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Abstract

We consider the problem of managing the information required to locate users in a wireless com-

munication system, with a focus on designing and evaluating location management techniques that are

e�cient, scalable, and 
exible. The three key contributions of this paper are: (1) A family of location

management techniques, HiPER (for Hierarchical Pro�lE Replication), that e�ciently provide life-long

(non-geographic) numbering with fast location lookup; (2) Pleiades, a scalable event-driven wireless sys-

tem simulator with realistic calling and mobility patterns derived from several months of real tra�c

traces; and (3) multi-day simulations comparing our proposed location management techniques with

current and previously proposed techniques on a realistic geographical and network topology.

�Research supported by the Center for Telecommunications and the Center for Integrated Systems at Stanford University,

and by equipment grants from Digital and IBM Corporations.
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1 Introduction

In a wireless communications system, mobile users place and receive calls through a wireless medium. Users

are located in system-de�ned zones, that correspond to bounded geographical areas. When a user places

a call, the wireless network infrastructure must perform several tasks, including authenticating the caller,

locating the callee, and routing the call to the base-station in the same zone as the callee.

We consider the problem of managing the information required to locate wireless users who move from

zone to zone. When user A calls user B, the location lookup problem is to �nd the location of callee B within

\reasonable" time bounds, in order to complete the call setup between A and B. In current cellular standards

such as GSM and IS-41 [EIA91], each user has a home database termed the Home Location Register (HLR)

which maintains the current location of the user as part of the user's pro�le. When user A calls user B,

the wireless infrastructure initiates a potentially remote query to the HLR of B. Since performing remote

lookups may be slow due to high network latency, current systems augment the above pure HLR scheme by

maintaining Visitor Location Registers (VLR) in every zone. VLRs store copies of pro�les of users not at

home and currently located in that zone. The modi�ed lookup strategy for this HLR/VLR scheme is to look

for a copy of the callee's pro�le in the local VLR before performing a remote query to the callee's HLR.

One desirable feature that current protocols (such as IS-41 and GSM) fail to o�er is Life-Long Numbering.

Users in the future may want the 
exibility of having the same telephone number for their entire life,

irrespective of whether they change service providers, or shift their residence. In IS-41 and GSM, a user's

number determines his home location (HLR), so life-long numbering is not possible without decoupling HLRs

from geographic locations or service providers.

The primary contributions in this paper are:

1. HiPER (Hierarchical Pro�lE Replication), a new family of location management techniques (LMTs)

that e�ciently provide life-long numbering. We use a hierarchical database architecture as in [AP91,

KVP94, Wan93] to achieve life-long numbering. We then exploit locality in user calling and mobility

patterns [JL95, SJW96] to selectively replicate user pro�les at various databases in the hierarchy to

reduce lookup latency and communication costs, at the expense of increased storage and update costs.

2. Pleiades, an event driven simulator that can simulate multi-day calling and mobility activity of several

million users over large geographical areas. Our simulator has a 
exible simulation scripting language

(SSL) and an event generator with time-varying user calling and mobility events. A unique aspect of the

calling models used in our simulations is that they were derived from over six months of calling activity

from the Stanford University Campus; similarly our mobilitymodels were derived from vehicular tra�c

activity data collected over a period of 8 months in the San Francisco Bay Area, and corroborated

with published tra�c studies from Europe and the United States [HY93].

3. Simulations that compare our proposed family of LMTs against traditional LMTs, such as HLR/VLR,

and centralized database architectures. In addition to using the realistic call and movement models

described above, for the simulations we used a realistic geographical model of the San Francisco Bay
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Area along with its freeways and bridges to simulate accurately the performance of the LMTs in a

close approximation of a real geographical topology. We report performance numbers of average and

peak system requirements in terms of storage, number of database lookups and updates, and network

bandwidth and number of network message hops. We also report the percentage of location lookups

serviced by local databases to compare the call setup latency of the di�erent LMTs.

The paper is structured as follows. We cover related work next, in Section 1.1. In Section 2, we describe

hierarchical database organization, present the intuition behind pro�le replication, and describe our HiPER

LMT family. In Section 3, we describe the architecture of Pleiades, our extensible simulator, and its scripting

language. We also present our user calling and mobility models and the telephone call and vehicle tra�c

data we used to derive them. In Section 4, we compare performance numbers of our proposed LMTs and

other conventional LMTs on a realistic model of the San Francisco Bay Area. We conclude and discuss

future work in Section 5.

1.1 Related Work

Pro�le replication or caching has been considered before to improve the lookup performance of HLR/VLR.

Replication is di�erent from caching in that replication always keeps all copies up-to-date, and there is no

invalidation problem. Wolfson and Jajodia have proposed an on-line algorithm for dynamic data replication

in distributed databases using a \no-knowledge" approach [WJ92]. While this algorithm converges to the

optimal replication plan when tra�c traces are regular, unlike our schemes theirs does not exploit the relative

stability of calling and mobility patterns of users for fast convergence. In [SW95, SJW96], we showed how to

augment the HLR/VLR scheme with selective o�-line replication using network-
ow algorithms. Jain et al.

[HJM94, JLLM94] propose per-user caching where zones cache the last known location of certain users for

faster lookup. The latter two schemes are based on the HLR/VLR scheme, while in this paper we consider

how to perform selective replication on database hierarchies so we can o�er life-long numbering e�ciently.

Several previous studies [IB92, KVP94, PMG95] have published simulation results for a variety of con-

ventional and proposed LMTs. Our simulations di�er in that:

1. We simulate multi-day user calling and mobility activity of several millions of users over large geo-

graphical areas, a simulation scale we have not seen in previous work. Also, most previous work is

based on simplistic models that incompletely characterize human calling and mobility patterns. In

[LJCW96], we empirically showed that using realistic calling and mobility models is important, since

peak system performance measures di�er by more than 30% from those based on inaccurate models.

2. Our simulations report time-varying database and network requirements of several LMTs on a realistic

geographical area. Also, our results include database lookups and message costs for calls that are not

completed when the caller is busy, along with costs for retried calls; previous work has usually ignored

these costs.

A preliminary version of this paper appeared in [JLSWC96]. This version extends the simulation results
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of the original paper in the following ways: (1) we report a break-down of database requirements at the

various levels in the database hierarchy, (2) we compare per-user caching [HJM94, JLLM94] with HiPER in

addition to our previous LMTs, (3) we consider additional parametrizations of HiPER, and (4) we study the

important question of how often our proposed algorithm should be run in order to maximize the bene�ts of

replication, while minimizing the costs of reallocation.

2 The HiPER Family of LMTs

We �rst describe a basic hierarchical database framework and its pro�le lookup and update algorithms.

We then introduce HiPER in terms of its database lookup and update algorithms. We then describe the

parametrization of HiPER, its replication placement algorithm, and a few additional issues.

2.1 Hierarchical Pro�le Management

In a basic hierarchical model [KVP94, Wan93], each leaf-level database services a zone and stores pro�les of

users located in that zone. Each database in the higher levels of the hierarchy stores \pointers" (user ID +

database ID) to the next lower level database that stores the user's pro�le or has a pointer to a lower level

database. There is a conceptual \root" database that stores a pointer for every user. In practice, the root

may be distributed into several databases so that no one database needs to store all user pointers or service

all root level queries and updates. This simple hierarchical LMT provides life-long numbering since there is

no concept of a \home site" for a user as in HLR/VLR.

When user A calls user B, the location lookup for B's pro�le �rst propagates up the hierarchy from

A's zone to the �rst database that contains a pointer to B's pro�le. The query then propagates down the

hierarchy following pointers to B's pro�le until it is found in the leaf-level database that services the zone in

which B is currently located. The pro�le in B's current location is typically called the active pro�le; active

pro�les are required for quality of service, security, and other important authentication information.

When user A moves from zone Zi to zone Zj, Zi ships a copy of A's pro�le to Zj , and deletes its own

copy. The databases along the path to the least common ancestor of Zi and Zj are then updated so that

the pointers to A's pro�le re
ect the new location of A. In practice, we �nd that the number of databases

to update is low due to the high degree of locality in user mobility (see Sections 3 and 4).

2.2 Basic Replication

With the lookup strategy in the hierarchical approach, there may be several database lookups and network

hops, hence the cumulative lookup time may be too high. Hence we propose selectively replicating user

pro�les at additional databases in the hierarchy to avoid the sequence of many lookups, some of which may

be at remote databases. The idea behind pro�le replication is to reduce the latency of pro�le lookup at the

expense of increased update and storage cost. In contrast with replication schemes in databases [OV91],

our notion of replication simply requires updates to be propagated to each pro�le replica, rather than
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performing expensive distributed locking [OV91]. In [SW95] we showed how to use network 
ow algorithms

to augment HLR/VLR with pro�le replicas based on estimated user local call to mobility ratio or LCMR

information [JL95], and capacity limitations on databases. Essentially, a user's pro�le is replicated at a set

of databases such that the bene�t of local lookups at these databases outweighs the update cost due to the

user's mobility. In the next subsection we extend this notion of \smart," o�-line replication to hierarchies

so that pro�le replicas, may be assigned to internal nodes of the hierarchy in addition to leaves.

2.3 Parametrizing HiPER

We parametrize our LMT family as HiPER(N , Rmin, Rmax, L), where N de�nes the maximum number of

replicas of each user pro�le (in addition to the active pro�le at the user's current location), Rmin and Rmax

(for replication selectivity) together determine when a site may be a candidate for a pro�le replica, and L

determines the maximum height in the hierarchy at which pro�le replicas can be placed. In the following

subsections we consider each of these parameters in greater detail.

2.3.1 Number of Replicas (N)

In practice, we expect the number of pro�le replicas to be bounded. This restriction may be to satisfy storage

constraints or to bound the number of global updates due to a user move. In this section, we consider one

simple way to compute an appropriate N based on global storage considerations; a similar model can be

developed for update costs.

Let p be the size of a pointer (user ID + database ID) in the hierarchy. Let P be the size of a user pro�le,

and let H be the height of the hierarchy. In the basic hierarchal organization, the storage required for a

single user is P + p(H � 1). In HiPER, with a maximum of N � 1 additional replicas per user, the storage

required for a single user is no greater than NP +p(H �1). Let S be the maximum cumulative storage that

can be allocated in the databases for each user. Then we can compute N to be

N = S +
(S � 1)p(H � 1)

P
(1)

2.3.2 Replication Selectivities (Rmin; Rmax)

A user pro�le i should not be replicated at site j if the cost of replicating the pro�le exceeds the bene�t

of replication. While there are many ways of making such decisions based on di�erent cost models, one

common cost model is to minimize network communication costs. For this, we compute the local call-to-

mobility ratio [JL95], LCMRi;j, where LCMRi;j = Ci;j=Mi if Ci;j is the number of calls to user i from zone

j and Mi is the number of moves of user i in a given time period. We can then decide to replicate user i's

pro�le at database j only if the LCMRi;j exceeds some minimum threshold, Rmin. For instance, [HJM94]

proposes Rmin = 5 for o�ine-caching, and [SW95, SJW96] propose Rmin = 0:25 for o�ine-replication in

HLR/VLR. For a hierarchical database, it is impossible to derive one such parameter Rmin for databases at

di�erent levels in the hierarchy, since the change in communication costs due to replication of a user pro�le
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now depends on the actual database topology. However, with an additional parameter Rmax we can achieve

our goal of choosing potential sites for replication as follows:

1. If LCMRi;j < Rmin, never choose to replicate i's pro�le at database j.

2. If LCMRi;j � Rmax, always choose to replicate i's pro�le at database j, if constraints on N (Section

2.3.1) and L (Section 2.3.3) are satis�ed.

3. If Rmin � LCMRi;j < Rmax, whether i's pro�le should be replicated at database j depends on the

actual database topology. In Section 2.4, we propose an algorithm that decides when such databases

should be chosen as sites of replicas of i's pro�le.

We now show how to compute Ropt
min and Ropt

max, the optimal values of Rmin and Rmax for choosing poten-

tial sites of replication in a hierarchical database organization, if communication costs are to be minimized.

Let j be a database in the hierarchy, and let lj refer to j's level in the hierarchy, where leaf-level

databases have level zero. Let parent(j) refer to the parent database of j, and children(j) refer to the set

of children databases of j. If j is a leaf-level database, LCMRi;j = Ci;j=Mi as above. If j is a non-leaf

database, LCMRi;j =
P

k2children(j)Ci;k. Let �j;k be the network cost of a lookup message that traverses

the hierarchy from leaf database j to database k while performing lookups at intermediate nodes; let bl be

the network cost of the lookup message if j and k are adjacent in the hierarchy. Let bu be the network cost

of each update message. Consider two cases:

1. i's pro�le is replicated at database j.

The communication cost incurred due to the replica at j is buMi since there are Mi updates sent to j

for i's moves, and there is no lookup cost due to the local replica.

2. i's pro�le is not replicated at database j.

The communication cost incurred is only due to lookups. The minimum lookup cost is when there is a

replica of i's pro�le at the next higher level in the hierarchy, and this cost is blCi;j. The worst possible

communication cost is when i's pro�le can only be obtained by traversing the entire hierarchy from j

to the database having i's pro�le (through the least common ancestor of the two databases). This cost

is Ci;j(�(j; LCAj;k)+ �(LCAj;k; k)), where LCAj;k is the least common ancestor between j and k, and

database k services a zone in which i is located.

The above costs simplify to [blCi;j; blCi;j(2E[LCA]� lj)], where E[LCA] is the expected LCA over the set

of zones i visits over some time period; E[LCA] indicates the expected number of hops before a replica is

found.

Replicating i's pro�le at j always incurs less communication cost than when not replicating if

blCi;j � buMi (2)

m
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Ci;j

Mi

�
bu
bl

(3)

m

LCMRi;j �
bu
bl

(4)

Thus, we choose Ropt
max = bu=bl.

Similarly, replicating i's pro�le at j always incurs more communication cost than when not replicating if

blCi;j(2E[LCA]� lj) � buMi (5)

m

Ci;j

Mi

�
bu

bl(2E[LCA]� lj)
(6)

m

LCMRi;j �
bu

bl(2E[LCA]� lj)
(7)

Thus, we choose Ropt
min = bu=(bl(2E[LCA]� lj)).

In the range LCMRi;j 2 (Ropt
min; R

opt
max), the relative performance of replication versus non-replication

depends on the actual assignment of pro�les to the topology. We shall consider how to choose sites of

replication in Section 2.4.

2.3.3 Maximum Level of Replication (L)

In the last subsection, we saw how to compute possible sites of replication for a user pro�le based on

communication costs. However, notice that if a database j is chosen as a site of replication for a user i

due to a large LCMRi;j value, all ancestors of j will also be chosen as sites of replication, since LCMRi;j

at a non-leaf database j is
P

k2Child(j) LCMRi;k. Hence while replicating user i's pro�le at higher levels

reduces communication cost, if we follow this approach naively, databases at higher levels may su�er too

many updates due to moves of users whose pro�les are replicated at those databases. Due to this \tension"

between reducing network communication costs and reducing update activity at higher-level databases, we

set a cap L on the maximum level at which pro�les may be replicated.

2.4 Computing Sites of Replication

An algorithm in the HiPER family of LMTs executes the following o�-line replica allocation algorithm over

a model of the database topology and estimated LCMR information, and then propagates the replication

plan to the actual databases.

The replica allocation algorithm proceeds in two phases for each user pro�le i. Conceptually, in the �rst

phase, it allocates a pro�le replica to all databases j with LCMRi;j � Rmax. This allocation is performed

as long as the number of allocated pro�le replicas n � N . The allocation in Phase 1 is done in a bottom-up

traversal from level 0 to level L so that replicas are as close to the leaf level zones as possible, thereby

reducing the lookup latency at sites with most calling activity. As soon as a database j is assigned a replica
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for user i, j's parent's LCMR value for i is reduced by LCMRi;j since lookups from below j's database for

i will be serviced at j, and hence should not be used in making a replication decision for j's parent.

If, at the end of Phase 1, n < N , in Phase 2 the databases below level L and with the largest non-negative

LCMRi;j�Rmin are chosen as sites of replication. The allocation in Phase 2 proceeds in a top-down fashion

(from level L) since allocating replicas higher up in the hierarchy maximizes the \coverage" area of the

replica. Note that we can optimize the second phase based on the observation that if the LCMRi;j of some

database j at level k is lower than Rmin, we can \prune away" databases that are descendants of j since

they will have lower LCMR values.

Let Lk denote the set of databases at level k. After executing the following algorithm, Ri will contain

the set of databases that should contain replicas of user i's pro�le. Ti is a temporary set used in the second

phase to compute the set of databases that have LCMR's in the range (Rmin; Rmax) for user i.

� Phase I

n = 1, Ri  ;

Compute LCMRi;j for each database j at level 0

For each level lk of the hierarchy from 0 up to L

For each j 2 Lk

If LCMRi;j � Rmax

Ri  Ri

S
fjg

LCMRi;parent(j) =

LCMRi;parent(j)� LCMRi;j

n = n+ 1

If n = N Exit

� Phase II

Ti  LL

For each j 2 Ti

If LCMRi;j � Rmin

Ti  Ti � fjg

Else Ti  Ti
S
children(j)

Ti = Ti �Ri

Select into Ri N � n databases from Ti with

largest LCMR value
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Parameter Change Impact

Storage Update Costs Comm. Costs Lookup Latency

N " " " "# #

Rmin " # # "# "

Rmax " # # "# "

L " " " "# #

Table 1: Impact of Varying Parameters on Performance Measures.

2.5 Discussion of HiPER

As mentioned earlier, HiPER's parametric nature allows us to make tradeo�s between communication and

update costs versus space requirements and lookup latency. Since the interaction between the various

parameters is complex, it is hard to gauge the impact of each parameter on the various system costs.

However, in Table 1 we indicate general trends of each of the various costs, when the value of one parameter is

increased (indicated by ") while the other parameters are �xed. Notice that it is impossible to independently

characterize the impact of each of the parameters on communication costs since the impact depends on the

actual values of Rmin and Rmax (recall Section 2.3.2). If, for instance, Rmin and Rmax are R
opt
min and Ropt

max,

increasing N or L will reduce communication costs. If Rmin or Rmax are poorly chosen, communication

costs may increase when N or L are increased. However, notice that even in the latter cases, the lookup

latency will always be reduced.

Some parameter settings for HiPER allow us to model a variety of techniques, including the Simple

Hierarchy of [KVP94, Wan93] and di�erent degrees of replication. Let n be the number of databases and k

the number of levels in the network hierarchy. Then:

� HiPER(1, 0, 0, 0) yields the unreplicated hierarchical scheme of [Wan93, KVP94].

� HiPER(n, 0, 0, 1) yields a scheme with full replication at leaf databases.

� HiPER(n, 0, 0, k) yields a scheme with full replication at all databases.

Notice that the replication selectivities of the above schemes do not depend on Ropt
min or Ropt

max as derived

in Section 2.3.2. This indicates why the above schemes are sub-optimal with respect to communication costs

when compared to our proposed selective replication with Rmin = Ropt
min and Rmax = Ropt

max.

3 Pleiades Simulator

In this section, we �rst present the architecture of Pleiades, the extensible event-driven simulator we have

built to experiment with and compare various LMTs. We then explain how we use indexing structures

to make our simulations scale to millions of users. We then describe our 
exible Simulation Speci�cation
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Figure 1: Pleiades Architecture

Language (SSL) and show how we can specify complex database architectures, arbitrary network topologies,

and arbitrary geographical registration areas. We also describe our user calling and mobility models, and

how we instantiated our models to obtain realistic calling and mobility patterns for our simulations.

We developed Pleiades in C++ in about 10,000 lines of code. Simulation scripts specifying the calling

patterns, mobility patterns, network topologies, and geographical entities typically range between 50 and

350 lines. We have implemented several LMTs, including HLR/VLR and HiPER, in approximately 150 lines

of code each. Since Pleiades is object-based, we expect adding new LMTs will require approximately the

same amount of coding.

3.1 Architecture

Pleiades consists of an event generator, an event handler, an earliest-time-�rst priority queue, and a protocol

module, as shown in Figure 1. Initially, the simulator constructs the geographical and network topologies

according to the input simulation script (described below in Section 3.2). The simulator then populates the

zones with users, each of whom has a speci�ed movement and calling pattern, from a set also de�ned in the

simulation script.

The simulator cycles through a sequence of time windows in which call and move events are generated for

the users according to the calling and movement patterns assigned to them in the simulation script. Each

event is enqueued in proper temporal sequence. Once a full window of events is enqueued, the event processor

passes them in sequence to the pro�le management module, which generates the simulation statistics. The

statistics describe the movement and calling activities of the users along with the database and network

loads they incur.

We implemented the time prioritized queue as a specialized B+-tree with insert times logarithmic in the

number of distinct time values stored, rather than in the number of events stored. The operations speci�ed
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on the B+-tree are insert with priority x, and extract top priority. Events generated with the same

priority (time when they need to be dequeued) are stored using insert with priority x in a linked list

under the B+-tree. Our extract top priority operation achieves unit-time access (rather than logarithmic

time as in traditional heap structures) to the highest priority entry in our B+-tree queue thereby making

it suitable for fast event processing. Our B+-tree services over 25,000 insertions and deletions per second

on a 20 MIPS SPARCstation, allowing us to simulate very large user populations (currently over 3 million

users). These large-scale simulations help us compare performance characteristics of the di�erent protocols

in a more realistic fashion than in previous simulation studies.

3.2 Simulation Speci�cation Language (SSL)

An SSL script instantiates the following two key components of our simulations: (1) the network and

geographical topologies, and (2) user behavior. For a detailed description of the SSL grammar and a sample

simulation script see Appendix A.

The �rst component in an SSL script speci�es a topology of sites along with their population characteris-

tics and geographical connectivity (e.g., freeways between counties), as well as the inter-connecting network

topology. It also speci�es the database topology of the LMT to be used. The important commands are:

� The Frame declaration reserves memory for all objects de�ned in the simulation, and determines time

granularity parameters.

� The Site speci�er declares the population density and distribution, as well as de�ning its physical

adjacency to other sites.

� The Link function establishes a network link between two sites with a cost that may vary during the

course of a simulation due to tra�c conditions.

The second component describes the set of users, as well as individual movement and calling patterns. The

important commands are:

� The User command de�nes classes of users and the probability with which users in di�erent classes

will be found at the various de�ned sites. Each user class also has a speci�c movement and calling

pattern (described below in Sections 3.3 and 3.4).

� The Call and Move de�nitions are similar. Each establishes a frequency distribution and the time

window during which the distribution is valid. For example, we may de�ne a business calling pattern,

with a valid time frame from 9 A.M. to 5 P.M. and a bursty distribution averaging 3 calls per phone

per hour. Likewise, we might de�ne a commuter movement pattern, with a valid time frame from 6

A.M. to 10 A.M. and an average commute time of 30 minutes.
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3.3 User Movement Model

Our user mobility model is general enough to handle a large class of user movement patterns. The key

aspects of our model are:

1. We represent several classes of movements commonly observed in humans. For example, users can make

random walks, repetitive roundtrip movements and return back to home. Each of these movement

patterns can be coupled to varying movement velocities and probabilities of occurence.

2. We can simulate temporal changes in the above user movement patterns as a function of our simulation

time, for example, to simulate di�erent movement models during the course of the day.

It is important to note that di�erent LMTs optimize for di�erent movement behaviors. For instance, the

HLR/VLR scheme assumes the user returns home often, while replication assumes repetitive movements.

Hence, to be fair while comparing the di�erent techniques, we require a realistic instantiation of our movement

model. Our modeling of user movement is based on a transportation survey, the NPTS [HY93, Kit95],

conducted in 1990. This data is similar to vehicle tra�c statistics obtained from roadside measurements

in Europe [ECM95]. In addition, we have obtained actual movement statistics [MTC90] from around the

San Francisco Bay area collected over an eight month period in 1989-1990 to correlate with survey data.

Using this data we instantiated our movement model for a typical San Francisco Bay area commuter and

non-commuter, basing our movement distances on the values quoted in the surveys. For further details

see [LJCW96].

3.4 User Calling Model

The key aspects of our calling model are:

1. We represent a variety of call types, such as simple calls, and retry calls when calls are reattempted

if busy. The calling types can be coupled to varying probabilities of occurence, along with how often

users place calls to other users and how long each call lasts.

2. As in the movement model, we can simulate calling patterns that change over the course of a day.

3. We simulate calling locality in callee distributions by maintaining, for each caller, a list of the people

they call most often with the probabilities of making calls to each of them. When a call is generated,

the callee is selected either randomly from the set of all users, or from the user's callee list according

to its probability distribution.

In [LJCW96], we showed that the above components can be treated independently, since we observed very

low correlation between calling rates and callee probabilities.

Again, to be fair in comparing various LMTs, we instantiated our call models with accurate parameters

we derived from call tra�c data [Tel95] for a six-month period from our university telephone exchange. This

exchange serves the entire campus, including university o�ces, student housing, and residential households.
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The data was preprocessed at the source to protect the anonymity of the callers and callees. The data

set covers 19,605 distinct callers and contains encrypted caller and callee identi�cations, time of call, and

call duration for each outbound call. While this data constitutes a specialized sample of call tra�c, the

composition of our campus allows us to infer call tra�c patterns for both business and residential settings.

We used each caller's busy and idle periods to determine average phone usage, the distribution around the

average, and the burstiness of the calling behavior. We calculated empirical callee distributions by ranking

callees according to the frequency with which they are called during reference time periods of one day, one

week, and one month (four weeks). For more details refer to [LJCW96].

4 Simulation Results

In this section we �rst describe the geography and network topologies we used in our simulations. We then

present simulation results for several LMTs, followed by analysis of HiPER parametrizations and frequency

of pro�le reallocation.

4.1 San Francisco Bay Area Simulation

We performed our simulations on a geography that accurately models the San Francisco Bay Area. A map of

the entire Bay Area is provided in Figure 2 for the reader's reference. The Bay Area consists of nine counties

with a 1990 population of 6,023,877 [UpC94], and is serviced by four area codes. Regions corresponding to

di�erent area codes are represented by di�erent shades in Figure 2; bridges, freeways, ferries, and public

transportation systems are also included. Figure 3 is an overlay map depicting the relationship between

our simulation model and the physical geography [USG95]. Registration areas are represented as polygons

in this �gure. We simulated a 3-level hierarchy of databases. Dots in the middle of polygons (registration

areas) represent the databases servicing that area. Medium sized dots are intermediate databases servicing

a set of lower level databases. The four large dots indicate a distributed root. Network links are represented

by lines connecting the database dots.

In our simulation, we populated registration areas with users based on 1990 census information from [UpC94].

We assumed that 50% of the population would subscribe to wireless services. We divided our user popu-

lation into 41% commuters and 59% non-commuters. This proportion is derived from the national average

in [HY93] and the peak-to-total tra�c �gure for the Bay Area. We speci�ed connectivities between trans-

portation routes such as highways and bridges. Using tra�c volume statistics from [MTC90], we estimated

movement between area codes and �ne-tuned our simulation parameters to produce similar large scale move-

ment behavior. See [LJCW96] for more details.

We performed simulations corresponding to a 5 day period, and report results corresponding to the second

24-hour period (which we found were comparable to the results from the 3rd through 5th days) to avoid

simulation transients. Each simulation generated some 22.5 million events, and consumed approximately 1

hour of processor cycles on an INTEL Pentium 120 MHz processor with 32 MB RAM running Linux.
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Figure 2: San Francisco Bay Area

Figure 3: Simulation and Network Topologies
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For our simulations, we studied the following LMTs:

1. HLR/VLR,

2. Per-User Caching of [HJM94, JLLM94], in which o�-line pro�le caching is used to augment the per-

formance of pure HLR,

3. Centralized database architecture in which all user pro�les are stored in one centralized database,

4. Full Replication in which all user pro�les are replicated in all databases,

5. Simple Hierarchy of [KVP94, Wan93] as described in Section 2.1, and

6. HiPER5;2, one instance of HiPER that represents an intermediate point between Full Replication and

Simple Hierarchy, with N = 5, L = 2, Rmin = Ropt
min, Rmax = Ropt

max, and bl=bu = 1. We chose N = 5

since �ve replicas are su�cient to satisfy most lookups (over 90%) locally [SJW96] due to calling

locality, and L = 2 since the maximum number of levels in our hierarchy is three. We set bl=bu = 1,

assuming that the cost of an update message and a lookup message are equal.

Note that HLR/VLR and Per-User Caching do not support life-long numbering, while the latter four schemes

do. In Section 4.3 below we consider some additional parametrizations of HiPER.

4.2 Performance of Location Management Techniques

We �rst consider the system-wide database query, database update, and network messaging loads for the

di�erent location management techniques. We then examine the percentage of calls that are serviced by

(fast) local lookups for each of the techniques. Finally, we consider the storage requirements of HLR/VLR,

the Simple Hierarchy, and HiPER5;2.

Table 2 reports the peak levels of database operations and network signaling for each LMT. Note that

the peaks for database lookups and updates do not occur at the same time. Hence, the peak for total

database load is not the sum of the peaks for lookups and updates. In general, Table 2 con�rms HiPER's

competitiveness with other LMTs. Although the centralized scheme performs best, it does not scale since

all the operations take place at a single database. As expected, the peak number of global database lookups

in HiPER5;2 is less than the Simple Hierarchy. It is interesting to note that the peak number of database

lookups in HiPER5;2 is close to that of HLR/VLR indicating that most lookups are serviced within one

or two hops from the caller's zone. Hence HiPER5;2 brings the bene�t of life-long numbering at a cost

competitive with HLR/VLR.

Table 3 reports individual database requirements averaged across the peak �fteen minutes of the day

(10:15 { 10:30 am) at di�erent levels in the hierarchy for the various LMTs. In the cases where certain

levels are not applicable (for instance, there are no non-root databases in the centralized case) they have

been marked as not applicable (N.A.). In absolute terms the database requirements in Table 3 are all

easily supportable in modern database systems [GR93]. However, we must also consider other important

performance measures, such as network bandwidth and location lookup latency, as we shall see below.

15



ops/s Central DB Full Repl. Simple Hierarchy HiPER5;2 Caching HLR/VLR

DB Lookups 120 120 212 132 131 129

DB Updates 9.53 858 34 49 10.1 24.6

DB Totals 124 954 231 166 136 145

Network Msgs 104 2930 155 134 117 115

Network Hops 302 3720 180 306 341 326

Table 2: Summary of Peak Requirements

DB ops/s layer Central DB Full Repl. Simple Hierarchy HiPER5;2 Caching HL R/VLR

leaf N.A. 4.32 4.18 4.32 4.53 4.44

Lookups middle N.A. N.A. 10.5 5.051 4.52 4.44

root 108 N.A. 12.45 1.58 N.A. N.A.

leaf N.A. 9.53 0.755 1.26 0.344 0.907

Updates middle N.A. N.A. 1.95 2.42 0.348 0.859

root 9.53 N.A. 1.67 1.67 N.A. N.A.

leaf N.A. 13.1 4.81 5.20 4.86 5.12

Totals middle N.A. N.A. 11.3 6.81 4.79 5.05

root 114 N.A. 13.1 2.79 N.A. N.A.

Table 3: Peak Requirements per Database by Hierarchy Layer
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In Figures 4 and 5, we see the number of global lookups and updates (on a log scale) for the above LMTs for

the 24-hour period we measured. Again we see that the number of lookups in Simple Hierarchy far exceeds

those of HiPER5;2 and HLR/VLR. Also notice that HiPER5;2 and HLR/VLR are close to the minimum of

the number of lookups achieved in the Centralized and Full Replication schemes. As expected, the number of

global updates in HiPER5;2 is higher than in HLR/VLR, Per-User Caching and Simple Hierarchy but much

lower than in Full Replication. As mentioned earlier, these system-wide update rates are easily supported

in modern database systems.

In Figures 6 and 7, we see the network bandwidth requirements and the number of message hops of the var-

ious LMTs over the studied 24-hour period. An interesting observation is that HiPER5;2 incurs a low number

of network hops despite the extra messages due to updates; it performs better than Simple Hierarchy and close

to HLR/VLR and Per-User Caching. We also see that the number of message hops in Simple Hierarchy is

lower than HiPER5;2 due to a lower number of updates, and lower than HLR/VLR since updates are not

remote.

In Figure 8, we plot the percentage of calls that are serviced by local database lookups for the various

schemes, along with the percentage of users currently located at home. Notice that HiPER5;2 services more

than 90% of the calls by local lookups, thus allowing for fast call setup. This is in comparison to Per-User

Caching, HLR/VLR and Simple Hierarchy in which over 4 times, 5 times and 7 times as many lookups are

serviced by remote databases, respectively.

In Figure 9, we show the storage requirements of HiPER, HLR/VLR and Simple Hierarchy by graphing

the cumulative percentage of databases that store a given number of pro�les. We see that some databases

in the HiPER5;2 scheme may need to store up to twice as many pro�les as HLR/VLR. However, we believe

that with decreasing disk costs this will not be a signi�cant problem in the future.

Table 4 summarizes some of our results comparing HiPER5;2 to HLR/VLR, Per-User Caching and

Simple Hierarchy. The numbers in the table are relative to Simple Hierarchy and are systemwide totals.

For example, HiPER5;2 requires only 0:16 of the remote lookups that Simple Hierarchy requires during peak

activity. Table 2 con�rms again that HiPER is competitive with HLR/VLR in terms of key system perfor-

mance requirements while achieving the bene�ts of life-long numbering. Note from Table 4 that Per-User

Caching performs better than HiPER in number of updates and storage, but more lookups are serviced

in remote databases than with HiPER. These results indicate that a hybrid strategy combining the best

features of HiPER and Per-User Caching may prove very useful. We plan to evaluate such a hybrid scheme

as future work.

4.3 HiPER Parametrization and Reallocation

In Figures 10 and 11 we show how HiPER's performance changes when the maximumnumber of pro�les (N )

allowed for a user is varied between one and �ve. In Figure 10 we report the number of database updates

for HiPER as well as pure HLR. As expected, the number of updates increases with an increase in the

maximum number of pro�les allowed. In Figure 11 we show the local lookup ratio for the various instances
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Feature Simple Hierarchy HiPER5;2 HLR/VLR Caching

Life-Long Numbering YES YES NO NO

Remote Lookups 1.0 0.16 0.73 0.63

Message bandwidth 1.0 0.86 0.74 0.76

Storage 1.0 2.65 1.41 1.83

Update cost 1.0 1.44 0.72 0.29

Table 4: Peak Performance and Features Summary
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of HiPER (HiPER1;2, HiPER2;2, : : :, HiPER5;2) along with HLR/VLR and Simple Hierarchy. We see that

even HiPER1;2 performs better than HLR/VLR, indicating that one pro�le replica placed judiciously in the

database hierarchy has a more signi�cant impact than the pro�le copy at the HLR. As the maximumnumber

of replicas per user increases in HiPER, the number of updates and the local lookup ratio correspondingly

increase, although only marginally.

In Figure 12 we consider the important question of how often should user LCMR values be updated, and

how often should HiPER be run in a day. We plot the average local lookup ratio when the number of of

times HiPER5;2 is run increases in a day. For instance, we see that if HiPER is run four times in a day (i.e.

LCMR values are recomputed and pro�le allocations redone every six hours), the local lookup ratio is about

90%. Note that the improvement when HiPER is run once every day over the case when HiPER is run once

every two days is fairly signi�cant, while the improvement is marginal when the number of reallocations is

further increased. Hence we believe that HiPER should be run once every day to keep the cost of assigning

replicas low.

5 Conclusions and Future Work

In this paper we made contributions in three areas: (1) We introduced a family of LMTs, HiPER, that can ef-

�ciently support life-long numbering. (2) We described our 
exible wireless network simulator, Pleiades, that

realistically models human behaviors. (3) We presented real time simulation results for our new LMTs and

compared it to other basic and current techniques.

From our simulations we see that for the instance of HiPER we considered, more than 90% of calls can
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be serviced by local database lookups. The penalty paid for the latency improvement is a slight increase

in bandwidth requirement, and near doubling of memory requirements and update rates. We believe that

as storage prices continue to drop, the 
exibility of life-long numbering with fast lookups will become very

important.

In the future, we plan to simulate more instances of HiPER to study interesting operational points for

N , L, Rmin and Rmax. Based on our experimental results, we also plan to consider hybrid LMTs that

combine the best features of Per-User Caching with HiPER to improve performance, and reduce costs.

We are extending our simulator to handle networks that simultaneously support several LMTs. This will

become particularly important if and when current strategies like HLR/VLR evolve over time to hierarchical

techniques. Since we feel that realistic models give us useful insights in developing new protocol management

techniques, we are constantly re�ning our modeling of human behaviors for calling and mobility patterns. We

have released SUMATRA, the Stanford University Mobile Activity TRAces, that provide realistic calling and

mobility activity so other wireless researchers may also bene�t from our work in developing comprehensive

tra�c models. These traces are available at http://www-db.stanford.edu/sumatra.
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A Script Grammar and Sample Script

We begin with a BNF grammar of Pleiades' scripting language (SSL) down to the command granularity, then present
a sample script that gives some insight into individual command structure. For reference, the simulation script we
used to de�ne the San Francisco Bay area simulations is 334 lines long.

A.1 Script Grammar

� script::=
structure-block user-block

� structure-block::=
frame-block site-block opt-link-block

� user-block::=
move-block call-block user-block j
call-block move-block user-block

� frame-block::=
opt-trace-cmd frame-cmd opt-param-cmd

� site-block::=
site-cmd site-block j
site-cmd

� opt-link-block::=
link-cmd opt-link-block j
opt-link-cmd

� move-block::=
move-cmd move-block j
move-cmd

� call-block::=
call-cmd call-block j
call-cmd

� user-block::=
user-cmd user-block j
user-cmd
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A.2 Sample Script
# Pleiades simulator script, 4 zone square area w/o root, version dated 1/29/96

Trace write

# Frame ( name , length, transient, window, sites, users, moves, calls, seed )

Frame ( four_zone_square, 1998, 558, 6, 4, 781.25, 5, 3, 5191995 )

# Site ( name , population_coeff., PARENT, borders, neighbor, move_coeff., ... )

# Neighbors are ordered by direction when applicable: West, North, East, South

Site ( site0 , 1.0, site0, 2, site1, 1.0, site2, 1.0 )

Site ( site1 , 1.0, site0, 2, site0, 1.0, site3, 1.0 )

Site ( site2 , 1.0, site0, 2, site0, 1.0, site3, 1.0 )

Site ( site3 , 1.0, site0, 2, site1, 1.0, site2, 1.0 )

# Link ( name , from_site, to_site, cost )

Link ( l1_2 , site1, site2, 1 )

Link ( l1_3 , site1, site3, 1 )

Link ( l2_3 , site2, site3, 1 )

# Move ( name , time, range, prob., velocity, v_dist, zones, z_dist, roundtrip, pattern_head )

Move ( stop1 , 420, 60, 0.9875, 0.00001, 0, 0, 0, 1, Y )

Move ( walk1 , 0, 0, 0.00217, 0.01, 0, 1, 0, 0, N )

Move ( ride1 , 0, 0, 0.00217, 0.1, 0, 4, 0, 1, N )

Move ( home1 , 0, 0, 0.00817, 0.1, 0, 2, 0, 2, N )

Move ( fast1 , 120, 60, 1.0, 0.1, 0, 1, 0, 0, N )

Move ( stop2 , 480, 0, 0.9875, 0.00001, 0, 0, 0, 1, N )

Move ( walk2 , 0, 0, 0.00617, 0.01, 0, 1, 0, 0, N )

Move ( ride2 , 0, 0, 0.00417, 0.1, 0, 4, 0, 1, N )

Move ( home2 , 0, 0, 0.00217, 0.1, 0, 2, 0, 2, N )

Move ( fast2 , 120, 60, 1.0, 0.1, 0, 1, 0, 2, N )

Move ( stop3 , 0, 0, 0.9875, 0.00001, 0, 0, 0, 1, N )

Move ( walk3 , 0, 0, 0.00217, 0.01, 0, 1, 0, 0, N )

Move ( ride3 , 0, 0, 0.00217, 0.1, 0, 4, 0, 1, N )

Move ( home3 , 0, 0, 0.00817, 0.1, 0, 2, 0, 2, N )

# Call ( name , time, range, prob., end_prob., freq., duration, d_dist, retry, pattern_head )

Call ( a1_simple1 , 420, 60, 0.6, 0.0, 0.06, 1, 2, 0, Y )

Call ( a1_again1 , 0, 0, 0.3, 0.0, 0.04, 2, 2, 1, N )

Call ( a1_long1 , 0, 0, 0.1, 0.0, 0.02, 8, 2, 0, N )

Call ( lot1 , 720, 120, 1.0, 0.0, 0.1, 2, 2, 0, N )

Call ( a1_simple2 , 0, 0, 0.6, 0.0, 0.06, 1, 2, 0, N )

Call ( a1_again2 , 0, 0, 0.3, 0.0, 0.04, 2, 2, 1, N )

Call ( a1_long2 , 0, 0, 0.1, 0.0, 0.02, 8, 2, 0, N )

# User [ quantity, placement ] ( name , moveType, callType, calleeDirSize, localCallee% )

User [ 781.25, random ] ( basic , stop1, a1_simple1, 8, 0.8 )
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