Inferring Structure in Semistructured Data

SVETLOZAR NESTOROV*

SERGE ABITEBOUL'

RAJEEV MOTWANIF

Department of Computer Science
Stanford University
Stanford, CA 94305-9040

{evtimov,abitebou’} @db.stanford.edu, rajeev@cs.stanford.edu

Abstract

When deding with semistructured data such as that
available on the Web, it becomes important to infer the
inherent structure, both for the user (e.g., to facilitate
guerying) and for the system (e.g., to optimize access). In
this paper, we consider the problem of identifying some
underlyingstructureinlarge collectionsof semistructured
data Since we expect the data to be fairly irregular,
this structure consists of an approximate classification of
objectsintoahierarchical collection of types. We propose
a notion of a type hierarchy for such data, and outline
a method for deriving the type hierarchy, and rules for
assigning typesto data el ements.

1 Introduction

An increasing number of information sources
available to the casual user export datain a variety
of different formats. In most cases, the data has
some structure but it is too irregular to be easily
modeled using arelational [14] or an object-oriented
approach [7]. We refer to this as semistructured
data. Discussions of semistructured data have
recently appeared in theliterature[1, 4]. Because of
the very nature of semistructured data, it becomes
important to derive a concise representation or a
summary of the inherent structure in order to give
the casua user some idea of the structure and
contents of the data source. Such information
facilitates query formulation and can also be used
for query optimization. We outline a method for

* Supported by a grant from IBM, a gift from Hitachi, and
MITRE agreement number 21263.

t Permanent address: INRIA-Rocquencourt, 78153 Le
Chesnay, France

* Supported by an Alfred P. Sloan Research Fellowship,
an IBM Faculty Partnership Award, an ARO MURI Grant
DAAHO04-96-1-0007, and NSF Young Investigator Award CCR-
9357849, with matching funds from IBM, Mitsubishi, Schlum-
berger Foundation, Shell Foundation, and Xerox Corporation.

inferring some underlying structure, more precisely,
an approximate classification of objects into types,
for large collections of semistructured data

Severd approaches have been proposed re-
cently [5, 10, 13] to describe the “schema’ of a
semistructured database using graphs. In one ap-
proach [5], the schema is assumed to be given a
priori. However, notably for Web data, the schema
israrely givenapriori. Inanother approach [10, 13],
it isrequired that the schema be afaithful represen-
tation of the data. For large and irregular data sets,
such a schema may become very complex and dif-
ficult to use. Our goal is to extract a “reasonably
small approximation” of the typing of alarge and
irregular data collection.

Following two recent independent proposals [6,
12], we assume that the data consists of a directed
labeled graph. For a concrete example, consider
the integration of several data sources containing
information about movies found on the Web. We
assume that the data is “wrapped” in a common
model, specifically OEM, asdonein Tsmmis[8]. In
thismodel, the datais represented as alabeled graph
of objects where the labels stand for relationships
between objects. Because the data is drawn from
many different sources, it isrelatively irregular. To
obtain a concrete sense of the kinds of problemswe
wish to address, suppose that the resulting database
consists of thousands of labels and hundreds of
thousands of objects, most of which have relatively
few (dozens) of distinct labels on outgoing edges.
Consider now a browser or a QBE-like interface
for such a data set. The user will rapidly be
overwhelmed by the sheer number of alternative
labelsto choosefrom. Thus, itisimportant to beable
to automatically analyze the data, type the objects
(to the extent possible), assign meaningful namesto

these types, distinguish the “core” attributes from
the more circumstantial ones, etc. We do not expect
a precise and complete description of the database
since the data may be too irregular. However, the
techniques should be able to adapt to the needs
of user, eg., to refine the description localy if so
desired, perhaps explain the precision of the typing
that is obtained, or the degree of irregularity of the
data.

In this paper, we propose a notion of a type
hierarchy for semistructured data, an agorithm
for deriving the type hierarchy, and rules for
assigning types to objects of semistructured data
collections. Our initial idea was to employ data
mining techniques devel oped for mining association
rules [2]. Clearly, other techniques developed in
the areas of machine learning, classification and
clustering, eg., [11, 9], are relevant to a certain
extent and could provide alternative approaches.
After running some experiments with association-
rule mining techniques, we found the results
somewhat unsatisfactory. The notions of support
and confidence that are central to mining association
rules seem less pertinent to our problem. Instead,
we propose a technique based on another criteria,
called jump, that captures the relative importance
of some attributes in a larger set. We propose
an algorithm to select types and assign objects to
types. As previously mentioned, we do not insist
that this provide a high-precision typing of the data
In particular, some objects may remain untyped and
other objects may be assigned a type that does not
describe them exactly.

We briefly discusssome preliminary experimental
results on Web data. While our initia results
are encouraging, more experiments are needed,
particularly with larger data sets. Comparison with
more standard techniques such as BDDs [3] should
also be performed. Finaly, our initia experiments
allowed us to further refine our algorithm. This
paper describes on-going research. We are currently
working on improving the technique and the
performance of the algorithm.

2 Preliminaries

In this section we describe the datamodel and define
someterminol ogy that is needed for the next section.
Two similar models for semistructured data have
been proposed recently and independently [6, 12].

In both models, semistructured data is modeled as
arooted, labeled, directed graph with the objects as
vertices and |labels on edges. While we will employ
the Object Exchange Model (OEM) [12], our work
isequally applicable to any graph-based data model
(e.g.,[6]). Anexampleof an OEM databaseisshown
inFigurel..

1000000 35 "Eric" "Paris’ 15 "John" "male" "London"
Figure 1: Part of the example OEM database D.

Let D denote the data set. For each object o in
D, let attributes(o) be the set of labels on the
outgoing edges at o, and let roles(o) be the set of
labels on incoming edges at o. For aset S of labels
and adataset D, we define at(.S) to be the number
of objects o in D such that attributes(o) = S,
and above(S) to be the number of objects o in
D such that attributes(o) O S. Note that
above(S) > at(S) because al objects counted in
at(S) areaso countedin above(.S). Wealso define
the following function: for each S,

at(S)

jump(S) = above(S)’

where jump(S) is set to O whenever at(S) = O,
regardless of whether above(S) is 0 or not. Since
forany S and D, 0 < at(S) < above(S), then we
have 0 < jump(S) < 1.

3 Algorithm

In this section we present an algorithmfor construct-
ing atype hierarchy for asemistructured datasource.
We also present the rules for assigning types to ob-
jects given atype hierarchy. The skeleton of our al-
gorithm consists of four main steps, some of which
may be applied iteratively.

Step 1: Identify candidate types.

Step 2: Select types from the candidates and orga-
nize them into a type hierarchy.

Step 3: Derivethetyping rules.

Step 4: Validate or type-check the type hierarchy
against the data.

For ease of exposition, we use a small and rather
simplistic example to introduce the agorithm. The
basic ideaisto use jumps to discover thetypes, i.e.,
the increase in the number of “fitted” objects when
an attribute is added to a set. Besides this guiding
principle, the choice of types and the assignment of
types to objects is based on a number of heuristic
rules. Therulesinarea system should be expected
to be more complicated® than those presented in the
paper. We focus here on the main idea and mention
briefly possibleimprovements.

Our running exampleisadataset D that contains
various information about people and companies
such astheir names (for both companiesand people),
addresses (for both companies and people), age
(for people), sex (for people), saary (for people),
employees (for companies), and subsidiaries (for
companies). We will illustrate how our agorithm
derives a type hierarchy for D which isintuitively
correct in this simplistic example.

3.1 ldentifying Candidate Types

The types we consider are characterized by sets of
labels. Intuitively, an object o has type 7 if the set
of labels on edges with source o coincide with r. Of
course, thisistoo demanding so we will insist that
thisset be as close as possibleto 7.

To identify candidate types, we first create a
counting lattice, L, with an alphabet consisting of
al distinct labels in D. The counted words are
attributes(o) for al objects o in D. Note that
from L we can efficiently compute the functions at
and above for every set of labels. The counting
lattice L can be constructed in one pass over D,
as can the computation of at values. The task of
computing above vaues can be performed in time
O(n?), wheren isthe number of non-zero at values,
which should be significantly less than than the size
of D in any reasonable application.

To continue with our example, suppose the
relevant part of L (i.e., with non-zero at values) for

!Indeed, our prototype does use more complex rules.

thedataset D isas shown in Figure 2. Each vertex
contains the lattice entry (i.e., the set of different
labels) associated with the vertex and the number
of exact occurrences of theword, i.e., the at value.
For example, the bottom vertex corresponds to the
fact that in D there are 100 objects that have only
subobjectslabeled Name and Addr.

Addr,Age,Name,Sal,Sex
3000

Addr,Name,Sal,Sex Addr,Age,Name,Sex Addr,Empl,Name,Sub
2000 4000 10

Addr,Name,Sex

Addr,Empl,Name
1500 50
Addr,Name|
100

Figure 2: The counting lattice L constructed from
the database D.

Once L hasbeen created, weidentify setsof labels
(i.e., vertices in the lattice) that present significant
jumps by selecting al sets of labels S such that
jump(S) > 6, where 6 isapredetermined threshold.
(The choice of § will be discussed |ater.) The setsof
labels with significant jumps are added to the set of
candidatetypes. Then, wetry to obtain morevertices
with significant jumps by pushing counts “down”
for vertices that are not “above” any candidate type.
Intuitively, if an object is not in a candidate type, it
isgoing to be assigned to less precise types, thereby
increasing the population of such types and possibly
turning theminto candidates. Clearly, morecomplex
rulesmay beused here; for instance, we could decide
to attach some objects to atype with more attributes
than what they actually have, thereby growing the
popul ation of more refined types.

To continue with our example, suppose that we
choose a threshold § = 0.7. Then, there are three
significant jumpsin the lattice L shownin Figure 2:

e jump({Addr, Age, Name,Sal,Sex}) =1
e jump({Addr,Empl, Name, Sub}) =1
e jump({Addr,Empl,Name}) = 0.83

After pushing counts down we get an additional sig-
nificant jump as the at value of {Addr, Name, Sex}
isincremented to 7500 and we obtain that

jump({Addr, Name, Sex}) = 0.71.

Remark 3.1 As mentioned in the introduction, we
first intended to use an approach involving data
mining for association rules[2]. However, looking
for types with large support, i.e., large at values,
does not work. This would lead to missing some
types that occur relatively infrequently even though
they are rather regular in terms of their attributes
and neatly distinguished from the rest of the data.

3.2 Building the Type Hierarchy

In the first step, we focused exclusively on the
atribute labels of each object. Here we aso
consider role labels. Simplifying the problem for
exposition purposes, for each of the candidate types,
we define its primary role as the label occurring
most frequently in roles(o) for all objects o of the
given candidate type. We will denote the primary
role of a candidate type S as p-role(S). Then
we select candidate T' as a type if there does not
exist another candidate 7" such that 77 ¢ T and
p-role(T) = p-role(T"). Intuitively, we choose the
minimal set of attributes necessary to distinguish a
type.

Going back to our running example, Figure 3
shows the candidate types chosen from Figure 2
and their primary roles. We find three types,
namely {Addr,Name,Sex} with a primary role
Person, {Name, Addr,Empl} with a primary role
Company and {Name, Addr, Age, Sex,Sal} with
a primary role Empl. Note that the candidate
{Addr,Empl, Name, Sub} does not become a type
because it is a superset of {Addr, Empl, Name} and
their primary roles are the same.

Empl (2800) : Company (10) -
Addr,Age,Name,Sal,Sex ‘Addr,Empl,Name,Sub:
3000 10 :

Company (45)
Addr,Empl,Name

Person (5500)
Addr,Name,Sex

7500

Figure 3: The candidate types with their primary
roles.

In general, we can use more than one label as
the primary role of a given candidate S. Indeed, it
might be the case that the two most frequent labels
in p-role(S) occur an (almost) equa number of
times. In our simple example we do not address

this problem but our agorithm can handle more
complex structuresin p-role(S), e.g., aset of labels
with weights. In thiscase, therulesfor choosing the
types from the candidates become more complex.

3.3 Typing Rules

Let the types we found in the previous step be
S1,...,9n. Consider an abject o. Then we assign
to o the type Sy that has the shortest “distance’
to 0. By distance’ we mean the number of labels
in the set differences attributes(o) — S; and
Sk — attributes(o).

Note that a given object may be assigned to more
than onetype. We consider thisto be afeature of the
algorithm rather than a shortcoming. In many red
life situations, objects do belong to more than one

type.

3.4 Validation and Evaluation

Once we have build the type hierarchy and assigned
types to the objects, we need to evaluate the result
and validate the classification we obtained. One
important measure is the type size (e.g., the number
of classes) of the typing. Another category of
measures involves correctness or accuracy of the
typing. Consider, for instance, the number of objects
that have been assigned a certain type even though
they are missing someof theattributes characterizing
the type or they have more than what is required.
Also, consider the number of objects that we failed
to classify.

As mentioned earlier, the result of the algorithm
depends crucially on the choice of threshold 4 that
we considered so far somewhat arbitrary. Clearly,
there is a trade-off between type size and accuracy.
For example, with @ = O, we obtain a perfect typing
by creating a separate type for each dlight variation
of object structure. On the other hand, a too high 6
would yield very few types and thus may result in
very low accuracy. If the number of classes does not
fit our expectations (e.g., istoo large to betractable)
or if the accuracy is not sufficient, we have to try
new valuesfor 4.

It would be useful to relate directly 6 to the
database size, number of labels, type size, accuracy
and other fixed parametersof the problem. However,

2More complex distance measures could clearly be used,
e.g., adistance that would give lessweight to the presenceof an
extra attribute than to the absence of arequired one.

this is ignoring another important measure - the
degree of regularity of the data set. This degree
of regularity may be a useful information for the
system (e.g., for physically organizing the data) as
well as for the user who istold what kind of datato
expect. It can aso be useful in guiding the choice of
avaluefor 6.

4 Conclusions

We outlined an algorithm for deriving a type
hierarchy for a semistructured data source and rules
for assigning types to objects. The agorithm
evolved from experiments on Web data. In our
experiments, we used two different data sources:
a subset of the ESPN SportsZone® that provides
various sports information, and an on-line database
containing information about the Stanford Database
Group (DBG)*. Both data sets are of reatively
modest size (hundreds of objects and dozens of
labels) but DBG is highly cyclic whereas ESPN
is close to a tree. The typing is smple enough
so we could interpret the results of the algorithm;
but the data is irregular enough so that finding the
type hierarchy is nontrivial. Our initia results are
encouraging athough clearly more experimentsand
work are needed. In particular, as expected, our
algorithm is sensitive to the jump threshold in the
sense that lower threshold values result in a greater
number of types. We plan to investigate techniques
toprovide“good” estimatesfor thisthreshold. Also,
therules that we present in this paper are smplified
for presentation purposes. The choice of such rules
has a strong impact on the quality of the results, and
we are currently experimenting with more complex
rulesand working on thefine tuning of our agorithm
with respect to such rules. Finally, we designed the
algorithm with performance in mind. We are now
working on designing appropriate access structures
to improve the performance of our prototype.

References

[1] S. Abiteboul. Querying semi-structured data. In
Proceedings of ICDT, pages 1-18, Delphi, Greece,
January 1997.

[2] R. Agrawal, T. Imilienski, and A. Swami. Mining asso-
ciation rules between sets of items in large databases. In
Proceedings of ACM SSGMOD International Conference
on Management of Data, pages 207-216, May 1993.

3http://espnet.sportszone.com/
*http://www-lore.stanford.edu:8765/ui2/

(3]

[4]

(5]

(6]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

S.B. Akers. Binary decision diagrams. |EEE Transactions
on Computers, C-27(6):509-516, 1978.

P. Buneman. Semistructured data: a tutorial. In
Proceedings of PODS, pages 117-121, Tuscon, Arizona,
May 1997.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu.
Addind structure to unstructured data. In Proceedings of
ICDT, pages 336-350, Delphi, Greece, January 1997.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu.
A query language and optimization techniques for
unstructured data. In Proceedings of the ACM SSGMOD
International Conference, pages 505-516, Montreal,
Canada, June 1996.

R.G.G. Cattell. Object data management.
Wesley, Reading, Mass., 1994.

S. Chawathe, H. GarciaMolina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The Tsim-
mis project: Integration of heterogeneous information
sources. In Proceedings of 100th Anniversary Meeting
of the Information Processing Society of Japan, pages 7—
18, Tokyo, Japan, October 1994.

D. Michie, D.J. Spiegelhalter, and C.C. Taylor, editors.
Machine learning, neural and statistical classification.
Prentice Hall, Englewood Cliffs, N.J., 1994.

S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Rep-
resentative objects: Concise representations of semistruc-
tured, hierarchical data. In Proceedings of ICDE, pages
79-90, Birmingham, U.K., April 1997.

N.J. Nilsson. The mathematical foundations of learning
machines. Morgan Kaufmann, San Mateo, Calif., 1990.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom.
Object exchange across heterogeneous information
sources. In Proceedingsof ICDE, pages 251-260, Taipei,
Taiwan, March 1995.

D. Quasset. al. Lore: A lightweight object repository for
semistructured data. In Proceedingsof the ACM SSGMOD
International Conference on Management of Data, page
549, Montreal, Canada, June 1996.

J.D. Ullman. Principlesof Databaseand Knowledge-Base
Systems, Volume |. Computer Science Press, Rockville,
Maryland, 1989.

Addison-

