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Introduction

Interoperability is a central concern whenever digital libraries are con-
structed as collections of independently developed components that rely on
each other to accomplish a larger task. The ultimate goal for such a system
is to have components evolve independently, yet to allow all components to
call on each other efficiently and conveniently. For digital libraries to scale
to an international level, they need to be constructed from such interopera-
ble pieces. This is the case not only for technical reasons, but also because
information repositories and information processing services for digital
libraries often need to be operated by independent organizations.

Frequently, the terms “heterogeneous” or “federated” systems are used to
describe cooperating systems where individual components are designed
or operated autonomously. This is in contrast to the more general term “dis-
tributed systems” that also includes collections of components deployed at
different sites that are carefully designed to work with each other. Our
focus here is on heterogeneous or federated systems of information
resources and services and how they can be made to interoperate.

Interoperability is one of the most critical problems in the 1990’'s and
beyond, as the number of computer systems, information repositories,
applications, and users multiply at an explosive rate. It gets even worse as
system design and software production becomes a global activity, where
for example, the politics of each region may dictate what services a compo-
nent may provide, or what data can be exchanged. Interoperability is also,
by its very nature, an extremely complex and evolving problem. Although
researchers have been struggling with interoperability for over 20 years, it

1



is often not clear what principles or key results have been established.

Our goal in this paper is to present a broad introduction to the issues of
interoperability, suggesting factors that may be used in evaluating interop-
erability solutions, and providing an overview of solution classes. Interop-
erability has been surveyed before, but mostly in the context of a specific
domain (e.g., database systems, or programming languages). We believe
that the advantage of taking a broad “systems” approach is that it lets us
identify common issues and solutions that span domains and applications.
However, in this article, we cannot provide a broad overview of the litera-
ture, or explore any one issue in depth. To compensate, we have prepared
an annotated bibliography [1] which points to in-depth examinations of
more narrowly focused scope.

In the following section we show that interoperability is not just an issue of
inter-component communication, but that it needs to be considered in
many different functional parts of a system. We introduce an informal set of
criteria by which interoperability solutions may be classified and evaluated.
We follow this by a high-level survey of approaches for accomplishing
interoperability. This survey shows that there is no single “magic bullet,”
and that indeed, new approaches have to be used in conjunction with older
types of solutions.

The Problem Space

One reason interoperability has been receiving broad attention is that the
problem permeates almost all aspects of digital libraries that are imple-
mented as distributed computing systems. In this section we illustrate the
many places where interoperability issues enter into the constituent system
functions. We also highlight some requirements that frequently arise in
interoperable systems. Careful decisions around these requirements can
impact the cost of solutions significantly. Finally, we informally study the
impact and costs of those solutions to interoperability problems.

Interoperability Issues Permeate Systems

In Figure 1, five large functions of digital libraries are listed along the hori-
zontal dimension. The first function (column) refers to the storage, organi-
zation, and retrieval of information, the second to its presentation to users;
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Figure 1: Examples of system functions where interoperability issues arise

the third function is concerned with the communication among parts of the
overall system; the fourth covers the initiation and control over a system’s
actions, and the fifth provides protection for users, their property, and infor-
mation resources.

The rows list respective examples of corresponding enabling technologies,
of current research thrusts, and of some long term goals. The purpose of
this figure is not to provide a complete overview of the space, but to illus-
trate at a glance the broad relevance of interoperability.

For example, the modeling cell in the information management column rep-
resents basic technologies for organizing information in such a way that it
can be shared with other parts of a system, even if those follow different
information structure conventions. Early federated database systems [11],
for instance, created global database schemas to help smooth over syntac-
tic differences. Translators would convert data field specifications to local
conventions at the target components. For example, a global schema for a
set of business directory databases might specify that the names of firms
are stored in a field called companyName. A directory of corporate donors to
charitable organizations might locally store this information in a field called
corporation . Another directory, which lists corporations currently involved
in law suits might call the same field defendant . A client could now issue
gueries searching over companyName in all directories at once. This could be
used to answer questions like “find the earnings of corporate donors that
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are currently involved in lawsuits”. Before being submitted to each data-
base, the query would be modified to use the correct local field name.

If we move to the component interconnection cell of Figure 1, we find a sim-
ilar approach in a very different arena. This cell represents the networking
technology of inter-component communication. For example, if a collection
is available to one set of patrons through a propriety mainframe connection
protocol, gateways can translate traffic between the mainframe’s native
protocol and the World-Wide Web.

In the remote computation cell (in the operations column) we find this trans-
lation approach represented yet again. This column of Figure 1 provides
examples of interoperability for invoking operations in a target component.
‘Heterogeneous computing’ is a term sometimes used in this context [12].
CORBA and DCOM are both protocols that provide the ability for compo-
nents to be written in different languages and for different computing plat-
forms. The components remain interoperable in the sense that they can
invoke operations on each other. Appropriate facilities translate among the
mechanics of invoking an operation in each participating system.

We can take the information presentation column of Figure 1 as an exam-
ple to illustrate the differences between the focus on enabling technology,
and currently more prevalent research thrusts. Early interoperability for dis-
playing information on disparate system components relied on some mini-
mal, universal agreement, such as bitmap display technology. Later, the
degree of interoperability was enriched by facilities such as the X Window
system. An alternative approach, exemplified by Display Postscript in SUN
Microsystem’s News system, provides a way of describing exactly what is
to be rendered, without relying on agreement at the level of a common win-
dow system. All receiving components are responsible for finding some
way of rendering the descriptions locally.

An increase in focus on this declarative style of display interoperability is
exemplified by the SGML/HTML standards. They attempt to communicate
semantic intent by tags indicating that a portion of text is to assume the role
of ‘title’, or of ‘a bulleted list'. It is up to the receiving components to render
these semantic notions appropriately.
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Current research thrusts (middle row of Figure 1) are building on basic
technologies, usually attempting to provide richer functionality while
expanding platform independence. For example, research for the informa-
tion presentation function of Figure 1 has begun to leverage the enabling
remote computation technology provided by Java. Multivalent documents
[8], for instance, are renderings of information in a Java virtual machine.
These renderings can include behaviors that dynamically turn the image of
a text document into ASCII, or that convert a single-spaced document
image to be double-spaced. Other behaviors might include reaching
through the Internet and requesting another service to summarize the doc-
ument’s contents. Interoperability in this example hinges on the common
infrastructure provided by Java and its standard user interface elements.
This infrastructure ensures that these richer documents can still move
among components of a system.

Similarly, in the operations column of Figure 1, the remote computation
facilities provided by CORBA, DCOM, and mobile code, like Java applets,
are raising interoperability issues in the context of coordination among
independently executing components. Full-scale distributed transaction
approaches with guarantees for continuous information consistency can at
times be too heavy-weight and too limiting. Some systems therefore
attempt to allow heterogeneous components, such as the word processor
of remotely collaborating authors of a document, to operate independently
for periods of time. The programs then synchronize occasionally, so that
over a long period of time, document consistency is assured (see, for
example, the Bayou system in [1]).

As a long-term goal (see top row of Figure 1), systems would simply oper-
ate by allowing heterogeneous components to come online, advertise their
capabilities, and engage in peer-to-peer interactions with other compo-
nents. This vision is, of course, very difficult to realize, because it is not
clear how to describe arbitrary functionality such that other components
can inspect the description and ‘decide’ automatically that this functionality
is appropriate for a given task, and what all the parameters are intended to
convey.



Similarly, a long-term goal for the protection function is simply to declare
terms and conditions for an interaction, and to have the system take care of
the rest. For example, a document might travel among components with
attached instructions stipulating that the document’s contents may be read
and passed on to another component, but that it must not be copied.
Appropriate watermarking, or even preventative measures would cause
these stipulations to be adhered to.

For the information management, information presentation, and communi-
cation functions, a major long-term goal is to achieve complete indepen-
dence from data formats, document models, and languages. The vision is
that each component would use, for example, its own way to represent doc-
uments, but that documents could still be freely exchanged and widely dis-
played on different computing platforms, and that maybe even human
language barriers might be overcome. While complete human language
translation continues to be an elusive goal, some progress is being made in
the information management function. For example, Reference [10]
describes a system in which queries can be issued using keywords from
one human language, but which is able to identify relevant documents writ-
ten in another language. Still, much more work is needed before the top
row of Figure 1 describes reality.

As is evident from Figure 1, interoperability may concern information, oper-
ations, and protection functions. Beyond that, there are differences in
interoperability requirements that need to be considered when designing a
digital library consisting of collaborating components.

Among the requirements for interoperable systems, two will be outlined
here: The degree to which component heterogeneity needs to be hidden,
and the degree to which components must be bridged at a syntactic versus
a semantic level.

How Much to Hide Heterogeneity?

Alternative degrees of hiding heterogeneity can be illustrated by examining
transparency for three aspects of distributed digital libraries: differing levels
of functionality in participating components, heterogeneity among user
interfaces, and the effects of data and functionality distribution on the use
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of components in the system. We look at each in turn.

Ideally, all components of an interoperable system would be made to
appear equally fast, equally rich in functionality, and equally expressive in
modeling data. For example, a digital library of independently maintained
collections would appear to the user as one big resource whose sucollec-
tions all behaved identically. In practice, this is usually not possible.
Instead, a series of design choices must be made, depending on how
much homogeneity is required. For example, if homogeneity of functionality
across all collections is very highly desired, a designer might decide not to
make any functionality available that may be obtained at only some of the
participating collections. This will ensure that all collections appear maxi-
mally homogeneous in functionality, but this approach also sacrifices func-
tionality that would be available if some heterogeneity in the functionality of
the digital library’s collections were deemed tolerable.

Similarly at the user interface level: If differences in interaction styles are
tolerable, it is permissible to display multiple, different user interfaces as
users interact with the various collections. On the other hand, if a common
look and feel is considered crucial to the success of a system, an interoper-
ability solution may need to include a complete user interface that
bypasses the collections’ native interfaces.

Finally, usage requirements may demand that the physical distribution of
data and operations be transparent. This makes design for interoperability
more complex, because it implies that access time differences among the
collections need to be eliminated or minimized. This may involve pre-com-
putation, data caching, precise scheduling, or even the artificial slowing of
the faster collections. On the other hand, if the transparency of distribution
is of less importance, appropriate indicators, such as a cursor turning to an
hour glass for some operations, may be acceptable. Alternatively in this
case, a human user may be asked to decide whether an expensive opera-
tion is to be performed or not. However, this approach assumes the ability
to predict system behavior, which is frequently not possible.

The degree to which all aspects of an interoperable digital library are to
look homogeneous therefore significantly impacts the complexity of solu-
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tions.

Syntax vs. Semantics

The degree to which component differences are to be bridged at a syntac-
tic versus a semantic level is the second range of requirements we con-
sider. This difference is frequently stressed when describing recent
interoperability projects. Often, the implication is that semantic interopera-
bility is more important or sophisticated than syntactic approaches. In fact,
the differences are not always clear-cut.

To a first approximation, a simple example can illustrate the difference
between syntactic and semantic interoperability: Consider a component
publishing the fact that anyone may remotely call its function
print(String:author, String:pubData, Float:price, String:address)

Assuming appropriate remote invocation technology, this publication pro-
vides syntactic interoperability. Anyone can call this function without caus-
ing an invocation error. Semantic interoperability would be improved if this
component would in addition publish the fact that it will print in 600dpi on
the printer in Hall A, that the parameters are supposed to specify a book to
be be paid for in Japanese Yen, and that the printed output will be an order
form as required by standard company procedure.

This kind of simple example is generally used when describing the differ-
ence between syntactic and semantic interoperability. In fact, the difference
is actually more complex, in that it recurs at multiple layers. For example,
looking at the formula (Forall x (Exists y (Knows y x))) one might say
that the syntax is Lisp-like, but the implied semantics is first-order logic. On
the other hand, one might say that its being a statement in first-order logic
is really just syntactic, and the semantics has to do with what Knows means
in some axiom system. Or one might in turn characterize the whole formal
axiom system as syntactic, and conclude that the real semantics is in its
mapping onto some domain of interest in the world. Two representations
might therefore be said to be “semantically interoperable” if they can be
used with a common inferential system. But are they really interoperable, if
Knows in one system has a different shade of meaning than in the other?

Similar complexity arises in programming languages. What most people
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refer to as the “semantics” of a program, is really the syntax of its execu-
tion, with no reference to what the program is about, for instance whether it
is playing chess or balancing a bank account.

The difference between syntactic and semantic interoperability is thus not
clear-cut. We can say loosely that the more ambitious a system becomes in
considering semantic interoperability, the more flexibility we have in options
for interacting with it, but the more difficult it is to implement.

Measuring Success

One of the biggest problems with interoperability is that solutions are very
difficult to compare. Different approaches operate under differing assump-
tions, and design goals frequently conflict with one another. It is therefore
important to articulate the potentially relevant goals, and to understand
tradeoffs among them.

Given the problem space sketched above, and considering associated
solutions, we can isolate criteria for evaluating the tradeoffs made by any
given approach. There are many such criteria, but the following six stand
out:

High degree of component autonomy

Low cost of infrastructure

Ease of contributing components

Ease of using components

Breadth of task complexity supported by the approach

Scalability in the number of components

S e o\

These are not quantitative measures, but they do provide useful guidelines
for understanding distributed and interoperable digital libraries. Sometimes,
tradeoffs that optimize one criterion can negatively impact another. For
example, a system that minimizes the cost of infrastructure may then only
be usable for simple tasks, or may be very difficult to use. We limit the fol-
lowing discussion to the first four criteria.

Component Autonomy
The degree of component autonomy (Criterion 1) refers to the amount of
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compliance to global rules that is required of each participating component.
Not considering interactions with other goals, higher autonomy is better,
because it provides more local control over implementation and operation
of components, and because it makes it easier to include legacy systems
as participating components. At one extreme, complete autonomy would
make no assumptions of components complying with any global rules.
Components could present arbitrary interfaces, and could insist on any
interaction protocol or data format they chose. These could be freely
changed without notice. At the other extreme, components participating in
the system might be required to engage in global procedures such as
transactions or information store-and-forward, or to organize all their infor-
mation by Library of Congress organizational schemes.

Limitations in autonomy may affect many aspects of a component. There
may be limitations on how a component may schedule its activities: it may
be required to react right away to interrupts, or it may instead be allowed to
accept requests asynchronously and return results via callbacks. Another
limitation on autonomy may require a component to make all its capabilities
available at startup time, at a particular address or port, and in a particular
form. Less autonomy limitation in this area may instead allow late binding
of functionality. Yet another aspect of autonomy concerns security: Limited
autonomy in this area may require all participating components to guaran-
tee certain behaviors, while a higher level of autonomy may instead not
make any a-priori rules, but may curb security transgressions dynamically
at runtime.

While desirable in principle, high autonomy can lead to solutions that only
allow interoperation over the lowest common denominator of functionality,
or that require very expensive construction of component descriptions or
translation facilities. This in turn can negatively impact other desirable char-
acteristics, such as the ease of using the components.

Practical interoperable systems therefore lie between these extremes. For
example, the translation scheme of federated databases with global sche-
mas provides very high autonomy for participating local DBMSs. In con-
trast, consider the use of blackboard architectures for coordinating large
tasks. In this scheme, all components of an interoperable system coordi-
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nate their work by posting tasks and results to a centrally accessible loca-
tion. This approach would provide less autonomy to the components,
because they must all agree to use the blackboard, and to adhere to the
respective data exchange formats. On the other hand, the system might be
easy to use and implement.

Cost of Infrastructure and Entry

The cost of a solution is another aspect to consider in any evaluation. Crite-
rion 2 refers to the cost of the infrastructure that is needed to support a
solution. These costs can be very difficult to assess because they are
shared among many users, or even non-users if funds are raised from
taxes. Examples include the development of widely available ‘free’ soft-
ware, such as SGML parsers, and the development and maintenance of
the Internet. These are costs born by entities beyond the scope of a single
organization. If the infrastructure costs are local, such as the installation of
fiberoptic wiring in a building, they are easier to assess. We do not further
consider these more obvious costs here.

Criterion 3, in contrast, refers to the incremental cost of enabling interoper-
ability when building a new component. This could involve hardware invest-
ment necessitated by the approach, or the cost could be in the form of
software complexity required to ensure interoperability.

A good example arises in the coordination area. If the operations of inter-
operating components are coordinated by transactions that initially lock all
resources needed by a component, then any individual component can be
assured that once it is finished and commits its transaction, it will not need
to undo what it has done. On the other hand, if coordination is achieved by
optimistic concurrency control where all actions are performed even in the
face of possible interoperation conflicts with other components, then all
components must be much more sophisticated and ready to undo their
actions.

Obviously, a low cost of entry is highly desirable, but a higher cost of pro-
viding new components may well be justified if it provides other engineering
advantages. In the example above, such an advantage potentially arises in
the second solution: If there are few conflicts, the overall system will run
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faster, because components do not need to wait for resources as often.
Another reason for choosing to accept a higher cost of contributing new
components is to make them easier to use.

Ease of Use

A component’s ease of use (Criterion 4) refers both to the complexity of
creating client components and to the complexity of interacting with the
component at runtime. For example, an information service that provided
only a very simple query interface might make the creation of clients easy,
but everyday usage might be more complex.

The ease of using existing components in an interoperable system needs
to be considered separately from the cost of service component creation
(Criterion 3) because the construction of a service component only occurs
once and might warrant higher costs, and because it may be desirable to
ensure that the creators of client components need not be as well trained
as the creators of service components.

For example, consider a remote client/server communication mechanism
that is modeled on Unix pipes: clients and the server produce output by
writing to a ‘standard’ output port. Other components consume this output
by reading from a ‘standard’ input port. This design makes client compo-
nents very easy to build, if the interoperation consists of components pro-
ducing single data types, such as ASCIlI encoded words, or a few
predefined types, which are then processed by another component. The
Common Gateway Interface (CGIl) used in the World-Wide Web is an only
slightly more involved version of the piping mechanism.

In contrast, the CORBA/DCOM approach requires the programmer to
acquire and process a special file that uses a specification language to
describe the interface of the service component at a syntactic level. The cli-
ent program must then faithfully adhere to the conventions laid out in that
interface. For simple tasks, this approach makes it more complicated to
write client components than in the piping solution. On the other hand, if
complex data structures and multiple component methods are involved, a
CORBA-like approach is much easier to use, because it takes care of pack-
aging parameters appropriately for travel over the communication link
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(parameter marshalling), and it syntactically allows components to be
viewed as if they were local objects.

Our examples show that evaluation criteria tend to be interrelated in com-
plex ways. Evaluation also depends on the complexity of tasks the system
in question is to be used for. In general, to select particular strategies for a
given scenario, one must weigh the importance of each goal by how well
each strategy meets the goal. It is of course hard to quantify this whole
evaluation process, and one must rely on experience and intuition.

The Solution Space

Over the years, many, very different approaches to achieving interoperabil-
ity have been developed. Curiously, as we will see, these solutions are
beginning to blend into each other. Figure 2 shows a layout of the solution

Strong standards
(1S0 802, 239.50, DOS, X, TCP/IP, HTTP)

Mobile functionality,
(Lisp, applets)
Families of standards
(online payment, OSI)

Specification-Based
Interaction

(KIF, SETL, PAISLey) External mediation

(Wrappers, gateways, global schema translation)

Figure 2: Families of interoperability solutions

space. Each point on the circle represents one cluster of approaches. We
will sketch each cluster in turn.

Strong Standards

One of the oldest approaches to achieving interoperability among hetero-
geneous components is to agree on a standard that achieves a limited
amount of homogeneity among them. These standards come about in dif-
ferent ways. Standards such as ISO 802 for network connections and the
Z39.50 standard for information retrieval were created by committees that
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convened because a large and diverse enough community agreed that a
standard was needed. Sometimes one product gains enough market share
that it becomes a de facto standard by virtue of its broad deployment, as
happened with DOS, and later Windows in the area of desktop operating
systems. Other times, government organizations can help a standard gain
wide acceptance, as happened with USMARC, one important method for
organizing metainformation about books.

Occasionally, a de facto standard will arise spontaneously because a small
group of people has developed an approach that is compelling, easy to
deploy, and that fills an important need at the right time. The initial versions
of the document markup language HTML, the World-Wide Web’s communi-
cation protocol HTTP, and MIME are examples.

The success or failure of standards, and the design philosophies underly-
ing standardization efforts are very often determined more by social and
business decisions than by technical merits. Sometimes companies may
resist an official standardization process, because they believe that they
are strong enough to establish a de facto standard earlier than an official
standard would evolve. This gives them a lead over competitors, because
once the de facto standard is then ratified and elevated to official status,
their products and technologies have the advantage of deep market pene-
tration. A careful exploration of these connections is important for under-
standing the impact of standards on interoperability, but it is beyond the
scope of this paper. Reference [6] provides a broader treatment of these
issues.

If an appropriate standard can be created and is widely adhered to, it pro-
vides a powerful interoperability tool. For example, a well-designed, strong
standard will make it worthwhile for vendors or free-lance programmers to
create easy-to-use modules that implement the standard. When such mod-
ules are widely available, the ease of contributing new services that use the
standard as a foundation (Criterion 3) is enhanced. A reliable standard also
helps encourage infrastructure investment, even when infrastructure costs
are high.

One drawback of standards is that they are difficult to agree on, and there-
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fore often end up being complex combinations of features that reflect the
interests of many disparate parties. A more fundamental reason is that a
standard by its very nature infringes on site autonomy (Criterion 1). With a
single standard, component providers are no longer free to introduce local
optimizations, or to satisfy the preferences of different customer groups.
One solution is to include optional portions to the standard. This can
quickly lead to increased complexity, and it bears the danger of diluting the
standard. An alternative approach to increasing site autonomy without
completely losing the benefit of standards is to have more than one stan-
dard.

Families of Standards

In this approach, components have the choice of implementing one or
more of several standards. When two components begin to communicate,
an initial automatic or human-mediated negotiation process determines
which standards they share. Mirroring everyday life, this approach is
increasingly encountered in the area of online payment. Any given vendor
or customer may implement payment by a variety of payment schemes,
such as First Virtual, DigiCash, or one of several credit cards.

The ISO standard for interconnecting systems (OSI) created an interopera-
bility framework based on the family of standards approach. The OSI con-
ceptually partitions interconnection tasks into seven layers. Each layer
contains a family of standards concerned with a given set of interoperability
issues in the area of interconnection. For example, the bottom layer con-
tains a set of standards concerned with the physical interconnection of
components, such as transmission speeds, or voltage levels. One of the
layers above is concerned with packaging information for transport, such
as partitioning large bodies of data into packets. Layers near the top are
concerned with issues such as establishing sessions. Each layer is to func-
tion without knowledge of choices made at the layers below. For example,
the session layer is intended to operate without regards to whether the rel-
evant lower layer is using token ring or CSMA access facilities. Interaction
negotiations take place only among corresponding layers in communicating
components.

The family of standards approach does somewhat alleviate the problem of
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autonomy infringement, while maintaining the benefits of standards. But it
breaks down when standards are not available, or are not adhered to for
technical or business reasons. This can happen, for instance, when appli-
cations or infrastructure are still poorly developed, and multiple organiza-
tions are attempting to gain market dominance. For these cases, an
infrastructure explicitly constructed to provide interoperability among highly
autonomous components can be put in place.

External Mediation

The only way to provide very high levels of autonomy for components is to
locate interoperability machinery outside of the participating local systems.
This machinery mediates between the components. One primary function
of such mediation machinery is the translation of data formats and interac-
tion modes. For example, in the area of interconnection, network gateways
play such a mediation role. Similarly, facilities that map global schemas to
local ones are examples of this approach.

However, translation in the sense of simple mapping, is not always suffi-
cient for full interoperability. Sometimes, components completely lack cer-
tain data types or operations, and can therefore not interoperate with some
clients without further work. For example, consider two collections of docu-
ments being provided by different digital library search services. The first
provides a ranking feature that sorts search results by estimated relevance,
the second does not. In order for a client to interact with both collections
equally conveniently, a mediation facility could provide a separate ranking
facility. It would be used to augment the less sophisticated collection’s func-
tionality. When dealing with the first collection, clients can simply call the
search operation. Instead of interacting with the second component
directly, clients would always interact with the mediation facility which would
rank the results. Such mediation facilities are sometimes called wrappers,
or proxies. An extensive example is described in [7], where proxy objects
play a major mediation role in a digital library environment. Another exam-
ple is the context mediator component of [9], which is a module that is
placed between information clients and servers, and that converts data
attributes of queries, and the corresponding result values.

An even more severe mismatch occurs when components differ in their
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interaction models. For example, if some components expect to establish
long-lasting interaction sessions, while others are stateless, then mediation
technology may need to simulate session-based interactions for the state-
less components. Connecting HTTP and Z39.50 based components is an
example of such mismatches.

Mediation approaches to interoperability are particularly strong along the
criteria of autonomy, ease of use, and scalability. They require no compli-
ance from the components, and to the extent that mediation can be suc-
cessful, clients have the illusion of a highly integrated system. All mediation
facilities can be replicated, so scalability tends not to be a problem.

The drawbacks of this approach lie mostly in the area of ease of contribut-
ing a new component: whenever a new component is added, a correspond-
ing mediation facility (e.g., wrapper, schema augmentor, etc.) needs to be
built as well. Notice that for cases where family of standards solutions are
in use by some of the components, this drawback is much less severe.
Mediation technology then reaps the benefit of standardization just like any
regular client would. For example, in an external mediation system which
provides interoperability for highly autonomous search components, a sin-
gle mediation facility will cover all of the Z39.50 sources at once. Different
facilities still need to be constructed for the non-Z239.50 sources.

More generally, if mediation technologies are used to make n kinds of com-
ponents interoperate with m other kinds, one needs to construct n x m
mediation facilities. One way out of this complexity is to design the media-
tion facility such that it uses one common standard (set of operations, data
structures, etc.) internally. Then mediation is provided between that internal
standard and all the components that are to interoperate. For example, a
mediation facility translating among n metadata attribute sets might first
attempt to translate to USMARC, and then translate from there to the
desired target set. Some systems apply the family of standards approach in
this context: they translate to one of a small number of intermediate stan-
dards, and from there to the final target. This is appropriate if translation to
one single common standard is too lossy, because no single standard is
sufficiently similar to all components.
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An important tool for mediation technology is the use of metadata to
describe and translate among components. Metadata is information that
describes the elements that the mediation technology deals with, such as
components, or data items to be passed among these components. Exam-
ples are the global schemas of some federated databases, routing tables
for gateways, catalogs for document repositories, the ‘semantic values’ of
[9], or tags in document formats like SGML. Due to a current increase in
emphasis on component autonomy and consequent interest in interopera-
bility solutions that are strong in this criterion, representation and acquisi-
tion of metadata are being widely explored [5].

Metadata plays an even more important role for another approach to
interoperability which attempts to avoid the additional infrastructure
required by mediation approaches.

Specification-Based Interaction

When interoperability is achieved by thoroughly describing the semantics
and structure of all data and operations, we speak of a specification-based
approach. The vision of these approaches is to allow the use of compo-
nents without prior arrangement, and without the help of mediators. The
goal is to describe each component’s requirements, assumptions, and ser-
vices such that components can interact with each other after inspecting,
and reasoning about each others’ specifications. Various enabling technol-
ogies have been developed towards this end goal. For example, an Agent
Communication Language (ACL), a knowledge sharing facility for software
agents, has included a ‘Knowledge Interchange Format’ (KIF) which is an
extension of first order predicate calculus. Also included is a ‘Knowledge
Query and Manipulation Language’ (KQML) for passing constraints and
instructions among agents [3]. This approach assumes that all components
use the same knowledge exchange facilities, although the use of different
ontologies to cover varying application domains is anticipated.

The software reuse community also has been interested in methods for
describing component functionality succinctly, and as completely as possi-
ble. Very High-Level Languages (VHLLS), such as SETL and PAISLey
(summarized in [4]), attempt to describe the semantics of a component’s
functionality in purely declarative form. That is, the procedural means by
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which the functionality is achieved is not the subject of VHLL specifications.
The goal in the context of software reuse is to describe component func-
tionality so that the best component can be selected for each job. The
same descriptions could also be used to further interoperability in the tradi-
tion of specification-based approaches.

Specification-based solutions rate high in autonomy, because of their strict
separation of functionality/data description from their implementation. The
general lack of non-replicable centralized facilities ensures good scalability.
The approaches suffer most from the complexity, and sometimes impossi-
bility, of completely describing components. This drawback makes them
rank low in the ease of component contribution criterion.

Mobile Functionality

At least beginning with the introduction of Lisp, which made programs and
data share the same representation, the movement of functionality imple-
mentation has been considered from time to time. General Magic’s Magic
Cap mobile agent system is one example. Its system had software agents
travel through the network to the sites where they could get access to the
services they needed. The agents could move even after they had started
to execute code. They would then report back to their origin with the results
of their work.

More recently, Java applet facilities have enabled approaches that use
mobile functionality to deliver new capabilities to client components at runt-
ime, rather than relying on service components to provide functionality
remotely, or making all components fully functional from the outset. Interop-
erability is an important application of mobility: the functionality delivered to
a component could be the ability to communicate successfully with another
component. Instead of complex component descriptions, third-party media-
tion, or the use of standardization, this approach accomplishes interopera-
bility by exchanging code that ‘does the right thing’ to communicate
successfully among components. Of course, it is still true that one interface
of the applet must be well-known, or hand-adapted. For example, a new
kind of search engine might supply clients with an applet that allows
sophisticated interactions with that search engine. This makes the search
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engine component very autonomous in that its interface can be arbitrary, as
long as it supports the request for the applet. On the other hand, the client
still needs to know how to communicate with the applet once it arrives.
Today, this problem is solved by the fact that most Java applets interface
directly to the user, and the user interface standards that are part of Java
and Java-enabled browsers are wide-spread. In that sense, Java relies
heavily on a standards approach. If applets were used also to implement
mobile functionality that is invoked by programs at the client side, then the
client-side interaction with the applet would be subject to the same interop-
erability issues as the original client/service component interaction.

An example of mobile functionality used in the service of interoperability
can be found in [2] where a Java applet is used to deliver a small CORBA-
based distributed digital library interface. After the applet is received, its
sender and the receiving component can communicate via remote method
calls. This again solves some of the client/applet interoperability problem
through a standards approach, namely CORBA, except that the standards
implementation itself is delivered through mobile functionality.

Mobile functionality scores lower in the autonomy criterion than some of
the other solutions, because all the components must share the same exe-
cution environment (e.g., the Java runtime). On the other hand, contributing
a new component is easier in this approach than, for example, in the speci-
fication-based approach, because attaining interoperability through mobile
functionality involves the creation of concrete programs, rather than a
sophisticated, often mathematical, abstraction of functionality. Ease of use
tends to be good, except that the client component bears all the risk of
importing another component’s programs. Until proper security safeguards
are worked out, this will continue to represent a significant cost.

If we think of incompatible components as discontinuities within an overall
system, then mobile functionality is a technique for smoothing these dis-
continuities dynamically, whenever the need arises. Note that in this sense,
a system based on standards is perfectly smooth at all times: All compo-
nents can interoperate from the outset. Observed over time, a system
whose interoperability is implemented through mobile functionality is there-
fore equivalent to an interoperable system based on standards. This is why
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the solutions in Figure 2 are arranged in a circle.

However, implementing all of a system’s interoperability through mobile
functionality is expensive in terms of latency and bandwidth consumption,
because in the absence of long-term client-side caching, the same code
needs to travel across the network again and again (in addition to any
related data). As mentioned, mobile functionality is also expensive in terms
of risk management, because authenticity and safety of code needs to be
checked wherever the functionality travels. Consequently, in the case of
Java, interoperability efforts are now beginning to move through the circle
of Figure 2 again. For example, facilities delivered frequently have been
migrating into World-Wide Web browsers as standard components. One
example is the recent addition of Java-based CORBA facilities into
Netscape browsers. Of course, as soon as functionality is assumed by
component providers to be resident at all client components, interoperabil-
ity is standards-based. Thus the natural movement of interoperability solu-
tions along the circle of Figure 2. In the future, we could imagine other
developments that combine multiple solution families of Figure 2.

Conclusion

Interoperability is gaining in importance as the Internet brings together dig-
ital libraries of different types that are run by separate organizations in dif-
ferent countries. At the same time, the increasing power of desktop
computers, the increasing bandwidth of networks, and the popularity of
mobile code is changing the interoperability landscape. This results in an
increasing urgency for solving the many problems which remain in the way
of true interoperability on a national, and international level.

In this paper we have provided an overview of the interoperability space
and its solutions. Our discussion has been necessarily informal because
interoperability is a complex topic for which no good metrics exist. Never-
theless, we hope to have given the reader a feel for how interoperability
issues across different domains are interrelated, for the spectrum of solu-
tions, and for the primary criteria in comparing them.

The following references are a small selection of past work in this area. A
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more comprehensive bibliography is available at [1].
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