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Abstract

The mobile wireless computing environment of the future will contain large numbers of low
powered palmtop machines. Replication will be an essential technique in this environment, pro-
viding data availability to the system. In a mobile environment it is important to have dynamic
replicated data management algorithms that allow for instance copies to migrate from one site to
another or for new copies to be generated. In this paper we show that such dynamic algorithms
can be obtained simply by letting transaction update the directory that speci�es sites holding
copies. Thus we argue that no fundamentally new algorithms are needed to cope with mobility.
However, exisiting algorithms may have to be \tuned" for a mobile environment, and we discuss
what this may entail. As an illustration, we present a variation of the primary copy algorithm,
Primary By Row, that is well suited for migrating copies 1.

Keywords: Distributed Data Bases, replication, mobility, availability.

1 Introduction

The mobile wireless computing environment of the future [IB92] will contain large numbers
of low powered palmtop machines, querying databases over wireless channels. The units will
often be disconnected due to power limitations, inaccessible communication channels, or as
units move between di�erent cells.

The ability to replicate data objects in such an environment will be essential. Object copies
are the key to high data availability: when a unit is disconnected it can continue to process
objects stored locally. At the same time, replicated data can improve performance: a copy at
a nearby or less congested site can be accessed. Thus, we expect copies to be common both

1Note to the referees:

� A much shorter version of this paper will appear in the IFIP Conference on Applications in Parallel and Dis-

tributed Computing, Caracas, Venezuela, April 1994. That version is limited to 10 pages, and contains around
40% of the words of this manuscript. Essentially, it is a condensed version of the �rst four sections of this

manuscript.

� This paper is intended to be a survey-like paper of previous work in the area and its applicability to mobility

environments. The authors understand that the VLDB journal welcomes contributions of this nature
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on mobile units as well as on the servers they interact with; these copies will be dynamically
created, updated, and destroyed in the course of the system's operation.

There are two fundamental problems related to replicated data in a mobile environment:

� How to manage the replicated data, providing the levels of consistency, durability and
availability needed.

� How to locate objects (or copies of them) of interest. In particular, a directory that
indicates the location of objects is commonly used. Should this directory may be cen-
tralized, partitioned, or replicated? Should the directory be partitioned in such a way
that each of the copies knows only about a subset of the participants?

There has been a lot of work done on replicated data management (for surveys see
[AGM87, Dav89, BHG87, CP92]), addressing the above problems. In this paper we focus
on two questions related to replicated data in a mobile environment:

� Do we need any \new" replicated data management algorithms for mobile computing,
or will existing ones su�ce? One could argue that in principle mobility does not in-
troduce any fundamental di�erences with respect to replicated data in a conventional
(non-mobile) environment. In both cases one has data copies at multiple sites and the
communication network may partition. (Actually, network partitions have been studied
extensively [DGMS85].) On the other hand, one can argue that in a mobile environment,
parameters are di�erent: the links have limited bandwidth, the frequency of disconnec-
tions is high and the sites might know in advance that they will \fail" (disconnect or lose
power). This last fact may allow them to migrate functions to other sites, in prepara-
tion for a \failure." Thus, maybe there are new management strategies, or at least new
variation appropriate for mobile environments.

� Existing replicated data management algorithms are notoriously complex, especially if
one wishes to provide high data availability. So, can we describe at a high level these
algorithms, giving their various components? In particular, can we identify the compo-
nents that may need to be tuned or modi�ed for a mobile environment? In [BI92], the
authors identify the problem of replication in mobile environments. Some replication
schemes are presented, but no solution or taxonomy of choices is o�ered.

To answer these questions, we start by clarifying the di�erence between core copies (those
that can be updated by user transactions) and cached copies (Section 2). Although the
distinction is rather obvious, very di�erent types of algorithms are need to manage each type.
A number of existing papers combine both types of algorithms into one (e.g., [CS92]), in our
opinion yielding overly complex algorithms. To avoid this, in this paper we focus on core copy
management only (Section 3).

In a mobile environment it is important to have the ability to recon�gure the set of replicas,
for example, migrating one copy from one site to another, or adding a new copy to a set of
copies. A number of such algorithms have been proposed, e.g., [ET86, DB85, Her87, JM87a,
JM87b, JM88, P8̂6, P8̂4]. The key to understanding these algorithms is to explicitly represent
the directory that speci�es the sites holding copies. Then, a recon�guration is simply a
transaction that modi�es the directory. Recon�guration transaction must be processed using
the usual concurrency control mechanisms, serializing them with other transactions. This will
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be discussed in Sections 4 and 5. Mechanisms that do not guarantee serializability are briey
discussed in Section 6.

Viewing recon�gurations in this fashion shows that essentially no new algorithms are
needed. Furthermore, we will argue that mobility does not add any new fundamental di�er-
ences. However, we will argue that the selection of a replication algorithm from the existing
menu of choices should be driven by the characteristics of the mobile environment (Section
7). As an illustration we present a variation (or adaptation) of the Primary Copy algorithm
that is well suited for migrating copies (see Section 4.5).

2 Core versus cached copies

In many articles in the replicated data literature, researchers have suggested the use of a large
number of copies (e.g. [CGP81, WJ92]), and management algorithms that can scale to these
large numbers. Before going any further, it is important to clarify that this is not entirely
correct. Speci�cally, we must distinguish between two types of replicas:

� Updateable copies: changes to the object may be initiated at the site holding the copy.
We will call the updateable copies the core copies, and the set of all updateable copies
the core set.

� Read-only: these are cached copies that cannot be modi�ed locally. We will also call the
read-only copies the cached copies, for reasons that will become apparent soon.

For example, consider an object that represents the position of a taxi cab. This object
may have many copies; for instance all dispatching sites may want to be informed of the
whereabouts of this cab. However, it only makes sense to have a single updateable copy,
mainly the one at the taxicab itself. All updates to this object will originate at the updateable
copy, and be propagated to the read-only copies. As a second example, consider an object
representing a patient's medical record and medications in use. In this case, we may wish
to make only two copies updateable: one at the patient's hospital oor and the other on his
or her physician's palmtop machine. Other copies may exist at other locations, e.g., in the
laboratory or at insurance companies. But we do not wish to let all holders of these copies
initiate updates (e.g., give medications to the patient!).

In the medical records example, note that we may periodically wish to change a read-only
copy to a core one. For example, the patient's physician may wish to use a �xed computer in
his or her o�ce. In this case, a special protocol (see Section 4) needs to be run to add a new
updateable copy to the core set (or to remove a copy from the core set). The key point is that
to execute an update, one only has to check (for consistency violations) with other current

core copies, not with all copies.
The distinction between core and read-only copies is important because of performance.

If one wishes to produce a new version of the C compiler, for example, it does not make
sense to request an authorization from the thousands of sites that have a copy. Instead, one
requests permission (e.g., locks) from a small set of core copies, performs the update, and then
propagates the new version of the compiler to the rest of the sites. Since the read-only copies
are never used for generating other updates, then their updates can be done asynchronously,
using di�erent and much more e�cient protocols. This is why we call read-only copies cached.

We feel that no real system will have (or need) many updateable copies. We believe the
number of copies that can be updated in a system will be small (e.g., between 1 and 5) for
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a simple reason: it becomes too expensive to update a large number of core copies. (As an
example of the study of the cost of data replication, see [BGM82].) Besides, it is di�cult to
envision an application that needs more than the update availability that 5 copies o�er. The
number of read-only copies may be much larger, but these copies may not be current, as noted
above.

The management of cached copies is orthogonal to that of core copies. To illustrate, assume
that the core copies are managed with a read-one-write-all algorithm (see Section 3). In this
case, an update transaction that needs to read data �rst requests read locks (for the objects it
will read) at any one of the core copies. When the transaction is ready to update, it requests
write locks, for the objects it wishes to modify, at all the core sites. (We will review other
core management strategies in Section 3; read-one-write-all is just an example we use here to
illustrate the interactions with the cached copies.) Let us assume that the core copies reside at
sites Sa; Sb; Sc. Any of the Si can act as a \server," giving out copies to \clients" that wish a
cached copy. (As illustrated in Figure 1.) If, for instance, Sb gives a copy to site C1, it can use
a variety of standard cache management techniques. For instance, Sb can keep a read lock on
the object while C1 has a copy. This ensures that the copy at C1 is current, since no updates
can take place while any of the Si is read locked. If Sb does wish to allow an update, it can
then invalidate the cached copy at C1. (If we are worried about C1 and Sb disconnecting, it
may be wise for Sb to grant to C1 a read lock with an expiration time. Site C1 would have to
renew the lock periodically.) As an alternative, the C1 copy can be kept without a read lock
at Sb. In this case, if a transaction at C1 wishes to read the data and wishes to make sure it is
current, then it would set the lock at Sb at that point in time. As a third alternative, the C1

copy can be read without any lock. This does not guarantee currency, but will probably be
acceptable in many cases. (If the data were to be used for an update, the transaction would
not be running at C1 in the �rst place; it would have gone to one of Sa, Sb, Sc for the update.)

Of course, Sb can issue multiple copies, say at C1 and C2. The read lock at Sb would have
to be managed accordingly. For example, if we want the copies to be current, then a lock is
held at Sb as long as there is one copy that needs to be current.

As a second example, consider a majority voting scheme for the core, where two of the
three sites are needed for a read or for a write. In this case, a single core site cannot issue a
cached copy (unless it does not need to be current). In this case, a cached copy C1 would have
to have locks at 2 of the three core sites, say Sa, Sb. If either one of these sites informs C1 (via
invalidate message or a lock timeout) that lock is not valid, then copy cannot be considered
current.

Incidentally, there are a variety of ways for servers to send new data values to clients.
In particular, the server can ship a new copy of the entire database, or only the values that
have changed since the cached copy was updated last. Also, as the new values are installed
at the client, it is necessary to use some type of local concurrency control to ensure the
installation does not interfere with read-only transactions there (i.e., to guarantee consistency
of the cached copy).

Since core and cached copy management is relatively independent, it is possible to study
algorithms for each separately. Actually, one of the reasons replicated data papers are con-
fusing is that they describe management of both types of data at once. To avoid this, in the
rest of this paper we ignore cached copies.
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Figure 1: Core and cached copies.

3 Managing the core

Before we discuss dynamic recon�gurations of the core set and the impact of mobility, we
briey review the basic choices for managing a set of replicas. This is not intended to be a
survey of existing replicated data management algorithms (there are a large number of them).
Instead we try to distill the key ingredients in such algorithms.

3.1 Failure and fragmentation model

The �rst step in de�ning a replicated data management algorithm should always be to specify
the undesired, expected failures [LS76], i.e., the failures that the algorithm will cope with.
For the processor (and memory) the most common models are the fail-stop [SS83] and the
Byzantine one [LSP82]. Here we will assume fail-stop processors: when a failure occurs the
processor simply halts; the contents of main memory are lost but stable storage is una�ected.
For the network, one can assume a reliable network [HS80] or a partitionable network. For
our discussion, we assume a partitionable network that delivers messages between a pair of
sites in order and that does not inject spurious messages.

Note that for each failure model, one typically uses low level protocols to increase the
likelihood that the model holds. For example, if we assume messages are delivered in or-
der, then the network may add sequence numbers to messages. Some proposed replicated
data algorithms mix these low level failure management mechanisms with the replicated data
management scheme. We believe it is much better to layer the protocols, so that the data
management algorithms can assume a stronger failure model and not concern itself with how
the probability of \noncompliance" with this model is made acceptably small.

Another initial decision is the selection of a correctness criteria for data management.
The most commonly used criteria is that of serializable schedules, and in particular one-copy
serializability [BHG87] for replicated data. Intuitively this means that the execution of the
transactions should be equivalent to a serial execution of the same transactions where every
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access to a replicated object is replaced by an access to a single copy of the object. This will
be our correctness criteria here, except for Section 6 where we explore other less strict ones.

If we are managing a collection of objects, each object could be replicated at a di�erent set
of sites. A fragment is a collection of objects that is replicated at the same set of sites. In terms
of designing algorithms, we feel it is much better to �rst develop a one-fragment algorithm
and then generalize it to multiple fragments (which is usually straightforward), rather than
to develop a multi-fragment algorithm directly (e.g., as is done in [CS92]). Thus, for the time
being we focus on one-fragment algorithms; multiple fragments are discussed in Section 6. In
what follows, keep in mind that a fragment may be located at a single core site. This is a
reasonable scenario in a mobile environment since (a) there may be additional cached copies
for availability, and (b) this one core copy may migrate, as discussed later.

3.2 Concurrency control

The basic concurrency control strategy ensures that readers exclude writers, and that writers
exclude other writers. In general this can be described by read and write quorums [BGM86].
We will explain quorums in terms of locking, although it is not necessary to use locks. (How-
ever, all implemented systems use locks and locks are simple and intuitive). The read quorum
speci�es the sites where read locks must be obtained when an object is read; the write quorum
speci�es where write locks need to be requested for a write. (The actual writes are also exe-
cuted at the sites where write locks are held; however, they eventually have to be propagated
to all sites. See below.) The locks can be requested pessimistically (before the read or write
takes place) or optimistically (when the transaction is preparing to commit).

There are four main types of quorums that have been suggested in the literature. We
illustrate them using a system with three sites, a, b, and c.

� Primary copy: Read quorum is fag, write quorum is fag. Site a is the primary site;
both read and write locks are requested there.

� Read-one-write-all: Read quorum is ffag; fbg; fcgg, write quorum is fa; b; cg. To read
data, we get read locks at any single site; to write we must write lock at all sites (\all
sites" is de�ned by the directory; see Section 3.4).

� General quorums [Gif79]: There are many possibilities; one example is a read quorum of
ffag; fb; cgg and a write quorum of ffa; bg; fa; cgg. This quorum can be implemented
by giving a 2 votes and b and c 1 vote each, and by requiring transactions to read lock
at sites containing at least 2 votes, and to write lock at sites with at least 3 votes.

� Majority quorums: This is simply a special case of general quorums, that is referenced
often in the literature. Here, each core copy is given one vote; a majority of votes is
required to read and to write.

3.3 Propagation of updates

When the quorums allow transactions to write (and request write locks) at a subset of the core
sites, we also need a mechanism for eventually propagating the updates to the remaining core
copies. For example, in a primary copy scheme, the primary copy can broadcast the updates
(including a sequence number) to the backup copies.
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In addition, we also need a mechanism for preventing transactions from reading stale data
at core sites that have missed updates. This is not a problem in the primary copy scheme
(where all reads occur at the primary copy that is always up to date) nor in the read-one-
write-all scheme (since all core copies are always up to date). However, a stale-date-prevention
mechanism is needed for general quorums. In our three site example above, suppose that a
transaction T1 writes an object at a and b only. A subsequent transaction T2 wishes to read
the object, so it read locks at both b and c, say. The stale-data-prevention mechanism must
ensure that the actual read occurs at b, or that site c is brought up to date (by propagating
T1's update) before T2 reads at c.

3.4 Directory update mechanism

The directory is a structure that speci�es which sites have copies of the fragment. The directory
update mechanism allows us to change the core set (and possibly the quorums used). The
mechanism must ensure that transactions that are using an old quorum (based on an old
directory) do not execute under the current one. The directory update mechanism is the key
to operation in a mobile environment and will be discussed in Section 4 in more detail.

4 Directory strategy and update mechanism

As pointed out in [BI92], the location of the copies becomes a dynamically changing data
item. Thus, in a mobile environment it is important to be able to change number of core
copies and/or the sites that hold them (i.e., change the core set). Let us start by discussing
the reasons why we may wish to move a core site, say a site Sa to another Sb. (In this case,
Sa is removed from the core set while Sb is added.)

1. Sa has failed and is expected to be down for a long time.

2. Sa is being brought down for preventive maintenance.

3. Sa is mobile and is running out of power.

4. Sa is mobile are is moving out of radio contact.

5. there has been a change of data access patterns, and it is determined that Sb is a more
e�ective site for the core copy.

6. the user who "owns" copy at Sa moves to Sb, carrying a copy of the data in say a oppy
disk.

7. Sa fails but the data is on a dual-ported disk, accessible Sb.

Note that except in cases (1) and (6), Sa is active and can participate in the movement.
As we will see, this makes it easier to do migration.

Similarly, it may be desirable to change the number of core copies, either adding sites or
removing sites to the core set. Increasing the number of copies can improve data availability
(e.g., it may be more likely to �nd a quorum), but increases overhead (e.g., more copies need
to be updated). Eliminating sites from the core set has the opposite e�ect. In addition,
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eliminating failed sites from the core set (and changing the quorums) makes it more likely to
�nd a quorum.

Having argued that it is important to be able to change the core set (de�ned by the
directory), let us discuss how the directory can be updated. The �rst step is to understand
the directory structure. There are four aspects to consider.

4.1 Partial versus complete directory

A complete directory de�nes the location of all core copies, while a partial one only gives the
location of some core copies. For example, say the core set is sites Sa, Sb and Sc. A complete
directory for this fragment would list fSa; Sb; Scg. A partial directory would give, say, fSa; Sbg
as well as a pointer to some other directory (perhaps on another site) that gave the rest of
the core set. (For example, we can organize the directory into a tree, where each node only
knows about one core site and the children in the tree.)

Some researchers have argued in favor of partial directories because no one structure needs
to record all the core set, an advantage if the core set is very large. However, we have argued
that the core set is typically very small, so recording all of the participants in one place is
very reasonable. Furthermore, the replicated data management algorithms are complicated
enormously it each transaction has to traverse a complex structure to �gure out what sites
need to be locked or updated. Thus, in this paper we assume complete directories.

Note that the directory also records the read and write quorums that are in currently in use
(this may be implicit). Changing the core sites and/or the quorum rules requires a directory
update (to be discussed in Section 4.4). Sometimes it may be useful to associate a timestamp
or version number with a directory. Each time the directory is updated, its version number is
incremented.

4.2 Core versus cached directory

The (complete) directory is just another data object, and it can be replicated (and should
be, for availability). One or more of the directory copies can be core; the rest can be cached
(see Section 2). To avoid confusion between replication of the directory and replication of the
fragment it refers to, we will refer to the latter as the base data or objects.

Cached directory copies can be used as hints as to where to �nd the base data of interest
to a transaction; note that the hints may be out of date. However, before a transaction can
commit an update, it needs to read lock a read-quorum of the directory core sites to ensure
that it has an up to date version of the directory. (Recall that the transaction uses the
directory information to decide where to lock the base data and where to propagate updates
to.) In the rest of this paper we will only refer to core directory copies.

4.3 Number and location of copies

The complete core directory can be centralized (1 copy) or may be replicated at a number
of sites. The directory core set speci�es this. The centralization strategy is simple but not
very robust. Without ruling out centralization, we will assume the directory is replicated at
several sites (centralization is just a special case of this).

The next question to address is the location of the directory core copies. One may be
tempted to place them at an arbitrary set of sites, but this would mean we needed another level
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of directories! Hence, there are only two reasonable choices for locating the core directories:

1. Place them at a �xed set of sites that never changes (e.g., on three �xed servers on the
network).

2. Place them at the (base) core sites. That is, if a directory at site Sa states that Sa, Sb,
Sc have copies, then it means that these three sites have a copy of the base data as well
as of this same directory.

Placing the directories at �xed sites makes it easier to �nd the directories. On the other
hand, it makes it impossible for the core set to recon�gure if it is disconnected from the �xed
directory sites, or if the �xed directory sites are unavailable. Thus, there is a tradeo� between
ease of location of copies and availability. To keep things simple, in this paper we will assume
Option 2 (directories at core sites). However, most of the algorithms and ideas we will discuss
also apply to Option 1.

Recall that sites beyond the core set, perhaps all other sites, may have a cached copy of
the directory. This makes it easier to locate the core set under Option 2. Any of the schemes
for managing cached copies could be used here. The entries in the caches are, of course, only
hints as to the location of the core set. We return to this issue in Section 7.

To summarize, we have N core sites, each with a directory of the form:

DIRECTORY: V ER

1: Si1

2: Si2

3: Si3

Each entry of the form i: Sj means that the ith core copy, as well as a copy of this directory,
are at site Sj. The V ER entry at the top is the directory timestamp or version number.

4.4 Directory management

The directory is a replicated object that has to be managed just like any other. There are
several choices:

[a] design a special purpose algorithm for directory updates (e.g., [DS83]).

[b] Use same algorithm as used for the base data.

[c] Use a standard algorithm, but di�erent than that used for base data.

Option [a] might have some performance advantages, although we doubt it. Furthermore,
it represents a lot of additional design work, so we will not consider it here.

For the rest of the options, the key idea is to guarantee serializability of both base and
directory update transactions. That is, directory plus base objects are treated as a unit, and
whether a transaction modi�es the directory part or the base part of the unit, it does not
matter: the \standard" concurrency control rules must be followed.

To illustrate, consider a transaction T3 that will update the base data. It needs to read
the directory to know what sites hold base data that must be updated. Thus, T3 must read
lock the directory to prevent some other transaction to from changing it (assuming we use
locking for concurrency control). Transaction T3 must obtain read-locks at a read-quorum for
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the directory management scheme in use; it does this by �rst locking and reading one copy to
�gure out what other directory copies need to be locked. When the transaction commits, the
directory read locks are released.

If we wish to enforce concurrency control in an optimistic way, we proceed as follows.
Transaction T3 reads the directory without locking it, noting the directory timestamp or
version number. At commit time, T3 sends the version number of the directory it read to all
write-quorum sites; each of these in turn checks if the local directory is the same as seen by
T3. If not, T3 is aborted (i.e., the site votes \no" in the commit protocol). If the versions
match, then the sites votes \yes" in the commit.

In the two examples above we only read the directory before modifying the base data. To
modify the directory itself and recon�gure the core set, we simply run an update transaction
on the directory. This update must follow the usual rules. This is, if locking is used, the
transaction must write lock the directory (at a write-quorum of sites). If an optimistic scheme
is used, again, the directory read initially is validated when the update commits.

Notice that it is not a good idea to use a read-one-write-all concurrency control scheme
for the directory (where the write quorum is all sites). If this were done, the directory could
not be updated when any one site was unavailable. However, this is exactly the time when
one may want to change the core set. The other quorum based concurrency control schemes
would not have this problem. With primary-copy scheme, recon�gurations would be possible
unless the primary directory site were unavailable.

4.5 Primary by row directory management

As we have seen, the directory concurrency control scheme determines when core set recon�g-
urations can be performed. Thus, it is important to select a scheme that matches the system
requirements.

To illustrate this point, let us consider a scenario where copies migrate often. For example,
say a person is editing a document, �rst from his o�ce computer, then from a laptop on the
train ride home, then from his home computer, and then back to the o�ce. At each step, a
copy of the document is copied from one machine to the next. Since we want the person to
be able to update the document on each machine, each new copy should become a member
of the core set and each old copy should be deleted. (There may be other core copies in use
by other people; see Section 6 for a further discussion of this.) We would like to be able to
migrate the core copy in this fashion, regardless of whether other core copies are reachable at
the moment. This suggests that each core copy should have the ability to modify the portion
of the directory that concerns it.

We call this scheme a Primary By Row directory update algorithm. This is not really a
\new" concurrency control scheme; it is simply an adaptation of the primary copy scheme
to suit the needs of our copy migration scenario. To explain this scheme in more detail and
to illustrate its advantages, assume we have Sa; Sb; Sc in the core group. Also suppose that
the base data is managed under a majority scheme (two sites are needed in read and write
quorums). (But keep in mind that primary-by-row directory management can be used with
any base data scheme.)

Assume that currently the 3rd copy is at site Sa. (See Figure 2.) This site controls line
\3 : Sa" of the directory and can initiate changes to it on its own (local commit). For instance,
say Sa wants to migrate its copy to Sd. (Figure 3.) First, Sa ensures that Sd has a copy of
the data and of all transactions that Sa knows about. Then Sa changes its entry to \3 : Sd",
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Figure 2: Primary by row directory management. (Solid lines indicate that control is at that site.)

commits the change, and propagates the new line to Sb; Sc; Sd. When these sites receive the
update, they install it.

In this case, we do not need a version number for the entire directory. Instead we have a
version vector, one entry per site. For instance, assume that the original directory had versions
< 1; 1; 1 >, where the ith entry in the vector is the version number for line i of the directory.
The change illustrated in the previous paragraph would then yield version vector < 1; 1; 2 >,
meaning that the 3rd copy now has version number 2. If the 2nd line had concurrently changed,
the new vector would be < 1; 2; 2 >.

If a base transaction T2 is running concurrently with the directory change, it may initially
read directory < 1; 1; 1 > and then at commit time be informed (by the participants of the
commit) of a di�erent vector. In this case, we can abort T2. Or if we want to be more e�cient,
we can try to discover the new directory and get the missing acknowledgments. This type of
optimization will be discussed in Section 5.

Since only one site at a time controls the ith row in the directory, the update protocol is
safe. Thus, moving the copy at Sa to Sd is like passing a token. However, the token can be
lost. For instance, say Sa commits its change and fails before it propagates the new row 3
entry to other sites. Then everyone will continue to think that Sa is the row 3 site, and will try
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Figure 3: Migrating a copy.
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to get locks form it. This will be just as if site Sa had failed. Fortunately, the base algorithm
can tolerate this failure, and transactions can continue to commit if they have locks form the
�rst and second copies.

There are many variations on this theme. For example, if votes are used to implement
read and write quorums, site Sa may \split" its token and select two or more new sites to
represent it. In this case, each could have half the votes that Sa had originally. Also, two sites
may combine into one, with a protocol that only involves them. The new site would have the
sum of their votes. There are also a variety of ways to create brand new directory entries (or
to delete them). We do not discuss these here.

The main advantage of the primary-by-row directory management approach is that deci-
sions to change the directory are localized. As we have stated, it seems especially attractive
for scenarios where copies indeed migrate, e.g., because they are on a removable oppy disk
or on a magnetic strip on a card. The fact that the copy has been removed from one site and
installed in another represents the migration of the token, and should be allowed to happen
regardless of whether the rest of the copies \authorize" the change or are aware of it.

5 Update propagation and e�ciency issues

In this section we discuss some details regarding replicated data management in a dynamic
environment. It is important to understand these issues as they can impact correctness and
data availability in a mobile environment.

5.1 Update propagation

As discussed in Section 3.5, a replicated data management scheme must ensure that up-
dates are eventually propagated to all core sites. For instance, assume we use a \majority
scheme"[Gif79] with three core sites: i.e., any two sites constitute a read quorum, and any two
sites constitute a write quorum. Say transaction T3 commits an update at sites Sa, Sb only.
Moments later, T4, which depends on T3, executes at Sb and tries to commit at Sb, Sc. As part
of this commit, T4 must bring Sc up to date and ensure it is made aware of T3 (else the copy
at Sc would not be valid.) For other schemes the details are di�erent, but key principle is not:
before a site can commit a transaction T4, it must have seen all transactions that preceded
T4 in the serialization order. (Actually this may be too strong: it is only necessary to see
transactions that T4 depends on. But keeping track of what T4 depends on is too hard, so one
just ensures all previous transactions are reected.)

Directory update transactions are no di�erent. Before they commit, they too must bring
sites up to date if they have missed transactions. Thus, if a directory update transaction adds
a site, this site must have an up to date copy of the base data (and of the directory of course),
before the directory update can be committed.

To illustrate, say we use a majority scheme to manage the directory. Initially, sites Sa; Sb; Sc

each have a copy of directory:

DIRECTORY: V ER = 5
1: Sa

2: Sb

3: Sc
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Say site Sa fails, and site Sb wants to add another site Sd to the core set. Site Sb runs
a directory transaction T1 to update the directory. Site Sb sends messages to itself and Sc,
asking for the update; the message includes the directory version number, say 5. If site Sc

still has version 5, it locks the directory and goes into a prepared state for T1. Site Sb does
the same. If Sb receives 2 positive messages it has a write-quorum so it commits T1 and sends
out commit messages. Upon receipt of the commit message, Sc releases the new version of
the directory (VER: 6; 1: Sa; 2: Sb; 3: Sc; 4: Sd).

Site Sd has to be brought up to date \at the same time" the directory is updated. To
illustrate, say a transaction T2 (on base data) committed before T1 ran, and obtained votes
form Sa and Sc. This means that only Sa and Sc have the updates generated by T2. Assume
now that T1 changes the core set to Sb, Sc, Sd. In this case, knowledge of T2 will only be at
a minority of sites and this is dangerous. For example, a transaction that conicts with T2
could commit at Sb, Sd without any knowledge of T2! To avoid this, T2 must be propagated
to a majority of new group members before the new group is open for business. This is done
as part of the commit protocol that updates the directory. Thus, when the sites prepare (as
described above) they acknowledge with a \list" of committed transactions they have seen.
Sb, the coordinator, compares the responses and must ensure that each transaction must have
been seen by a majority of new group sites. If this is not the case, it sends the transactions
(like T2) to sites that missed them (like Sb, Sd in our examples). When sites acknowledge the
receipt of the missing transactions, then Sb can �nally commit the directory change T1.

To complete the example, assume another transaction T3 (to base data) is executing con-
currently with the directory update T1. When T3 starts it reads directory version 5 and thus
tries to get at least 2 out of three votes from sites Sa; Sb; Sc. If T3 tries to commit after direc-
tory version 6 in palace, it will be aborted (one of the two sites participating in the commit
of T3 will notice the out of date directory and will vote to abort). If T3 commits before T1, its
update (like that of T2) will not be lost. The key point is that updates to the directory are
serialized with regular base transactions.

5.2 Lazy versus immediate propagation

Update transactions (to base data) do not necessarily have to lock and propagate their changes
to all core copies. In the example in the last subsection, transaction T2 only updated Sa and
Sc. Under normal circumstances, what should the site running T2 do about the updates to
Sb? If it is lazy it will just not send the update out, �guring out that eventually Sb will miss
it and ask for it. If it is conscientious, it will make a best e�ort to send the update as soon as
possible.

In practice it makes sense to always be conscientious. There is no real advantage is post-
poning the transmission of T2's updates to all sites that are active. Once the site executing
T2 knows all core sites got the update, it can delete its log records. Furthermore, updates
sent conscientiously are likely to be sent while data is cached in memory; updates requested
later will likely generate disk tra�c. So the bottom line is that transactions should propagate
updates to all available sites, regardless of what the write-quorum is.

5.3 E�ciency issues

The protocols we have presented here can be optimized in a variety of ways. Here we present
two optimizations to illustrate.
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Let us return to our example above where T1 updates the directory. Many uncommitted
base transactions (like T3) may have started before T1 and read the old directory. According
to our example, they all should abort when they try to commit! However, this is not necessary.
Say Ti is a transaction that straddles a directory change. When Ti starts, it reads a directory
copy with version number n. (It could even be a cached directory copy.) Based on the n
directory, Ti requests read and write locks. During Ti's �rst phase of commit, each participant
can return its current directory version number. If Ti receives a version number newer than
n, instead of immediately aborting, it can try to read the new directory, and simply collect
additional locks to satisfy the new read and write quorums. If lucky, maybe Ti will already
have enough votes under new directory too and it will be able to commit immediately.

For instance, in our Sa; Sb; Sc example above, say Ti reads directory version 5 (indicating
the core set is Sa, Sb and Sc). Transaction Ti requests write locks from Sb and Sc (a write
quorum). During the commit process, Ti receives acknowledgments from Sb and Sc but with
version 6. After Ti reads the version 6 directory (since it is small, maybe it was included
in an acknowledgment message), it discovers that the core set is Sa, Sb, Sc and Sd, and 3
out of the 4 sites are needed for a write quorum. Thus, it needs to set locks and receive an
acknowledgment from an additional site. If this can be done, then Ti can successfully commit.
On the other hand, say that in the version 6 directory Sa was being replaced by Sd. In this
case, the new core set is Sb, Sc, Sd and Ti already has acknowledgments from 2 of these 3
sites. Hence, Ti can commit under the new directory anyway, with no further lock requests.

Another possible performance problem is that of blocking by a directory update. To
illustrate, consider the following scenario. The core set consists of Sa, Sb, Sc, and site Sb is
trying to add Sd to the set. Site Sb sends directory update request to all sites, and they all
acknowledge. Unfortunately, site Sb fails at this time, leaving the other sites blocked in the
prepared state, not knowing whether directory version 5 (set Sa, Sb, Sc) or version 6 (Sa,
Sb, Sc, Sd) is valid. If we enforce concurrency rules strictly, the directory data is dirty and
no other transactions can read it, so no base updates can occur in this state. However, we
may get around this in some cases, when transactions can get quorums under both possible
versions. For example, say T2 starts reading version 5, and when it wants to commit, it tries to
get acknowledgments from Sa, Sb, Sc. Say Sa does not reply and Sb replies that at this point
it does not know whether version 5 (Sa, Sb, Sc) or version 6 (Sa, Sb, Sc, Sd) will be the valid
one. Site Sc replies similarly. At this point, T2 notices that it got enough acknowledgments
under version 5, from Sb and Sc; thus if it turns out that version 5 is indeed valid (say T1
aborts), then T2 will be safe. However, if version 6 turns out to be the good one, then T2 will
not be safe. To avoid this, T2 tries to get an acknowledgment from Sd. Say site Sd does set
the required locks and acknowledges. At this point, T2 has 3 out of 4 acknowledgments under
version 6, so one way or another T2 will be safe and can be committed, even if the directory
update transaction T1 is blocked.

6 Multiple Fragments and Non-Serializability

In Sections 3 and 4 we made two important assumptions: we only considered a single fragment,
and we required that the execution schedule on the core copies was serializable. Extending
the algorithms of Section 4 to multiple fragments, while still guaranteeing serializability, is
relatively straightforward. The key is simply to make sure that at transaction commit time
appropriate locks are held for all fragments involved in the transaction (we continue to assume
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a locking strategy for simplicity).
To illustrate, consider a transaction T that accesses fragments F1 and F2. Assume that T

reads data from F1 and updates F2. At T 's commit time, it must hold a read lock on the F2

directory and on a write quorum of the F2 sites. In addition, it must hold a read lock on the
F1 directory and an F1 read quorum. This ensures that the resulting schedule is serializable.

Forcing transaction to acquire locks from multiple fragments may hurt performance. In
our example, while T is committing, all other conicting transactions on F1 and F2 will be
blocked. If the commit process blocks (see Section 5.3), then both fragments will be blocked
inde�nitely. Also, in a mobile environment, it may take T a long time to concurrently get
both sets of locks. It would be much easier, for example, to get the F1 set of locks �rst, read
F1, release the locks, then get the F2 locks and update F2.

If T gets the sets of locks in this \independent" fashion, then performance improves but
serializability is lost. Actually, not everything is lost. If transactions follow the locking rules for
each fragment, then the execution schedule as far as that fragment is concerned is serializable.
(More formally, if one projects out of the global schedule all actions except for those involving a
single fragment, the resulting sub-schedule is serializable [GMK88, KS88].) This means that all
consistency constraints involving data within each fragment (intra-fragment constraints) will
be satis�ed. However, global serializability does not hold and inter-fragment can be violated.
This type of weaker correctness guarantee has been called either fragmentwise serializability
or local serializability [GMK88, KS88].

In some applications there may be no inter-fragment constraints, so local serializability is
�ne. In other cases, it may be acceptable to violate inter-fragment constraints, as long as
application programs try to �x them when they notice they have been violated. For example,
say one fragment represents new sales made by a set of traveling salespeople on their portable
computers. A second fragment could represent the actual inventory on hand. If there is an
inter-fragment constraint such as \one can never sell something unless it is already sitting
in the warehouse" then one probably requires global serializability. One the other hand,
perhaps the application is structured in such a way that can sell items not in inventory, on the
assumption that more will be manufactured if necessary. In this case, the constraint is not
\hard": salespeople will check if the desired product is in inventory, and will then advise the
customer. But it would be acceptable if once in a while the customer is told that something
is available, only to discover after the sale is recorded that it is out-of-stock and there will be
a delay in receiving the product. The fact that the constraint is not hard lets transactions
�rst check inventory (perhaps even on a cached copy), release locks, and then record the sale.
This is indeed many applications work today, even when computers are not mobile.

Local serializability still requires that transactions request read and write locks for the core
fragment and its directory. If one relaxes the requirement for serializability of the fragment
schedule, one can arrive at more e�cient protocols. In particular, a number of algorithms have
been suggested for keeping copies of a fragment approximately equal, e.g., [BGM, KB92]. In
these algorithms, all core copies can be updated, but the di�erence between any two copies is
bounded, assuming copies have a numeric value.

As a simple example, say three traveling salespeople are selling widgets. Each has a counter
reecting how many widgets have been sold, call them X1, X2, and X3. Say each salesperson
is allowed to sell a maximum of 3 widgets without informing the others. That is, each person
can incrementXi by at most three without getting an acknowledgement that the other people
have reected those increments on their counters. (To report an increment, a site does not
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send the value of its counter; instead it send an \increment counter" action.) Then we could
show that the counters will di�er by at most 3 units (assuming no decrements) and that
Xi will di�er from the true total number of widgets sold by at most 6. This scheme gives
the salespeople the exibility to sell at least some widgets even when they are disconnected
from the others, and to have an approximate idea of how many total widgets have been sold.
The disadvantage is that applications must now understand and be able to cope with the
approximate data. For instance, a program to compute sales bonuses needs to understand
that the value it reads in Xi may be o� by some small amount.

7 Discussion

We have argued that there are three main types of replicated data: cached, core and directory.
Cached copies are read-only and can thus be managed in a more exible way. Core copies are
updateable and are expected to be few in number. The directory indicates where core copies
are stored. We have argued that recon�gurations of the core copies can be treated simply as
transactions that modify the directory. This implies that the same set of choices available for
managing the core copies can be used to recon�gure the core, i.e., can be used to update the
directory.

By allowing the directory to be updateable one achieves replicated data management al-
gorithms that are dynamic, i.e., that can adapt to the disconnection or failure of a core copy.
These dynamic algorithms attempt to continue operation (new updates to the core) even when
some members of the core set are unavailable. Whether a copy copy is unavailable because it
moved away or it simply died is not really critical in these algorithms. Hence our claim that
mobility does not introduce any fundamental new problems or algorithms for replicated data
management.

Mobility may make, however, certain choices within the available \menu" more or less
desirable. In particular, there are three aspects of replicated data management that may be
impacted:

� If disconnections are going to be frequent (due to travel of the copies), then one should
select a directory management strategy that allows frequent recon�gurations. For exam-
ple, in Section 4.5 we described a Primary By Row strategy that we think is especially
well suited to frequent migration of a copy. The assumption here was that a site could
orchestrate the migration of its copy before it became disconnected, as opposed to a fail-
ure case where the original site is not available for the move. If failures were the primary
cause of recon�gurations, then perhaps a quorum directory strategy would be best, since
a majority of the survivors can recon�gure the directory. As we have stated, this tuning
of the directory strategy does not really constitute development of a \new algorithm."
Even the Primary By Row strategy we advocate here is simply an application of the
Primary Copy algorithm to managing each row of the directory.

� A core copy should not be placed on a low-bandwidth, limited power mobile site, unless
updates originate mainly at that site or it is imperative that the mobile site be able
to generate base updates when disconnected. A core copy must receive every update
originating at other core copies, and must transmit all of its updates. If the communi-
cation link to a mobile workstation is low bandwidth, it will be di�cult to support all
this update tra�c, and hence one should avoid placing a core copy there. Similarly, if
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the workstation has limited power, it will be turned o� often, interfering with updates
to the other core copies. Furthermore, storage reliability on mobile units tends to be
signi�cantly lower than on �xed servers (e.g., laptops can be dropped or stolen), again
leading to interference to other copies. Thus, an arrangement where the core copies are
on reliable servers, and the mobile workstations have cached copies seems much more
attractive.

There are two exceptions we see to this rule. One is if the majority of the updates to the
fragment originate at the mobile unit. For instance, consider a meter reader working for
a utility. Clearly, he or she wishes to operate in a disconnected fashion, and most of the
transactions will simply input meter readings. No other sites will be entering data into
this person's readings database, so it clearly makes sense for the machine being carried
by the reader to be the primary core copy for this fragment.

It is important to note, however, that while this arrangement is good for disconnected
operation by the meter reader, it is vulnerable to total data loss in case of a disaster (e.g.,
the portable machine falls in a lake). Thus, it is important to combine the primary-copy
strategy with frequent backups to a cached copy. If the mobile unit is truly disconnected,
then the cached copy will have to be on removable oppy disks. Even with these local
backups, transactions that commit between the last backup and the disaster will be
lost. (This can be avoided by not committing a transaction until its updates have been
applied at the backups, but then this would not be a primary copy strategy; it would be
a read-one, write-all (backups) strategy. See Section 3.2.)

The second exception is when it is important for a disconnected station to perform
updates on the base data. One example of this scenario is the traveling salespeople of
Section 6. Another example may be a group of people working on a joint document
while traveling in areas not served by good networks. In both of these cases, access
to the data is required during partitioned operation, and there is no alternative but to
place the core copies on the mobile workstations. The price to pay is either (a) poor
performance (e.g., my updates may be blocked while my partners are disconnected), or
(b) non-serializability. In the latter case, the application or users will have to cope with
inconsistencies, e.g., approximate counters in the case of the traveling salespeople, or
conicting updates to the same portions of the document in the case of the traveling
paper writers.

� A good database and application design can lead to improved data availability and
performance in a mobile environment. The key is to fragment the database in such a
way that each fragment can be controlled by the sites that need to control it, and in
such a way that there are few inter-fragment constraints.

To illustrate, let us return to the sales and inventory application. Say there are two
relations: each tuple in the INV ENTORY relation records the item number, its de-
scription, and the quantity on hand in the warehouse. Each tuple in the SALES relation
records a particular sale, giving the date, the salesperson id, the customer, id, the item
number, and the amount sold. If one considers both relations a single fragment with an
inter-fragment constraint such as \quantity on hand for an item should be less than the
total amount sold," one gets terrible performance. If a salesperson portable computer
has a core copy of the fragment, then there will be a huge communication overhead. If
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the core copies are stored on servers, the salesperson will not be able to record a sale
unless he is connected to the server.

As discussed in Section 6 we can improve things by splitting the database into two
fragments and eliminating the inter-fragment constraint. We can do even better by
partitioning the SALES relation into a set of fragments S1, S2; ::: where Si has the sales
record for salesperson i only. In this way, the machine for salesperson i can be the primary
core copy for Si. Accordingly, each salesperson can enter sales records independently of
the others.

The INV ENTORY relation can be stored at one or more servers. Each salesperson's
machine can have a cached copy of INV ENTORY . Similarly, the servers can have
cached copies of the Si fragments. At the server, a background process can check the
new sales records and update the inventory accordingly. The updated inventory is then
sent to the salespeople as part of the cache management algorithm. Thus, we see that
by fragmenting the data properly, each user gets to modify his critical data at all times.
For an additional discussion of how to fragment a database see [GMK88].

In closing this paper, we note that mobility may impact other aspects beyond the man-
agement of the core copies themselves. Speci�cally, the management of cached copies needs
to be tuned according the the bandwidth available and the currency requirements of the ap-
plication. For instance, if the cached copies can be reached via a broadcast network, it makes
sense to update all cached copies of a fragment at once. If the available bandwidth is low,
then updates to the cached copies should be as infrequent as possible, and the updates should
be compressed as much as possible (e.g., giving only �elds that changed, as opposed to full
record images).

A second aspect concerns �nding the directory for a fragment. As discussed in Section
4.3, cached copies of a directory can be placed at a variety of sites, to serve as hints to the
true location of the core copies. The same issues mentioned above apply here: One needs to
�nd appropriate locations for the cached directories, and appropriate update frequencies to
minimize the cost of �nding the core. At one extreme, every time the directory changes, a
message could be broadcast to all sites. At the other extreme, a cached directory could be
changed only when it is discovered to be out of date. At that point, a query is broadcast to all
sites to �nd the core. (Strategies to invalidate caches in mobile environments are studied in
[BI93].) Finding the best strategy would depend on factors such as the available bandwidths,
the availability of broadcast channels, the frequency of directory changes, and the desired
response time for �nding the core.
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