On Index Selection Schemes for Nested Object Hierarchies

Sudarshan S. Chawathe*, Ming-Syan Chen and Philip S. Yu

Computer Science Department*
Stanford University
Stanford, CA 94305

IBM Thomas J. Watson Research Center
P.O.Box 704
Yorktown Heights, NY 10598

Abstract
In this paper we address the problem of devising a set of indexes for a nested object hierarchy in an object-oriented database to improve the overall system performance. It is noted that the effects of two indexes could be entangled in that the inclusion of one index might affect the benefit achievable by the other index. Such a phenomenon is termed index interaction. Clearly, the effect of index interaction needs to be taken into consideration when a set of indexes is being built. The index selection problem is first formulated and four index selection algorithms are evaluated via simulation. The effects of different objective functions, which guide the search in the index selection algorithms, are also investigated. It is shown by simulation results that the greedy algorithm which is devised in light of the phenomenon of index interaction performs fairly well in most cases. Sensitivity analysis for various database parameters is conducted.

Index Terms: Object-oriented databases, indexing, nested object hierarchy, index interaction.

1 Introduction
Due to the increasing demand for sophisticated data-modelling capabilities by many database applications, object-oriented databases (OODBs) have recently attracted a significant amount of attention in academic and industrial communities [5, 11, 14]. As opposed to the query-based (typically SQL) approach used by relational databases, an OODB renders efficient access to pointer-based data structures by permitting direct manipulation of data via program control. It has been noted in [16] that declarative data access is desirable in OODBs since it not only offers ease of programming but also allows the database system to improve the query processing for faster query execution.

Unlike the query optimization in a relational database which has well-developed theoretical results, query processing in an OODB is still in its infancy [10]. The problem is complicated due to the lack of universally-accepted data models and query languages [15]. In a "flat" (or first normal form, in relational database terminology) data model, an attribute can only be a primitive data type. However, in object-oriented data models the value of an attribute of one object may be a set of values or another object. This nesting of objects through attributes leads to the nested object hierarchy [8], also known as the class-attribute hierarchy [3]. An example of a nested object hierarchy is extracted from [3] and shown in Figure 1, where an attribute of any class can be viewed as a nested attribute of the root class. Note that the nested object hierarchy is intrinsically different from the class hierarchy. In such an OODB environment, how to utilize the pointer-based data structures to devise proper indexing schemes and retrieve objects efficiently has been identified as a very important issue to further improve the system performance [11, 12].

Several indexing schemes have been proposed for nested attribute queries [1, 2, 3, 8, 9, 13]. Three index organizations for use in the evaluation of a query in an OODB are introduced in [3]. As an extension to [3], performance of path indexes for queries containing several predicates is evaluated in [2]. In [9] query processing in an OODB system is improved by maintaining separate structures to redundantly store objects which are frequently traversed by database queries. A hybrid indexing technique, called a generalized index, is proposed in [8] to support class hierarchy with complex
of devising a set of indexes for a nested object to explore the effect of building a set of indexes. It has become increasingly important that the granularity of data objects in an OODB becomes finer and the database schema tends to be more sophisticated nowadays, it has become increasingly important to explore the effect of building a set of indexes.

Consequently, we address in this paper the problem of devising a set of indexes for a nested object hierarchy with its given profile so as to improve the overall performance for executing a group of queries. Performance is measured using the metrics of retrieval, update and storage costs. Specifically, we shall focus on a common type of query, called the nested attribute query: Select all objects of a certain class that have a nested attribute equal to a given value. An example of such a path query is given in Figure 2. The index selection problem is first formulated and some important parameters are identified. Then, four index selection algorithms for queries in a nested object hierarchy are presented, i.e., a naive scheme, an algorithm based on profit ordering, a greedy algorithm, and then a more sophisticated look-ahead one. The naive scheme essentially corresponds to a random inclusion of indexes, which is used for a comparison purpose. The algorithm on profit ordering sorts the profits of individual indexes in descending order first, and then includes as many indexes as possible according to the sorted index list, subject to the storage constraint. The greedy algorithm is similar to the one on profit ordering in that it also includes as many indexes as possible based on a sorted index list, but different from the latter in that the sorted index list used by the greedy algorithm is revised after every inclusion of an index, thus taking index interaction into consideration. The look-ahead algorithm goes beyond the greedy algorithm by looking ahead to evaluate the combined benefit of several indexes before adding one into the index list. In addition, three objective functions, which guide the search in the index selection algorithms, are also proposed. A detailed description of index selection algorithms and objective functions can be found in Section 3.

To conduct the performance study, an OODB system simulator is coded in C++ to model the detail of data retrievals under different indexed environments. The four index selection algorithms and the three objective functions are comparatively evaluated. To conduct a sensitivity analysis for various parameters, different values for the storage constraint for indexing, update and storage costs, and attribute selectivity are employed in the simulation and their effects are evaluated. It is shown by simulation results that despite their maintenance cost, indexes provide a net benefit over a wide range of database parameters. It is

The profile of a nested object hierarchy includes the cardinality of each class, the selectivity of each attribute, a certain amount of storage available for indexing, and some other information on access patterns.
Figure 2: An example path query: select vehicle where manufacturer division location = “city name.”

observed that the greedy algorithm devised performs fairly well in most cases, which in fact agrees with the very nature of index interaction we identify in this study. We not only conduct an extensive performance study for index selection algorithms, but also explore the effect of index interaction to deal with this global optimization problem.

This paper is organized as follows. Notation, cost model and assumptions are given in Section 2. Index selection algorithms and objective functions are described in Section 3. Performance study is conducted in Section 4. This paper concludes with Section 5.

2 Notation and Assumptions

As pointed out in [3], an important element common to an OODB is the view that the value of an attribute of an object can be an object or a set of objects. A class \(C(1) \) consists of a number of attributes, and the value of an attribute \(A \) of an object belonging to class \(C(1) \) can be an object or a set of objects belonging to another class \(C(2) \). The class \(C(2) \) is called the domain of attribute \(A \) of class \(C(1) \). Certainly, \(C(2) \) may in turn consist of a number of attributes whose domains are other classes. A path in the nested object hierarchy is represented as \(C(1).A(1).A(2)\ldots.A(n) \), where \(C(1) \) is the class whose objects will be retrieved based on the nested attribute lookup. \(A(1) \) is an attribute of \(C(1) \) and \(A(i) \) is an attribute of the class associated with \(C(1).A(1).A(2)\ldots.A(i-1) \), for \(i = 2\ldots n \). We denote the length of the path by \(n \). For example, in the path “vehicle.manufacturer.division.location,” \(C(1) \) is “vehicle,” \(A(1) \) is “manufacturer,” \(A(2) \) is “division,” and \(A(3) \) is “location.” A nested index on the path vehicle.manufacturer.division.location will associate a distinct value of the location attribute, say “Ann Arbor”, with a list of object identifiers of vehicles, each of which has its manufacturer that is an instance of the company class whose division’s location is “Ann Arbor.”

The OODB system considered in this study has read-only queries and also retrievals/updates using program-controlled traversals. Note that queries can be quite complex, involving many attributes and Boolean combinations of lookup conditions. As mentioned earlier, we focus on a common type of query, called the nested attribute query: “Retrieve all objects of class \(C(1) \) such that \(C(1).A(1).A(2)\ldots.A(n) = v \)” where \(v \) is a given value of interest. This has been referred to as the implicit join operation in the literature [2]. Note that despite their simplicity, such queries form building blocks for more complex queries, and it is thus very important to implement them efficiently. Updates by traversals are modeled by considering the update costs for those attributes on the path indexes being maintained. Insertions and deletions are modeled similarly. For example, with an index from Division to Vehicle in Figure 2 the following query can be answered efficiently.

Q1: select vehicle where manufacturer division location = “Ann Arbor”

The formulas we use in this study for the retrieval, update and storage costs of an index are basically the same as those for nested indexes on a B-tree implementation described in [3], with some modifications. Readers interested in the derivation of these formulas are referred to [3]. The difference between the formulas in [3] and those in this study lies in the estimation of the average number of instances of class \(C(1) \) that have the same value for the nested attribute \(A(n) \). (Such a number is denoted by \(k(1,n) \).) Note that it is assumed in [3] that there are no partial instantiations of \(C(1) \), and the formula of \(k(1,n) \) is thus simplified in [3].

Such an assumption is not made in this paper. As a result, we employ the original formula for \(k(1,n) \) without resorting to any simplification. Such an assumption relaxation in fact allows us to take into account the object reference topologies of different database popu-
lations in our simulation study, thus leading to more general results. The database and system parameters used in the cost formulas for the indexes are summarized in Table 6 of Section 4 where the performance study is conducted.

Same as other related studies, some assumptions are made to facilitate our discussion. First, all attributes are bidirectional. Explicitly, for each attribute link from class \(C(i) \) to class \(C(j) \), there is a reverse reference from \(C(j) \) to \(C(i) \). Also, all key values have the same length, which in turn means that all nonleaf index records have the same length in all indexes. The values of an attribute are uniformly distributed among the objects of the class which defines that attribute [7]. In addition, each attribute is equally likely to be updated and all attributes have the same selectivity. Note that these assumptions are mainly made to ease our implementation as well as to simplify our discussion, and are believed not to affect the relative merits of the index selection methods we shall evaluate in this paper.

3 Index Selection Schemes

In this section we describe the objective functions and the index selection algorithms that we shall evaluate. The index selection problem can be viewed as a search problem where the search space consists of all possible subsets of indexes. All the indexing schemes select indexes to optimize the objective function employed, subject to the constraint that the indexes included cannot consume more than a specified amount of storage. Three objective functions will be presented in Section 3.1, four index selection algorithms are described in Section 3.2, and illustrative examples are given in Section 3.3.

3.1 Objective Functions

We shall evaluate three different objective functions which guide the search for candidate indexes. The first objective function is based on profit, the second is based on return ratio, and the third is a combined version of the first two. These objective functions are applied to individual indexes to decide which index should be included into the set of selected indexes.

- The objective function on "profit," denoted by \(P(\cdot) \), is based on the difference between the corresponding reduction in the retrieval cost provided by the index and the associated increase in the update cost. In other words, \(P(I) \) corresponds to the reduction in the global dynamic cost due to the inclusion of index \(I \), where the dynamic cost means the sum of the retrieval cost of database queries and the update cost for indexes in response to database updates. Note that because of the phenomenon of index interaction this value varies as the selected index set changes. Specifically, we have,

\[
P(I) = \text{retrieval}\text{benefit}(I) - \text{update}\text{cost}(I).
\]

- The objective function on "return ratio," denoted by \(R(\cdot) \), is based on the ratio of \(P(\cdot) \) to the storage cost of the index. It can be seen that by taking into account the amount of storage required by an index, this function will prefer small indexes than large ones.

\[
R(I) = \frac{P(I)}{\text{storage}\text{cost}(I)}.
\]

- In order not to penalize large indexes unnecessarily when there is a lot of storage available, a mixed objective function \(M(\cdot) \), which according to the amount of storage available, adaptively selects its formula to evaluate indexes, is also employed in our study. \(M(\cdot) \) is formulated as below.

\[
M(I) = \begin{cases}
P(I) & \text{if } \frac{\text{remaining storage}}{\text{original available storage}} > \alpha, \\
R(I) & \text{otherwise},
\end{cases}
\]

where \(0 < \alpha \leq 1 \) denotes a threshold for the ratio of the remaining storage to the original available storage. \(M(I) \) is initially the same as \(P(I) \). However, when such a ratio on the remaining storage is less than \(\alpha \), meaning that there is no large amount of storage available, \(M(I) \) will be used, instead of \(P(I) \), as the objective function for index selection such that storage can henceforth be used more prudently.

3.2 Four Index Selection Algorithms

3.2.1 Naïve algorithm (NV)

As mentioned earlier, the naive algorithm (NV) is used for a comparison purpose. NV tries to include as many indexes with positive profits as possible, until the amount of available storage is exhausted.

3.2.2 Algorithm on profit ordering (PO)

Clearly, indexes included could be more profitable than those selected by NV if some provisions are made during the index selection. The algorithm on profit ordering (PO) will first statically evaluate the objective
function values for all the indexes and sort indexes in descending order of these values. PO then selects from the sorted index list as many indexes as allowed by the available storage in a top-down manner.

3.2.3 Greedy algorithm (GD)
This greedy algorithm (GD) used is essentially a greedy search applied to the index-subset search space. GD also sorts indexes according to their objective function values first. Then, at each step, GD adds the most profitable index to the current set of selected indexes, and revises the objective function values for all the remaining indexes, thereby taking the index interaction into account. GD can be outlined below, where S is the set of selected indexes and A is the set of remaining indexes.

Algorithm GD: Greedy index selection
Input: Set A of all indexes and the objective function F.
Output: Set of indexes to be built.
$S := \emptyset$;
repeat {
 Evaluate the objective function values for all indexes in $A - S$;
 Let I be the index with the maximal objective function value;
 if $F(I) \leq 0$ return S;
 $S = S \cup \{I\}$;
 $A = A - \{I\}$;
}

3.2.4 Lookahead algorithm (LH)
Note that GD may choose a locally optimal solution and overlook those that are globally better. To remedy this, lookahead schemes, which explore more search space before making a decision on determining which index to be included into the selected set, are employed. Basically, by considering the effect of adding more than one index to the current set of indexes, the index chosen for inclusion can be thought of as the one that could lead to a better solution a few steps later. Based on this concept of looking ahead, we can obtain a family of search algorithms, denoted by LH(m,n), where m and n are two parameters associated with the search complexity. Let S be the current set of selected indexes. In each step, LH(m,n) considers the effect of adding to S an index subset which has a cardinality less than or equal to n and is made up of the m best indexes. After the effects of all such index subsets are evaluated, the most beneficial index subset is identified. Then, within this most beneficial index subset, the most beneficial index is added into S. Suppose we have four indexes to be considered, and (i_2, i_1, i_4, i_3) denotes the descending order of the objective function values of these four indexes. LH(3,2) will consider the benefits of the six index sets: $\{i_2\}, \{i_1\}, \{i_4\}, \{i_2, i_1\}, \{i_2, i_4\}$, and $\{i_1, i_4\}$. Suppose $\{i_2, i_1\}$ is the most beneficial one among them. Then the more beneficial one of i_1 and i_2 will be included into S. Formally, LH can be described as follows, where the objective function F could be P (on profit), R (on return ratio), or M (mixed) described in Section 3.1.

Algorithm LH: Lookahead(m,n) index selection
Input: Set A of all indexes and the objective function F.
Output: Set of indexes to be built.
$S := \emptyset$;
repeat {
 Evaluate the objective function values for all indexes in $A - S$;
 Sort indexes in $A - S$ according to the descending order of their objective function values;
 Let L be the first m indexes in the sorted index list;
 Identify all subsets with cardinalities no greater than n from L.
 Let T be the set of all such subsets.
 Let IS be the subset with the maximal objective function value among T;
 if $F(IS) \leq 0$ return S;
 Let I be the index with the maximal objective function value among those in IS.
 $S = S \cup \{I\}$;
 $A = A - \{I\}$;
}

3.3 Illustrative Examples
To illustrate the algorithms we described thus far, consider the schema graph in Figure 3 where queries q_1 and q_2 have occurrence frequencies 0.8 and 0.2, respectively. Suppose that the four indexes (i_1, i_2, i_3, i_4) shown in Figure 3 are the four most beneficial ones to consider for these queries. Let the maximal storage available for indexing be 12. Also, assume that the update cost, storage cost and retrieval benefit of each index are those given in Table 1. Note that the retrieval benefit is the reduction in the retrieval cost.
In the first iteration of the greedy algorithm, the retrieval benefits and the objective function values for these indexes are the same as those shown in Table 1. Index i_1 has the maximal value for the objective function and is thus added to the set of selected indexes. Hence, we have $S = \{i_1\}$, and the retrieval benefits of the remaining indexes are revised accordingly. The objective function values after the inclusion of i_1 are shown in Table 3. Note that selecting i_1 reduces the benefits of i_2 and i_4, showing the effect of index interaction. Index i_3 now has the maximal objective function value and is thus added to S in the second iteration, leading to $S = \{i_1, i_3\}$.

In the third iteration, the benefits for the remaining indexes are again re-evaluated and there is actually no
change for the objective function values of \(i_2\) and \(i_4\).

Note that at this point, set \(S\) uses \(6 + 2 = 8\) units of storage. Since the maximal storage allowed is 12, there are only 4 units of storage available. Because \(i_4\) is the only beneficial index remaining and needs a storage of 5, GD terminates at this stage, giving \(S = \{i_1, i_3\}\). The update cost of the selected index set is \(0.25 + 0.1 = 0.35\). The reduction in the query retrieval cost is \(0.8 \times 3 + 0.2 \times 2 = 2.8\). The overall reduction in the cost resulted from using \(\{i_1, i_3\}\) is thus \(2.8 - 0.35 = 2.45\), larger than those resulted from NV and PO.

Algorithm LH: Now, consider the application of LH(4,2) to this problem. In contrast to considering individual indexes as GD, LH(4,2) takes into consideration all subsets of the set \(\{i_1, i_2, i_3, i_4\}\) of cardinality less than or equal to two. The four singleton sets corresponding to the four indexes will have their costs and benefits identical to those shown in Table 1. In addition, the following subsets of indexes are evaluated in Table 4.

The set \(\{i_2, i_4\}\) has the largest objective function value among all the candidate sets, and is therefore selected as the set \(IS\). After \(i_2\) and \(i_4\) in \(IS\) being evaluated, \(i_4\) is included into \(S\) for its better performance. It is worth mentioning that the lookahead has led us to select \(i_4\) first, which has a smaller individual objective function value than \(i_1\). Given \(S = \{i_4\}\), we obtain the results in Table 5 by revising the benefit numbers. Next, it is obtained from Table 5 that the set \(\{i_2, i_3\}\) is the one with maximal objective function value to be chosen as \(IS\), which in turn leads to the inclusion of \(i_2\). Thus, \(S = \{i_2, i_4\}\).

Following the above procedure, \(i_3\) will be added into \(S\) in the next iteration, completing the search by LH(4,2). The final solution obtained by LH(4,2) is \(S = \{i_2, i_3, i_4\}\). This set has an update cost of \(0.2 + 0.2 + 0.1 = 0.5\), and the overall reduction in the query evaluation cost is \(0.8 \times (2 + 2) + 0.2 \times 2 = 3.6\), meaning that the net benefit of utilizing \(\{i_2, i_3, i_4\}\) is \(3.6 - 0.5 = 3.1\), larger than those resulted by the previous schemes. As a matter of fact, it can be verified that the solution by LH(4,2) is the optimal one for the given database profile.

4 Performance Study

We conduct a performance study for index selection algorithms in this section. The methodology employed is described in Section 4.1. Experiments and their results are shown in Section 4.2. Different values for the amount of storage for indexing, the update and storage costs, and the attribute selectivity are used in the simulation to conduct a sensitivity analysis for these parameters.

4.1 Methodology

An OODB system simulator is built in C++ to model the detail of data retrievals under different indexed environments. The input to the simulator consists of a schema graph and a number of logical database parameters. Using these database parameters, the database population for our simulation is randomly generated. However, since we believe OODB schema graphs have certain important properties that random graphs do not possess in general, the schema graph is not generated randomly. Instead, we employ in our simulation the schema graph shown in Figure 4, which is essentially based on the one reported in the 007 benchmark [4], except two modifications. First, for ease of exposition, we do not consider the effect of subtyping which is in fact orthogonal to the main theme of this study. Hence, the superclass of two classes in the benchmark in [4] is represented as a separate class, denoted by an extra node (node 9) in Figure 4. Second, we have included an additional attribute, represented by the arc between node 1 and node 6 in Figure 4, in order to have large cycles in the schema graph, thus providing more general results.

Note that each edge actually represents a pair of attributes, i.e., the forward attribute and the corresponding reverse reference. A path query is specified by a path in the schema graph. Since the schema graph
is actually a multigraph, there can be many different queries with the same starting and ending nodes. Queries are randomly generated as follows. First, the query length is randomly determined between the parameters Qlen_{min} and Qlen_{max}. Then, the starting node of the query is randomly selected from those in the schema graph. A path is thus formed by a random walk in the schema graph, which starts from the starting node and moves via a random outgoing arc to its neighboring node in each step until the path length is reached. The number of queries generated is equal to a predetermined number, NumQueries. Each query is assigned a frequency for its occurrence in such a way that the sum of all the frequencies is equal to one. Node cardinalities and sizes are determined randomly from the ranges $[\text{Card}_{\text{min}}, \text{Card}_{\text{max}}]$ and $[\text{Size}_{\text{min}}, \text{Size}_{\text{max}}]$, respectively. Similarly, arc update frequencies are randomly assigned such that their sum is equal to one. Each attribute is assigned with a selectivity, k, which corresponds to the ratio of the number of different attribute values to the cardinality of the target class. Simulation parameters and their typical values are given in Table 6.

4.2 Experiments and Their Results

Four algorithms, NV, PO, GD and LH, will be comparatively studied in Section 4.2.1. Three objective functions are evaluated in Section 4.2.2. The effect of update frequency and storage overhead is studied in Section 4.2.3. Due to the nature of random generation, two simulation runs based on the same set of parameters might yield different results. Therefore, for the same set of data, several simulation runs are performed, and the final statistics are obtained by averaging those from all runs.

<table>
<thead>
<tr>
<th>Index set</th>
<th>Retrieval Benefit</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>${i_1, i_2}$</td>
<td>$0.8 \times 3 + 0.2 \times 2 = 2.8$</td>
<td>$2.48 - (0.25 + 0.2) = 1.95$</td>
</tr>
<tr>
<td>${i_1, i_3}$</td>
<td>$0.8 \times 3 + 0.2 \times 2 = 2.8$</td>
<td>$2.48 - (0.25 + 0.2) = 2.45$</td>
</tr>
<tr>
<td>${i_1, i_4}$</td>
<td>$0.8 \times 3 + 0.2 \times 2 = 2.8$</td>
<td>$2.48 - (0.25 + 0.2) = 2.35$</td>
</tr>
<tr>
<td>${i_2, i_3}$</td>
<td>$0.8 \times 2 + 0.2 \times 2 = 2$</td>
<td>$2 - (0.2 + 0.1) = 1.7$</td>
</tr>
<tr>
<td>${i_2, i_4}$</td>
<td>$0.8 \times (2 + 2) + 0.2 \times 2 = 3.6$</td>
<td>$3.6 - (0.2 + 0.2) = 3.2$</td>
</tr>
<tr>
<td>${i_3, i_4}$</td>
<td>$0.8 \times 2 + 0.2 \times (2 + 2) = 2.4$</td>
<td>$2.4 - (0.2 + 0.1) = 2.1$</td>
</tr>
</tbody>
</table>

Table 4: The objective function values of index subsets of cardinality no greater than two.

<table>
<thead>
<tr>
<th>Index set</th>
<th>Retrieval Benefit</th>
<th>Objective Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>${i_1}$</td>
<td>$0.8 \times 1 + 0.2 \times 0 = 0.8$</td>
<td>$0.8 - 0.25 = 0.55$</td>
</tr>
<tr>
<td>${i_2}$</td>
<td>$0.8 \times 2 + 0.2 \times 0 = 1.6$</td>
<td>$1.6 - 0.2 = 1.4$</td>
</tr>
<tr>
<td>${i_3}$</td>
<td>$0.8 \times 0 + 0.2 \times 2 = 0.4$</td>
<td>$0.4 - 0.1 = 0.3$</td>
</tr>
<tr>
<td>${i_1, i_2}$</td>
<td>$0.8 \times 2 + 0.2 \times 0 = 1.6$</td>
<td>$1.6 - (0.25 + 0.2) = 1.15$</td>
</tr>
<tr>
<td>${i_1, i_3}$</td>
<td>$0.8 \times 1 + 0.2 \times 2 = 1.2$</td>
<td>$1.2 - (0.25 + 0.1) = 0.85$</td>
</tr>
<tr>
<td>${i_2, i_3}$</td>
<td>$0.8 \times 2 + 0.2 \times 2 = 2.0$</td>
<td>$2.0 - (0.2 + 0.1) = 1.7$</td>
</tr>
</tbody>
</table>

Table 5: The objective function values for LH(4,2) after i_4 is included.

![Figure 5: Performance of four index selection schemes.](image-url)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typical Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NumQueries</td>
<td>10</td>
<td>number of queries generated</td>
</tr>
<tr>
<td>(Qlen_{min}, Qlen_{max})</td>
<td>[2, 10]</td>
<td>query length range</td>
</tr>
<tr>
<td>(Card_{min}, Card_{max})</td>
<td>[10, 1000]</td>
<td>node cardinality range</td>
</tr>
<tr>
<td>(Size_{min}, Size_{max})</td>
<td>[100, 1000]</td>
<td>node size range (bytes)</td>
</tr>
<tr>
<td>wtRetrBen</td>
<td>0.5</td>
<td>ratio of retrieval queries to updates</td>
</tr>
<tr>
<td>valFrac</td>
<td>0.8</td>
<td>attribute selectivity</td>
</tr>
<tr>
<td>arcInsFrac</td>
<td>0.3</td>
<td>fraction of arc modifications that are insertions</td>
</tr>
<tr>
<td>arcDelFrac</td>
<td>0.2</td>
<td>fraction of arc modifications that are deletions</td>
</tr>
<tr>
<td>arcUpdFrac</td>
<td>0.5</td>
<td>fraction of arc modifications that are updates</td>
</tr>
<tr>
<td>OIDL</td>
<td>8</td>
<td>length of object identifier</td>
</tr>
<tr>
<td>kl</td>
<td>8</td>
<td>key length</td>
</tr>
<tr>
<td>kll</td>
<td>2</td>
<td>size of key-length field</td>
</tr>
<tr>
<td>rl</td>
<td>2</td>
<td>size of record-length field</td>
</tr>
<tr>
<td>nuid</td>
<td>2</td>
<td>size of "number of OIDs" field</td>
</tr>
<tr>
<td>P</td>
<td>4096</td>
<td>page size</td>
</tr>
<tr>
<td>pp</td>
<td>4</td>
<td>page pointer size</td>
</tr>
<tr>
<td>d</td>
<td>146</td>
<td>order of a nonleaf node</td>
</tr>
<tr>
<td>fanout</td>
<td>218</td>
<td>average fanout from a nonleaf B-tree node</td>
</tr>
</tbody>
</table>

Table 6: Values of some database and system parameters used in the simulation.

4.2.1 Comparison for index selection algorithms

Four algorithms, NV, PO, GD and LH, are comparatively studied. Recall that NV corresponds to a random inclusion of indexes, and PO selects indexes according to their individual profits without dynamically revising those profits. In contrast, GD revises the profits of all the remaining indexes after every inclusion of an index, thus taking index interaction into account. At the cost of higher search complexity, LH evaluates the profits of indexes several steps ahead before their potential inclusion into the index list. Performance of four index selection schemes using the objective on profit\(^3\) is given in Figure 5, where the ordinate is the ratio of the dynamic cost with indexing to that without indexing and the abscissa denotes the amount of storage overhead allowed\(^4\). Recall that the dynamic cost is the sum of the retrieval cost of database queries and the update cost for indexes in response to database updates.

It can be seen from Figure 5 that the dynamic cost required by an indexed system is in general decreasing as the amount of storage available for indexing increases, meaning that more improvement on the dynamic cost can be achieved by allowing a larger storage for indexing. Failing to consider the effect of index interaction, NV and PO are clearly outperformed by GD and LH. In this experiment LH is implemented as LH(10,50), a very extensive search, which we believe will mostly lead to the optimal solution. However, it can be seen that even with the high search order of LH, GD performs fairly close to LH, except when the amount of storage for indexing is small, showing that GD is very practically useful and the necessity of employing a high order search needs further justification. More insights into the reason for the good performance of GD will be provided in Section 4.3. Nevertheless, when the amount of storage for indexing is small, meaning that only very few indexes could be built, LH outperforms GD for its prudent selection for indexes.

4.2.2 Comparison for the objective functions

Three objective functions, which guide the search for profitable indexes, are evaluated. The effects of the three objective functions are shown in Figure 6, where GD is used and the parameter \(\alpha\) for \(M(\cdot)\) is chosen to be 0.5 for its good performance. It can be seen from Figure 6 that the mixed objective function \(M(\cdot)\), which based on the amount of storage available, adaptively...
Algorithm GD

<table>
<thead>
<tr>
<th>10%</th>
<th>20%</th>
<th>50%</th>
<th>75%</th>
<th>no storage limit</th>
</tr>
</thead>
</table>
| 0.5 | 0.52| 0.54| 0.56| 0.58

Figure 6: Comparison of three objective functions.

Algorithm GD

<table>
<thead>
<tr>
<th>Max. Storage Overhead Allowed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Cost (compared to no indexing)</td>
</tr>
<tr>
<td>Retrieval-update ratio: 32</td>
</tr>
<tr>
<td>Retrieval-update ratio: 128</td>
</tr>
<tr>
<td>Retrieval-update ratio: 512</td>
</tr>
<tr>
<td>Retrieval-update ratio: 1024</td>
</tr>
<tr>
<td>No update</td>
</tr>
</tbody>
</table>

Objective function M |

<table>
<thead>
<tr>
<th>0%</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Figure 7: The effect of indexing for different storage overheads.

Figure 8: Storage overhead by indexing schemes.

4.2.3 Effect of update frequency and storage overhead

Indexing in the nested object hierarchy could be costly in terms of the storage required and the update cost incurred. In this experiment, we study the effect of varying the amount of storage allowed and also that of varying the retrieval-update ratio on the performance of indexing. Basically, indexing will facilitate query retrieval, but incurs an additional update cost in response to database updates. The relative dynamic cost for different storage overheads allowed for indexing is shown in Figure 7, where different retrieval-update ratios are investigated under GD with the objective function $M(\cdot)$. It is again observed that increasing the amount of storage allowed increases the benefit of indexing in general. However, this benefit is essentially bound by the update rate. For a retrieval-update ratio of 32, which corresponds to an environment with a high update rate, it can be seen from Figure 7 that having more storage does not yield any improvement since the solution index set is bound by the update cost. As the retrieval-update ratio increases, meaning that the relative update ratio decreases, the solutions tend to become more storage-bound, and having more storage thus yields better solutions.

Figure 8 shows the actual storage used by the selected indexes. It can be seen that having fewer updates leads to a better solution up to the point where the solution becomes storage-bound. As a matter of fact, it can be verified from Figure 8 that as the amount of storage increases and also as the update rate increases, the ratio of the actual storage used to the maximal storage allowed (i.e., the slope of a curve)
decreases.

5 Conclusion

We studied in this paper the problem of devising a set of indexes for a nested object hierarchy to improve the overall system performance. Performance was measured in terms of the retrieval, update and storage costs of an indexed system. The index selection problem was first formulated and four index selection algorithms were evaluated via simulation. The effects of objective functions, which guide the search for candidate indexes, were also investigated. It has been shown by simulation results that GD which is devised in light of the phenomenon of index interaction performs fairly well in most cases, which in fact agrees with the very nature of index interaction we identified in this study. Sensitivity analysis for various parameters was conducted. We not only conducted an extensive performance study for index selection algorithms, but also explored the effect of index interaction to deal with this global optimization problem.

References

