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Abstract

A number of techniques have been developed for
maximizing disk utilization in media servers, in-
cluding disk arm scheduling and data placement
ones. Instead, in this paper we focus on how to ef-
ficiently utilize the available memory. We present
techniquesfor best memory useunder different disk
policies, and derive precise formulasfor computing
memory use. We show that with proper memory
use, maximizing disk utilization does not neces-
sarily lead to optima throughput. In addition, we
study theimpact of data placement policiesinclud-
ing disk partitioning and multiple disks. Finaly,
our analysis showsthat maximizing disk utilization
and disk striping incur high system costs, and are
not advisable in amedia server.

1 Introduction

The storage system of amultimediasystem faces more chal-
lenges than a conventional one. First, media data must be
retrieved from the storage system at a specific rate— if not,
the system exhibits “jitter” or “hiccups” This timely data
retrieval requirement is also referred to as the continuous
requirement or the real-time constraint [17]. Second, the
required data rate is very high. For example, an MPEG-1
compressed video requires an average datarate of 1.5 Mbps
and MPEG-2 4 Mbps. Guaranteeing red -time supply at this
high data rate for concurrent streams is a mgjor challenge
for multimedia storage systems.

Most multimedia storage research has focused on op-
timizing disk bandwidth via scheduling policies and data
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placement schemes. However, there is a second critical re-
source that has not received as much attention: the main
memory that holds data coming off the disk. In this paper
we carefully analyze how memory isused and shared among
concurrent media requests. Our analysis provides more ac-
curate resultsthan prior analysis, and suggests novel waysin
which memory should be shared for maximum performance.
Our evaluation also contrasts the gains achievable by disk
latency techniques and those achievabl e by efficient memory
use, and shows that with effective memory use, techniques
that have higher disk overhead may actually achieve better
throughput!

In addition to studying the maximum throughput sup-
ported by media servers, we aso consider the resources
required and the per stream dollar cost. Our results show
that achieving high throughput often comes at a huge cost
in memory. Most research in the area has tended to ignore
this, focusing on how to reduce seek overheads. Instead, we
propose to limit throughput to less than what is feasible in
order to minimize per stream costs. We also briefly study
theworst caseinitia latency before anew mediarequest can
be satisfied, which can be an important factor in an inter-
active system. The disk scheduling policies that alow the
disk arm to move freely between requests (incurring lower
bandwidth) surprisingly yield much lower initial latencies.

The rest of this paper is organized into seven sections.
Section 2 presents our evaluation moddl and analyzes atra-
ditiona system with an elevator disk scheduling a gorithm,
which we call Sweep. In Section 3 we present the princi-
ples behind effective memory sharing, formally proving that
memory use can be minimized by spacing out |Os. (Thishad
been hypothesised earlier, but not proven.) We also show
how scheme Sweep can best use memory and derive precise
formulas for itsmemory use.

Next (Section 4) we consider a disk scheduling scheme
that generates |Os in a fixed order, independent of the loca-
tion of the data on disk. (In each period, the disk services
requestsin afixed order.) If oneimplements thisschemein
a straightforward way, the performance is terrible because
in the worst case each 10O may require moving the disk arm
across the disk. However, because the order of 10 requests
isfixed, one can enhance this scheme so that data arrivesin
memory in amoreregular fashion, and this, together with ef-
fective memory management, can lead to better performance
than Sweep’s. We call our modified scheme Fixed-Stretch,



and we again present performance formulas that precisaly
account for memory sharing.

The third scheme we consider is a Group Sweeping
Scheme (GSS) [18], which can be considered a hybrid be-
tween Sweep and Fixed-Stretch. We discuss how memory
can be effectively used by this scheme (something that was
not clearly spelled out intheorigina paper). In Section 6 we
compare the schemes in a redlistic case study, highlighting
the basic disk bandwidth and memory use tradeoffs.

Section 7 analyizes data placement policies that are not
consideredinthefirst six sections. Weconsider theimpact of
partitioning thedisk into regions, and of using multipledisks.
Partitioning and multiple disks can impact performance, but
they do not alter the conclusions of our study. Finaly, we
offer our conclusionsin Section 8.

2 Scheme Sweep

In this section we briefly describe awell known multimedia
delivery scheme, which we call Sveep. Scheme Sweep uses
an elevator policy for disk scheduling in order to amortize
disk seek overhead. Itisrepresentative of aclass of schemes
[6, 8, 11, 13, 15] that optimize throughput by reducing disk
seek overhead. Study [13] shows that an elevator policy is
superior for retrieving continuous media datain comparison
to a policy in which requests with the earliest deadlines are
serviced first. We will use scheme Sweep as a benchmark
for comparing with other schemes.

For now, let us assume asingle disk and let us make no
assumptions as to the data placement policies. (We discuss
data placement and multiple disks in Section 7.) We first
present Sweep under the assumption that each request is
alocated its own private memory buffer with no memory
sharing among therequests. (Buffer sharing among requests
isdiscussed in Section 3.)

During a sweep of the disk, Sweep reads one segment of
datafor each of therequested streams. The datafor astream
isread into a memory buffer for that stream, which must be
adeguate to sustain that stream until its next ssgment isread
during the following disk elevator sweep. To anayze the
performance of Sweep, wetypicaly are given the following
parameters:

¢ TR: thedisk’sdatatransfer rate.

« ~(d): aconcave function that computes the rotational and
seek overhead given a seek distance 4. For convenience,
wewill refer to the combined seek and rotational overhead
as the seek overhead.

o Mem 4,44 the storage system'’s available memory.

¢ N: thenumber of stream requests. Each request is denoted
as Ry, R, ..., Ry. Each stream requires a display rate of
DR (DR < TR). (For simplicity we assume that the display
rates are equal.') Thevaueof ¥ must belessthan Ny ;¢

1 The techniques we discuss in this paper can be adapted to work with
differing display rates in some cases. One aternative is to design for the
maximal rate, whichis safe and doesnot hurt performanceif the differences
between rates are small. Another option is to use the greatest common

as explained below.

Scheme Sweep has the following tunable parameters.
They can be adjusted, within certain bounds, to optimize
system throughput.

o T the period for servicing a round of requests. We as-
sumethat 7 is constant, i.e., it does not vary depending on
N, the number of streams being serviced at a given time.
As discussed below, 7 must be made large enough to ac-
commodate the maximum number streams we expect to
handle. (Althoughwe do not discussit here, allowing 7 to
vary from cycle to cycle does not improve throughput and
may actually hurt latency.)

¢ 5! the segment size, i.e,, the number of bytes read for a
stream with one contiguousdisk 10. SinceT isconstant, s
must also be constant over time,

o Nzimst: the maximum number of concurrent requests the
media server dlows. The media server implements an
admission control policy that turns away requests when
the system isaready handling Ny ;,.:; requests.

2.1 Anadyss

We assume that the media server services the reguests in
rounds. During around of service (timeT), themedia server
reads one segment of data (sized 5) for each of the Ny ;¢
requested streams. We can run Sweep with many possible
values for 7, 8, and Niz;.... However, some vaues will
make it impossible to deliver data for each stream at the
appropriate rate due to the violation of certain constraints.
Other values will lead to suboptima performance. For ex-
ample, wewishto set Nz;,.;: ashighaspossible. For optimal
feasible performance, parameters 7, 5, and Ny,,,;; heed to
satisfy the equations we derive next.

In a feasible system, the amount of data retrieved in a
period, s, must be at least as large as the amount of data
displayed. That is, s > DR x 7. However, if we want a
stable system, the input rate should equal the output rate,
€l se every period we would accumulate more and more data
in memory. Thus, we have the equation

S=DRxT. (1)

Inafeasible system, the period T must be large enough so
that all necessary 10s can be performed. Since 7 isfixed and
cannot vary depending on the number of concurrent requests
in the system at a particular moment, we must make 7" large
enough to accommodate Ni;,... Seeks and transfer Nz o..:
segments. Furthermore, in computing these seek times, we
haveto assumeaworst case situation, so that no matter where
the segments are located on disk, we will have enough time
to read them.

The totad seek overhead for Np,..: requests is
SO Limit 4(cyl;), Where ~ gives the seek delay for the it

divisor of the display rates asthe unit display rate, and to treat each display
rate as amultiple of the unit one. For example, if the display ratesare 6 and
4 Mbps, we can treat a 6 Mbpsrequest logically as 3 requests of 2 Mbps
each, and we can treat a4 Mbpsrequest as 2 of 2 Mbps. Thus, al our base
requests are of the samerate.



request. Since ~ is a concave function [9, 14, 16], the
largest value of the total seek overhead for Sweep oc-
curs when the segments are equally spaced on the disk, or
eyl; = CYL/Npimie- Thus, the worst case seek (and rota
tional) timeis:

TSeek = NLimit X 'V(OYL/NLzmzt) (2)

Thetota transfer timefor Ny ,,.;; requests, each of size s, at
atransfer rate TR, is

TTransfer = NLimit X S/TR (3)

As we stated above, the period 7 must be larger or
equa than the worst case seek and transfer times, i.e,
T > Tseer + Trransser- FOr Optimal performance, how-
ever, we take the smallest feasible 7 value, since otherwise
we would be wasting both disk bandwidth and memory re-
sources. That is,

T = Npimis X (W(CY L/Npimit) + S/TR). (4)

Thethird equation that must be sati sfied by scheme Sweep
is obtained from our physical memory limit. Althoughina
period we only read s bytesfor each stream, it turns out we
need a buffer of twicethat size for each stream to cope with
thevariability in read times. To seethis, consider aparticular
stream in progress, where we call the next three disk arm
sweeps 4, B, and ¢. Assume that the segments needed by
our stream are a, b, and <. It so happens that because of its
location on disk segment « isread at the beginning of sweep
A, whileb isread a theend of B, 2 x T time unitsafter « is
read. At thepoint when « isread we need to have in memory
2 x S data, to sustain the stream for 2 x 7 time.

When segment » is read, we will only have s bytes in
memory, which is only enough to sustain us for 7 seconds.
Fortunately, because » was at the end of its sweep, the next
segment ¢ can be at most 7 seconds away, so we are safe.
Actualy,  could happen to be the very first ssgment read
in sweep ¢, inwhich case we would again fill up the buffer
with roughly 2 x s data (minus whatever data was played
back inthe timeit takes to do both reads).

Intuitively, what happensisthat half of the2 x s bufferis
being used as a cushion to handle variability of reads within
asweep. Beforewe actualy start playing a stream we must
ensure that thiscushion isfilled up. In our example, if this
stream were just starting up, we could not start playback
when « was read. We would have to wait until the end of
sweep 4 (the sweep where first segment « was read) before
playback started. Then, no matter when » and ¢ and the
rest of the segments were read within their period, we could
sustain the DR playback rate. (This startup delay will be
important when we anayze initia latenciesin Section 6.3.)

Adding a cushion buffer for each request doubles the
memory required. So, to support Ny ;,.:; requests, we must
have Mem 4yqi > 2 % Npimse x S. FOr optimal performance,
however, we should use all available memory. (By using
all available memory we make segments larger. This lets
usincrease T (Eg. 1), which then letsusincrease Ny ;,..; in
Equation 4, since TR > DR.) Thus, we have that for optimal
feasible performance,

Mem agpait = 2 X Npimit X S. (5)

In summary, scheme Sweep has three tunable parame-
ters, and we have derived three equations they must satisfy
(Equations 1, 4, 5) for optima performance. From these
equationswe can solvefor 7, s, and Nz ; .+

2.2  Minimizing Memory

We can derive a closed form for the minimum memory re-
quirement as follows. We assume that Nz;,,... iS given and
that Mem 4,42 1S Unknown, and we solvefor it. Substituting
T = 5/DR (Eq. 1) into Equation 4, we can solve for s, the
segment size needed to support the Ny ;... requests:

g = Neimie X YWCYL/NLimit) X TR X DR
TR — (DR X NLimit)

(6)

(Weassumethat TR— (DR x Ny ;mit) > 0, €lSeno segment size
issufficient. Some literaturerefersto thisas disk bandwidth
constraint.) Multiplyingthisvalueby 2 x Nz;...: (EQ. 5), we
obtai n the minimum amount of memory,

2xX N7, i XV (OYL/Npimit) X TR x DR. @
TR~ (DR X NrLimit)

Itisimportant to notein Equation 7 that M em 5y, doesnot
grow linearly with the desired Ni;,,.... First, the numerator
grows quadratically with Ny ;,.:;. Second, as Ny ;,.:; grows
the denominator of Equation 7 approaches zero, causing
Mem i, 10 grow without bound. As the denominator gets
closeto zero, we aredrivingthe systemtoitsphysica limits:
Niimic Streams at a DR rate require Ny ;,.;; x DR bytes per
second, and the disk can only read at most TR per second.
When Ny ;..:; x DR approaches T R, the system needs ahuge
amount of memory to support an additional request. Aswe
will discuss in Section 6.4, even if the system can support
Ni.mie CONCUrrent streams, doing so is not cost effective.

Memprin =

In addition to deriving the minimum memory require-
ment, we can aso derive the maximum system throughout
for a given amount of memory (Mem 4,4::). Please see [4]
for details.

3 Reducing Required Memory

In scheme Sweep each request is allocated a fixed private
buffer of size2 x 5. Oneway to reduce the memory require-
ments is to have requests share their buffer space [10, 16].
That is, we create a shared memory pool, and as the space
used by one request frees up, it can be used to hold data
from other requests. Various papers have estimated that
sharing can cut the memory requirements by “roughly half.”
However, these estimates are obtained with very strong as-
sumptions, in particular that all seek times must be zero. In
this section we revisit how exactly memory sharing works
(without strong assumptions), and in doing so prove under
what conditions maximal sharing can be obtained, and what
the savings actualy are.

Figure 1 depictsthe amount of memory used by arequest
inaperiod 7. An 10 starts shortly before the data staged
into memory in the previous period is used up. The data
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accumulates in memory at the rate of 7R — DR until the IO
compl etes.

For our analysis we make two simplifying assumptions.
First, we assume that memory can be freed in a continuous
fashion. In other words, Figure 1 shows the actual memory
used by arequest. In practice, of course, memory isreleased
in pages, so Figure 1 would have a sequence of small de-
creasing steps, each one page in size. Thisimplies that our
estimatesfor memory use may be up to onememory page off
for each request. Thus, our continuous release assumption
isan optimistic one for buffer sharing schemes. However, if
as expected the page size is small compared to the segment
size, the difference will be negligible.

Our second assumption is to approximate the memory
use function by aright triangle. Our assumption causes us
to overestimate memory use: we will assume that the peak
in Figure 1is s (at time O in the figure), whilein redity it
iSS x (1 - DR/TR). Thisis a pessimistic assumption, but
since typically the data transfer rate TR is much larger than
the display rate DR, the differenceisvery small.

Notice that the small differences caused by our two as-
sumptions tend to cancel out each other. In particular, if
the page size is S x DR/TR, the effects will cancd. If the
page sizeislessthan thisvalue, asis probably the case, then
overall our results will be dightly pessimistic for memory
sharing.2

3.1 Optimal Delays

Before discussing memory sharing under Sweep, it is in-
structive to analyze an idea case where 10s for a given
stream occur in aregular fashion, as shown in Figure 2. In

2When an 10 is initiated, the physical memory pages for the data it
reads may not be contiguous due to the way buffers are shared. There are
several ways to handle these IOs. One idea is to map the physical pages
to acontiguous virtual address, and then initiate the transfer to the virtual
space (if the disk supportsthis). Another ideaisto break up the segment 1O
into multiple 10s, each the size of a physical page. The transfers are then
chained together and handed to an 10 processor or intelligent DMA unit
that executesthe entire sequenceof transfers with the same performanceas
alarger 10. Other ideas are discussed in [10].

this scenario the data for arequest isfully played back just
as the next 10 completes, so there is not need for cushion
buffers.

Let usdenotetheperiodicfunctionin Figure2 asp; (t—),
where ¢ represents time and ~; is the displacement from the
beginning of the period (e.g., the example shown in Figure 2
has a displacement of 0). The memory use function p(¢)
for Nz, concurrent requests is a superposition of Ny
such periodic functions, or p(¢) = vahm“ pi(t—7;). Notice
that each function p; (¢ — ;) has adifferent displacement. To
minimize the memory requirement of a system, one has to
minimizethe largest value of p(¢). The only parameters that
can be adjusted in p(t) arethe r/s. The following resultstell
us what these displacements should be for optimal memory
sharing among reguests.

Theorem 1. We are given a multimedia storage system that
SUppPOrts Ny ;..:¢ continuous streams with equal display rate
DR*. Minimizing memory usage requiresthe O start times
to be spaced equally in 7.

Corollary 1: The minimum memory space required to
support Niz.... Streams with equal display rate DR is
DX WNpimiet) - (Keep in mind that this does not include
cushi on buffer requirements.)

We providein [2, 4] the proofs of Theorem 1 and Corol-
lary. These results suggest that even if one cannot perfectly
separate intimethe 1O sequences, it isdesirabl e to space out
requests as much as possible. Thisis precisely what we do
in order to optimize the memory use of Sweep.

3.2 Scheme Sweep*

We refer to scheme Sweep with memory sharing as Sweep*.
With a sweeping scheme we cannot control when | Os occur
within a period, since they are done in the order found as
the head sweeps the disk. In the worst case, al the 10s
in a period will be bunched together (if all the segments
needed in a period happen to be nearby on the disk.) This
means that the memory peaks are summed, leading to poor
memory sharing. However, the 10s need to be separated
by at least the time it takes to read a segment, so the peaks
are not fully added. In addition, the last 10 of a period
can be delayed and separated from a cluster of 10s, further
improving memory sharing. Findly, it is also possible to
share the cushion buffers used by each stream to account
for 10 variability, leading to even better memory utilization.
All these effects are carefully analyzed in[4], wherewe also
show the following result. Incidentally, note that various
papers had earlier “guessed” how much memory a scheme
like Sweep* uses, but these estimates were not accurate.

Theorem 2: The minimum memory space required to sup-
port Nz;..; Streams under scheme Sweep* IS (Npimi: — 1) x
S Niimee x DR x (T — MLamin=2)x%) "|f wereplace theright
hand side of Equation 5 by thisexpression, we can derivethe
formulafor the minimum memory requirement of Sweep*.

3For the theorem that deals with streams with different display rates
please see[2].
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4  Scheme Fixed-Stretch*

In order to reduce the variability between the 10s of a re-
guest, in this section we consider a scheme where 10s are
performed in a fixed order from period to period. We call
this scheme Fixed-Stretch* because in addition the |Os are
spaced out as described next. For completeness, a version
of this scheme that does not use memory sharing, Fixed-
Stretch, is discussed at the end of this section.

To eiminate the need for cushion buffers entirely and
maximize memory sharing (Theorem 1), we must separate
the 10s of arequest by a constant time 7. However, since
the dataon disk for therequests are not necessarily separated
by equal distance, we must add time delays between 10s to
space them equally intime.

For instance, if the seek distancesinadisk sweep are cyiy,
eyl yoey AN eylyy, . cylinders, and cyl; isthe maximum of
these, then we must separate each 1O by at least thetime it
takes to seek to and transfer this maximum :t request. One
can choose a different separator for each period, depending
on the maximum seek distance for the requests of that pe-
riod. However, as we have argued earlier, thereis no benefit
alowing 7 to vary from cycle to cycle. To have a constant
T and simplify the algorithms, scheme Fixed-Stretch* uses
theworst possible seek distance (¢'y L) and rotational delay,
together with a segment transfer time, as the universa 10
separator, A, between any two 10s. The length of a period,
T, Will be Ny ;mi: times A.

Figure 3 shows an example withthree requeststhat thusly
separated. The time on the horizontal axis is divided into
service cycleseach lasting 7 units. Each servicecycle T (the
shaded area) is equally divided into three service slots, each
lasting A units (delimited by two up-arrows). The vertical
axisin Figure 3 represents the amount of memory utilized
by an individua stream.

Fixed-Stretch* executes in the following steps:
1. At the start of a service dot (indicated by the up-arrow
in Figure 3), set the end of dot timer to expirein A.
2. If there is no request to be serviced in the service dot,
skip to Step 6.
3. Allocate s amount of memory for the request serviced
inthistime slot.*

4When an 10 is initiated, the physical memory pages for the data it
reads may not be contiguous due to the way buffers are shared. There are

4. Set thelOtimer to expirein~(cy L), theworst possible
seek overhead, and start the disk 10. Since the actual seek
overhead cannot exceed ~(CY 1), when thel O timer expires
the data transfer must have begun.

5. When the 1O timer expires, the playback starts consum-
ing thedatain thebuffer (indicated by the* playback point”
pointersin Figure 3), and the memory pages are released
as the datais consumed.

6. When the end of dot timer expires, the data transfer (if
issued in Step 4) must have completed.® Go to Step 1 to
start the next service slot.

As its name suggests, the basic Fixed-Stretch* scheme
has two distinguishing features:

« Fixed-order scheduling: A request is scheduled in a fixed
service slot from cycle to cycle after it isadmitted into the
server. For instance, if arequest is serviced in the &t dot
when it first arrives, it will be serviced in the same " dot
initsentire playback duration, regardlessif other requests
depart or join the system.

« Stretched out 10s; The allocated service slot assumes the
worst possibledisk latency ~(c'y 1) so that thedisk arm can
move freely to any disk cylinder to service any request.
This property ensures that the fixed-order scheduling is
feasible no matter where the data segments are located on
the disk. Aswe discussin Section 6.3, allowing the disk
arm to move freely to service any request also leads to a
very small initial latency, much better than that of the seek
reduction schemes.

Scheme Fixed-Stretch* actually saves memory in two
ways. First, because 10sin a period are spaced out, mem-
ory sharing is at its best. Second, because there is amost
no time variability between the 10s of a given request, we
need tiny cushion buffers (discussed shortly). Fixed-Stretch*
does require larger segments (7 is artificialy enlarged, and
S = DR x T), but in our analysis we will see that over-
al Fixed-Stretch* does save substantial amounts of mem-
ory and actualy leads to improved throughput over scheme
Sweep! Thisresult is surprising since Fixed-Stretch* is un-
derutilizing bandwidth by slowing down the disk, doing just
the opposite of what previous scheduling schemes do.

41 Analyss

In scheme Fixed-Stretch*, a period 7 is composed of three
elements. seek overhead, padding, and transfer time for
the maximum possible Ny ;... requests. The transfer time,
Trransfer = Nrimir x S/T R, iSthesameasfor scheme Sweep.
Aswehave discussed, each individual seek plus padding de-
lay must be aslarge astheworst case seek of CY L cylinders.

several ways to handle these IOs. One idea is to map the physical pages
to acontiguous virtual address, and then initiate the transfer to the virtual
space (if the disk supportsthis). Another ideaisto break up the segment 1O
into multiple 10s, each the size of a physical page. The transfers are then
chained together and handed to an 10 processor or intelligent DMA unit
that executesthe entire sequenceof transfers with the same performanceas
alarger 10. Other ideas are discussed in [10].

5The accuracy of the timers used by Fixed-Stretch* can be tuned peri-
odically by cross-checking the amount of datain the stream buffers.



The total seek overhead and delay for Ny;.,..: requests is
Nrimic timesthisvalue, 0 Tseex +Tperay = Nrimar X v(CY L).
Thus T can be written as
s
T = Niimit X A = Npimir X (7(CYL) + ﬁ)’ (8)
which replaces Equation 4 we had obtained earlier for
scheme Sweep.

Accordingto Corollary 1, schemeFixed-Stretch* requires
Zx(Npimie 1) memory. In addition, since the release of the
memory allocated by each request at the beginning of a ser-
vice dot does not start until at the playback point of the ot
(see Figure 3 and execution step 5), each request needs to
retain the data for extra v(cy L) time. This delay of data
consumption (and hence memory deall ocation) requires that
each request hasan additional ~(¢'Y L) x D R amount of buffer
space. (This extra space requirement is very small; for the
parameters values of Section 6, the extra buffer requirement
is about 0.5% of the segment size) The required mem-
ory must be smaller than or equal to the available memory
Mem a,qu. FOr optimal performance, we try to give each
request as much memory as possible to maximize Ny ;.
Thus, we have the memory resource constraint
S X (NLimit + 1)

3 +(NLimitX’7(OYL)XDR)7 (9)

Mem ayai =

which replaces our old equation 5.

In summary, scheme Fixed-Stretch* also has three tun-
able parameters. 7, S, and Ny;,..¢; and we have derived
three equations they must satisfy (Equations 1, 8, 9) for op-
timal performance. From these equations we can solve for
T, S, and Np,.... Following the same derivation steps in
Section 2.2, we get the minimum memory requirement as
follows: Memyp, = 5% (NL;'mit +1) (10)
Niimit X ¥(CYL) x TR x DR

TR — (DR X NLimit)

Please see [4] for the detailed derivations. If memory is
not shard among the requests, we simply replace Equation 9
with

Mem ayaii = S X Nrimit + (NLimit X v(CY L) X DR).

where s =

We call this scheme Fixed-Stretch (without the *), and the
steps to derive Mem y,,,, are the same.

5 Group Sweeping Scheme* (GSS*)

So far we have presented two extreme schemes. Sweep*
minimizes seek overhead with high memory requirement,
and Fixed-Stretch* maximizes memory sharing and mini-
mizes cushion buffer requirement with the worst seek over-
head. In this section we consider a hybrid scheme that lies
between Sweep* and Fixed-Stretch*.

The Group Sweeping Scheme (GSS) proposed in [18]
dividesNy;,.;; Streamsinto G groups, wWith Ny ;,..;; /G streams
serviced in each group by a disk sweep. (For simplicity,
we assume that Ny;...; is divisibleby G.) The groups are
serviced inaround-robinfashion. A request isassignedto a
single group from the start to the end of its playback.

In the published descriptions of GSS it is not clear to us
how memory sharing is handled nor how much time tran-
spiresbetween reading thelast request inagroup and reading
the first one of the next group. Here we clarify these issues,
and improve GSS with the techniques we developed for
Fixed-Stretch*. We call the resulting scheme GSS¥, to dif-
ferentiateit from other possibl einterpretationsof the scheme
in[18].

In GSS* we assume that a period 7 is divided into ¢
epochs, each of duration 7/G exactly. Duringan epoch i, we
perform a single disk sweep, reading Ni;..../G segments.
(Epochs are long enough so that this can aways be accom-
plished.) After an epoch starts, we start performing the first
(Npimit/G) —1 10saswe sweep thedisk. Beforewe perform
thelast of the |Osfor this epoch, however, we wait until the
epoch is about to finish, and then we perform the last 10,
just as the epoch finishes.

Scheme GSS* islike Fixed-Stretch*, in that it introduces
artificial delaysto spaceout |Os. Infact,if G = Nz; ., GSS*
isidentical to Fixed-Stretch*: each GSS* epoch corresponds
to one of the |0s of Fixed-Stretch*. If ¢ = 1, GSS* islike
Sweep*. Hence, GSS* is a parameterized hybrid between
Fixed-Stretch* and Sweep*.

5.1 Anayss

The worst total seek overhead for an epoch occurs when its
segments are equally spaced on the disk (see Section 2.1).
Since each epoch under GSS* Services Ny i /G requests,
the worst case seek distance cyl; iISCY L x G/Niimi:. ThUS,
theworst case seek (and rotationa ) timeis. Tseex = Niimit X
Y(CY L xG/Nrimit). FOllOwingthesame stepsin Section 2.2,
we obtain the segment size:

_ Nrimit X Y(CYL X G/Npima) X TR X DR

S
TR — (DR X NLimit)

(11)

The following theorem gives the memory reguirements
for GSS#, taking into account sharing of all memory (in-
cluding any cushions needed to cope with 1O variability).

Theorem 3: The minimum space required to SUPPOrt Nz
streams under scheme GSS* is

((Npimit/G) x Sx (G+1)/2)— S

+NLimit X DR X (T/G = (Npimit/G — 2)S/TR). (12

Please refer to [4] for the proof.

6 FEvauation

To evaluate and compare the performance about various
schemes discussed in this paper, we use the Seagate Bar-
racuda 4LP disk [1]; its parameters are listed in Table 4.
We also assume a display rate DR of 1.5 Mbps, which is
sufficient to sustain typical video playback. For the seek
overhead we follow closely the model developed in [9, 14]
that isproventobeasymptotically closetotherea disks. The
seek overhead function is a concave function as following:

7(d) = o1 + (81 x Vd) +8.33if d < 400



Parameter Name | Value
Disk Capacity | 2.25 GBytes
Number of cylinders, CYL | 5,288
Min. Transfer Rate TR | 75 Mbps

Max. Rotational Latency Time | 8.33 milliseconds

Min. Seek Time | 0.9 milliseconds
Max. Seek Time | 17.0 milliseconds
«1 | 0.6 milliseconds
51 | 0.3 milliseconds
«2 | 5.75 milliseconds
52 | 0.0021 milliseconds

Figure 4. Seagate Barracuda 4L P Disk Parameters
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Figure 5: Memory Requirement
¥(d) = o2+ (82 x d) + 8.33if d > 400

Note that the seek time is proportiona to the square root
of the seek distance when the distanceis small, and islinear
to the seek distance when the distanceislarge.

In each seek overhead we have included a full disk ro-
tationa delay of 8.33 ms. The rotationa delay depends on
a number of factors, but we believe that one rotation is a
representative value. One could argue that rotationa delay
could beeiminated entirely if asegment isan exact multiple
of thetrack size. (In that case we could start reading at any
position of thedisk.) However, the optimal segment size de-
pends on the scenario under consideration, so it is unlikely
it will divide exactly into tracks. If we assume that the first
track containing part of a segment is not full, then in the
worst case we need afull rotation to read that first portion,
even with an on-disk cache. If we assume that the last track
could aso be partially empty, then we could need a second
rotational delay, and our 8.33ms value may be conservative!
Note incidentally that we use a full rotational delay (not
average) since we are estimating aworst case scenario.

6.1 Memory Reguirements

We set a desired throughput, and study how much mem-
ory each scheme needs to support it. Figure 5 shows the
minimum amount of memory required, Mem y;,.,,, t0 SUppOrt
agiven number of requests (NVy;..::). Figure5(a) showsonly

the no-memory-sharing schemes, while the (b) part shows
for al schemes the ratio of its memory requirement to that
of Sweep. For GSS and GSS* we use an optimal G value.

With no memory sharing, scheme GSS requires about
75% of the memory of the other schemes, soitisclearly su-
perior. With memory sharing, GSS* is still the best, but the
gap with Fixed-Stretch* is reduced. Interestingly, Sweep*
performs quite poorly even compared to Fixed-Stretch*, un-
less we require a very high throughput. As we argue next,
we probably do not wish to operate at avery highthroughput
level, so Sweep* does not seem attractive. Thus, Sweep*,
inits attempt to optimize disk movement, uses memory less
effectively, and ends up being not desirable.

As expected, Figure 5(a) showsthat as Ny ;. iNcreases,
the required memory grows rapidly. For example, say we
are running scheme Sweep without sharing memory with
160 MB, supporting up to 47 concurrent streams. |f we wish
to add memory to bump our limit to 48 concurrent requests,
we need to add about 100 MB of memory! Even an efficient
scheme like GSS* would require a huge amount of memory
to increase throughput by one.

For al schemes, the marginal memory requirement starts
dramatically increasing around Ny;,,;; = 38 t0 40. From
Niimie = 38 t0 the maximum achievable throughput 49, the
memory requirement grows amost 20 fold. This suggests
that although it is theoretically possible to use memory to
reduce seek overhead and improve throughput, it may be
economically unwise. We examine the cost issuesin greater
detail in Section 6.4.

6.2 Throughput

Instead of showing the minimum memory requirement, we
can aso show the maximum throughput the server can sup-
port given an amount of memory. Thethroughputisthe max-
imum Nz...... thesystem can achieve given amemory config-
uration Mem 4,.,;. Figure 6 presents the throughput of our
schemes for various memory sizes. Again, the(a) part of the
figure shows only the no-memory-sharing schemes, while
the (b) part showsfor all schemes theratio of itsthroughput
tothat of Sweep. For GSSand GSS* weagain usean optimal
G value. With no memory sharing, the throughput of Sweep
and Fixed areamost identical. Thisisbecause Sweep’sben-
efit from the reduced seek overhead is canceled out by its
large cushion buffer requirement. As expected, GSSisable
to achieve better throughput by balancing the seek time and
cushion buffer requirements. However, Figure 6(a) shows
that the gap between the best and worst schemes is not very
significant: two to three streams at best under most memory
configurations.

Figure 6(b) shows the throughput improvement that each
scheme offersover the basi c Sweep with no memory sharing.
Theratiosshown aretheperformance of each schemedivided
by the Sweep throughput. Thus, Sweep has a constant ratio
of 1. A ratio greater than 1 means that the scheme performs
better than Sweep.

In the figure we can easily see that as memory increases,
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Figure 6: Throughput Comparison

the throughput of all schemes converges. It isalso clear that
for limited memory, memory sharing pays off in terms of
improved throughput. However, even with limited memory,
the differences among the memory sharing schemes are not
very significant. That is, as long as memory is shared effi-
ciently, disk scheduling policies do not have a great impact
on throughput. Earlier studies had predicted greater differ-
ences, partly because memory sharing had not been carefully
analyzed or considered.

6.3 Initia Latency

In this section we briefly consider a third important perfor-
mance metric for multimedia storage systems. We define
initial latency to be the time between the arrival of asingle
new request (when the system is unsaturated) and the time
when itsfirst data segment becomes availablein the server’'s
memory. (For more discussion about why reducing initial
latency isimportant, please consult references [3, 5].)

For scheme Sweep (and Sweep*), theworst initial latency
happens when a request arrives just after the disk head has
passed over thefirst segment of themedia. The request must
waitforacycle (1) until itsfirst ssgment can beretrieved. As
discussed in Section 2.1, playback cannot start right away,
since this first segment just fills up the playback cushion.
Actua playback can start at the end of thefirst cycle, which
in the worst case can be another 7 seconds awvay. The worst
initial latency istherefore Tz yreney = 2x7. SiNCET = DRx S
and we have shown that s can grow without bound as Ny ;¢
iNCreases, T7 4renc, CaN aso grow without bound.

In reference [3] we propose a resource management
scheme, named BubbleUp, that builds upon Fixed-Stretch*
to minimize the initia latency for servicing a newly arrived
request. BubbleUp always makes the available disk band-
width and memory resource ready for servicing a new re-
guest. Thisisachieved by using idle slotsto execute “early”
requeststhat are scheduled inthe very near future. Thiscre-
ates somefreetimeinthe near futureto handlenew reguests.
If no new requests arrive, then those idle slots can also be
used to service future scheduled requests. Theworst latency
to serviceanewly arrived is2 x ~(CY L)+ S/T R, independent
of Npimic. The evauationin [3] showsthat when the media
server isheavily loaded (N ;s = 42), BubbleUp that builds
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upon Fixed-Stretch* has aworst case initia latency of only
aquarter of asecond, while Sweep* suffers from more than
eight seconds of delay. The GSS* scheme has even worse
delay since its segment size is larger than that of Sweep*.
Thus, for interactive applications that require fast response
time, the resultsin Sections 6.1 and 6.2 together with the
resultsin [3] show that a Fixed-Stretch* based scheme may
be the choice.

6.4 Minimize Per Stream Cost

One important measure for a multimedia system storage
system is the per stream cost. This is composed of the
hardware cost, including CPU, buses, disks, and memory.
Assuming common retail prices, alow-end computer with
a two-gigabyte disk drive is about $3,500, and the memory
cost is $20 per MByte (including other associated cost such
as memory board). We refer to the non-memory cost asthe
fixed cost. Thefixed costisamortized by Ny ;.....: Thelarger
Niim:: 1S, the lower the per stream fixed cost. On the other
hand, the per stream memory cost growsrapidly with Nz ;..
asillustratedin Figure5. Figure 7 plotsthe per stream fixed,
memory, and tota cost for scheme Sweep, as a function of
Nrimit-

Since we are using the same fixed cost in all cases, we
see that the per-stream fixed cost decreases as the number
of streams grows. However, as the nhumber of supported
streams grows, we need to purchase additiona memory,
so the per-stream memory cost grows. Notice that when
Niimic = 40, the per-stream total cost is at its lowest for
scheme Sweep. If we try to increase throughput beyond
that, our costs will start increasing. If we continue to push
performance past say 45 concurrent streams, we must pay a
high premium.

Of course, the actua numbers we give here are just ex-
amples for our current scenario. If we use a different cost
factor, then the values will be different. However, the shape
of the curves and the overal conclusions will be similar.
Although we do not show cost resultsfor our other schemes,
they display the same pattern.

In closing this section we make two important points.
First, our cost analysis considered a single disk. Clearly, if
we are considering how much money to spend to increase
throughput, we should aso consider buying more disks, as
this may be a better investment than buying more memory.
However, as we argue in Section 7 a multi-disk system can
be analyzed as a collection of single disk systems. Thus,
for each disk we purchase we need to consider how much
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memory to purchase to support that one disk. This means
that a single disk graph like Figure 7 can till be useful in
making our decision.

Second, the results of this section are for a specific hard-
ware scenario. However, we believe that our genera con-
clusions hold even under different disk parameters. Refer-
ence [4] presents results that support this claim, but due to
space limitationsthey cannot be given here.

7 DataPlacement Policies

We have studied disk scheduling and memory policies and
their impact on throughput, startup latency, and cost. To
complete our study, this section discusses some data place-
ment policies. We evaluatetheimpact of aplacement policy,
called disk partitions, on memory useand startup latency. We
also discuss the layout of data across multiple disks.

7.1 Disk Partitions

Reference [8] proposesapartition scheme that dividesadisk
into P concentric regions. Theideaisthat in each period T
thedisk arm services only oneregion. Dividingthediskinto
P regions reduces the worst seek distance by afactor of p.

For scheme Sweep*, the worst seek distance can be re-
duced from Y L/Nyimi: 10 5—=XLoo. For scheme Fixed-
Stretch*, the worst seek distance is bound by <L rather
than ¢y L. Seek times are also reduced by P for GSS*. The
rest of theanalysisfor schemes Sweep*, Fixed-Stretch*, and
GSS* isidentical to what we aready have, except that the
reduced seek timesareused. Noticethat sincetheworst seek
distance for scheme Sweep* is much shorter to start with,
weexpect the partitionscheme to benefit Fixed-Stretch* (and
GSS* with large &) more than it does Sweep*.

Toillustrate the effect of partitions, we return to the case
study of Section 6. Figure 8(a) showstheamount of memory
required for up to 16 partitions a Nr....;; = 45 for schemes
Sweep*, Fixed-Stretch*, and GSS*. Disk partitioning does
save memory under each scheme. For instance, a P = 2,
the memory savings are 22% for scheme Fixed-Stretch*, and
about 7% for both GSS* and Sweep*. As expected, Fixed-

Stretch* benefits more dramatically from partitions since it
dependsdirectly on the maximum seek distance. Noticethat
the gainsfor all schemes flatten out when P > s.

Figure 8(b) plots the throughput achieveble with 32
MBytes of available memory and up to 16 partitions. In
termsof throughput, using 5 or more partitionsmakes Fixed-
Stretch* perform the same as GSS*. Again, Fixed-Stretch*
benefits more from partitions than GSS* because it is more
sensitive to the maximum seek overhead. For al schemes,
however, disk partitions do not help too much in improv-
ing throughput. Thisis because even though disk partitions
help save memory, the memory required to support addi-
tional requestsishuge at thetail of the memory requirement
curve (see Figure5(a)). Notethat sinceinitial latency grows
with P [5], adisk partition scheme may not be suitable for
interactive applications.

7.2 MultipleDisks

There are two common waysto allocate data when multiple
disks are available in a system. With the first, which we
call independent disks, asegment of apresentationisaways
stored within a single disk. (Although different ssgments
of a presentation can be stored on multiple disks for the
purpose of balancing workload.) Thus, when a segment of
a presentation is retrieved, only one disk isinvolved in the
transfer. If we playback presentations from different disks,
their 10s can take place concurrently.

The second way to use disks, cdled striped disks [7],
treatsagroup of disksasone storage unit, with each segment
broken into severa subsegments, each stored on a separate
disk. The time to transfer one segment into memory is
reduced since the subsegments can be fetched in paralld.
With striping, a group of disks services one reguest at a
time.

Severa factors must be considered in choosing between
independent and striped disks. For example, if we have a
display rate that cannot be supported by a single disk, then
striping is a must. Also, independent disks may not work
well if we cannot balance the load across them well, eg.,
because presentations in one disk are much more popular
than others. (The study of [12] proposes a coarse-grained
striping techniquethat storesdata.on multipledisksbut oper-
ates disks independently to balance workload and conserve
memory.) However, from the point of view of memory uti-
lization, which is the focus of our paper, independent disks
are much superior under normal circumstances. The follow-
ing theorem shows that with A disks striping requires m
times as much memory as independent disks for equival ent
throughput.

Theorem 4: Say we are given M disks with equal transfer
rate 7 R and we wish to support Ny ,,,:; requests. Assuming
that we can balance theload with independent disks, striping
requires M times as much memory as independent disks do.
Please refer to [4] for the proof.

Notice that this result is independent of the scheduling
scheme used. It showsthat at least as far amemory is used,
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striping is not desirable.

To illustrate the impact of multiple disks, in our next
experiment we compare the per stream costsfor independent
and striped diskswhen we have a1 = 2 and M = 4 disks. We
only show the per stream costs for Fixed-Stretch, but all
schemes display the similar pattern. We use the same cost
figures as before except we add $500 for each additional disk.
Figure 9(a) showsthe case with two disks, while Figure 9(b)
shows the four disk scenario. The minimum per stream cost
for disk striping over two disksis15% (76 versus 65) higher
than for independent disks. The minimum per stream cost
for striping over four disksis44% (65 versus 45) higher than
with independent disks. This confirms the higher memory
costs of disk striping as shown in Theorem 4.

For the analysis of a multi-disk system with no striping,
we need to partition the available memory among the disks,
and assume there is no sharing between the partitions. This
is because we are anayzing for the worst case, and this
occurs when the memory consumption peaks for each disk
overlap exactly. Thismeanswe can decoupleof our analysis:
first we can evaluate how many requests a single disk can
support at minima cost (using an evauation like the one
in Section 6.4), and then we can determine how many total
disks we need to support the required throughput.

8 Conclusion

In this paper we have shown that disk latency reduction
is secondary to optimizing memory use in video delivery
schemes. Stretching out 10s with “artificial” delays for the
disk surprisingly leads to much more effective memory use,
and subsequently better throughput. Thisis because stretch-
ing out 10s minimizes the cushion buffer requirement and
maximizes memory sharing among streams. In an ana ogous
way, stop lights at freaway entrance ramps can slow down
input traffic, and lead to better throughput. Of course, the
reason why traffic lightswork in afreaway is different from
why ascheme like Stretch works, but intuitively theresultis
the same: pacing inputs can improve throughput.

We aso briefly pointed out that allowing the disk arm to
move fregly to service any request can reduce initial latency
drastically, an important performance regquirement of inter-

active applications. As a part of our evaluation, we have
noted that achieving high throughput often comes at a huge
cost in memory. Most research in the area has tended to
ignore this, focusing on how to reduce seek overheads. In-
stead, we have proposed to limit throughput to | ess than what
isfeasible in order to make the system more cost effective.
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