Wave-Indices: Indexing Evolving Databases

Narayanan Shivakumar, Hector Garcia-Molina
Department of Computer Science
Stanford, CA 94305.
{shiva, hector}@cs.stanford.edu

Abstract

In many applications, new data is being generated every day. Often an index of the data of a past window of days is required to answer queries efficiently. For example, in a warehouse one may need an index on the sales records of the last week for efficient data mining, or in a Web service one may provide an index of Netnews articles of the past month. In this paper, we propose a variety of wave indices where the data of a new day can be efficiently added, and old data can be quickly expired, to maintain the required window. We compare these schemes based on several system performance measures, such as storage, query response time, and maintenance work, as well as on their simplicity and ease of coding.

Keywords: Indexing, sliding windows, temporal databases

Note to Referees: This paper is an extended version of a prior conference publication in ACM SIGMOD’97 with the same title. The material has been extended significantly in the following ways:

1. The conference version deals exclusively with the case when data sizes across different days is the same. We have now updated Section 3.3 and Section 6 to distinguish between index length and index size, so we can support wave indices with little overhead for the case we have non-uniform data sizes.

2. We have expanded Section 5 to include new analysis of our techniques for additional performance measures.

3. The conference version motivated our techniques using examples. This version also includes formal descriptions of the algorithms using a pseudocode format in Appendix A, so that practitioners can immediately adopt the techniques we propose in this paper.

4. The prior version included theorems and claims without proof, and we include proofs for these in Appendix B.
1 Introduction

In today’s world, large amounts of data are constantly being generated every day, and often applications require an index into the data of some past window of days. For example, a Web search engine may provide an index for the past 30 days of Netnews articles, or a financial institution may keep an index of the stock market trades of the past 7 days. Each day, a batch of new data must be added to the index, and data older than the window should be removed.

There are at least three (interrelated) reasons why such sliding window indexes are useful. The first is that the application semantics require a sliding window. For example, if credit card bills can be contested for say up to 90 days, company agents may need to have fast access to the bills of exactly the past 90 days. A second reason is that user interest in data may wane over time. For instance, a stock market analyst may only want to look at recent trades, while a Netnews reader may not be interested in old data. So even if one could build an index for all the data, it would be less useful because it would give the user more information than he wants. A third reason is to reduce storage costs. For example, until recently the Stanford University library maintained only the past 5 years of Inspec, a commercially available bibliography of technical papers. Clearly, at Stanford we were interested in older papers, but the library chose to provide fast index service for only the recent papers, and slower access (look through the stacks) for the rest. In this case, the sliding window index is a cache of what hopefully are the most frequently accessed papers.

Sliding window indexes have been in use for many years, but the tremendous volumes of data that are today being generated in some applications makes it worthwhile to study these indexes carefully. In particular, Internet search engines such as AltaVista [Alt], Infoseek [Inf] and DejaNews [Dej] are indexing ever-growing numbers of Web pages, Netnews articles, and other information. In Data Warehousing and Online Analytical Processing (OLAP), huge volumes of sales, banking, and other transactions are being recorded and analyzed. In our own case, we were motivated to study indexes because of our implementation of the Stanford Copy Analysis Mechanism (SCAM) [SGM96, Ros96]. SCAM registers and indexes large numbers of digital documents collected from the Internet, and allows publishers and authors to search for illegal copies of their work. In SCAM we decided to index only documents collected over the past one or two weeks, both because interest in improper copying decreases over time, and because we could not afford more storage. In the rest of the high volume applications we have mentioned, there is often a similar need for indexing a window of days.

One obvious solution for indexing a window is to keep a single conventional index, and every day
to delete the old data and insert the new batch of data into it. However, there are other interesting ways to maintain an index on a window of days, and we will see that they may have important advantages. To motivate, we now consider examples of a few such techniques in Tables 1, 2 and 3. In these examples, the techniques index a window of \(W \) days and partition the data across multiple indexes. To service queries all indexes will be accessed. The first row in each table is a “start” case where data of the first \(W \) days is indexed. On any subsequent day \(i \), we need to index new data \(d_i \) into the required window. To do so, we execute the listed operations (under Operation). The columns labeled Index show the days that are covered by each index after the operations are executed. Some ways of maintaining an index of a window of days are:

1. DEL: We illustrate DEL in Table 1 with \(W = 10 \) and two indexes, \(I_1 \) and \(I_2 \). On the tenth day, data of the first five days is indexed into \(I_1 \) and data of the next five days is indexed into \(I_2 \). When data \(d_{11} \) is available on the 11\(^{th} \) day, we first delete \(d_1 \) from \(I_1 \). We then index \(d_{11} \) into \(I_1 \). Similarly with subsequent days. DEL is similar to the obvious solution mentioned above, except that it uses multiple indexes. Note that DEL maintains hard windows in that it indexes exactly the last \(W \) days (unlike WATA, one of the schemes we consider below).

2. REINDEX: We illustrate REINDEX in Table 2 with \(W = 10 \) and two indexes, \(I_1 \) and \(I_2 \). On the tenth day, data of the first 10 days is indexed into \(I_1 \) and \(I_2 \) as in DEL. When data \(d_{11} \) is available on the 11\(^{th} \) day, we replace the expired \(d_1 \) in \(I_1 \) with \(d_{11} \). We perform this by rebuilding index \(I_1 \) with data \(d_2, d_3, d_4, d_5, \) and \(d_{11} \). Similarly with subsequent days. REINDEX also maintains hard windows.

3. Wait and Throw Away (WATA): We illustrate WATA in Figure 3 with \(W = 10 \) and four indexes. On the tenth day, we index data of the first three days into \(I_1 \), data of the next three days into \(I_2 \), data of the subsequent three days into \(I_3 \) and data of the tenth day into \(I_4 \). When data \(d_{11} \) is available on the 11\(^{th} \) day, we add it to \(I_4 \). Similarly for \(d_{12} \). When data \(d_{13} \) is available on the 13\(^{th} \) day, we first throw away \(I_1 \). We then create a new index \(I_1 \), and finally add \(d_{13} \) to it. The next day we add \(d_{14} \) to \(I_1 \), and so on.
New Data

Index File

Operation

Table 2: Reindexing based index maintenance ($W = 10, n = 2$).

Table 3: WATA based index transitions ($W = 10, n = 4$).

Notice that in WATA we occasionally maintain data older than the required window. For example on days 11 and 12, data of d_1 is still indexed in I_1 even though it is no longer required as part of the window. WATA maintains soft windows. Such soft windows may be acceptable in certain applications. For instance, in case of Altavista it is probably acceptable to maintain a soft window of up to 35 days while the required window is only 30 days. Such soft windows may also be acceptable for statistical or trend analyses.

We now briefly consider some of the advantages of the schemes, as presented in the examples. Note however that in this paper we will propose enhancements to these sample schemes, as well as additional schemes, so our comments should be taken as first indication of what might be good or bad about a scheme. We will have a more detailed and formal analysis of the schemes in Sections 5 and 6. Some of the advantages of the schemes in the example are:

- **Bulk Insert/Delete:** In WATA, deletions are performed in bulk by throwing away a whole index. If there are a substantial number of deletes, this may be more efficient than deleting an entry at a time (as in DEL). For instance in a commercial relational database such as Sybase, it takes a few milli-seconds to throw away an index irrespective of the index size. On the other hand, deleting an entry at a time takes time proportional to the number of deletes. Similarly, it may be efficient to reindex data, like REINDEX does, if there are a lot of inserts and the index does not cover too many other days. This is because incremental indexing
schemes [FJ92, TGMS94] may be expensive.

- **Better Structured Index:** Even though REINDEX may sometimes be more costly because it rebuilds indexes from scratch, this rebuilding can often lead to a better structured index (e.g., less fragmentation and contiguous layout on disk). Such an index could lead to more efficient query processing. Thus, we can trade off more index build time for better query performance. This may be another reason to prefer REINDEX over DEL or WATA.

- **Simpler Code:** With REINDEX and WATA, we do not need complex index deletion code [Jan95]. This could be a great advantage if we are implementing our system from scratch. Also REINDEX does not require complex concurrency control since updates and queries are operating on a different set of indexes. We will later consider the case when shadow indexes are used to avoid concurrency control code in all the schemes.

- **Legacy Systems:** Some information retrieval indexing packages such as WAIS [Pfe] and SMART [SB], do not implement deletes at all. If we need to use some such package or a legacy system to maintain a window of days, we may have to use one of the new schemes such as REINDEX or WATA.

- **Query Performance:** Clearly, having multiple indexes creates more work for queries, as they must perform several searches. However in “data analysis” scenarios where query volume may be relatively low and data volumes may be high, the high query costs may be amortized by the savings under some of the categories listed above. Furthermore, if multiple disks and computers are available, the queries across indexes can be easily parallelized. Also in some queries may be constrained to search over a subset of the indexed days, in which case fewer indexes may be searched.

In this paper we use the term wave index to refer to a collection of \(n \) “conventional” indexes that provide access to a window of \(W \) consecutive time intervals \((1 \leq n \leq W)\). We use the term “day” to refer to each time interval, although in general time intervals need not be 24 hours.

In the first part of this paper (Sections 2 and 3), we propose six different wave indexing algorithms and three ways for performing updates within each algorithm. In particular, we formalize DEL, REINDEX and WATA, propose REINDEX\(^*\), REINDEX\(^{++}\) that improve REINDEX, and finally describe RATA, a hybrid of REINDEX and WATA. Each of the above algorithms differ in (1) how the first \(W \) days are initially split across the \(n \) indexes, (2) how the wave index is modified when a new day’s data is available, and (3) whether they maintain “hard” or “soft” windows.

In the second part of this paper (Section 5), we evaluate each of our proposed schemes for a variety of system performance measures. Through our evaluations we attempt to answer questions
such as the following: (1) Given a new day’s worth of data, how fast can a scheme index the data and make it available for querying? (2) How does the scheme perform as the query/update mix changes? (3) How much overall disk activity is required for maintaining a window and for servicing queries during a day? (4) How much disk space is required to index the data? (5) Does a scheme require complex code for deletion, or for concurrency control? (6) Can the scheme be implemented on top of “widely available” index structures, or is special code required?

In the final part of the paper we consider three “case studies” and show how different wave indexes may be appropriate in each scenario. The scenarios considered are our own SCAM service that indexes Netnews articles for copy detection, a generic Web search engine such as Alta vista that indexes the same articles for general user queries, and a representative TPC-D benchmark [TPC] query in a warehousing context. For each scenario we measure realistic parameters whenever possible (e.g., the volume of Netnews articles in a day), and make educated guesses when it is not possible (e.g., how many copy detection queries will be submitted to SCAM when it is operational). We believe that our results provide useful insights into the tradeoffs between the wave index schemes, and can help an application designer in selecting a wave index.

2 Preliminaries

In this section we outline the basic index structures used in this paper, we describe how these are updated, and we define the operations to manage wave indexes. Note that most of the ideas in this paper are applicable to all classes of index structures, but for concreteness here we will focus on one specific class we now describe.

Figure 1 illustrates the basic index structures. The data we need to index consists of records. For instance, r_1 and r_2 in the figure are records. Each of the records has a search field, F, upon which an index is being built. Each record may have multiple values for F, for example a record may have values “War” and “Peace” for its title field. Similarly, an employee record may have values D_{55} and D_{57} in its “department” field. The index consists of a directory and associated buckets. The directory is a search structure (e.g., a B+Tree or a hash table) that given a search value, v, identifies a bucket b. Bucket b contains a pointer p_i for each record r_i having search value v. In b, each pointer p_i may have additional associated information a_i. For example, in an Information Retrieval context, with each p_i we can store the byte offset of value v in field F of r_i. In a relational database context, with each p_i we may store additional attributes of r_i to speed up searches. For some of the indexing schemes we use here, we require a timestamp for each a_i, which denotes the day r_i was inserted. We refer to p_i and its associated information as an entry.
For simplicity we assume that the directory is in memory, and the buckets are on disk. We define an index to be packed if each of its buckets uses a minimal amount of space to store entries (without room for growth), and all its buckets are allocated contiguously on disk. If an index is not packed, we still assume that entries within a given bucket are contiguous. In some applications, packed indexes may be preferable since they save space, and are efficient for queries that scan the whole index. For example, queries that compute some aggregate such as sum, min or max typically scan the whole index. If the index entries are packed contiguously on disk, the query can be efficiently executed by scanning (with a single disk seek) the entries from the first bucket until the last bucket, and computing the aggregate.

A wave index on a search field F is used to search a collection of days, where each day contains the records generated during a particular time period (typically 24 hours). The time periods covered by the wave index should be contiguous. The days are partitioned into disjoint clusters and an index on F is built for each. Each individual index is termed a constituent index. The set of constituent indexes is termed the wave index, Θ. In the rest of the paper, when we use “index” we refer to a constituent of a wave index.

2.1 Update techniques

Suppose that we have an index on a set of records and the records change, or records are added to or deleted from the set. To update the index to reflect this batch of updates, we can use one of the
following three techniques. (In this paper we assume updates for a day are performed as a batch. This usually leads to better performance, mainly due to memory caching.)

1. **In-Place Updating**: For each update the directory and/or buckets are modified in-place. If there is not enough space in the bucket, then the bucket can be copied to a new location and allocated more space. To decide how much space to add, we could use techniques proposed in [FJ92]. This updating technique requires concurrency control to prevent queries from reading inconsistent data. Typically the resulting index is not packed even if the original one was packed.

2. **Simple Shadow Updating**: First make a copy of the index, and then for each update modify the new copy of the index in-place. Finally, the new index replaces the old version in the wave index. The main advantage of this technique is that queries can be serviced using the old index, while the new index is being updated. Hence no concurrency control is required. The corresponding disadvantage is that more space is required than with in-place updating while the new day is being indexed.

3. **Packed Shadow Updating**: This technique is similar to the simple shadow technique except that the resulting index is packed. Although this technique works in general, here we describe it when the updates consist of a set of inserted records, and records to be deleted are those with an expired timestamp. First we build a temporary index for the new records to be inserted. We then scan the buckets of the index to be updated, copying them to a new contiguous location, but in the process deleting entries with expired timestamps, and leaving enough space in each new bucket copy to accommodate entries for the inserted records. Then we scan the temporary index, and append each bucket to the appropriate bucket in the new index, if one exists. If not, that bucket represents a new search value not present in the old index. We append such buckets after the last bucket in the new index. Finally we update the directory to reflect the new search values, and the new index replaces the old version in the wave index.

2.2 Operations on a Wave Index

In describing our wave index algorithms, we use the following primitive functions. For simplicity we use integers to refer to days. Thus the days indexed by \(I \) in a wave index \(\Theta \) can be represented by a set of integers, referred to as the *time-set* of the index.

1. **Wave index update operations:**
(a) **AddIndex**(I, Θ): Given a wave index Θ and an index I, this operation adds I to the set of constituent indexes in Θ.

(b) **DropIndex**(I, Θ): Given a wave index Θ and an index I, this operation first removes I from Θ. It then deletes all index entries in I (i.e., reclaims space).

2. **Constituent index update operations:**

 (a) **BuildIndex**(Days): Given Days, a set of integers, this operation builds a packed index for the batch of records in those days, i.e., for the cluster identified by Days. We assume here that a packed index is achieved by scanning the Days records and counting the number of entries needed in each bucket. Then contiguous buckets of the appropriate size are allocated on disk.

 (b) **AddToIndex**(Days, I): Given Days, a set of integers, and an index I, this operation incrementally adds the batch of entries for Days records to I. This can be achieved using any one of techniques in Section 2.1. Thus if in-place or simple shadow updating is used, the resulting I will not be packed. If packed shadows are used, then I is replaced in the wave index by a new packed index.

 (c) **DeleteFromIndex**(Days, I): Given Days, a set of integers, and an index I this operation incrementally deletes entries for Days records from I. Like **AddToIndex**, this can also be performed using any of the three techniques in Section 2.1. Again if in-place or simple shadow updating are used, I will not be packed. If packed shadow updating is used, I will be packed.

Note that **BuildIndex** and **AddToIndex** can often be used to achieve the same goal. However the performance can be very different. For instance, let a cluster have five days worth of data and suppose that we already have an index for the first four days. We can construct an index for the 5-day cluster either by adding the the fifth day to the existing index, or by building the index from scratch for the 5 days. The former option is typically less expensive than the latter. However, unless packed shadowing was used in the former, the latter will be more efficient for scan queries since the resulting index is packed. On the other hand, if we do not have the initial 4-day index, it is typically more efficient to do a **BuildIndex** rather than a series of **AddToIndex** operations.

3. **Access operations:**

 We expect four kinds of queries to access the wave index. They are **IndexProbe**, **SegmentScan**, **TimedIndexProbe** and **TimedSegmentScan**. To illustrate, consider a set of daily sales records for the past year, indexed by the sales person. Let us assume that each index entry contains,
in addition to a pointer to full sales record, the amount and date of sale (i.e., when the record was inserted.) A query that looks at all sales entries for a given salesperson, S1, will be executed as an \textit{IndexProbe}, which probes the index with search value S1. A query that looks at sales entries of S1 for the past month will be executed as a \textit{TimedIndexProbe}, which is an \textit{IndexProbe} restricted to entries with a date in the past month. A query to compute aggregate yearly sales by sales person for the store will be executed as a \textit{SegmentScan}, which scans all buckets of the index. A query to compute aggregate sales for the past month will be executed as a \textit{TimedSegmentScan}, which is a \textit{SegmentScan} restricted to entries inserted in the past month. As we shall see now, \textit{IndexProbe} and \textit{SegmentScan} can be expressed as \textit{TimedIndexProbe} and \textit{TimedSegmentScan} respectively.

(a) \textbf{TimedIndexProbe}(\Theta, T_1, T_2, s): Given a wave index \Theta, times \(T_1\) and \(T_2\) and search value \(s\), this operation retrieves buckets of entries for \(s\) inserted between day \(T_1\) and \(T_2\). It does this by probing a subset of constituent indexes in \(\Theta\) whose clusters have days more recent than \(T_1\) and older than time \(T_2\). For each such index, buckets for \(s\) are retrieved, and entries with insert time in the desired range are selected. Note that if we restrict timed queries to only refer to time intervals that correspond to the cluster intervals, then bucket entries do not need insertion times. That is, all entries for \(s\) in the indexes in the \(T_1, T_2\) range will be relevant. When \(T_1 = -\infty\) and \(T_2 = \infty\), this operation is equivalent to an \textit{IndexProbe} that probes all indexes.

(b) \textbf{TimedSegmentScan}(\Theta, T_1, T_2): Given a wave index \(\Theta\) and times \(T_1\) and \(T_2\), this operation retrieves all entries inserted between day \(T_1\) and \(T_2\). It does this by scanning buckets of all constituent indexes in \(\Theta\) whose clusters have days more recent than time \(T_1\) and older than time \(T_2\). When \(T_1 = -\infty\) and \(T_2 = \infty\), this operation is equivalent to a \textit{SegmentScan} that scans all buckets in all indexes.

3 Building Simple Wave Indexes

In this section, we review the simple algorithms to build wave indices that we presented in Section 1. Let \(d_i\) refer to the \(i^{th}\) days’ data, and \(d_{\text{new}}\) refer to a new day’s data. Let \(\Theta\) be the wave index being maintained.
3.1 Deletion (DEL)

We briefly motivated DEL in the Introduction with Table 1. In DEL, we initially index W/n days of data\(^1\) each in indexes I_1, I_2, \ldots, I_n. We then make I_1, I_2, \ldots, I_n constituent indexes of Θ. Every day when d_{new} is available, we delete entries of $d_{\text{new}}-W$ from I_j that indexed $d_{\text{new}}-W$. Then we insert entries for d_{new} to I_j. The deletion and insertion can be performed using one of the update techniques proposed in Section 2.1. We present the formal DEL algorithm in Appendix A as Figure 12.

DEL maintains hard windows. If in-place or simple shadow updating are used, DEL requires code to implement incremental deletion in both the directory and the buckets. Also the resulting index is not packed. If packed shadow updating is used, the resulting index is however packed.

3.2 Reindexing (REINDEX)

We briefly motivated REINDEX in the Introduction with Table 2. The operations performed at each step in the example is actually a BuildIndex. We formally present the REINDEX algorithm in Appendix A as Figure 13.

REINDEX maintains hard windows, and the resulting index is packed. However this technique requires reindexing W/n days worth of data every day. In Section 4 we propose several schemes that reduce the work done while building the index.

3.3 Wait and Throw Away (WATA)

We briefly motivated the WATA approach in the Introduction with Table 3. Recall that this algorithm uses a lazy form of deletion by throwing away an entire index only when all its entries have expired. Clearly there are several ways to implement this type of lazy deletion. For example, Table 4 presents a scheme that is slightly different from the one in Table 3, for the same $W = 10$, $n = 4$. We see that on the 10^{th} day the example in Table 4 forms different clusters for the four indexes than we had earlier. While there are a variety of measures we can use to evaluate different WATA-based schemes, we concentrate on the following measures for the purposes of this paper:

- **Length of index:**

 For some applications, we may prefer a WATA scheme that gives us the “tightest” soft window. For instance, if we are computing the average revenue and standard deviation for the past

\(^1\)In the formal algorithm in Appendix A, we handle the case when W/n is not an integer.
week from the sales relation of the company, we may prefer a WATA scheme with small soft windows for more accuracy.

In Table 4, we see that the total number of days indexed on days 11, 12, 13 is 11, 12 and 13, respectively. We define the length of the wave index so constructed to be 13, the maximum number of days stored in the index at any time. Similarly the length of the index constructed in Table 3 is 12, since the total number of days indexed on days 11, 12, 13 is 11, 12 and 10. Since the example in Table 3 has a smaller length, it indexes fewer extra days thereby providing a “tighter” window.

- **Size of index:**

In many applications, we may prefer to use a WATA scheme that incurs the least space overhead due to lazy deletion. That is, we need to minimize the total index size, where index size is the maximum storage required for maintaining the wave index.

When the size of data to be indexed is the same from day-to-day, minimizing index size corresponds to minimizing index length. However, the size of data to be indexed can vary dramatically across days. For example, the number of daily Usenet postings in popular newsgroups varies dramatically depending on the day of the week. In Figure 2 we report the total number of daily postings in September 1997 across about 10,000 popular newsgroups subscribed to by the Stanford Computer Science department’s NNTP server. We see that the number of postings on the second Wednesday is about 110,000, while on Sundays, the number of postings falls to around 30000. We will discuss algorithms to minimize the index size in case of non-uniform data sizes later in this section.

In Figure 16 of Appendix A we propose one instance of WATA termed WATA*. For this algorithm, we can show the following (proof in Appendix B).

Theorem 3.1 (Index length)

WATA* is an optimal algorithm to construct a WATA wave index with the smallest index length.

It is easy to see that to construct an optimal WATA index for index size, we need complete information of data sizes of all future days. Since such information is typically not available, we need to design an online algorithm that adds a new day’s data to the wave index based only on the current day’s data and the currently indexed days. However we can use the WATA* algorithm for minimizing index size as well, due to the following property.

Theorem 3.2 (Index size)
Table 4: Another example of index transitions based on WATA (W = 10, n = 4).

<table>
<thead>
<tr>
<th>Day</th>
<th>Operation</th>
<th>Index File I_1</th>
<th>Index File I_2</th>
<th>Index File I_3</th>
<th>Index File I_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$I_1 \leftarrow \text{bindValue}({1, 2, 3, 4})$</td>
<td>${d_1, d_2, d_3, d_4}$</td>
<td>${d_5, d_6, d_7}$</td>
<td>${d_8, d_9, d_{10}}$</td>
<td>${}$</td>
</tr>
<tr>
<td>11</td>
<td>AddToIndex({11}, I_4)</td>
<td>${d_1, d_2, d_3, d_4}$</td>
<td>${d_5, d_6, d_7}$</td>
<td>${d_8, d_9, d_{10}}$</td>
<td>${d_{11}}$</td>
</tr>
<tr>
<td>12</td>
<td>AddToIndex({12}, I_4)</td>
<td>${d_1, d_2, d_3, d_4}$</td>
<td>${d_5, d_6, d_7}$</td>
<td>${d_8, d_9, d_{10}}$</td>
<td>${d_{11}, d_{12}}$</td>
</tr>
<tr>
<td>13</td>
<td>AddToIndex({13}, I_4)</td>
<td>${d_1, d_2, d_3, d_4}$</td>
<td>${d_5, d_6, d_7}$</td>
<td>${d_8, d_9, d_{10}}$</td>
<td>${d_{11}, d_{12}, d_{13}}$</td>
</tr>
<tr>
<td>14</td>
<td>$I_1 \leftarrow \phi$</td>
<td>${}$</td>
<td>${d_5, d_6, d_7}$</td>
<td>${d_8, d_9, d_{10}}$</td>
<td>${d_{11}, d_{12}, d_{13}}$</td>
</tr>
</tbody>
</table>

WATA* is an online algorithm to construct wave indices with index size no more than twice the index size of any optimal WATA algorithm that has complete knowledge of future data sizes. That is, the competitive ratio [MR95] of WATA* is 2.0 for the index size measure.

Kleinberg et al [KMRV97] recently extended our work in WATA index construction in the following directions. They proposed an optimal WATA algorithm, for the case when they have complete knowledge of data sizes in the future. For the online problem, they improved the competitive ratio of our WATA algorithm to $\frac{n}{n-1}$, for n indices by assuming they know the total maximum index size ever possible in the future, ahead of time. Recall that our WATA* is “purely” online in that it assumes no such information, while still providing a competitive ratio of 2.0.

All WATA algorithms maintain soft windows and thereby use more space to store the extra days of data. However, they do relatively little work each day, and index deletion code is not needed. Also, once a new day’s data is available, it takes only the time of one `AddToIndex` before the new data is available for querying. However, `TimeSegmentScans` may be less efficient due to the entries of days older than the window, but that are part of the soft window. Another potential disadvantage of WATA is that it requires at least two constituent indexes to be efficient. To see this, consider the case when there is only one constituent index. In that case, each new day has to be added to the single index, and at no point will all data in the index expire to allow the removal of the index. Hence, the constituent index will then keep growing forever. For this reason, we require at least two constituent indexes for WATA.
4 Enhancing Simple Wave Indices with Temporary Indices

In this section, we enhance the simple wave-indexing algorithms of Section 3 by constructing temporary indices. These enhanced schemes improve important performance measures such as average maintenance work, and time to add new data at the cost of using more disk space.

4.1 Improved reindexing (REINDEX+)

This scheme enhances REINDEX by reducing the average work required in maintaining a wave index. To motivate REINDEX+, we reconsider the example for REINDEX in Table 2. Note that index entries for \(d_{11}\) are recomputed every day from day 11 to day 15. Similarly, index entries for \(d_{12}\) are recomputed every day from day 12 to day 15. Similarly for \(d_{13}\) and \(d_{14}\). Instead REINDEX+ maintains a temporary index, Temp, to avoid recomputing these index entries every day.

In Table 5, we present an example of how REINDEX+ works with \(W = 10\) and \(n = 2\). In this table (and in subsequent tables) we drop column New Data and assume that on day \(i\) \((i > W)\), data \(d_i\) is available to be indexed. We add column Temp to show the current entries in Temp. On the 10th day, the first five days are indexed in \(I_1\) and the next five days are indexed in \(I_2\) (as in DEL and REINDEX). In addition, an empty index, Temp is created. On the 11th day when new data \(d_{11}\) is available, the cluster of \(I_1\) should contain days \(d_{11}, d_2, d_3, d_4,\) and \(d_5\). For this, we first index \(d_{11}\)

Figure 2: Number of Usenet postings per day in September 1997.
<table>
<thead>
<tr>
<th>Day</th>
<th>Operation</th>
<th>Index I_1</th>
<th>Index I_2</th>
<th>Temp</th>
</tr>
</thead>
</table>
| 10 | Temp ← ϕ
 $I_1 \leftarrow \text{BuildIndex}\{1, 2, 3, 4, 5\}$
 $I_2 \leftarrow \text{BuildIndex}\{6, 7, 8, 9, 10\}$ | $\{d_1, d_2, d_3, d_4, d_5\}$ | $\{d_6, d_7, d_8, d_9, d_{10}\}$ | ϕ |
| 11 | $\text{AddToIndex}(\{11\}, \text{Temp})$
 $I_1 \leftarrow \text{Temp}$
 $\text{AddToIndex}(\{3, 4, 5\}, I_1)$ | $\{d_{11}, d_2, d_3, d_4, d_5\}$ | $\{d_6, d_7, d_8, d_9, d_{10}\}$ | $\{d_{11}\}$ |
| 12 | $\text{AddToIndex}(\{12\}, \text{Temp})$
 $I_1 \leftarrow \text{Temp}$
 $\text{AddToIndex}(\{4, 5\}, I_1)$ | $\{d_{11}, d_{12}, d_3, d_4, d_5\}$ | $\{d_6, d_7, d_8, d_9, d_{10}\}$ | $\{d_{11}, d_{12}, d_{13}\}$ |
| 13 | $\text{AddToIndex}(\{13\}, \text{Temp})$
 $I_1 \leftarrow \text{Temp}$
 $\text{AddToIndex}(\{5\}, I_1)$ | $\{d_{11}, d_{12}, d_{13}, d_{14}, d_5\}$ | $\{d_6, d_7, d_8, d_9, d_{10}\}$ | $\{d_{11}, d_{12}, d_{13}, d_{14}\}$ |
| 14 | $I_1 \leftarrow \text{Temp}$
 $\text{AddToIndex}(\{15\}, I_1)$
 Temp ← ϕ
 $\text{AddToIndex}(\{6\}, I_1)$ | $\{d_{11}, d_{12}, d_{13}, d_{14}, d_{15}\}$ | $\{d_6, d_7, d_8, d_9, d_{10}\}$ | ϕ |
| 15 | $\text{AddToIndex}(\{7, 8, 9, 10\}, I_2)$
 $I_2 \leftarrow \text{BuildIndex}(\{16\})$ | $\{d_{11}, d_{12}, d_{13}, d_{14}, d_{15}\}$ | $\{d_{16}, d_7, d_8, d_9, d_{10}\}$ | $\{d_{16}\}$ |

Table 5: Example of index Transitions in REINDEX^+ ($W = 10$, $n = 2$).

into Temp. We then copy Temp into I_1 so I_1 contains entries for d_{11}. Then we incrementally add d_2, d_3, d_4 and d_5 into I_1. On the 12th day after new data d_{12} is available, the cluster of I_1 should contain days d_{11}, d_{12}, d_3, d_4, and d_5. For this, we first add new data d_{12} to Temp. We then copy Temp into I_1 so I_1 contains entries for d_{11} and d_{12}. Finally we incrementally add d_3, d_4 and d_5 to I_1. Similarly for subsequent days. Observe that between days d_{11} and d_{15} we are incrementally indexing progressively fewer days. This reoccurs between days d_{16} and days d_{20} and so on. We can see that the average number of days indexed per transition by REINDEX^+ during index build is about half that of REINDEX. The REINDEX^+ algorithm is formally described in Appendix A as Figure 14.

REINDEX^+ maintains hard windows. If we use in-place or simple shadow updating to update the constituent indexes, the resulting index is not packed. If we use packed shadow updating instead, the resulting index is packed. Every day, this scheme on the average reindexes about half the number of days that REINDEX does. It achieves this by using additional space to store a temporary index, Temp. Also like REINDEX, it does not require code for deleting from an index.
4.2 Further improved reindexing (REINDEX++)

This scheme improves REINDEX+ by reducing the time to index new data and making new data available sooner for querying. We achieve this by performing most of the work required in maintaining the wave index before the data is available. For this, we use a few temporary indexes \((T_1, T_2, \ldots)\) and increase our storage requirements.

We explain how REINDEX++ works using the example in Table 6 with \(W = 10\) and two indexes, \(I_1\) and \(I_2\). On the \(10^{th}\) day, we index the first five days in \(I_1\) and the next 5 days in \(I_2\). Then we build temporary indexes \(T_0, T_1, \ldots, T_4\) as follows. We initialize \(T_0\) to an empty index, and we create \(T_1\) with day 5. Then we copy \(T_1\) to index \(T_2\), and incrementally add day 4 to it, so \(T_2\) contains days 4 and 5. Similarly for \(T_3\) and \(T_4\), so that \(T_3\) contains days 3, 4, 5 and \(T_4\) contains days 2, 3, 4, 5, as shown in column Temp. On the \(11^{th}\) day, add \(d_{11}\) to \(T_4\). Then rename \(T_4\) as \(I_1\) so that \(I_1\) now contains days 2, 3, 4, 5 as well as 11. Queries can start accessing data of \(d_{11}\) at this point much faster than if REINDEX were used. We then add \(d_{11}\) to \(T_3\) so \(T_3\) now contains days 3, 4, 5 as well as day 11. Indexes \(T_2\), \(T_1\) and \(T_0\) remain unchanged (they are not shown in order to reduce the size of the table.) On day 12, we add \(d_{12}\) to \(T_3\) so it contains days 3, 4, 5, 11 as well as day 12. As earlier, we rename \(T_3\) as \(I_1\) and queries can start accessing data of \(d_{12}\) at this point. We then add \(d_{11}\) and \(d_{12}\) to \(T_2\) to be used the next day. Indexes \(T_1\) and \(T_0\) remain unchanged. Similarly for days 13 and 14. On day 15 we reinitialize \(T_0, T_1, \ldots, T_4\) for the next set of days. We formally present the algorithm for REINDEX++ in Appendix A as Figure 15.

REINDEX++ maintains hard windows. Like REINDEX+, the constituent indexes are packed only if packed shadow updating is used. Notice that in REINDEX++ we are doing marginally additional amount of work compared to REINDEX+. On any given day, we are adding the new day’s data to about half the indexes which is the work done in REINDEX+. In addition on days 10, 15, \ldots we incrementally index 4 days of data. In general, we would incrementally index \(W/n\) days of data every \(W/n\) days. Clearly this work can be spread across the \(W/n\) days. Hence REINDEX++ performs about the same amount of work as REINDEX+, but reduces the time to index a new day’s data.

4.3 Reindex and Throw Away (RATA)

We now propose a variant of WATA to maintain hard windows. RATA is similar to WATA except that it uses additional temporary indexes to simulate deleting old entries. We explain RATA with the example in Table 7. In the example, we use the notation \(T_i\) for temporary indexes that replace some constituent index \(I_j\) on day \(i\). On the \(10^{th}\) day, RATA indexes the first ten days in the same way as WATA. In addition, it also builds additional temporary indexes, \(T_{11}\) and \(T_{12}\) so that \(T_{11}\)
<table>
<thead>
<tr>
<th>Day</th>
<th>Operation</th>
<th>Index I_1</th>
<th>Index I_2</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>$I_1 \leftarrow \text{BuildIndex}([1, 2, 3, 4, 5])$</td>
<td>${d_1, d_2, d_5, d_4, d_3}$</td>
<td>${d_6, d_7, d_8, d_9, d_{10}}$</td>
<td>$T_0 = \phi$, $T_1 = {d_5}$</td>
</tr>
<tr>
<td></td>
<td>$I_2 \leftarrow \text{BuildIndex}([6, 7, 8, 9, 10])$</td>
<td></td>
<td></td>
<td>$T_2 = {d_5, d_4}$</td>
</tr>
<tr>
<td></td>
<td>$T_0 \leftarrow \phi$, $T_1 \leftarrow \text{BuildIndex}([5])$</td>
<td></td>
<td></td>
<td>$T_3 = {d_5, d_4, d_3}$</td>
</tr>
<tr>
<td></td>
<td>$T_2 \leftarrow T_1$, AddToIndex(${4}, T_2$)</td>
<td></td>
<td></td>
<td>$T_4 = {d_5, d_4, d_3, d_2}$</td>
</tr>
<tr>
<td></td>
<td>$T_3 \leftarrow T_2$, AddToIndex(${3}, T_3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_4 \leftarrow T_3$, AddToIndex(${2}, T_4$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AddToIndex(${11}, T_4$)</td>
<td>${d_5, d_4, d_3, d_2, d_{11}}$</td>
<td>${d_6, d_7, d_8, d_9, d_{10}}$</td>
<td>$T_4 = {d_5, d_4, d_3, d_2, d_{11}}$</td>
</tr>
<tr>
<td></td>
<td>Rename T_4 as I_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AddToIndex(${11}, T_3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>AddToIndex(${12}, T_3$)</td>
<td>${d_5, d_4, d_3, d_{11}, d_{12}}$</td>
<td>${d_6, d_7, d_8, d_9, d_{10}}$</td>
<td>$T_3 = {d_5, d_4, d_3, d_{11}, d_{12}}$</td>
</tr>
<tr>
<td></td>
<td>Rename T_3 as I_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AddToIndex(${11, 12}, T_3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AddToIndex(${13}, T_2$)</td>
<td>${d_5, d_4, d_{11}, d_{12}, d_{13}}$</td>
<td>${d_6, d_7, d_8, d_9, d_{10}}$</td>
<td>$T_2 = {d_5, d_4, d_{11}, d_{12}, d_{13}}$</td>
</tr>
<tr>
<td></td>
<td>Rename T_2 as I_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AddToIndex(${11, 12, 13}, T_1$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>AddToIndex(${14}, T_1$)</td>
<td>${d_5, d_{11}, d_{12}, d_{13}, d_{14}}$</td>
<td>${d_6, d_7, d_8, d_9, d_{10}}$</td>
<td>$T_1 = {d_5, d_{11}, d_{12}, d_{13}, d_{14}}$</td>
</tr>
<tr>
<td></td>
<td>Rename T_1 as I_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AddToIndex(${11, 12, 13, 14}, T_0$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>AddToIndex(${15}, T_0$)</td>
<td>${d_{11}, d_{12}, d_{13}, d_{14}, d_{15}}$</td>
<td>${d_6, d_7, d_8, d_9, d_{10}}$</td>
<td>$T_0 = {d_{11}, d_{12}, d_{13}, d_{14}, d_{15}}$</td>
</tr>
<tr>
<td></td>
<td>Rename T_0 as I_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_0 \leftarrow \phi$, $T_1 \leftarrow \text{BuildIndex}([10])$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_2 \leftarrow T_1$, AddToIndex(${9}, T_2$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_3 \leftarrow T_2$, AddToIndex(${8}, T_3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$T_4 \leftarrow T_3$, AddToIndex(${7}, T_4$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>AddToIndex(${16}, T_4$)</td>
<td>${d_{11}, d_{12}, d_{13}, d_{14}, d_{15}}$</td>
<td>${d_6, d_7, d_8, d_9, d_{10}}$</td>
<td>$T_4 = {d_{11}, d_{12}, d_{13}, d_{14}, d_{15}}$</td>
</tr>
<tr>
<td></td>
<td>Rename T_4 as I_2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AddToIndex(${16}, T_3$)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Example of index transitions in $REINDEX^{++}$ ($W = 10, n = 2$).
indexes d_3 and d_2, and T_{12} indexes d_5. On day 11, RATA indexes d_{11} in I_4 like WATA. Then it drops I_1 and replaces I_1 with T_{11} which contains entries for d_3 and d_2. The wave index thereby indexes d_2 through d_{11}. Similarly for subsequent days. We present the formal RATA* algorithm based on WATA* in Appendix A as Figure 17. It is easy to see that we can extend RATA to enhance any WATA-based algorithm.

RATA performs more work than WATA but maintains hard windows. However it takes the same time as WATA to index a new day’s worth of data after it is available. For instance, on day 13 additional work is done to build temporary indexes T_6 and T_1 to be used on subsequent days. However the operation $T_1 \leftarrow \text{BuildIndex} \{6\}$ can be performed on day 11 since it depends only on d_6 which is already available on day 11. Similarly, $T_{15} \leftarrow T_{14}$ and $\text{AddToIndex} \{5\}, T_{14}$ can be performed on day 12 since they depend on T_{14} and d_5, which are available after day 11 and 5 respectively. Hence if we use the above optimization, we would never need to index more than two days of data on any given day. The formal algorithm in Figure 17 does not show this optimization to keep the exposition simple.

5 Analytic Comparison of Wave Indexing Schemes

In the last few sections we proposed six algorithms to build wave indexes and three different ways for performing updates with each algorithm. We now present a simple analysis of the schemes. For our analysis, we assume that our n constituent indexes are stored on one disk. In case of multiple disks, our analysis can be extended in a similar fashion, but is not shown here. We consider in
Section 8 a few trends we expect in case of multiple disks.

Since our goal in this section is to identify general trends rather than to predict accurate performance numbers, we now propose some “coarse” parameters to compare our wave indexing schemes. The parameters we propose below are of three types (and sometimes of more than one type): (1) parameters that depend on the hardware used (such as disks used), (2) parameters that depend on the specific application (such as the average number of TimedIndexProbes), and (3) implementation parameters that depend on the how certain algorithms are implemented (such as which incremental indexing scheme is used).

1. **Disk Parameters:** Let \(\text{seek} \) be the time to perform one seek. Let \(\text{Trans} \) be the transfer speed in blocks per second to transfer disk blocks from disk to memory. These are both hardware parameters.

2. **Space Parameters:** For ease of analysis, we assume that the data size of all days is the same. It is easy to extend our analysis for the case of non-uniform data sizes. Let \(S \) be the space required to store a packed index of one day. Let \(S' \) be the space required to store a non-packed index of one day. We assume that the space required to store a packed index for \(d \) days is \(S \times d \), and the space to store a non-packed index for \(d \) days is \(S' \times d \).

 The parameter \(S \) is an application parameter since it depends on the size of data. The parameter \(S' \) depends on the application as well as on the implementation of incremental indexing. In this paper for concreteness, we assume we index incrementally using the CONTIGUOUS scheme of Faloutsos and Jagadish \[\text{[FJ92]}\]. Essentially, the CONTIGUOUS scheme allocates contiguous space for each search value. Each new index entry for a value is appended into the corresponding allocated space. When the allocated space is consumed, the scheme allocates a larger space which is \(g \) (growth factor) times larger than the previous space. It then copies over the index entries to the new space, and releases the old space. Similarly for deletion. Different implementations may use different \(g \) values and this clearly affects the value of \(S' \).

3. **Constituent Index Operation Parameters:** Let \(\text{Add} \) be the time to incrementally index one day’s data. Let \(\text{Del} \) be the time to incrementally delete one day’s data from an index. Let \(\text{Build} \) be the time to build an index of one day’s data.

 All three depend on the application. Clearly the larger the amount of data in an application, the more expensive is each operation. All three depend on the implementation as well. For instance in CONTIGUOUS, if the initial space allocated for a new bucket is small, the time to add and delete is large because a lot of time is spent in copying the old bucket to a new location to allow for future growth.
4. Update Technique Parameters: Given an unpacked index for one day, let \(CP \) be the time to copy all buckets of that index into memory, and then flush them to another location on disk. Given a packed index for one day, let \(SMCP \) be the time to copy all buckets of the index into memory, delete entries with expired timestamps, and then flush packed buckets to another location on disk. Both \(CP \) and \(SMCP \) depend on the size of the data to be copied, and hence are application parameters.

5. IndexProbe Parameters: Given an index for one day, let \(c \) be the average size of a bucket (in disk blocks) for some random search value. We assume that the size of the bucket for \(d \) days is \(d \times c \). Let \(Probe_{num} \) be the number of \(TimedIndexProbes \) and \(Scan_{num} \) be the number of \(TimedSegmentScans \) in a day. Recall that \(TimedIndexProbes \) and \(TimedSegmentScans \) access between 1 and \(n \) constituent indexes depending on the specified time ranges. Let \(Probe_{idx} \) and \(Scan_{idx} \) be the average number of indexes a \(TimedIndexProbe \) and \(TimedSegmentScan \) access. All the above parameters are application parameters.

Some of the important performance measures we consider for each scheme are:

1. Space Utilization: First, we consider how much space is required to store the required window of days, i.e., during system operation. We also consider how much additional space is required when a new day is being indexed, i.e., during index transitions. This measure helps system administrators in deciding how many disks to buy, for instance.

2. Query Response Time: We consider how long it takes to execute \(TimedIndexProbes \) and \(TimedSegmentScans \). In cases where users are sitting at a terminal waiting for a response, it is important to keep this measure low.

3. Transition Time: We consider how soon after a new day's data is available it is part of the wave index and ready for querying. In cases like the stock market where decisions may be made based on the new data, it may be critical to keep the transition time low. This measure may not be quite as important in data mining queries which look at general trends, for instance.

4. Pre-Transition Time: We consider how much time is spent each day as pre-computation in preparing temporary indexes. This indicates how long this pre-computation will interfere with user queries.

5. Total Work: During the course of the day, we need to index new data, maintain indexes and answer a stream of queries. We try to capture the work done by the system during the day into a single number by estimating resources consumed. We believe one good estimate
of work done is the time to index a given volume of new data, pre-compute new indexes, and in answering a set of user queries as if they were performed one after the other, without parallelism. For this, we first add the transition time and the pre-transition time. We then add the time to perform $Probe_{num}$ timed probes that access $Probe_{idx}$ indexes each, and the time to perform $Scan_{num}$ timed scans that access $Scan_{idx}$ indexes each.

In Table 8 we show the space utilization of the six algorithms if they are implemented with simple shadow updating. To simplify the equations in the table, we define $X = \frac{W}{n}$ and $Y = \frac{W-1}{n-1}$.

We now consider in detail the first two columns that show maximum and approximate average space required during system operation. We estimate the maximum space as follows: we compute the maximum number of days indexed in the constituent indexes as well as in the temporary indexes. We then multiply that number of days by S' (or S in case of $REINDEX$) to obtain the maximum space required. We estimate the average space averaged over the number of transitions in a similar fashion. For instance, we see that $REINDEX^+$ requires an average of $(W + \frac{n}{2}) \ast S'$ and a maximum of $(W + \lfloor X \rfloor - 1) \ast S'$ space while the system is in operation. This is because the constituent indexes in $REINDEX^+$ index W days. In addition, in $REINDEX^+$ $Temp$ indexes at most $[X - 1]$ days (Figure 14). However when averaged over time, $Temp$ indexes about $\frac{n}{2}$ days.

$REINDEX^{++}$ also stores W days in its constituent indexes. In addition it maintains $[X]$ temporary indexes, and each temporary index $T_i \ (0 \leq i \leq [X] - 1)$ stores i days. That is, the temporary indexes will store a maximum of $\frac{1}{2} \ast [X] \ast [X - 1]$ days. The average space for $REINDEX^{++}$ can be similarly calculated. Similarly, $WATA^*$ stores a maximum of $W + [Y - 1]$ (proved in Appendix B) days since it maintains soft windows. Hence it requires the maximum space indicated in the table. $RATA$ maintains temporary indexes similar to $REINDEX^{++}$ (See Figures 15 and 17). $RATA$ however stores a maximum of $[Y]$ days in a temporary index rather than $[X]$ days like $REINDEX^{++}$. Hence the difference between the formulae for $RATA$ and $REINDEX^{++}$.

We now consider the third and fourth columns in Table 8 which report the additional space required during transitions. We estimate the additional space required as follows: if some constituent index needs to be shadowed for updating, we need space to store the shadow index. If some temporary index needs to be updated, we require no additional space since queries are executed only on constituent indexes. Hence the maximum additional space required during transitions is the size of the largest constituent index: this can be computed by multiplying the maximum number of days in a constituent index by S' (S in case of $REINDEX$). We estimate average additional space by averaging additional space requirements over the number of transitions. For instance, $REINDEX^+$ requires $[X] \ast S'$ space during transitions since the maximum number of days in an index is $[X]$. $REINDEX^{++}$ requires no additional space during a transition since it updates only
For instance, the range of possible times a bucket from disk to memory. We then multiply the time to probe one index by the time to perform a probe on one index. This we compute by assuming each probe requires one seek followed by a transfer of the corresponding bucket from disk to memory. We then multiply the time to probe one index by \([1, n]\) to indicate the range of possible times a \(\text{TimedIndexProb}\) can take depending on the specified time ranges. For instance, \(\text{REINDEX}^++\) takes time \(\text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}}\) for probing one index, and therefore

<table>
<thead>
<tr>
<th>Measure/Scheme</th>
<th>TimedIndexProb</th>
<th>TimedSegmentScan</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{DEL})</td>
<td>(\text{Probe}_{idx} * \text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}})</td>
<td>(\text{Scan}_{idx} * \text{seek } + \frac{W}{n} * \frac{s}{\text{Trans}})</td>
</tr>
<tr>
<td>(\text{REINDEX})</td>
<td>(\text{Probe}_{idx} * \text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}})</td>
<td>(\text{Scan}_{idx} * \text{seek } + \frac{W}{n} * \frac{s}{\text{Trans}})</td>
</tr>
<tr>
<td>(\text{REINDEX}^+)</td>
<td>(\text{Probe}_{idx} * \text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}})</td>
<td>(\text{Scan}_{idx} * \text{seek } + \frac{W}{n} * \frac{s}{\text{Trans}})</td>
</tr>
<tr>
<td>(\text{REINDEX}^{++})</td>
<td>(\text{Probe}_{idx} * \text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}})</td>
<td>(\text{Scan}_{idx} * \text{seek } + \frac{W}{n} * \frac{s}{\text{Trans}})</td>
</tr>
<tr>
<td>(\text{WATA}^+)</td>
<td>(\text{Probe}_{idx} * \text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}})</td>
<td>(\text{Scan}_{idx} * \text{seek } + \frac{W}{n} * \frac{s}{\text{Trans}})</td>
</tr>
<tr>
<td>(\text{RATA}^+)</td>
<td>(\text{Probe}_{idx} * \text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}})</td>
<td>(\text{Scan}_{idx} * \text{seek } + \frac{W}{n} * \frac{s}{\text{Trans}})</td>
</tr>
</tbody>
</table>

Table 8: Space utilization of wave indexes that use simple shadow updating \((X = \frac{W}{n}, Y = \frac{W-1}{n-1})\).

Table 9: Query performance of wave indexes that use simple shadow updating.

The corresponding space utilization table for the algorithms when we use in-place updating (not shown) will look similar to Table 8 except that the space required by the six algorithms during index transitions will be zero. This is because no space is required for a shadow index. Similarly, the corresponding table for the algorithms when we use packed shadow updating (not shown) will look similar to Table 8, except that all \(S^t\) will be replaced by \(S\). The only other difference is that \(\text{REINDEX}^{++}\) will now require an average of \(X * S\) space since packed shadowing requires temporary indexes to be copied to a new location as well.

In Table 9, we present the time to perform one \(\text{TimedIndexProb}\) and one \(\text{TimedSegmentScan}\) for the techniques implemented with simple shadow updating. We estimate the time to perform \(\text{TimedIndexProb}\) as follows: we first compute the time to perform a probe on one index. This we compute by assuming each probe requires one seek followed by a transfer of the corresponding bucket from disk to memory. We then multiply the time to probe one index by \([1, n]\) to indicate the range of possible times a \(\text{TimedIndexProb}\) can take depending on the specified time ranges. For instance, \(\text{REINDEX}^{++}\) takes time \(\text{seek } + \frac{W}{n} * \frac{c}{\text{Trans}}\) for probing one index, and therefore
Measure/ Scheme	Precomputation	Transition
DEL | $\frac{W}{n} \ast CP + Del$ | Add |
REINDEX | 0 | $\frac{W}{n} \ast Build$ |
REINDEX++ | $\frac{W}{n} \ast Add$ | Add |
REINDEX+++ | $\frac{W}{n} \ast Add$ | Add |
WATA* | $\frac{W}{n} \ast CP + Add$ | $\frac{W}{n} \ast CP + Add$ |
RATA* | $\frac{W}{n} \ast CP + Add$ | $\frac{W}{n} \ast CP + Add$ |

Table 10: Maintenance performance of wave indexes that use simple shadow updating.

We estimate $TimedSegmentScan$ as follows: we first compute the time to perform a scan of one index. This we compute by assuming each scan requires one seek followed by retrieving buckets of k days, where k is the number of days indexed in the index. Similar to $TimedIndexProbe$ we then multiply the time to scan one index by $Scan_{idx}$ to indicate that the actual time depends on the specified time ranges. For instance $REINDEX^{++}$ takes time $(seek + \frac{S'}{Trans} + \frac{W}{n})$ to scan one index, and therefore $Scan_{idx} \ast (seek + \frac{S'}{Trans} + \frac{W}{n})$ overall.

The table for $TimedSegmentScan$ and $TimedIndexProbe$ for the algorithms implemented with in-place updating looks identical to Table 9. The corresponding table for the algorithms implemented with shadow updating also looks similar to Table 9 except that all S' are replaced with S.

In Table 10 we present the time it takes each day for adding a new day’s data (Transition) and to index data in temporary indexes for future use (Pre-computation). We first consider transition time. In the table we see that, for example, every day $RATA$ copies a temporary index with an average (averaged across time) of $\frac{1}{2} \ast \frac{W-1}{n-1}$ days to a new location, and adds a new day to the index. This is performed as pre-computation to prepare simulating hard windows for the next few days. Similarly we see for Transition time that every day $RATA$ copies a constituent index with an average (averaged across time) of $\frac{1}{2} \ast \frac{W-1}{n-1}$ days to a shadow location, and adds the new day to the shadow.

The corresponding table for in-place updating looks similar except for fewer copy operations since additions and deletions are in-place. The corresponding table for packed shadow updating is presented in Table 11. We see that the time taken by the different algorithms is typically less than in simple shadow updating. This is because operations such as deletion are handled as part of the smart copy operation. Also we can show that with packed shadow updating, the incremental insert operations take time $Build$ rather than Add.

$Probe_{idx} \ast (seek + \frac{W}{n} \ast \frac{S'}{Trans})$ overall.
Table 11: Maintenance performance of wave indexing techniques that use packed shadow updating.

<table>
<thead>
<tr>
<th>Measure/Scheme</th>
<th>Precomputation</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEL</td>
<td>0</td>
<td>$\frac{W}{n} \cdot SMCP + Build$</td>
</tr>
<tr>
<td>REINDEX</td>
<td>0</td>
<td>$\frac{W}{n} \cdot Build$</td>
</tr>
<tr>
<td>REINDEX*</td>
<td>0</td>
<td>$\frac{W}{n} \cdot (SMCP + CP) + \frac{1}{8} \cdot \frac{W}{n} \cdot Build$</td>
</tr>
<tr>
<td>REINDEX++</td>
<td>$\frac{W}{n} \cdot SMCP + \frac{1}{8} \cdot \frac{W}{n} \cdot Build$</td>
<td>$\frac{W}{n} \cdot SMCP + Build$</td>
</tr>
<tr>
<td>WATA*</td>
<td>0</td>
<td>$\frac{W}{n} \cdot (CP + Build)$</td>
</tr>
<tr>
<td>RATA*</td>
<td>$\frac{W}{n} \cdot SMCP + Build$</td>
<td>$\frac{W}{n} \cdot CP + Build$</td>
</tr>
</tbody>
</table>

Table 12: Parameter values chosen in case study.

<table>
<thead>
<tr>
<th>Parameter Type</th>
<th>Parameter</th>
<th>SCAM</th>
<th>WSE</th>
<th>TPC-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td>seek</td>
<td>14 msec</td>
<td>14 msec</td>
<td>14 msec</td>
</tr>
<tr>
<td></td>
<td>Trans</td>
<td>10 MBps</td>
<td>10 MBps</td>
<td>10 MBps</td>
</tr>
<tr>
<td>Application</td>
<td>S</td>
<td>56 MB</td>
<td>75 MB</td>
<td>600 MB</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>100 bytes</td>
<td>100 bytes</td>
<td>100 bytes</td>
</tr>
<tr>
<td></td>
<td>$Probe_{num}$</td>
<td>100,000</td>
<td>340,000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>$Probe_{idx}$</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td></td>
<td>$Scan_{num}$</td>
<td>10*</td>
<td>0*</td>
<td>10*</td>
</tr>
<tr>
<td></td>
<td>$Scan_{idx}$</td>
<td>-</td>
<td>-</td>
<td>n</td>
</tr>
<tr>
<td>Implementation</td>
<td>g</td>
<td>2.0</td>
<td>2.0</td>
<td>1.08</td>
</tr>
<tr>
<td>(CONTIGUOUS)</td>
<td>$Build$</td>
<td>1686 secs</td>
<td>2276 secs</td>
<td>8406 secs</td>
</tr>
<tr>
<td></td>
<td>Add</td>
<td>3341 secs</td>
<td>4678 secs</td>
<td>11431 secs</td>
</tr>
<tr>
<td></td>
<td>Del</td>
<td>3341 secs</td>
<td>4678 secs</td>
<td>11431 secs</td>
</tr>
<tr>
<td></td>
<td>S'</td>
<td>78.4 MB</td>
<td>105 MB</td>
<td>627 MB</td>
</tr>
</tbody>
</table>

6 Case studies

Given the relatively large number of implementation options, parameters, and performance metrics, it is difficult to draw concrete conclusions without looking at particular applications scenarios. In this section we present three application areas (copy detection, web engines, and warehousing), and within those we instantiate particular scenarios (e.g., data size, hardware speeds). For each scenario there are parameters we could directly measure, for example, how many Netnews articles need to be indexed each day for copy detection. Other parameters could be measured via experiments. For example, we evaluated S' by actually implementing the index algorithms and loading data into an index. (The number we obtain is realistic yet specific to our implementation.) However, other parameters values were “educated guesses,” for instance, exactly how many queries to expect each
day. Hence, the reader should not interpret the results of this section as absolute predictions, but rather as illustrations of performance trends and of the process to follow in selecting a particular wave index scheme. The scenarios we consider are:

1. **SCAM**: SCAM is a research prototype for finding copyright violators. One of the services we provide is to index articles of a set of newsgroups for a week to allow authors to search for recent illegal copies of their articles. In the following experiments for SCAM, we report results only for the case we implement wave indexes using simple shadowing (due to our space constraints here).

2. **Web search engine (WSE)**: Several WSEs such as AltaVista [Alt], SIFT [YGM95], Infoseek [Inf] and Dejanews [Dej] index Netnews articles in addition to a subset of the World-Wide-Web. We consider how a WSE should index articles for a sliding window of 35 days. In the study of a generic WSE, we report results for the case the indexes are implemented with simple shadowing as well as packed shadowing. (In-place updating is similar to simple shadowing.)

3. **TPC-D**: TPC-D is a benchmark from the Transaction Processing Council [TPC]. The benchmark models a decision support environment in which complex business-oriented queries are submitted against a large database. The queries may access large portions of the database and typically involve various operations such as joins, sorting and aggregation that may implemented with sequential scans and index probes. The benchmark defines two large relations \textit{LINEITEM} and \textit{ORDER}, and six other smaller relations. Similarly 17 queries have been prescribed.

 To simplify our experiments, we consider the following specific scenario. Say we build a wave index on relation \textit{LINEITEM} on the \textit{SUPPKEY} attribute for a window of the past 100 days. Every day the new additions to \textit{LINEITEM} arrive as a batch based on the sales of the day. Let query $Q1$ (specified in the TPC-D benchmark as the “Pricing Summary Report”) be the only query that is executed. In our experiments we used the data characteristics (in terms of distribution of tuples, sizes of tables, etc.) prescribed by the TPC-D benchmark. In the following experiments for TPC-D, we report results for the case the indexes are implemented with simple shadowing.

 In Table 12 we report specific values we used for different parameters in our case study. The hardware parameters were chosen based on current technology. The application parameters we report are for data of one day. As stated earlier, we chose specific values for application parameters either based on experience, or based on educated guesses (denoted in the table with a *). As an
example of the former, we computed S for SCAM by building a packed index on about 70,000 text articles (in a day) and computed the space required. As an example of a guess, we estimated that commercial WSEs index about 100,000 articles per day. (SCAM indexes fewer since our NNTP server subscribes to fewer newsgroups).

We chose implementation parameters for SCAM as follows. First we implemented the $BuildIndex$ scheme (as specified in Section 2.2) in C, and measured its running time on a DEC 3000 with an Alpha processor running OSF/1.0 and 96 MB of RAM. We then implemented and measured $AddToIndex$ using the $CONTIGUOUS$ $[FJ92]$ incremental indexing scheme. To choose a good value for g in $CONTIGUOUS$, we executed $AddToIndex$ to index words of one day’s Netnews articles for several values of g. Based on the trade off between space consumption, S', and the time spent in copying buckets to new locations, we chose $g = 2$. For $g = 2$, we report S' and Add in Table 12. Since $DeleteFromIndex$ is symmetric to $AddToIndex$, we assume that Del takes the same time as Add. The time to execute $BuildIndex$ on the Netnews data is reported as $Build$.

In SCAM we expect to service about 100 user queries each day from authors and publishers to check if a given document was available as a Netnews article in the past week. Since for each query we expect to perform 100 $TimedIndexProbes$ $[SGM96]$ on the data of the last week, $Probe_{num} = 100,000$ and $Probe_{idx} = n \ (W = 7)$. In SCAM we also offer a registration service in which authors submit documents so they can be checked on a daily basis against the current day’s Netnews articles. We can check the submitted documents against the current day’s articles efficiently with a scan on the current day’s index. We estimate (based on expected size of registration database) that we will need to perform about 10 segment scans each day on the current day’s index (stored in one index). Hence $Scan_{num} = 10$ and $Scan_{idx} = 1$.

For the WSE, we estimated application and implementation values by scaling the corresponding values in SCAM by $100,000 / 70,000$ (based on relative number of articles). In a WSE, we expect about 170,000 queries in a day for Netnews articles. This is roughly 1% of the number of queries per day in Altavista for the more popular web data $[Alt]$. Since each user query performs an average of two index probes (average length of a query is two words $[Alt]$) over all data in the window, we estimate $Probe_{num} = 340,000$ and $Probe_{idx} = n$.

For TPC-D, we repeated the experiments we did for SCAM and chose $g = 1.08$. This is because values for $SUPPKEY$ in TPC-D are uniformly distributed, while words in SCAM’s Netnews articles exhibit skewed Zipfian $[Zip49]$ behavior. We assume about 10 complex analytical queries are run every day over data of the entire window to analyze trends. We assume these queries are executed using a scan over all the indices, and therefore $Scan_{num} = 10$ and $Scan_{idx} = n$.

26
We now present a few select graphs to indicate how the wave indexes perform in SCAM, WSE and TPC-D. As we describe these graphs, keep in mind that they illustrate performance metrics (e.g., space, work) and not qualitative measures such as ease of implementation. Recall that even if a scheme outperforms the other others in a given scenario, it may not be advisable either because (1) it requires complex code, or (2) it cannot be implemented with our favorite index package.

In Figure 3 we report the overall space required (averaged across transitions) by SCAM during system operation and transition (sum of column 2 and 4 in Table 3). We see that REINDEX requires the minimal amount of space. This is because (1) REINDEX maintains packed indexes that consume minimal space, and (2) REINDEX does not have any additional temporary indexes like REINDEX+, REINDEX++ or RATA. We also see that all schemes require less space as \(n \) increases. This is because each constituent index stores fewer days as \(n \) increases. Hence shadow indexes are smaller during transitions. Also in schemes like REINDEX+, REINDEX++ and RATA, there are fewer days in each temporary index as \(n \) increases. In schemes like WATA and RATA, the number of days in the soft window also decreases as \(n \) increases.

In Figure 4 we report the transition time to index new data in SCAM (column 2 of Table 4). There are two main factors that influence transition time: (1) does the scheme use \textit{BuildIndex} or \textit{AddToIndex} to add the new data? (2) for each scheme, how many days are reindexed using \textit{BuildIndex} or incrementally indexed using \textit{AddToIndex}? For instance, from Table 12 we see that if a scheme executes \textit{BuildIndex} for one day, its transition time (1686 secs) is lower than another
scheme that indexes AddToIndex (3341 secs) for the same day. However if the first scheme executes BuildIndex for 5 days, its transition time (1686 + 5 secs) is higher than the second scheme (3341 secs). Since DEL, WATA, RATA and REINDEX++ execute AddToIndex during transitions and always incrementally index one day, we see that their transition times do not depend on n. However recall that REINDEX executes BuildIndex on W/n days each day, which clearly depends on n. Hence we see that initially ($n \leq 3$) REINDEX performs poorly due to the cost of reindexing W/n days each day. But for $n \geq 4$, the cost savings of executing a BuildIndex rather than an AddToIndex compensates for the cost of reindexing 1 or 2 days each day. REINDEX++ performs the worst since it executes AddToIndex on an average of $\frac{1}{2} + \frac{7}{n}$ days each day.

In Figure 5, we report the total work done during the day by the different schemes in SCAM. The total work is very sensitive to the mix of queries and updates. For example, if we have many queries in a day, it is best to perform more work at update time in order to obtain an index that is better for queries (e.g., packed, small n). In the SCAM scenario, the opposite is true: the number of copy detection queries is relatively small compared to the number of documents indexed.

In Figure 5 again we see that REINDEX performs poorly for small n but is very efficient for large n. This is because of the relative cost of reindexing some constituent index each day versus the savings due to using BuildIndex, and faster scans due to packed indexes. We see from the figure that the reindexing cost in REINDEX dominates for small n, while for large n the savings dominate. We also see that DEL, WATA and RATA are relatively stable since they incrementally add and delete a small constant number of days each day. They increase slowly with n since timedIndexProbes need to probe an increasing number of indexes.

From Figures 3, 4 and 5, we recommend using REINDEX for SCAM with $n = 4$ indexes. We recommend $n = 4$ as a compromise value between the following two conflicting factors: (1) as n increases, REINDEX performs better than the other schemes and (2) as n increases, the response time of timedIndexProbes increases since more constituent indexes need to be probed. We choose $n = 4$ since we would like to keep the user response time low, and since we see from the graphs that we obtain diminishing returns for our performance measures for $n \geq 4$.

We now consider the performance of our wave indexes for WSE. We observed trends similar to Figure 3 and 4 for the average space during transitions and average transition time for WSE as well as TPC-D (not reported). In Figure 6, we report the total work done by WSE with packed shadowing for $W = 35$. We see that due to significantly higher query volume and window size, REINDEX that performed best in SCAM, now in fact performs the worst. REINDEX does poorly for small n for the reasons described earlier. But REINDEX continues to do poorly even as n increases since the cost savings of reindexing fewer days in a constituent index is offset by the
Figure 5: Average work done by SCAM during day ($W = 7$).

Figure 6: Average work done by WSE during day ($W = 35$).

increased cost of more probes executed for a *TimedIndexProbe*. In this case *DEL*, *WATA* and *RATA* perform the minimal amount of work when $n \leq 2$. This is because they always perform minimal amount of work in indexing new data, and also because n is small enough to service *TimedIndexProbes* cheaply.

From Figure 6, we recommend using *DEL* ($n = 1$) with packed shadow updating for a WSE. This is because for $n = 1$, the response time for user queries is low. Also, *DEL* performs minimal total work.

Similarly in Figure 7 we report the total work done by the different algorithms in the TPC-D case when packed shadowing is used. (We resized the graph since *REINDEX* performs very poorly.) In this example we see again that *DEL* ($n = 1$) and *WATA* ($n = 2$) perform the best, while *REINDEX* performs the worst. In Figure 8, we report the total work done by the different algorithms in the TPC-D case when simple shadowing is used. While we see similar trends to Figure 7, we see how the work done is significantly less in case of packed shadowing. This is of course because packed shadowing does deletion while copying, and because segment scans are efficient due to the packed constituent indexes. For simple shadowing, we see that *WATA* performs the minimal amount of work among the schemes, and performs less work as n increases. This is because the number of expired days stored in the constituent indexes decreases as n increases, and segment scans are more efficient. Also we would like to point out that *WATA* performs significantly better than *DEL* and *RATA*: *WATA* requires upto 10,000 seconds (about 3 hours) less time than
both *DEL* and *RATA*. This is not clear from the graph due to the ranges displayed in the vertical axis. In-place updating of course performs like simple shadowing in all measures except it uses less space during index transitions, and is more complex to implement.

From Figures 7 and 8 we recommend the following schemes (in order of preference) to be used for TPC-D. If packed shadowing can be implemented, use *DEL* ($n = 1$) since it has the best user response time and since it performs minimal work. If packed shadowing cannot be implemented (since some legacy system needs to be used), implement *WATA* ($n = 10$). This is because it performs significantly less work (about 9,000 seconds worth) than *DEL*. Beyond $n \geq 10$ the savings in *WATA* are marginal while increasing query response time. If hard windows are required, we recommend *RATA* ($n = 10$) since it performs the same work as *DEL*, and is not as complex to implement as *DEL*.

In Figure 9 we consider the question of how the schemes scale when the required window size increases from 4 days to 6 weeks. Recall that the reindexing schemes index $O\left(\frac{W}{n}\right)$ days each day, while *DEL*, *WATA* and *RATA* index a small constant number of days each day. Hence we see that, for a given n, as W increases the three reindexing based schemes do not scale while *DEL*, *WATA* and *RATA* scale very well. So if in SCAM we expect to index (say) a window of 14 days some time in the future, it may be worth the effort now to implement *WATA* rather than *REINDEX*.

If we did expect to index a window of 14 days in the future, we need to consider how much data may have increased by then. In Figure 10 we consider the case in SCAM when the number
of netnews articles per day increases from 70,000 to 70,000 \(SF \), where \(0.5 \leq SF \leq 5 \) is the scale factor. We see that \textit{REINDEX} scales the best for this measure since it does not use expensive incremental indexing schemes like \textit{CONTIGUOUS}. However, \textit{WATA*} still performs best when \(SF \leq 3 \). So if we expect the data in the future to increase significantly (i.e., the number of Netnews articles per day becomes \(\geq 70,000 \times 3 \)), it may be actually be best to implement \textit{REINDEX} rather than \textit{WATA*}! This shows us that before choosing a particular scheme to implement we should consider carefully both (1) whether we may ever want a larger window size, and (2) if so, how much do we expect data to increase by.

Finally we consider how our \textit{WATA*} scheme performs when we index 200 days worth of Usenet data, collected between June and December 1997. The purpose of this experiment is to understand how much space overhead the \textit{WATA*} scheme incurs to support lazy deletion. Specifically we are interested in the \textit{index size} ratio, which we define to be the maximum index size ever required by the lazy \textit{WATA*} scheme divided by the maximum index size ever required if we use eager deletion strategies such as \textit{REINDEX}. We report this ratio in Figure 11 for the 200 days of data, as \(n \) varies for \(W = 7 \). For instance, when \(n = 4 \) the index size ratio is 1.24 which indicates the \textit{WATA*} scheme costs 24% of overhead in storage. We note that the space overhead for \textit{WATA*} appears tolerable (\(\leq 1.6 \)), and decreases as \(n \) increases – we believe this makes the case stronger for \textit{WATA*} based indexing.

Figure 9: Work done during day by SCAM with \(W (n = 4) \).

Figure 10: Work done during day by SCAM with SF (\(W = 14, n = 4 \)).
7 Related Work

Brown et al. [BCC94], Cutting and Pedersen [CP90], Faloutsos and Jagadish [FJ92] and Tomasic et al. [TGMS94] all consider how to incrementally index a growing corpus for fast information retrieval. They do not consider the case where a sliding window of documents is indexed. However their work is orthogonal to us: in fact we can implement AddToIndex and DeleteFromIndex using any of the above schemes. Indeed in our case study we implemented AddToIndex and DeleteFromIndex using the CONTIGUOUS scheme from [FJ92].

Chandra and Segev [CS93] consider how to manage temporal financial data in the context of an extensible database. Their work is also orthogonal to ours and we expect our schemes will be helpful to index the calendar objects and time-series data they consider.

There has been a significant body of work in indexing temporal data. Salzberg and Tsostras [ST94] provide an excellent survey of work in this area. Index structures such as AP-Trees [GS93], Time Index [EKW91], Monotonic B+Trees [EKW91], Snapshot Index [TK93], Segment R-Trees [KS91] and Time Split B-Trees are specific enhancements of well-known index structures such as B+Trees and R-Trees for indexing time-series data. Each of the above is optimized to answer specific kinds of time-slice and range-time-slice queries [ST94]. Also they handle arbitrary insertion and expiry times of data. However they handle expiry of data by logical deletion where data is not physically deleted at time of expiry [ST94]. An asynchronous “vacuuming” process runs in the background to delete data [KS91, ST94].
Our work differs from the above temporal indexing schemes in that we index sliding windows of data rather than data with arbitrary insertion and expiry times. This assumption helps us carefully organize our indexes and make several performance optimizations. Also our schemes are independent of the underlying index structures used, and hence can be used on top of widely available index structures (such as B+Trees, ISAMs etc.). Hence applications that need sliding windows can implement our schemes using their favorite indexing package. Indeed our schemes can also be used in conjunction with the above temporal index structures and replace the asynchronous deletion process for one of several reasons we identified in this paper (such as efficiency of batched deletes or better structured index).

There has been a lot of work in reorganization of traditional indexes [Wie87], e.g., how to decide when an index has deteriorated so much that it makes sense to throw away the index and rebuild it from scratch. We exploit the semantics of a sliding window to organize our indexes carefully: this helps our schemes (except DEL with \(n = 1 \)) to automatically reorganize themselves on a continuing basis.

8 Conclusions and Future Work

Several applications require indexing data of a past window of days. For this we proposed several techniques to build wave indices. We then analyzed these schemes and showed experimentally under a variety of scenarios how the schemes perform for different volumes of input data and query patterns. Our results indicate that each of our wave indexing schemes has advantages and could be useful in some specific scenario, depending on what the central performance metrics are, and on how much code we can afford to write.

In the future, we plan to consider how the different wave indices perform when multiple disks are used. In particular, if \(n \) matches the number of disks, indexing can be parallelized easily. Also building new constituent indices on separate disks avoids contention. Hence wave indices will have several advantages over monolithic indices when we use multiple disks. Since there are several interesting ways in which a given number of disks can be allocated to the constituent indices, we are planning to evaluate some of the tradeoffs.

Appendix A: Algorithms

Each of the following algorithms have two important states, Start and Transition. Initially when the wave index is to be built for the \(1^{st} \) \(W \) days, the operations in Start will be executed. Each subsequent day, the new day’s data is indexed using the operations in Transition.
Algorithm for \textsc{DEL}[W, n: Integer]

- **Globals:**
 - \(I_1, I_2, \ldots, I_n: \) Index // Constituent indexes
 - \(Days: \) Array[1..n] of Set of Integers // Time-sets of indexes

- **Start**\([d_1, d_2, \ldots, d_W: \) Data]

 - **Local Variables:** \(\text{low}, i, j: \) Integer
 1. \(\text{low} = 1 \)
 2. For all \(i = 1, 2, \ldots, W \mod n \)
 // 1st \(W \mod n \) time-sets have \(\lceil \frac{W}{n} \rceil \) days
 \(a) \ Days[i] \leftarrow \cup_{j=\text{low}}^{\text{low}+\left\lceil \frac{W}{n} \right\rceil} \{ j \} \)
 \(b) \ I_i = \text{BuildIndex}(Days[i]) \)
 \(c) \ \text{low} = \text{low} + \left\lfloor \frac{W}{n} \right\rfloor + 1 \)
 3. For all \(i = W \mod n + 1, W \mod n + 2, \ldots, n \)
 // Other time-sets have \(\left\lceil \frac{W}{n} \right\rceil \) days
 \(a) \ Days[i] \leftarrow \cup_{j=\text{low}}^{\text{low}+\left\lceil \frac{W}{n} \right\rceil} \{ j \} \)
 \(b) \ I_i = \text{BuildIndex}(Days[i]) \)
 \(c) \ \text{low} = \text{low} + \left\lfloor \frac{W}{n} \right\rfloor + 1 \)

- **Transition**\([d_{new}: \) Data]
 1. Let \(I_j \) be the index containing data of \(d_{new-W} \).
 2. \text{DeleteFromIndex}(d_{new-W}, I_j)
 3. \text{AddToIndex}(d_{new}, I_j)

Figure 12: Algorithm for \textsc{DEL}

Algorithm for \textsc{REINDEX}[W, n: Integer]

- **Globals:**
 - \(I_1, I_2, \ldots, I_n: \) Index // Constituent indexes
 - \(Days: \) Array[1..n] of Set of Integers // Time-sets of indexes

- **Start**\([d_1, d_2, \ldots, d_W: \) Data]

 1. Same as Start for \textsc{DEL}

- **Transition**\([d_{new}: \) Data]

 - **Local Variables:** \(j: \) Integer
 1. Let \(I_j \) be the index containing data of \(d_{new-W} \).
 2. \(Days[j] = Days[j] - \{ \text{new} - W \} \cup \{ \text{new} \} \) // Updating \(j^{th} \) time-set
 3. \(I_j \leftarrow \text{BuildIndex}(Days[j]) \) // Rebuilding index

Figure 13: Algorithm for \textsc{REINDEX}:
Algorithm for REINDEX⁺[W, n: Integer]

- **Globals**
 - I_1, I_2, \ldots, I_n: Index // Constituent indexes
 - $Temp$: Index // Temporary index
 - $Days$: Array[1..n] of Set of Integers // Time-sets of indexes
 - $DaysToAdd$: Set of Integers // Tracks days to add to temporary index

- **Start**[d_1, d_2, \ldots, d_W: Data]
 1. Same as DEL
 2. $Temp \leftarrow \phi$

- **Transition**[d_{new}: Data]
 Local Variables: j: Integer
 1. Let I_j be the index containing data of $d_{new} - W$
 2. If $Temp = \phi$
 // As in days 11 and 16 in Table 5
 (a) $DaysToAdd \leftarrow Days[j] - \{new - W\}$
 (b) $Temp, I_j \leftarrow BuildIndex(d_{new})$
 (c) $AddToIndex(DaysToAdd, I_j)$
 3. Else If $DaysToAdd = \phi$
 // As in day 15 in Table 5
 (a) $I_j \leftarrow Temp$
 (b) $AddToIndex(d_{new}, I_j)$
 (c) $Temp \leftarrow \phi$
 4. Else
 // As in days 12, 13, 14 in Table 5
 (a) $AddToIndex(d_{new}, Temp)$
 (b) $I_j \leftarrow Temp$
 (c) $AddToIndex(DaysToAdd, I_j)$
 5. $Days[j] \leftarrow Days[j] - \{new - W\} \cup \{new\}$ // Updating j^{th} time-set
 6. $DaysToAdd \leftarrow DaysToAdd - \{new - W + 1\}$

Figure 14: Algorithm for REINDEX⁺
Algorithm for \textit{REINDEX}^{++}[W, n: Integer]

- **Globals**
 - I_1, I_2, \ldots, I_n: Index // Constituent indexes
 - $T_1, T_2, \ldots, T_{[W/n]}$: Index // Temporary indexes
 - $Days$: Array[1..n] of Set of Integers // Time-sets of indexes
 - $DaysToAdd$: Set of Integers // Tracks days to be added to temporary indexes
 - $TempUsed$: Integer // Tracks next temporary index that replaces a constituent index

- **Initialize**[$\bigcup_{j=1}^n \{d_i\}$]: Set of Integers

 Local Variables: i: Integer
 1. $T_0 \leftarrow \emptyset$, $T_1 \leftarrow \text{BuildIndex}(d_k)$
 2. For i from $j + 1$ to k
 (a) $T_{i-j+1} \leftarrow T_{i-j}$
 (b) $\text{AddToIndex}(d_{k-(i-j)}, T_{i-j+1})$
 3. $TempUsed = k - j + 1$
 4. $DaysToAdd \rightarrow \emptyset$

- **Start**[d_1, d_2, \ldots, d_W: Data]
 1. Same as \textit{DEL}
 2. \textit{Initialize}($Days[i]$ - \{1\})

- **Transition**[d_{new}: Data]

 Local Variables: j, j': Integer
 1. Let I_j be the index containing data of d_{new-W}
 2. If $TempUsed = 0$
 // As in day 10 and 15 in Table 6
 (a) $\text{AddToIndex}(d_{new}, T_0)$
 (b) Rename T_0 as I_j
 (c) Let $I_{j'}$ be the index containing data of $d_{new-W+1}$
 (d) \textit{Initialize}($Days[j'] - \{new - W + 1\}$)
 3. Else
 // As in days 11, 12, 13, 14 in Table 6
 (a) $DaysToAdd \leftarrow DaysToAdd \cup \{new\}$
 (b) $\text{AddToIndex}(d_{new}, T_{TempUsed})$
 (c) Rename $T_{TempUsed}$ as I_j
 (d) $TempUsed = TempUsed - 1$
 (e) $\text{AddToIndex}(DaysToAdd, T_{TempUsed})$

Figure 15: Algorithm for \textit{REINDEX}^{++}
Algorithm for WATA*[W, n: Integer]

- **Globals:**
 - \(I_1, I_2, \ldots, I_n \): Index // Constituent indexes
 - \(Days \): Array[1..n] of Set of Integers // Time-sets of indexes
 - \(Z \): Array[1..n] of Integers // Sizes of indexes
 - \(last \): Integer // Tracks last modified index

- **Start** \([d_1, d_2, \ldots, d_W]: Data\]

Local Variables: \(low, i, j: Integer \)

1. \(low = 1 \)
2. For all \(i = 1, 2, \ldots, (W - 1) mod (n - 1) \),
 // 1st \((W - 1) mod (n - 1) \) time-sets have \(\lfloor \frac{W - 1}{n - 1} \rfloor \) days
 (a) \(Days[i] \leftarrow \bigcup_{j=low}^{\lfloor \frac{W - 1}{n - 1} \rfloor} \{j\} \)
 (b) \(I_i = BuildIndex(Days[i]) \)
 (c) \(low = low + \lfloor \frac{(W - 1)/(n - 1)} \rfloor + 1 \)
 (d) \(Z_i = \lfloor (W - 1)/(n - 1) \rfloor \)
3. For all \(i = (W - 1) mod (n - 1) + 1, (W - 1) mod (n - 1) + 2, \ldots, n - 1 \),
 // Other time-sets till \(n - 1 \) have \(\lfloor \frac{W - 1}{n - 1} \rfloor \) days
 (a) \(Days[i] \leftarrow \bigcup_{j=low}^{\lfloor \frac{W - 1}{n - 1} \rfloor} \{j\} \)
 (b) \(I_i = BuildIndex(Days[i]) \)
 (c) \(low = low + \lfloor \frac{(W - 1)/(n - 1)} \rfloor + 1 \)
 (d) \(Z_i = \lfloor (W - 1)/(n - 1) \rfloor \)
4. \(Days[i] \leftarrow \{W\} \) // Last time-set has \(W^{th} \) day
5. \(I_n \leftarrow BuildIndex(b_W) \)
6. \(last = n \)

- **Transition** \([d_{\text{new}}]: Data\]

1. Let \(I_j \) be the index containing data of \(d_{\text{new}} - W \)
2. If \(\sum_{i=1, i \neq j} Z_i = W - 1 \), perform **ThrowAway** else perform **Wait**.
 (a) **ThrowAway**:
 // Throw away \(j^{th} \) index
 i. \(DropIndex(I_j) \)
 ii. \(I_j \leftarrow \emptyset \)
 iii. \(I_j \leftarrow BuildIndex(new) \)
 iv. \(Days[j] \leftarrow \{new\}, Z_j = 1 \)
 v. \(last = j \)
 (b) **Wait**:
 // Add new day to last modified index
 i. \(AddToIndex(d_{\text{new}}, I_{last}) \)
 ii. \(Z_{last} = Z_{last} + 1 \)
 iii. \(Days[last] = Days[last] \cup \{new\} \)

Figure 16: Algorithm for WATA*
Algorithm for $RATA^*[W, n: \text{Integer}]$

- **Globals:**
 - I_1, I_2, \ldots, I_n: Index // Constituent indexes
 - $Days: \text{Array}[1..n]$ of Set of Integers // Time-sets of indexes
 - $Z[1..n]$: Integer // Sizes of indexes
 - $TempUsed$: Integer // Tracks next temporary index that will replace a constituent index
 - $last$: Integer // Tracks last modified index

- **Initialize**$\bigcup_{i=j}^k\{d_i\}$: Set of Integers

 Local Variables: i: Integer
 1. $T_1 \leftarrow BuildIndex(d_k)$
 2. For i from $j + 1$ to k
 (a) $T_{i-j+1} \leftarrow T_{i-j}$
 (b) $AddToIndex(d_{k-(i-j)}, T_{i-j+1})$
 3. $TempUsed = k - j + 1$

- **Start**$[d_1, d_2, \ldots, d_W: \text{Data}]$

 Local Variables: low, i, j: Integer
 1. Same as $WATA^*$
 2. $Initialize(Days[1] - \{1\})$

- **Transition**$[d_{\text{new}}: \text{Data}]$

 Local Variables: $j': \text{Integer}$
 1. Let I_j be the index containing data of $d_{\text{new}} - W$
 2. If $\sum_{i=1, i \neq j}^n Z_i = W - 1$, perform $ThrowAway$ else perform $Wait$.
 (a) $ThrowAway$:
 i. Same steps as $ThrowAway$ in $WATA^*$
 ii. Let I_j' be the index containing data of $d_{\text{new}} - W + 1$
 iii. $Initialize(Days[j'] - \{new - W + 1\})$ // Preparing temporary indexes for next cycle
 (b) $Wait$:
 i. $AddToIndex(d_{\text{new}}, I_{last})$
 ii. $Days[last] = Days[last] \cup \{new\}$
 iii. Drop I_1
 iv. Rename $T_{TempUsed}$ as I_j // Using temporary index to simulate hard window
 vi. $TempUsed = TempUsed - 1$

Figure 17: Algorithm for $RATA^*$
Appendix B: Goodness of WATA

We define family \(\mathcal{F} \) to be the set of WATA-based algorithms that construct and maintain a wave index, \(\Theta \), for \(W \) days. Recall that these algorithms use only the following operations: (1) \textit{AddToIndex}, to add a day to a constituent index, (2) \textit{DropIndex}, to remove a constituent index from \(\Theta \), and (3) \textit{AddIndex}, to add a constituent index to \(\Theta \).

Since constituent indices change each day, we use \(I_j^i \) to refer to index \(I_j \) on day \(i \). We define \(|I_j^i| \) to be the number of days indexed in \(I_j \), \(j = 1, 2, \ldots, n \) on day \(i \). We use \(s(I_j^i) \) to denote the corresponding storage required by the index on day \(i \).

Index length measure

We define \(\text{length}(T) \) of \(\Theta \) on day \(i \) to be the total number of days indexed in the constituent indices on day \(i \), i.e., \(\sum_{j=1}^{n} |I_j^i| \). We define \(\text{max length} \) of \(\Theta \) to be the maximum length of \(\Theta \) during its life-time, i.e., \(\max_{i=1}^{\infty} \text{length}(i) \). We define \(\text{residual length} \) of \(\Theta \) to be \(\text{max length} - W \). We define \(\text{waste}, w(I_j^i) \), for each constituent index \(I_j \), \(j = 1, 2, \ldots, n \), to be the number of days indexed in \(I_j \) that are older than the required window on day \(i \).

We now prove that WATA* minimizes \(\text{max length} \) of \(\Theta \) for a given \(W \) and \(n \), among the set of algorithms in \(\mathcal{F} \). We do this in two steps. First we consider an abstract algorithm, \(\text{OPT} \), in \(\mathcal{F} \) that minimizes the \(\text{max length} \) of \(\Theta \): we compute the lower bound on \(\text{max length} \) for such an optimal algorithm in Theorem 1. Then we show in Theorem 2 that WATA* achieves the same lower bound, thereby making it optimal.

Theorem 1: Let \(\text{OPT} \) be an algorithm in \(\mathcal{F} \) that minimizes the \(\text{max length} \) of \(\Theta \). Algorithm \(\text{OPT} \) cannot build a \(\Theta \) for a given \(W \) and \(n \) with \(\text{max length} \) less than \(W + \left\lceil \frac{W-1}{n-1} \right\rceil - 1 \).

Proof of Theorem 1: Let \(C \) be the residual length of \(\text{OPT} \) for \(\Theta \). By definition, on some day, \(k \), the number of days indexed in \(\Theta \) by \(\text{OPT} \) will be \(W + C \). Since these \(W + C \) days need to be split across the \(n \) constituent indices, there must be some index \(I_{big} \), \(1 \leq \text{big} \leq n \) with

\[
|I_{big}^k| \geq \frac{W+C}{n} \tag{8.1}
\]

Also, by definition

\[
C = \max_{i=1}^{\infty} \sum_{j=1}^{n} w(I_j^i) \tag{8.2}
\]

\[
\geq w(I_{big}^i), t \geq 1 \tag{8.3}
\]
Observe that every index I_j has to be dropped at some point in time. This is clear since C will otherwise be ∞. Now consider the earliest day, l, ($l \geq k$) I_{big} is ready to be dropped. On the previous day, $l - 1$, $w(I_{big}^{(l-1)})$ is $|I_{big}^{(l)}| - 1$ since there is exactly one day in $I_{big}^{(l-1)}$ that does not expire until the next day.

Since I_{big} grows monotonically between day k and day $l - 1$, we see that

$$
C \geq w(I_{big}^{(l-1)}) \quad (8.4)
$$

$$
= |I_{big}^{(l-1)}| - 1 \quad (8.5)
$$

$$
\geq |I_{big}^{(k)}| - 1 \quad (8.6)
$$

$$
\geq \frac{W + C}{n} - 1 \quad (8.7)
$$

$$
n * (C + 1) \geq W + C \quad (8.8)
$$

$$
C \geq \frac{W - n}{n - 1} \quad (8.9)
$$

$$
= \frac{(W - 1) - (n - 1)}{n - 1} \quad (8.10)
$$

$$
= \frac{W - 1}{n - 1} - 1 \quad (8.11)
$$

That is, no algorithm in \mathcal{F} can have a wave index with max length below $W + \left\lceil \frac{W - 1}{n - 1} \right\rceil - 1$. Since the max length of Θ should be an integer (number of days is an integer), no algorithm in \mathcal{F} can have a max length below $W + \left\lceil \frac{W - 1}{n - 1} \right\rceil$. □

Theorem 2: The maximum length of $WATA^*$ (Figure 16) is $W + \left\lceil \frac{W - 1}{n - 1} \right\rceil$.

Proof of Theorem 2:

The time-sets constructed by OPT have consecutive days. That is, if days i and $i + 2$ are assigned to some I_j, then $i + 1$ is also assigned to I_j. Also $WATA^*$ drops a constituent index when all days in its time-set has expired. Hence if we maintain a window of W consecutive days, there can be at most one I_j, such that $w(I_j) > 0$.

Also when the wave index is constructed initially, the number of days in each constituent index is at most $\left\lceil \frac{W - 1}{n - 1} \right\rceil$. Observe that $WATA^*$ maintains this throughout the life-time of the wave-index.

Consider the day before some I_j is to be thrown away. At that point, only one day is alive and the other $|I_j| - 1$ have expired. Hence the maximum $w(I_j)$ is $\left\lceil \frac{W - 1}{n - 1} \right\rceil - 1$. Therefore the maximum length of any wave index constructed using $WATA^*$ is $W + \left\lceil \frac{W - 1}{n - 1} \right\rceil - 1$. □
Index size measure

Theorem 3 \(WATA^* \) has a competitive ratio of 2.0 with respect to optimal among the algorithms in \(F \).

Proof of Theorem 3: Let \(M \) be the maximum value of index size required to store \(W \) consecutive days of data, across the entire duration of indexing. Clearly, the optimal algorithm \(OPT \) requires at least \(M \) storage space to handle the largest window. During this period, \(WATA^* \) requires \(M \) storage as well to store the \(W \) days. In addition, \(WATA^* \) may require an additional \(S \) storage to store the residual days that may have expired but are in the same index as some day that has not yet expired. However, this space \(S \) clearly cannot exceed \(M \), since \(M \) is the maximum storage required for any time window \(W \). Hence \(S \leq M \). Therefore, \(WATA^* \) has a competitive ratio of 2.0.
References

In http://ls6-www.informatik.uni-dortmund.de/ir/projects/freeWAIS-sf/.

