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Abstract. This paper describes WBIIS (Wavelet-Based
Image Indexing and Searching), a new image indexing
and retrieval algorithmwith partial sketch image search-
ing capability for large image databases. The algorithm
characterizes the color variations over the spatial extent
of the image in a manner that provides semantically-
meaningful image comparisons. The indexing algorithm
applies a Daubechies' wavelet transform for each of the
three opponent color components. The wavelet coe�-
cients in the lowest few frequency bands, and their vari-
ances, are stored as feature vectors. To speed up re-
trieval, a two-step procedure is used that �rst does a
crude selection based on the variances, and then re�nes
the search by performing a feature vector match between
the selected images and the query. For better accuracy
in searching, two-level multiresolution matching may
also be used. Masks are used for partial-sketch queries.
This technique performs much better in capturing co-
herence of image, object granularity, local color/texture,
and bias avoidance than traditional color layout algo-
rithms. WBIIS is much faster and more accurate than
traditional algorithms. When tested on a database of
more than 10,000 general-purpose images, the best 100
matches were found in 3.3 seconds.
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1 Introduction

Searching a digital library [21] having large number of
digital images or video sequences has become important
in this visual age. Every day, large numbers of people are
using the Internet for searching and browsing through
di�erent multimedia databases. To make such searching
practical, e�ective image coding and searching based on
image semantics is becoming increasingly important.
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In current real-world image databases, the prevalent
retrieval techniques involve human-supplied text anno-
tations to describe image semantics. These text anno-
tations are then used as the basis for searching, using
mature text search algorithms that are available as free-
ware. However, there are many problems in using this ap-
proach. For example, di�erent people may supply di�er-
ent textual annotations for the same image. This makes
it extremely di�cult to reliably answer user queries. Fur-
thermore, entering textual annotations manually is ex-
cessively expensive for large-scale image databases.

Image feature vector indexing has been developed
and implemented in several multimedia database sys-
tems such as the IBM QBIC System [7, 15] developed
at the IBM Almaden Research Center, the Virage Sys-
tem [10] developed by the Virage Inc., and the Photo-
book System developed by the MIT Media Lab [16, 17].
For each image inserted into the database, a feature vec-
tor on the order of 500 elements is generated to accu-
rately represent the content of the image. This vector is
much smaller in size than the original image. The di�-
cult part of the problem is to construct a vector that both
preserves the image content and yet is e�cient for search-
ing. Once the feature vectors are generated, they are then
stored in permanent storage. To answer a query, the im-
age search engine scans through the previously computed
vector indexes to select those with shortest distances to
the image query vector. The distance is computed by a
measure such as the vector distance in Euclidean space.
For partial sketch queries, usually a mask is computed
and applied to the feature vector.

In the WBIIS project, we developed a new algorithm
to make semantically-meaningful comparisons of images
e�cient and accurate. Figure 1 shows the basic struc-
ture of the system. To accurately encode semantic fea-
tures of images we employ wavelets based on continuous
functions, as described by Daubechies [5]. Using these
wavelets and statistical analysis, our algorithm produces
feature vectors that provide a much better frequency lo-
calization than other traditional color layout coding al-
gorithms. The localization of wavelets can be �ne-tuned
to deliver high resolution for higher frequencies and lower
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Fig. 1. Basic structure of the WBIIS system.

resolution for lower frequencies. We use a novel multi-
step metric to compute the distance between two given
images. Promising results have been obtained in exper-
iments using a database of 10,000 general-purpose im-
ages.

2 Preprocessing the Images in the Database

Many color image formats are currently in use, e.g., GIF,
JPEG, PPM and TIFF are the most widely used for-
mats. Because images in an image database can have
di�erent formats and di�erent sizes, we must �rst nor-
malize the data. For our test database of relatively small
images, a rescaled thumbnail consisting of 128�128 pix-
els in Red-Green-Blue (i.e., RGB) color space is adequate
for the purpose of computing the feature vectors.

Bilinear interpolation is used for the rescaling pro-
cess. This method resamples the input image by overlay-
ing the input image a grid with 128� 128 points. This
gives one grid point for each pixel in the output image.
The input image is then sampled at each grid point to de-
termine the pixel colors of the output image. When grid
points lie between input pixel centers, the color values
of the grid point are determined by linearly interpolat-
ing between adjacent pixel colors (both vertically and
horizontally).

This rescaling process is more e�ective than a Haar-
like rescaling, i.e. averaging several pixels to obtain a
single pixel to decrease image size, and replicating pixels
to increase image size, especially when the image to be
rescaled has frequent sharp changes such as local texture.
It is necessary to point out, however, that the rescaling
process is in general not important for the indexing phase
when the size of the images in the database is close to
the size to be rescaled. The sole purpose for the rescaling
is to make it possible to use the wavelet transforms and
to normalize the feature vectors. Here, we assume the
images in the database to have sizes close to 128� 128.
In fact, images may be rescaled to any other size as long
as each side length is a power of two. Therefore, to obtain
a better performance for a database of mostly very large
images, we would suggest using a bilinear interpolation

to rescale to a large common size, with side lengths being
powers of two, and then apply more levels of Daubechies'
wavelets in the indexing phase.

Since color distances in RGB color space do not re-

ect the actual human perceptual color distance, we con-
vert and store the image in a component color space with
intensity and perceived contrasts. We de�ne the new val-
ues at a color pixel based on the RGB values of an orig-
inal pixel as follows:8<
:
C1 = (R+ G+B)=3
C2 = (R+ (max� B))=2
C3 = (R+ 2 � (max� G) +B)=4

(1)

Here max is the maximum possible value for each color
component in the RGB color space. For a standard 24-bit
color image, max = 255. Clearly, each color component
in the new color space ranges from 0 to 255 as well. This
color space is similar to the opponent color axes8<
:
RG = R� 2 �G+B
BY = �R� G+ 2 �B
WB = R +G+B

(2)

de�ned in [1] and [20].
Besides the perception correlation properties [11] of

such an opponent color space, one important advantage
of this alternative space is that the C1 axis, or the inten-
sity, can be more coarsely sampled than the other two
axes on color correlation. This reduces the sensitivity of
color matching to a di�erence in the global brightness of
the image, and it reduces the number of bins and subse-
quent storage in the color histogram indexing.

3 Multiresolution Color Layout Image Indexing
using Wavelets and the Fast Wavelet Transform

Many end-users are interested in searching an image
database for images having similar image semantics with
respect to a given query image or a hand-drawn sketch.
Although it is not yet possible to fully index the image
semantics using a computer vision approach, there are
several ways to index the images so that semantically-
meaningful queries can be performed by comparing the
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indexes. The color histogram is one of the many ways
to index color images. However, while a global his-
togram preserves the color information contained in im-
ages, it does not preserve the color locational informa-
tion. Thus, using similarity of histograms as a measure,
two images may be considered to be very close to each
other even though they have completely unrelated se-
mantics. Shape and texture-based detection and coding
algorithms are other techniques of indexing images. They
both have substantial limitations for general-purpose im-
age databases. For example, current shape detection al-
gorithms only work e�ectively on images with relatively
uniform backgrounds. Texture coding is not appropriate
for non-textural images.

Storing color layout information is another way to
describe the contents of the image. It is especially useful
when the query is a partial sketch rather than a full im-
age. In traditional color layout image indexing, we divide
the image into equal-sized blocks, compute the average
color on the pixels in each block, and store the values
for image matching using Euclidean metric or variations
of the Euclidean metric. It is also possible to compute
the values based on statistical analysis of the pixels in
the block. Both techniques are very similar to image
rescaling or subsampling. However, they do not perform
well when the image contains high frequency informa-
tion such as sharp color changes. For example, if there
are pixels of various colors ranging from black to white in
one block, an e�ective result value for this block cannot
be predicted using these techniques.

Work done by the University of Washington [12] ap-
plies the Haar wavelet to multiresolution image querying.
Forty to sixty of the largest magnitude coe�cients are
selected from the 1282 = 16; 384 coe�cients in each of
the three color channels. The coe�cients are stored as
+1 or -1 along with their locations in the transform ma-
trix. As demonstrated in the cited paper, the algorithm
performs much faster than traditional algorithms, with
an accuracy comparable to traditional algorithms when
the query is a hand sketch or a low-quality image scan.

One drawback of using Haar to decompose images
into low frequency and high frequency is that the Haar
transform cannot e�ciently separate image signals into
low frequency and high frequency bands. From the signal
processing point of view, since the wavelet transform is
essentially a convolution operation, performing a wavelet
transform on an image is equivalent to passing the im-
age through a low-pass �lter and a high-pass �lter [9].
The low-pass and high-pass �lters corresponding to the
Haar transform do not have a sharp transition and fast
attenuation property. Thus, the low-pass �lter and high-
pass �lter cannot separate the image into clean distinct
low frequency and high frequency parts. On the other
hand, Daubechies wavelet transform with longer length
�lters [5] has better frequency properties. Because in our
algorithmwe rely on image low frequency information to
do comparison, we applied the Daubechies wavelet trans-
form instead of the Haar transform.

Moreover, due to the normalization of functional
space in the wavelet basis design, the wavelet coe�cients
in the lower frequency bands, i.e., closer to the upper-left

corner in a transform matrix, tend to be more dominant
(are of larger magnitude) than those in the higher fre-
quency bands. Coe�cients obtained by sorting and trun-
cating will most likely be in the lower frequency bands.
For the Haar case,

F0(x(n)) =
1p
2
(x(n) + x(n+ 1)) (3)

F1(x(n)) =
1p
2
(x(n)� x(n+ 1)) (4)

coe�cients in each band are expected to be 2p
2
times

larger in magnitude than those in the next higher fre-
quency band, i.e., those in one level previous to the cur-
rent level. For a 128� 128 image, we expect the coe�-
cients in the transform to have an added weight varying
from 1 to 8 before the truncation process. As indicated
in Eq.( 3), the low frequency band in a Haar wavelet
transform is mathematically equivalent to the averaging
color block or image rescaling approach in traditional
layout algorithms mentioned above. Thus, the accuracy
is not improved when the query image or the images in
the database contain high frequency color variation.

Although the U of Washington approach can achieve
a much faster comparison by storing only 40 to 60 coef-
�cients for each color channel as a feature vector, much
useful information about the image is discarded. Thus,
it is possible for two images having the same feature
vector to di�er completely in content. In addition, two
pictures with similar content but di�erent locations of
sharp edges may have feature vectors that are far apart
in feature space. This is why the U of Washington al-
gorithm has a sharp decrease in performance when the
query image consisted of a small translation of the target
image.

We have developed a color layout indexing scheme
using Daubechies' wavelet transforms that better repre-
sents image semantics, namely, object con�guration and
local color variation, both represented by Daubechies'
wavelet coe�cients. For large databases, feature vectors
obtained from multi-level wavelet transforms are stored
to speed up the search. We apply a fast wavelet transform
(FWT) with Daubechies' wavelet to each image in the
database, for each of the three color components. Some
coe�cients of the wavelet transform, and their standard
deviations, are stored as feature vectors. Given a query
image, the search is carried out in two steps. In the �rst
step, a crude selection based on the standard deviations
stored is carried out. In the second step, a weighted ver-
sion of the Euclidean distance between the feature coef-
�cients of an image selected in the �rst step and those
of the querying image is calculated, and the images with
the smallest distances are selected and sorted as match-
ing images to the query. We will show below that this al-
gorithm can be used to handle partial hand-drawn sketch
queries by modifying the computed feature vector.

3.1 Daubechies' Wavelets and Fast Wavelet Transform

When processing signals, the prime consideration is the
localization, i.e., the characterization of local properties,
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Fig. 2. Plots of some analyzing wavelets. First row: father wavelets, �(x). Second row: mother wavelets,  (x)

of a given basis function in time and frequency. In our
case, the signals we are dealing with are 2-D color im-
ages, for which the time domain is the spatial location of
certain color pixels and the frequency domain is the color
variation around a pixel. Thus, we seek a basis function
that can e�ectively represent the color variations in each
local spatial region of the image. In this subsection, we
examine the various transforms and their properties to
arrive at a transform that has attractive properties for
the image retrieval problem.

Spline-based methods are e�cient in analyzing the
spatial localization for signals that contain only low fre-
quencies. Traditional Fourier-based methods [4, 8], such
as the Discrete Cosine Transform (DCT) aim to capture
the frequency content of the signal. The Discrete Fourier
Transform and its inverse are de�ned as

F [k] =
N�1X
n=0

f [n]e�j2�nk=N (5)

f [n] =
1

N

N�1X
k=0

F [k]ej2�nk=N: (6)

Discrete Fourier Transforms are currently used ef-
fectively in signal and image processing because of the
frequency domain localization capability. They are ideal
for analyzing periodic signals because the Fourier expan-
sions are periodic. However, they do not have the spatial
localization property because of their in�nite extensibil-
ity.

Two mathematical methods are available for non-
periodic signals, the Windowed Fourier Transform (WFT)
and the wavelet transform. The WFT analyzes the signal
in both spatial and frequency domains simultaneously by
encoding the signal through a scaled window related to
both location and local frequency. Therefore, signals are
easily underlocalized or overlocalized in spatial domain if
the spatial behavior is inconsistent with the frequency of
the signal. Wavelets are basis functions that have some
similarities to both splines and Fourier series. They have
advantages when the aperiodic signal contains many dis-
continuities or sharp changes.

Wavelets, developed in mathematics, quantumphysics,
and statistics, are functions that decompose signals into
di�erent frequency components and analyze each compo-

nent with a resolution matching its scale. Applications of
wavelets to signal denoising, image compression, image
smoothing, fractal analysis and turbulence characteriza-
tion are active research topics [22, 18].

Wavelet analysis can be based on an approach devel-
oped by Haar [14]. Haar found an orthonormal bases de-
�ned on [0; 1], namely h0(x); h1(x); ::::::; hn(x); :::, other
than the Fourier bases, such that for any continuous
function f(x) on [0; 1], the series

1X
j=1

< f; hj > hj(x) (7)

converges to f(x) uniformly on [0; 1]. Here, < u; v >

denotes
R 1
0
u(x)v(x)dx and v is the complex conjugate

of v.
One version of Haar's construction [14, 2, 3] can be

written as follows:

h(x) =

8<
:
1; x 2 [ 0; 0:5 )
�1; x 2 [ 0:5; 1 )
0; elsewhere

(8)

hn(x) = 2j=2h(2jx� k) (9)

where n = 2j + k, k 2 [ 0; 2j ), x 2 [ k2�j; (k + 1)2�j ).
There are problems with Haar's construction. For ex-

ample, Haar's base functions are discontinuous step func-
tions and are not suitable for analyzing continuous func-
tions with continuous derivatives. If we consider images
as 2-D continuous surfaces, we know that Haar's base
functions are not appropriate for image analysis.

Another basis for wavelets is that of Daubechies. For
each integer r, Daubechies' orthonormal basis [5, 6, 13]
for L2(R) is de�ned as

�r;j;k(x) = 2j=2�r(2
jx� k); j; k 2Z (10)

where the function �r(x) in L
2(R) has the property that

f�r(x� k)jk 2Zg is an orthonormal sequence in L2(R).
Then the trend fj , at scale 2�j, of a function f 2

L2(R) is de�ned as

fj(x) =
X
k

< f; �r;j;k > �r;j;k(x): (11)

The details or 
uctuations are de�ned by
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original image (256� 256) 1-level wavelet transform 3-level wavelet transform

Fig. 3. Multi-scale structure in the wavelet transform of an image. Dots indicate non-zerowavelet coe�cients after thresholding.
Daubechies-8 wavelet is used for this transform.

Fig. 4. Two images with the upper-left corner submatrices of their fast wavelet transforms in (C1; C2; C3) color space.
The standard deviations we stored for the �rst image are �C1 = 215:93, �C2 = 25:44, and �C3 = 6:65 while means of the coe�cients
in the lowest frequency band are �C1 = 1520:74, �C2 = 2124:79, and �C3 = 2136:93. The standard deviations we stored for the second
image are �C1 = 16:18, �C2 = 10:97, and �C3 = 3:28 while means of the coe�cients in the lowest frequency band are �C1 = 1723:99,
�C2 = 2301:24 and �C3 = 2104:33.

dj(x) = fj+1(x)� fj(x): (12)

To analyze these details at a given scale, we de�ne an or-
thonormal basis  r(x) having properties similar to those
of �r(x) described above.

�r(x) and  r(x), called the father wavelet and the
mother wavelet, respectively, are the wavelet prototype
functions required by the wavelet analysis. Figure 2
shows some popular mother wavelets. The family of
wavelets such as those de�ned in Eq.( 10) are generated
from the father or the mother wavelet by change of scale
and translation in time (or space in image processing).

Daubechies' orthonormal basis has the following prop-
erties:

{  r has the compact support interval [0; 2r+ 1];
{  r has about r=5 continuous derivatives;
{
R1
�1  r(x)dx = ::: =

R1
�1 xr r(x)dx = 0.

Daubechies' wavelets give remarkable results in im-
age analysis and synthesis due to the above properties.
In fact, a wavelet function with compact support can
be easily implemented by �nite length �lters. This �-
nite length property is important for spatial domain lo-
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calization. Furthermore, functions with more continuous
derivatives analyze continuous functions more e�ciently
and avoid the generation of edge artifacts. Since the
mother wavelets are used to characterize details in the
signal, they should have a zero integral so that the trend
information is stored in the coe�cients obtained by the
father wavelet. A Daubechies' wavelet representation of
a function is a linear combination of the wavelet function
elements.

Daubechies' wavelets are usually implemented in nu-
merical computation by quadratic mirror �lters [14].
Multiresolution analysis of trend and 
uctuation is im-
plemented using convolution with a low-pass �lter and a
high-pass �lter that are versions of the same wavelet. For
example, if we denote the sampled signals as x(n); n 2Z,
then Eq.( 3) and Eq.( 4) are quadratic mirror �lters for
Haar's wavelet. In fact, average color block layout im-
age indexing is equivalent to the Haar transform with
high-pass �ltering neglected. Daubechies' wavelets trans-
form is more like a weighted averaging which better
preserves the trend information stored in the signals
if we consider only the low-pass �lter part. Although
Daubechies' wavelets may not be better than Haar's for
all image analysis applications, various experiments and
studies [22] have shown that Daubechies' wavelets are
better for dealing with general-purpose images.

Figures 5 and 6 show comparisons of the Haar wavelet,
which is equivalent to average color blocks, and
Daubechies' wavelets. In Figure 5, we notice that the sig-
nal with a sharp spike is better analyzed by Daubechies'
wavelets because much less energy or trend is stored
in the high-pass bands. Daubechies' wavelets are bet-
ter suited for natural signals or images than a 
at Haar
wavelet. In layout image indexing, we want to repre-
sent as much energy in the image as possible in the
coe�cients of the feature vector. When using the Haar
wavelet, we lose much trend information in the discarded
high-pass bands. Figure 6 shows the reconstruction of
two images based only on the feature vectors of tra-
ditional layout indexing (same as Haar) and those of
WBIIS using Daubechies' wavelets. Clearly, images re-
constructed by saved Daubechies' coe�cients are closer
to the original images than those reconstructed by saved
Haar's coe�cients. Here, we use image reconstruction
to compare information loss or encoding e�ciency be-
tween Haar and Daubechies in the course of truncat-
ing discrete wavelet representations. Although these two
examples in themselves do not imply that a searching
scheme using Daubechies' wavelets is better than that
using Haar's wavelet, they may help explain observations
on how the schemes function. Figure 11 and 10 show the
results of the searches using the two di�erent wavelet
bases. Saved Haar wavelet coe�cients do not capture
high frequency local texture as e�ectively as the saved
Daubechies' wavelet coe�cients.

Because the original signal can be represented in
terms of a wavelet expansion using coe�cients in a linear
combination of the wavelet functions, similar to Fourier
analysis, data operations can be performed using just the
corresponding wavelet coe�cients. If we truncate the co-

e�cients below a threshold, image data can be sparsely
represented.

The wavelet transform o�ers good time and fre-
quency localization. Information stored in an image is
decomposed into averages and di�erences of nearby pix-
els. The information in smooth areas is decomposed into
the average element and near-zero di�erence elements.
The wavelets approach is therefore a suitable tool for
data compression, especially for functions with consid-
erable local variations. For example, the basis functions
are very 
exible with respect to both scale index j and
position index k. We may decompose the image even
further by applying the wavelet transform several times
recursively. Figure 3 shows the multi-scale structure in
the wavelet transform of an image.

3.2 Wavelet Image Layout Indexing in WBIIS

The discrete wavelet transform (DWT) we described can
be directly used in image indexing for color layout type
queries. Our algorithm is as follows:

For each image to be inserted to the database, obtain
128� 128 square rescaled matrices in (C1; C2; C3) com-
ponents following Eq.( 1) in Section 2. Compute a 4-layer
2-D fast wavelet transform on each of the three matrices
using Daubechies' wavelets. Denote the three matrices
obtained from the transforms as WC1

(1 : 128; 1 : 128),
WC2

(1 : 128; 1 : 128) and WC3
(1 : 128; 1 : 128)1. Then

the upper-left 8 � 8 corner of each transform matrix,
WCi

(1 : 8; 1 : 8), represents the lowest frequency band
of the 2-D image in a particular color component for
the level of wavelet transform we used. The lower fre-
quency bands in the wavelet transform usually represent
object con�gurations in the images and the higher fre-
quency bands represent texture and local color variation.
The three 8� 8 submatrices (namely, WCi

(1 : 8; 9 : 16),
WCi

(9 : 16; 1 : 8) and WCi
(9 : 16; 9 : 16)) closest to the

8 � 8 corner submatrix WCi
(1 : 8; 1 : 8) represent de-

tailed information in the original image to some extent,
though most of the 
uctuation information is stored in
the thrown-away higher frequency band coe�cients. Ex-
tracting a submatrix WCi

(1 : 16; 1 : 16) of size 16 � 16
from that corner, we get a semantic-preserving compres-
sion of 64:1 over the original thumbnail of 128 � 128
pixels. We store this as part of the feature vector.

Then we compute the standard deviations, denoted
as �c1; �c2 ; �c3, of the 8 � 8 corner submatrices WCi

(1 :
8; 1 : 8). Three such standard deviations are then stored
as part of the feature vector as well. Figure 4 shows two
images with the upper-left corner submatrices of their
2-D fast wavelet transforms in (C1; C2; C3) color space.
Notice that the standard deviation of the coe�cients in
the lowest frequency band obtained from the �rst image
di�ers considerably from that obtained from the second
image. Since the standard deviations are computed based
on the wavelet coe�cients in the lowest frequency band,

1 Here we use MATLAB notation. That is, A(m1 : n1;m2 :
n2) denotes the submatrix with opposite corners A(m1;m2) and
A(n1; n2).
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(a) (b) (c) (d)

Fig. 5. Comparison of Haar's wavelet and Daubechies wavelets on a 1-D signal. (a) original signal (xe�x
2

) of length 1024 (b)
coe�cients in high-pass bands after a 4-layer Haar transform (c) coe�cients in high-pass bands after a 4-layer Daubechies-3 transform
(d) coe�cients in high-pass bands after a 4-layer Daubechies-8 transform

original image saved Haar's coe�. (16� 16) saved Daubechies' coe�. (16� 16)
128� 128 and its image reconstruction and its image reconstruction

Fig. 6. Comparison of Haar's wavelet and Daubechies-8 wavelet.

we have eliminated disturbances arising from detailed
information in the image.

We also obtain a 5-level 2-D fast wavelet transform
using the same bases. We extract and store a submatrix
of size 8 � 8 from the upper-left corner. Thus, we have
stored a feature index using the multiresolution capabil-
ity of the wavelet transform.

Because the set of wavelets is an in�nity set, di�er-
ent wavelets may give di�erent performance for di�erent
types of image.One should take advantage of this charac-
teristic in designing an image retrieval system. To match
the characteristics of the signal we are analyzing, we used
a Daubechies-8 or Symmlet-8 wavelet for the DWT pro-
cess. Symmlets were designed by Daubechies [6] to be
orthogonal, smooth, nearly symmetric, and non-zero on
a relatively short interval (compact support). Wavelet
subclasses are distinguished by the number of coe�cients
and by the level of iteration. Most often they can be clas-
si�ed by the number of vanishing moments. The number
of vanishing moments is weakly linked to the number
of oscillations of the wavelet, and determines what the

wavelet does or does not represent. The number of van-
ishing moments for the subclass of our Symmlet wavelet
is 8, which means that our wavelet will ignore linear
through eighth degree functions.

Wavelets perform better than traditional layout cod-
ing because the coe�cients in wavelet-created compres-
sion data actually contain su�cient information to re-
construct the original image at a lower loss rate using an
inverse wavelet transform.

3.3 Wavelet Image Layout Matching in WBIIS

When a user submits a query, we must compute the
feature vector for the querying image and match it to
the pre-computed feature vectors of the images in the
database. This is done in two phases.

In the �rst phase, we compare the standard devia-
tions stored for the querying image with the standard
deviations stored for each image in the database.

Figure 7 demonstrates the histograms of the stan-
dard deviations we computed for general-purpose im-
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histogram of �C1 histogram of �C2 histogram of �C3
Fig. 7. Histogram of the standard deviations of the wavelet coe�cients in the lowest frequency band. Results were obtained
from a database of more than 10,000 general purpose images.

ages. Studying the three histograms, we found that the
standard deviations of the intensity component are a lot
more diverse than those of the other two. We would con-
sider �C1

more dominant than �C2
or �C3

alone. Also,
more images in this general-purpose image database have
lower standard deviations. For any given standard devi-
ation computed for the query, we want to �nd roughly
the same number of images having standard deviations
close to those of the query. Based on the trends shown
in the histograms, we have developed the following se-
lection criterion for the �rst step.

Denote the standard deviation information computed
for the querying image as �c1, �c2 and �c3 . Denote the
standard deviation information stored in the database
indexing for an image as �0c1 , �

0
c2

and �0c3 .
If the acceptance criteria2

(�c1� < �0c1 <
�c1
�

) j j
�
(�c2� < �0c2 <

�c2
�

) &&(�c3� < �0c3 <
�c3
�

)

�

fails, then we set the distance of the two images to 1,
which means that the image will not be further consid-
ered in the matching process. Here, � = 1� percent

100
and

percent is a threshold variable set to control the number
of images passing the �rst matching phase. Usually it is
set to around 50. Note that the above acceptance criteria
holds if and only if

(�0c1� < �c1 <
�0c1
�

) j j
�
(�0c2� < �c2 <

�0c2
�

) &&(�0c3� < �c3 <
�0c3
�

)

�

holds.
Having �rst a fast and rough cut and then a more

re�ned pass maintains the quality of the results while
improving the speed of the matching. Usually about one
�fth of the images in the whole database passes through
the �rst cut. That means, we obtain a speed-up of about
�ve by doing this step. For a database of 10,000 images,
about 2000 images will still be listed in the queue for the
Euclidean distance comparison. Although it is possible
that the �rst pass may discard some images that should
be in the result list, in most cases the quality of the

2 Here we use standard C notation. That is, j j denotes OR and
&& denotes AND.

query response is slightly improved due to this �rst pass.
In fact, an image with almost the same color, i.e. low
standard deviation, is very unlikely to have the same
semantics as an image with very high variation or high
standard deviation.

A weighted variation of Euclidean distance is used for
the second phase comparison. If an image in the database
di�ers from the querying image too much when we com-
pare the 8� 8 � 3 = 192 dimensional feature vector, we
discard it. The remaining image vectors are used in the
�nal matching, using the 16� 16� 3 = 768 dimensional
feature vector with more detailed information consid-
ered. Let w1;1, w1;2, w2;1, w2;2, wc1 , wc2 and wc3 denote
the weights. Then our distance function is de�ned as

Dist(Image; Image0 )

= w1;1

3X
i=1

( wci kWCi;1;1 �W 0
Ci;1;1

k )

+ w1;2

3X
i=1

( wci kWCi;1;2 �W 0
Ci;1;2 k )

+ w2;1

3X
i=1

( wci kWCi;2;1 �W 0
Ci;2;1

k )

+ w2;2

3X
i=1

( wci kWCi;2;2 �W 0
Ci;2;2 k )

where

WCi;1;1 = WCi
(1 : 8; 1 : 8)

WCi;1;2 = WCi
(1 : 8; 9 : 16)

WCi;2;1 = WCi
(9 : 16; 1 : 8)

WCi;2;2 = WCi
(9 : 16; 9 : 16)

and k u�v k denotes the Euclidean distance. In practice,
we may compute the square of the Euclidean distances
instead in order to reduce computation complexity. If
we let wj;k = 1, then the function Dist(I1; I2) is the
Euclidean distance between I1 and I2. However, we may
raise w2;1, w1;2, or w2;2 if we want to emphasize the
vertical, horizontal or diagonal edge details in the image.
We may also raise wc2 or wc3 to emphasize the color
variation more than the intensity variation.

To further speed up the system, we use a component
threshold to reduce the amount of Euclidean distance
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commercial algorithm            

WBIIS

Fig. 8. Comparisons with a commercial algorithm on a galaxy-type image. Note that many images unrelated to the galaxy
query image are retrieved by the commerical algorithm. The upper-left corner image in each block of images is the query. The image to
the right of that image is the best matching image found. And so on. Results were obtained from a database of approximately 10,000
images.
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