join predicate) from the outer objects to the wrapper for the inner, which uses these results to filter the data it returns. If the intermediate results are small and indexes are available at data sources, bindings can significantly reduce the amount of work done by a data source. Furthermore, bindings can reduce communication cost in the same way that a semi-join does in distributed databases. On the other hand, bindings result in poor plans if intermediate results are large: high processing costs at Garlic’s query engine, the wrapper and the data source, plus high communication costs to ship intermediate results. Therefore, binding plans should be enumerated and costs evaluated in addition to the other two alternatives. The *BindJoin* STAR checks that the wrapper for the data source which produces the inner plan accepts bindings (provides a *plan_bind* STAR), and if so, asks the wrapper to re-plan the inner with the additional bind predicates. For each resulting wrapper plan, the *BindJoin* STAR produces a new *PushDown* POP as the inner. Using our variant of *FetchCols*, *BindJoin* ensures that all the attribute values needed from the outer for the join predicates are retrieved, so that the *Bind* POP can pass them to the inner.

3.6 Discussion

We have implemented the STAR framework, and ST ARs and cost models for wrappers of several data sources, including DB2, Oracle, ObjectStore, an image processing system called QBIC [N93], two Lotus Notes databases, and two Web sources. Our implementation extends the DB2 CS V2 optimizer with the ST ARs and POPS described above. During plan enumeration, the *RepoAccess* STAR is invoked once for each collection in the query, and invokes the appropriate wrapper’s *plan_access* STAR. All of Garlic’s join ST ARs are applied in every step of the second phase of plan enumeration to ensure that all possibilities are considered. However, the conditions on the *RepoJoin* and *BindJoin* rules ensure that they will return plans only when such plans are possible.

In the current system, all ST ARs and POPS are implemented in C++. An alternative would be to implement ST ARs as declarative rules and interpret the ST ARs as proposed in [LFL88]. This might simplify the implementation of ST ARs, especially for wrapper writers; hard-coding all ST ARs in C++, however, provides significantly better performance during plan enumeration.

Our approach to optimization has several key advantages. It is a simple extension of traditional optimizer technology, allowing us to both enumerate a full set of plans and to take advantage of any and all advances in optimization and execution strategies. Since we enumerate all possible plans, we are guaranteed to find the optimal plan as defined by our cost model; as with all optimizers, however, this may not be the actual best execution plan if the cost model used by the optimizer is not sufficiently accurate. The extensions we make are isolated and few in number, consisting of one generic *PushDown* POP and a few generic ST ARs.

As a further consequence of this design, our system is extremely flexible. Wrappers for new data sources can be added at any time without considering the capabilities of other wrappers, and without changing the optimizer code. Because Garlic does not have to understand the wrapper plans, relying only on a fixed set of properties to describe them, a wide range of data sources can be wrapped. These sources may differ in data model and vary widely in query
processing abilities, yet no special properties have been added to deal with heterogeneity.

Finally, STARs are a powerful construct for a distributed system. In addition to standard relational function, Garlic’s STARs can handle approximate search, replicated collections, and gateways [K+ 96]. An example involving approximate search is given in Section 4.

4 Modeling Wrapper Query Capabilities
Using STARs

In addition to making optimization simple for Garlic, the STAR framework makes it easy to describe wrapper query capabilities, and allows wrappers to start simply, and evolve over time. While Garlic STARs may be complicated, due in part to their use of other STARs to enforce needed properties, wrapper STARs tend to be simple. Indeed, we have found no need for wrapper STARs to invoke other STARs, or even to build multiple wrapper POPs. In this section, we demonstrate the power and simplicity of the STAR framework for heterogeneous systems, by means of an example involving three very different data sources. In the next section, we extend our example to show how the Garlic optimizer would optimize a query involving these three sources.

Consider a university with a relational database storing basic information on each course offered, course descriptions in a special text store, and an on-line complaint mechanism that sends mail to an ombudsman. These three sources (relational, text, and mail) are integrated using Garlic. In the following, we provide relevant details of these wrappers and define STARs for them.

The mail wrapper exports a Complain collection of objects of type Message. Messages each have Sender, Date, Body and Subject attributes. The wrapper provides only the ability to iterate through a collection, retrieving the OIDs. To model this ability, it defines the simple plan_access STAR shown in Figure 9. Like every plan_access STAR, this STAR takes as parameters the identifier of a collection (T), a set of attributes (C), and a set of predicates (P) that are used in the query. Regardless of C and P, this STAR always returns one plan consisting of a single Quantifier POP. The Quantifier POP models the execution of the query “select OID from T” in the data source that stores T. The values of the properties (except cost and cardinality) of the Quantifier POP are defined in Table 1; the RepoAccess STAR would get these values from the wrapper plan to create its PushDown POP. Query plans generated using this STAR are executed as follows: the OIDs of all messages of a collection are passed from the wrapper to Garlic’s execution engine, which uses method calls to the wrapper to get the attributes of the messages.

The simple STAR of Figure 9 could be used as a starting point for wrappers of many different sources. (There is nothing Mail-specific about it.) This STAR guarantees that any query that accesses data from one of a wrapper’s sources can be processed, but it does not model a wrapper’s query processing capability, and therefore, plans generated by this STAR often show poor performance. Initially a wrapper writer might define only this STAR to integrate a source quickly; later (s)he could add more powerful STARs to improve performance. For example, we could initially use this STAR to integrate the relational database, and then, once we had made the relational data accessible, replace it with the STARs of Figure 10 to exploit the relational engine’s query processing power, improving performance.

The relational wrapper exports a Classes collection. Class objects have attributes Course, Professor, etc. The relational data source supports the usual relational operations, and the wrapper provides STARs for access, bind and join. These STARs are shown in Figure 10. They construct a set of POps which model the relational source’s operations. Their properties are given in Table 1. plan_access generates an R_Scan POP which models the execution of a single-table query, aggressively applying all predicates and retrieving all necessary columns. plan_bind also builds an R_Scan POP, adding the binding predicates to the set. Finally, plan_join constructs an R_Join POP, which models the relational source’s ability to join two tables, again applying all predicates and fetching all columns.

The text wrapper exports a single collection, Descrs, which contains objects of type Blurb, with attributes Name and Description. The text data source supports single-collection queries with methods of the form contains(string) or is_about(string) modeling its search capabilities. contains returns a boolean value, depending on whether the document it is applied to contains the words in the string. is_about(string) returns a rank between 0 and
Table 1: Properties (except cost and cardinality) of POPs used in Wrapper STARs

<table>
<thead>
<tr>
<th>Column (c)</th>
<th>Preds (p)</th>
<th>Order (o)</th>
<th>Mat (m)</th>
<th>Source (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>oid</td>
<td>0</td>
<td>NIL</td>
<td>FALSE</td>
</tr>
<tr>
<td>T_Rank(T, C, e, P, S)</td>
<td>T</td>
<td>C(\cup) score(e)</td>
<td>P</td>
<td>score(e)</td>
</tr>
<tr>
<td>T_Scan(T, C, P, S)</td>
<td>T</td>
<td>C</td>
<td>P</td>
<td>NIL</td>
</tr>
<tr>
<td>R_Scan(T, C, P, S)</td>
<td>T</td>
<td>C</td>
<td>P</td>
<td>NIL</td>
</tr>
<tr>
<td>R_Join(T₁, T₂, P)</td>
<td>T₁,t \cup T₂,t</td>
<td>T₁,c \cup T₂,c</td>
<td>T₁,p \cup T₂,p \cup P</td>
<td>NIL</td>
</tr>
</tbody>
</table>

Table 2: Properties (except cost and cardinality) of POPs used in Wrapper STARs

\[
\text{plan}_{\text{access}}(T, C, P) = T_{\text{Scan}}(T, C, P, \text{ds}(T))
\]

C.: P₁ \subseteq P are all predicates of the form is_about(string) or Name = string.

F.: \text{ds}(T) returns the id of the text data source that stores T.

\[
\text{plan}_{\text{access}}(T, C, P) = \forall e \in C: T_{\text{Rank}}(T, C, e, P, \text{ds}(T))
\]

C.: e is an is_about expression on T. P₁ \subseteq P as above.

F.: \text{ds} as above.

Figure 11: Text Wrapper STARs

I indicating how closely the document matches the terms in the argument string. STARs defining this wrapper’s plans are found in Figure 11. The POPs for these STARs are also described in Table 1. Note that this wrapper provides two \text{plan}_{\text{access}} rules: one, which produces a T_{\text{Scan}} POP, simply scans the documents, returning whatever attributes are asked for, and applying any “contains” or other String predicates, and the other, which produces the T_{\text{Rank}} POP, returns the results in order of rank computed as a result of an is_about method in the order by clause.

From these three examples, we can see that the basic query power of wrappers and data sources with vastly different querying abilities can be modeled easily with a handful of simple, single-POP STARs. There are two reasons why wrapper STARs can be so simple. First, Garlic provides a powerful query engine which can make up for missing query function in the wrappers. Second, wrapper STARs model “what” can be executed by a wrapper, not “how”. For example, the relational wrapper exported a simple \text{plan}_{\text{join}} STAR to model that joins can be executed by its data sources; it did not need to enumerate alternative plans with different join methods because plans with an R_{\text{Join}} POP are translated into a multi-table (SQL) query, and the optimizer of the relational data source automatically determines the most efficient join methods. Precise modeling of join methods may be required in the wrapper’s cost model in order to estimate the cost of join processing in the data source, but it is not required in the wrapper’s STARs.

These examples also demonstrate three further advantages of our approach. First, we defined a simple minimal STAR that might be the first STAR a wrapper would export. This makes it easy to get a wrapper up and running. Second, wrapper writers can add STARs or alternatives for an existing STAR at any time, to expose more wrapper query functionality to Garlic. This makes it easy to modify and evolve wrappers. Third, each wrapper’s STARs were defined independently of the others’, and without affecting Garlic STARs or Garlic’s query services, making it easy to add new wrappers to the system. Modeling power, low “entry-cost” for writing wrappers, evolvability, and extensibility are key advantages of our approach.

5 Optimizing a Query

To see how the whole framework works, we now describe how a query against the sources of Section 4 would be processed by the Garlic optimizer using Garlic’s built-in STARs (Section 3) and the wrapper STARs defined above. Suppose that the ombudsman has just received a complaint about an Ancient Studies course. She remembers receiving a number of complaints about courses concerning the ancient world recently, and wants to see what faculty are involved. She poses the following query:

\[
\text{SELECT} \quad \text{C.Course, C.Prof} \\
\text{FROM} \quad \text{Classes C, Descrs D, Complaints P} \\
\text{WHERE} \quad \text{D.Name = C.Course AND} \\
\text{C.Course = P.Subject} \\
\text{ORDER BY D.is_about(“ancient world, Greece, Rome”)}
\]

In phase one of optimization, Garlic’s AccessRoot STAR is invoked once for each collection of the query. In each case, it invokes the appropriate wrapper’s \text{plan}_{\text{access}} STAR, and then creates a PushDown POP. This results in four plans, shown in Figure 12, one from each of the Mail and Relational wrappers, and two from the Text Wrapper. Their properties will be those of the wrapper POPs in Table 1.

In phase two, Garlic’s JoinRoot STAR is fired, first to make all possible two-collection joins, and then to look at all three-collection plans. This entails four calls to JoinRoot to join Classes and Descrs (one with each of the plans for Descrs as the outer, and two with Classes as the outer, using the different plans for Descrs as the inner), four more for Descrs and Complaints, and two for joining Classes and Complaints. Each time it is called, it

\begin{align*}
\text{P1: PushDown(R_Scan(Class, Course, Prof), \emptyset, RDB)} \\
\text{P2: PushDown(Quantifier(Complaints, Mail))} \\
\text{P3: PushDown(T_Scan(Descrs, \{Name, score\}, \emptyset, Text))} \\
\text{P4: PushDown(T_Rank(Descrs, \{Name, score\}, \emptyset, Text))}
\end{align*}

Figure 12: Plans from Phase 1 of Optimization
In this paper, we presented the design of a query optimizer for heterogeneous middleware systems designed to integrate data sources with different data models and query processing capabilities. A query optimizer is a critical component of any such middleware system, because differences in cost between alternative plans for executing a query can easily be several orders of magnitude, and there are generally many possible plans. Our optimizer is based on a novel relational query description language that describes the capabilities of wrappers. Their algorithms push down as much work as possible to wrappers to minimize the amount of processing in the middleware system’s query engine. However, this work gives no guidance on how to execute the remaining query pieces in the middleware, or how to choose between alternative plans.

Recently, other ways to describe capabilities of heterogeneous wrappers or data sources have been proposed. In [LRO96], capability records are used to describe which bindings can be passed to a source. However, the capability record mechanism is not powerful enough to describe the capabilities of, say, Garlic’s relational or image wrappers. In other work, views are used to describe which queries can be handled by a wrapper/data source; e.g., [Qia96, LRU96]. While flexible, decomposing a query using views requires solving the query subsumption problem. Thus, these approaches are typically limited to simple conjunctive queries and cannot easily be extended to handle ordering, grouping, or aggregate functions.

7 Conclusion

Despite its importance, there is little related work on optimization and decomposition of queries across data sources with different query capabilities. Some systems use query rewrite rules to decompose a query, but have no cost model to evaluate alternative plans (e.g., [FRV95]). [CS93] uses rewrite rules to generate alternative versions of a query involving foreign tables and functions. Each version can then be optimized, and the least cost plan overall is chosen. Most work on cost-based query optimization in heterogeneous systems is limited to specific classes of data sources [DKS92, GST96]. The works most closely related to ours are [TRV96] (DISCO) and [PGH96]. These two approaches also use grammars to describe the capabilities of wrappers; however, the types of grammars used and how they are used are significantly different.

DISCO addresses problems beyond the scope of Garlic, with an emphasis on operating when not all data sources are available. DISCO uses a wrapper grammar to match queries. The DISCO optimizer enumerates query plans as if wrappers could handle any kind of query, then uses the wrapper grammar to parse each plan to determine whether it can be handled by the wrapper. Thus, DISCO enumerates all plans, including many invalid ones. The Garlic optimizer, by contrast, constructs only valid plans, and it is quicker to construct a plan using STARs than to parse a plan using a grammar.

[PGH96] proposes a set of algorithms that decompose a query based on a novel relational query description language that describes the capabilities of wrappers. Their algorithms push down as much work as possible to wrappers to minimize the amount of processing in the middleware system’s query engine. However, this work gives no guidance on how to execute the remaining query pieces in the middleware, or how to choose between alternative plans.

While flexible, decomposing a query using views requires solving the query subsumption problem. Thus, these approaches are typically limited to simple conjunctive queries and cannot easily be extended to handle ordering, grouping, or aggregate functions.

6 Related Work

Despite its importance, there is little related work on optimization and decomposition of queries across data sources with different query capabilities. Some systems use query rewrite rules to decompose a query, but have no cost model to evaluate alternative plans (e.g., [FRV95]). [CS93] uses rewrite rules to generate alternative versions of a query involving foreign tables and functions. Each version can then be optimized, and the least cost plan overall is chosen. Most work on cost-based query optimization in heterogeneous systems is limited to specific classes of data sources [DKS92, GST96]. The works most closely related to ours are [TRV96] (DISCO) and [PGH96]. These two approaches also use grammars to describe the capabilities of wrappers; however, the types of grammars used and how they are used are significantly different.

DISCO addresses problems beyond the scope of Garlic, with an emphasis on operating when not all data sources are available. DISCO uses a wrapper grammar to match queries. The DISCO optimizer enumerates query plans as if wrappers could handle any kind of query, then uses the wrapper grammar to parse each plan to determine whether it can be handled by the wrapper. Thus, DISCO enumerates all plans, including many invalid ones. The Garlic optimizer, by contrast, constructs only valid plans, and it is quicker to construct a plan using STARs than to parse a plan using a grammar.

[PGH96] proposes a set of algorithms that decompose a query based on a novel relational query description language that describes the capabilities of wrappers. Their algorithms push down as much work as possible to wrappers to minimize the amount of processing in the middleware system’s query engine. However, this work gives no guidance on how to execute the remaining query pieces in the middleware, or how to choose between alternative plans.

Recently, other ways to describe capabilities of heterogeneous wrappers or data sources have been proposed. In [LRO96], capability records are used to describe which bindings can be passed to a source. However, the capability record mechanism is not powerful enough to describe the capabilities of, say, Garlic’s relational or image wrappers. In other work, views are used to describe which queries can be handled by a wrapper/data source; e.g., [Qia96, LRU96]. While flexible, decomposing a query using views requires solving the query subsumption problem. Thus, these approaches are typically limited to simple conjunctive queries and cannot easily be extended to handle ordering, grouping, or aggregate functions.

Figure 13: Two-Way Join Plans Surviving Pruning

P10: NLJ(P5, Scan(Temp(P2,Subject))), {Subject=Course})
P11: NLJ(P4, Scan(Temp(P9)), {Name = Course})

Figure 14: Three-Way Join Plans Surviving Pruning

JoinRoot instantiates all three Garlic join rules. For this query, RepoJoin never returns any plans, as no two collections are co-located. NestedLoopJoin always returns a plan, as Garlic can always perform the join, so ten nested loop plans are returned. Since only the relations are co-located.

In other work, rewrite rules to decompose a query, but have no cost model to evaluate alternative plans (e.g., [FRV95]). [CS93] uses rewrite rules to generate alternative versions of a query involving foreign tables and functions. Each version can then be optimized, and the least cost plan overall is chosen. Most work on cost-based query optimization in heterogeneous systems is limited to specific classes of data sources [DKS92, GST96]. The works most closely related to ours are [TRV96] (DISCO) and [PGH96]. These two approaches also use grammars to describe the capabilities of wrappers; however, the types of grammars used and how they are used are significantly different.

DISCO addresses problems beyond the scope of Garlic, with an emphasis on operating when not all data sources are available. DISCO uses a wrapper grammar to match queries. The DISCO optimizer enumerates query plans as if wrappers could handle any kind of query, then uses the wrapper grammar to parse each plan to determine whether it can be handled by the wrapper. Thus, DISCO enumerates all plans, including many invalid ones. The Garlic optimizer, by contrast, constructs only valid plans, and it is quicker to construct a plan using STARs than to parse a plan using a grammar.

[PGH96] proposes a set of algorithms that decompose a query based on a novel relational query description language that describes the capabilities of wrappers. Their algorithms push down as much work as possible to wrappers to minimize the amount of processing in the middleware system’s query engine. However, this work gives no guidance on how to execute the remaining query pieces in the middleware, or how to choose between alternative plans.

Recently, other ways to describe capabilities of heterogeneous wrappers or data sources have been proposed. In [LRO96], capability records are used to describe which bindings can be passed to a source. However, the capability record mechanism is not powerful enough to describe the capabilities of, say, Garlic’s relational or image wrappers. In other work, views are used to describe which queries can be handled by a wrapper/data source; e.g., [Qia96, LRU96]. While flexible, decomposing a query using views requires solving the query subsumption problem. Thus, these approaches are typically limited to simple conjunctive queries and cannot easily be extended to handle ordering, grouping, or aggregate functions.
on dynamic programming and Lohman’s *S*trategy A*lternative* Rules, or *STARs*. We have extended Lohman’s approach to encompass generic and wrapper *STARs*, and implemented this in the Garlic middleware system. Garlic uses *STARs* to construct its query execution plans, in which a generic *PushDown POP* represents work done by a data source. Garlic’s generic *STARs* construct *PushDown POPs* and invoke wrapper-provided *STARs* to construct the wrapper portion of the plan. We illustrated our approach with both Garlic and wrapper *STARs*, and described how they would be used to optimize a query. In a small set of experiments [K+96], we have further shown the importance of optimization in this environment, and how alternative wrapper *STARs* impact query processing in Garlic.

The advantages of our approach lie in its extensibility and evolvability, the expressiveness of the powerful *STAR* syntax, the simplicity of wrapper *STARs*, and the fact that it can be implemented as an extension of an existing optimizer, leading to high quality plans. The approach is extensible, as new wrappers and their *STARs* can be integrated without affecting other wrappers or Garlic’s query engine. The *STAR* syntax is powerful, as it enables wrapper writers to precisely model the capabilities of wrappers even for very unusual data sources. It is typically easy to define *STARs* because *STARs* simply model “what” kind of queries can be handled by a wrapper rather than specifying precisely “how” these queries are executed by the data sources. The approach is efficient, as it employs well-known optimization techniques such as dynamic programming and pruning to find good plans with reasonable effort.

In the future, we want to continue to integrate and experiment with new kinds of data sources in order to get more general insight into the design tradeoffs for wrapper *STARs*. We are considering wrappers for a digital library product, and for OLE automation servers. We are also examining whether we can develop cost models for broad classes of data sources, so that modeling the cost of wrapper plans can be simplified for the wrapper writer.

8 Acknowledgments

We thank Guy Lohman, Yannis Papakonstantinou and Anthony Tomasic for their helpful comments, and our Garlic teammates for their support and assistance.

References

