
The INEEL Data Integration Mediation System

Bhujanga Panchapagesan

Joshua Hui

Gio Wiederhold

Stephan Erickson �

Lynn Dean

Antoinette Hempstead

fpriya,wjhui,giog@db.stanford.edu erickson@junglee.com flad,hemg@inel.gov

Stanford University

Computer Science Department

Stanford, CA 94305-9020, USA.

Junglee Corp.

1350 Oakmead Parkway,

Sunnyvale, CA 91362, USA.

Idaho National Engineering

& Environmental Laboratory

Idaho Falls, ID 83415, USA.

Abstract

Large organizations often store their information

in multiple separate, independently-controlled

locations. Decision making becomes di�cult be-

cause of the e�ort involved in getting an over-

all picture of the data. Furthermore, it is very

di�cult to get di�erent groups or individuals

to agree on one integrated view of the total

collection of data. The INEEL Data Integra-

tion Mediation System (IDIMS) addresses the

problem of integrating data retrieved from mul-

tiple heterogeneous data sources. IDIMS al-

lows di�ering views across the same or di�er-

ent set of data sources to be created and used.

IDIMS was initially applied to an INEEL en-

vironmental restoration domain and later ap-

plied to a separate State of Pennsylvania do-

main. This paper discusses the design and im-

plementation of IDIMS within the INEEL envi-

ronmental restoration domain.

1 Introduction

In large organizations, several independent databases are
often used simultaneously in di�erent departments for
di�erent purposes. Often the relevent information re-
quired for an individual or group to make necessary de-
cisions is spread across two or more of these independent
databases, each of which often has its own method for
data retrieval and schema representation. Compound-
ing the problem, many of these databases or informa-
tion sources are often independently owned, making the
movement of data from one source to the other or the
modi�cation of data or schema unacceptable. Tradition-
ally, solutions to these problems have included delegating
one or more individuals or groups to handle all of the in-
formation requests or creating a new local database, thus
duplicating data owned by another group. Unfortunately,

�This work was done while the author was at ISX Corp., 4353

Park Terrace Drive, Westlake Village, CA 94086, USA.

these methods can introduce additional delays and errors
due to human-related factors and data synchronization
issues.

The Environmental Restoration (ER) organization is
part of a larger organization at the Idaho National En-
gineering and Environmental Laboratory (INEEL) called
Environmental Operations. The Environmental Opera-
tions organization also includes Waste Management and
a Sample Management O�ce. Over the last 30 years,
the three Environmental Operations' organizations and
their predecessors have developed more than 100 individ-
ual databases to serve individual applications. Within
the last ten years, a need has developed to pull data
from many of these individual databases and present the
selected data as integrated information. These individ-
ual databases are contained in
at �les, formal relational
databases such as Oracle, FoxPro, and dBASE, as well
as other proprietary formats. The INEEL Environmen-
tal Operations organization needed a method to access
these many disparate data sources in a generalized fash-
ion so that the same software could be used for more than
one speci�c combination of data sources.

The INEEL Data Integration Mediation System
(IDIMS) was built to address the data integration issues
of a speci�c ER domain at the INEEL. IDIMS was de-
signed and implemented as a collaborative e�ort among
the INEEL, Stanford University, and ISX Corporation.
IDIMS provides a method of preserving a group and/or
individual's knowledge about how to access and integrate
data for a variety of domains. This domain knowledge
includes the de�nition of the domain's integrated view,
the speci�cation of how the data sources �t to this view,
the knowledge of how to integrate data across the di�er-
ent data sources, and the knowledge required to retrieve
data from these sources. IDIMS provides the group with
the bene�ts of consistent application of domain knowl-
edge and the reduction of unnecessary data duplication.
IDIMS was designed to accept the domain knowledge as
input into the system so the same software can be utilized
by many di�erent domains.

The INEEL ER problem scenario provided the proto-

1

type domain for the initial version of IDIMS. It involved
integrating data spread across two types of structured
databases, Oracle and FoxPro. Due to the fact that
most large organization use structured databases for the
high performance and comprehensive query support these
databases o�er, the implemented IDIMS assumes that the
data is organized entirely in structured form. Although
this is currently the underlying assumption, the IDIMS
system architecture was designed to handle a wide range
of data source types. To access and integrate data re-
trieved from non-structured data sources, changes would
be needed at the data-access level, but the overall system
architecture should remain the same. Figure 1 illustrates
the IDIMS system architecture. A similar framework is
also used in other mediation systems, such as DISCO[2],
GARLIC[3], TSIMMIS[4] and HERMES[5].

wrapper ODL ODL

ODLmediator

wrapper

OEM

QEMOEM OEMQEM

user application

QEM

data
source

data
source

Figure 1: IDIMS System Architecture

There are three subsystems in IDIMS: the user applica-
tion, the mediator, and the wrapper. As Figure 1 shows,
a mediator serves as a middle-layer which provides data
access and data integration to a user application so that
the user application does not need to distinguish the dif-
ferences among the data sources. Instead, the user appli-
cation perceives a central object-oriented database pro-
vided by the mediator. When a mediator receives a user
query, it decomposes the query into sub-queries (if neces-
sary) and forwards the sub-queries to the correct wrap-
per(s). A wrapper provides the mapping from the me-
diator's integrated view to its speci�c data source view.
A wrapper receives queries from a mediator and trans-
lates the queries into the source-speci�c query language
and terminology. The query results are returned from
the wrapper(s) to the mediator. The mediator then inte-
grates all the results and returns a single response to the
user application.

Even though IDIMS was initially built to address the
problem in the INEEL ER domain, the system was de-
signed to be domain-independent. In other words, it was
designed so that a variety of domains could utilize IDIMS'
data integration capabilities as long as the appropriate
domain knowledge is provided.

In order to provide domain independence, extensibility,
and
exibility, the following four elements are critical to
IDIMS:

1. Common Domain Speci�cation:
An extended version of the ODMG (Object Database
Management Group) ODL (Object De�nition Lan-
guage) [6] is used for both the mediator and the
wrapper subsystems to describe their speci�c views
of the domain. This method of domain speci�cation
allows the domain knowledge to become a dynamic
input into IDIMS.

2. Common Service Interface:
Every wrapper and mediator subsystem shares a
common service interface. The most commonly used
services include accepting a query, returning data
results, and providing schema-related information.
This common service interface allows for the dy-
namic extension of the number of available wrap-
pers and/or addition of vertical mediator layers to
the system without modifying the system architec-
ture or software.

3. Common Query Representation:
A new query structure, Query Exchange Model
(QEM), was de�ned for IDIMS to provide a com-
mon query representation used by each of the IDIMS
subsystems.

4. Common Data Representation:
The Object Exchange Model (OEM) [7] was adopted
as the common data representation for IDIMS. OEM
is simple and
exible, facilitating data integration
across multiple data sources.

In the body of this paper, we provide details about
the mediator and wrapper components, along with their
supporting Semantic Model libraries and their QEM and
OEM structures. We will not address the user application
component beyond describing how it interfaces with the
mediator component. In the conclusion of this paper, we
provide an assessment of the whole system and discuss
some related work that has been done in this area.

2 ODL and the Semantic Model

In order for an individual or group's domain knowledge to
be an input into IDIMS, there needed to be a method of
specifying the domain knowledge to the mediation sys-
tem. ODMG's Object De�nition Language (ODL) was
extended to provide a highly dynamic method for domain
de�nitions to IDIMS. It is important to note that each
mediator and wrapper subsystem within IDIMS must
have its own ODL speci�cation. This is necessary because
each wrapper has its domain focused on one speci�c view
of one data source, while the mediator's domain is the
integrated view of all its underlying wrappers. The me-
diator's ODL describes the domain that will be available
to the user application subsystem.

2

Once a subsystem's domain has been described in
terms of ODL, the subsystem can access its speci�c ODL
speci�cation to create its internal domain representation.
A subsystem's internal domain representation is referred
to as its Semantic Model.

2.1 Object De�nition Language (ODL)

ODMG originally conceived of ODL in order to pro-
vide interoperability between object-oriented databases
(OODBs) by enabling the speci�cation of classes of ob-
jects. Since IDIMS was designed to utilize virtual OODBs
within its mediator and wrapper subsystems, ODL pro-
vided an ideal way of describing the objects to be ex-
changed between the IDIMS subsystems.
ODL provides a mechanism to declare a class of ob-

jects. Each of these classes will have a set of attributes,
functions, and/or relationships. Attributes represent the
data of a class; relationships represent how one or more
classes relate to each other; and functions provide a
means for additional data abstraction, processing, and
manipulation.
IDIMS required some extensions to ODMG ODL.

These extensions include the following:

1. Relationship expressions to describe how two classes
are related;

2. Data-source mapping speci�cations (in wrapper sub-
systems only); and

3. Source-speci�c data transformations (in wrapper
subsystems only).

Each IDIMS mediator and wrapper subsystem must
have facilities to understand the objects and attributes
supported for its given domain. This knowledge is speci-
�ed in each subsystem's speci�c ODL. The mediator sub-
system ODL is referred to as Mediator ODL (MODL)
and the wrapper subsystem ODL is referred to as Wrap-
per ODL (WODL). The MODL speci�cation provides the
integrated domain view. The main purpose of the WODL
is to specify mappings from the integrated domain view
to speci�c �elds within its associated data source. More-
over, we provide a simple interpreted language to allow
data �eld transformations, such as enumerated data type
conversions, unit conversions and �eld concatenation.
Using ODL for domain de�nitions is the key to the

IDIMS' solution for heterogenous data access and inte-
gration issues for a variety of domains. To use IDIMS
for a completely new domain, only new ODL �les are
needed. The underlying code does not change; only the
knowledge about the speci�c domain changes. The ODL
speci�cation also provides the capability to dynamically
alter knowledge within a domain. An ODL speci�cation
can be changed and the next time the subsystem is acti-
vated, the new ODL speci�cation is used.
Figure 2 provides a portion of the MODL speci�cation

used in the INEEL ER domain. Figures 3 and 4 provide

excerpts from the WODL speci�cations for the ER data
sources. In addition to providing an example of IDIMS
ODL, these ODL speci�cations are used by the examples
throughout the rest of this paper.

interface SoilSample {key SampleID}
 {
 Attribute String SampleID;
 Attribute String Description;
 Attribute String Location;
 Attribute Float Depth;

 Relationship Set<LabResult> lab_results inverse
 LabResult::for_sample
 {
 SoilSample.SampleID = LabResult.SampleID
 };

 };

interface LabResult {key ResultID}
 {
 Attribute String ResultID;
 Attribute String SampleID;
 Attribute String Contaminant;
 Attribute Float Concentration;

 Attribute String LabID;

 Relationship SoilSample for_sample inverse
 SoilSample::lab_results
 {
 LabResult.SampleID = SoilSample.SampleID
 };

 Relationship Laboratory at_lab inverse
 Laboratory::samples
 {
 SoilSample.LabID = Laboratory.LabID
 };

 };

interface Laboratory {key LabID}
 {
 Attribute String LabID;
 Attribute String LabName;
 Attribute String LabAddress;
 Attribute String LabCity;
 Attribute String LabState;
 Relationship Set<SoilSample> samples
 inverse SoilSample::at_lab
 {
 Laboratory.LabID = SoilSample.LabID
 };
 };

Figure 2: INEEL ER MODL Example

2.2 Semantic Model

The semantic model is the internal representation of
a mediator or wrapper subsystem's collective domain-
speci�c knowledge. It is implemented by a common set
of libraries used by each IDIMS subsystem. A subsys-
tem's Semantic Model is dynamically created at run-time
by collecting all domain-related knowledge speci�cations
that pertain to that subsystem.
Each IDIMS wrapper and mediator subsystem has its

own Semantic Model. The mediator's Model represents
the integrated domain knowledge along with its mappings
to each of its underlying wrappers. Each wrapper's Model
represents the domain knowledge which is speci�c to that
wrapper's particular view of its data source. Although

3

join soils_table(id) to samples_table(ssid);

interface SoilSample {key SampleID}
 {
 Attribute String SampleID {soils_table.id};
 Attribute String Description {soils_table.desc};
 Attribute String Location {samples_table.loc};
 Attribute Float Depth {soils_table.depth};
 };

interface LabResult {key ResultID}
 {
 Attribute String ResultID {result_table.id};
 Attribute String Contaminant
 {result_table.contam};
 Attribute String Concentration
 {result_table.conc};
 };

interface Laboratory {key LabID}
 {
 Attribute String LabID {lab_table.id};
 Attribute String LabName {lab_table.name};
 Attribute String LabAddress {lab_table.street};
 Attribute String LabCity {lab_table.city};
 Attribute String LabState {lab_table.state};
 };

Figure 3: INEEL ER Data Source 1 WODL Example

interface SoilSample {key SampleID}
 {
 Attribute String SampleID {ss.sample_id};
 Attribute String Description {ss.text_desc};
 Attribute String Location {ss.place};
 Attribute String LabID {ss.resp_lab};
 };

interface LabResult {key ResultID}
 {
 Attribute String ResultID {lr.result_id};
 Attribute String SampleID {lr.sample_id};
 Attribute String Concentration {lr.amount};
 };

interface Laboratory {key LabID}
 {
 Attribute String LabID {lab.org_id};
 Attribute String LabName {lab.name};
 };

Figure 4: INEEL ER Data Source 2 WODL Example

the mediator and wrapper subsystems have di�ering in-
formation in their respective Semantic Models, the gen-
eral structure and interface of the Semantic Models is
the same. This is important because it allows the various
subsystems to communicate with each other about the
knowledge within their Semantic Models. This common-
ality also provides support for incorporation of additional
wrappers and for layering additional mediators to the me-
diation system.
The ODL de�ned for a particular subsystem is a major

input item of the subsystem's Semantic Model. However,
a subsystem's Semantic Model will contain other knowl-
edge not contained in its ODL �le. For example, a medi-
ator's Semantic Model will also have mappings to the ap-
propriate wrapper(s) for each of the attributes de�ned in
the ODL. These mappings are added at run-time. After
the mediator has populated its Semantic Model with its
MODL contents, it then queries its associated wrappers
for their Semantic Models. The mediator subsystem then
can add the wrapper mappings to its Semantic Model.
The additional knowledge stored in the mediator's Se-

mantic Model allows the mediator to correctly route user
queries to the appropriate wrapper(s), while supporting
a very dynamic environment. For instance, if a wrap-
per is added/deleted or if the contents of a wrapper's
ODL �le change, the mediator will automatically handle
the change since it does not get the wrapper Semantic
Model knowledge until run-time. When a user applica-
tion queries a mediator about its domain, the mediator
returns its current Semantic Model knowledge to the user
application.
Figure 5 illustrates the contents of a mediator Semantic

Model. This �gure graphically illustrates a portion of the
INEEL ER domain view. The INEEL ER domain view
de�ned to IDIMS contains 39 objects, with 141 attributes
spread among these objects. These and objects and their
attributes have been mapped across three separate data
sources. The underlying data sources provide informa-
tion about approximately 26,000 Samples and 373,000
Lab Results.

3 Query Representation

In order for a user application to issue requests to a me-
diator and for the mediator to then issue requests to its
wrapper(s), there must be a method of specifying a query.
We identi�ed the following requirements for an acceptable
query representation method for IDIMS:

1. The representation should provide a reasonable sub-
set of a variety of existing query languages' expres-
sive powers, not a superset, in a simple and concise
manner.

2. The representation should be in an internal structure
rather than an actual language to alleviate the need
for multiple language/structure translations within
each of the IDIMS subsystems.

4

Figure 5: INEEL ER Mediator Semantic Model

3. Query constructs should be de�ned independently
from how data is organized and/or represented in
the underlying data sources.

4. The representation must be lightweight and extensi-
ble in order to accommodate rapidly-changing data
sources, both in terms of content and schema.

5. The query representation must be clearly de�ned.

During the search for a query representation that
met these requirements, a subset of the available query
representations (e.g. SQL, ODMG OQL[6], Lorel[8],
KQML[9], MSL[4] and Datalog) were considered. None of
the considered query representations met all the IDIMS
requirements. Therefore, a new query representation
was developed speci�cally for IDIMS. The IDIMS query
representation was named the Query Exchange Model
(QEM) due to its high-level nature and its symmetry
with the Object Exchange Model (see Section 4). QEM
provides the following bene�ts to IDIMS:

1. QEM focuses on the commonalities that exist be-
tween a few of the more popular query languages
used in academic-, commercial- and government-
related applications, such as SQL, OQL, and Lorel.

2. QEM is translatable to simple queries for a wide
array of alternate query representations due to its
structural representation rather than language spec-
i�cation.

3. QEM is closely related to the Object Exchange
Model (OEM), which is used for returning query re-
sults. This similarity provides for a consistent rep-
resentation format for sending queries and receiving
results throughout IDIMS.

QEM is represented in tree form and is similar to a
parse structure. A QEM tree is composed of QEM nodes,
each of which has an inherent node type. Six di�erent
QEM node types are de�ned for IDIMS. The QEM node
types are described below and illustrated in Figure 6.

Class Node: Main class or concept of a query.

Relationship Node: Subquery representing a relation-
ship between one class and another.

Attribute Node: Inherent property of a given class.

Literal Node: Explicit value

Operator Node: Operator or Primitive Function.

Function Node: Domain-speci�c Function.

-label
-constraint tree

- return links

Class Node

Function NodeAttribute Node

Literal Node Operator Node

Relationship Node

-label
-operand links-value

-type

-label -operand links
-label

-constraint tree
-label

-return links

Figure 6: QEM Node Types and Structural Characteris-
tics

The simplest conceptual representation of a query in-
volves naming one class (i.e., the parent class), using an
expression to constrain this class, as well as providing a
list of attributes to be returned. If the constraint and re-
turned attributes are all from the parent class, this query
forms the basic unit of query exchange and is referred to
as a primitive query.
A primitive QEM query is divided into three parts: a

root Class node, a constraints section, and a return sec-
tion. The root Class node of a query contains informa-
tion about which class is to be retrieved. The constraints
section is an expression representing how to constrain
the root class. The return section represents informa-
tion about what data needs to be returned for the root
class. It is important to note that any item (e.g., class,
attribute, relationship) referenced in a QEM node must
be de�ned in the associated mediator's ODL �le. Fig-
ure 7 illustrates a primitive query in both graphical and
QEM node representations.
Although primitive queries provide reasonable expres-

sive power for many applications, primitive queries lack
the capability to constrain or return results based on

5

OP
=

"CFA-16"
LIT ATTR

SampleID
ATTR

Location

CLASS
SoilSample

ATTR
Depth

ATTR
Description

Constraint Link

Return Link

Query: Return the ID, description, and depth
for all soil samples taken from location "CFA-16"

root: <Class SoilSample &c1 {&r1 &r2 &r3}>
c1 : <Operator = {&op1 &op2}>
op1 : <Attribute Location>
op2 : <Literal String "CFA-16">
r1 : <Attribute SampleID>
r2 : <Attribute Description>
r3 : <Attribute Depth>

Figure 7: Primitive Query Example

associations between attributes from di�erent classes.
Queries that provide the capability to associate classes
and their attributes are called composite queries. QEM
expresses composite queries through the use of a Rela-
tionship node. Relationship nodes can be utilized on the
constraint section and/or the return section of the root
Class node (or other Relationship nodes). Figure 8 illus-
trates a composite query.

REL
lab_results

ATTR
Contaminant

LIT
"Lead"

OP
=

lab_results
REL

SampleID
ATTR

ATTR
Concentration

CLASS
Sample

Return Link

Constraint Link

concentration values for soil samples which have at
least one lab result with the contaminant name of Lead.

root: <Class SoilSample &c1 {&r1 &r2}>
c1 : <Operator = {&op1 &op2}>
op1 : <Relationship lab_results ∅ {&r1a}>
r1a : <Attribute Contaminant>
op2 : <Literal String "Lead">
r1 : <Attribute SampleID>
r2 : <Relationship lab_results ∅ {&r2a}>
r2a : <Attribute Concentration>

Query: Return the soil sample ID and its associated lab results’

Figure 8: Composite Query Example

Data may be stored in a variety of forms, units, and
measures. Furthermore, the form of data requested by
the user or application is not always accessible at the
level of the data source. Therefore, it is necessary to al-

low the use of functions or predicates within a query.
The QEM Function node allows for queries involving
domain-speci�c functions. Although the current imple-
mentation of IDIMS supports only literal arguments to
its QEM functions, domain-speci�c functions should be-
have equally well with arguments acting on individual at-
tribute values, as well as arguments acting on aggregate
values.

4 Object Exchange Model (OEM)

In order for mediators and wrappers to exchange data,
they need to use a common data representation. The
structure of this data can vary among queries as well
as among sources. For example, the data results from
a relational database would be di�erent from the data
results from an object-oriented database. Due to these
di�erences, the following requirements were de�ned for
the data representation to be used throughout IDIMS:

1. The representation must be
exible enough to handle
data from di�erent types of sources.

2. The representation must be capable of adapting to
a dynamic environment where data sources can be
added or removed at any time.

3. The representation must be independent of how data
is stored in the underlying data sources.

4. The representation must be capable of representing
objects which may or may not have data available
for every attribute in every instance.

5. The representation must facilitate data integration.

The Object Exchange Model (OEM) is a self-describing
model developed by the TSIMMIS project at Stanford
University. As the name implies, the purpose of OEM is
to provide a method to exchange objects. OEM not only
contains the data but also its own schema, which can
facilitate data integration from disparate data sources.
OEM represents data results via a collection of OEM

node objects. An OEM node consists of four �elds:
object-id, label, type, and value. It is often represented
as follows:

<object-id label type value>

The object-id is used to uniquely identify a speci�c
OEM node. It can be either a memory location or an
identi�er. The label is a string which describes what the
OEM node represents. The type is the data type for the
OEM node's value �eld, which can be either a scalar data
type (e.g., string,
oat, integer) or a collection type (e.g.,
set, list, bag). The value is either a scalar data content
value or a reference to a collection of OEM nodes, de-
pending on the speci�ed type.
Figure 9 provides an example of data results repre-

sented using OEM. These results are associated with the
query shown in Figure 8.

6

<&oid1 SoilSample Set {&oid11 &oid12}>
 <&oid11 SampleID String "4040040041">
 <&oid12 lab_results Set {&oid121 &oid122}>
 <&oid121 LabResult Set {&oid1211}>
 <&oid1211 Concentration Float 51.3>
 <&oid122 LabResult Set {&oid1221}>
 <&oid1221 Concentration Float 75.2>
<&oid2 SoilSample Set {&oid21 &oid22}>
 <&oid21 SampleID String "X911OS5687">
 <&oid22 lab_results Set {&oid221}>
 <&oid221 LabResult Set {&oid2211}>
 <&oid2211 Concentration Float 4.8>

Figure 9: OEM Example

5 Mediator

The mediator provides users integrated access to multi-
ple heterogeneous data sources. Users formulate queries
according to the mediator domain model (MODL). Since
the MODL describes the global view of the combined
schemas of all sources, any single attribute inside a query
can be spread across multiple sources.
In this system, the Mediator is composed by three com-

ponents, and each of the components have a very speci�c
job.
The relationship among these components can be

shown in �gure 10 and the description is as follows.

OEM

OEM

Decomposition

Semantic
Model

Information
Fusion

Routing

QEM

QEM

Figure 10: The mediator and the interaction between its
components

1. Decomposition Component: examines the query
and decomposes it into several sub queries according
to its structure.

2. RoutingComponent: sends the queries to the cor-
rect data sources and retrieves the results.

3. Fusion Component: groups the data together, re-
moves redundancy, and resolves inconsistencies.

The Routing, as well as the Decomposition component
make use of the Semantic Model. As it was mentioned
previously, the semantic model at the mediator level is

used to get source speci�c information related to the un-
derlying schema. To illustrate the purpose of each com-
ponent, we will use the following example.

CLASS

OP

OP

LIT

ATTR REL

LIT

ATTR

c1
r1

OP

RELLITATTR

ATTR ATTR

OP

SoilSample

lab_results

AND

=

root: <Class SoilSample &c1 {&r1 &r2}>
c1: <Operator AND {&op1 &op2}>
op1: <Operator = {&op11 &op12}>

op2: <Operator = {&op21 &op22}>
op21: <Relationship lab_results NULL &r3>

c2: <Operator = {&op3 &op4}>

Location "TAN-04"

=

Contaminant

"Lead"

Description at_lab

LabState "Oregon"

LabName

op11: <Attribute Location>
op12: <Literal String "TAN-04">

r3: <Attribute Contaminant>
op22: <Literal String "Lead">
r1: <Attribute Description>
r2: <Relationship at_lab &c2 &r4}

op3: <Attribute LabState>
op4: <Literal String "Oregon">
r4: <Attribute LabName>

Contraint Link

Return Link

=

Figure 11: Query Q

5.1 Decomposition

As de�ned in Section 3, a composite query is a query
which has at least one relationship node, either on the
constraint side or on the return side (See Figure 11). The
main task of the Decomposition component is to trans-
form any composite query into several primitive queries.
To accomplish that, we make use of the expression associ-
ated with the relationship attribute because it represents
the way of relating one class to another.

The decomposition component creates a sub-query
from the relationship node and then replaces the rela-
tionship node by attributes used in the expression and
the result of the sub-query.

Consider the composite query Q (�gure 11) which has
relationship node on both the constraint and the return
side.

On the constraint side, we �rst take the relationship
node and form a sub-query. Then the results of the sub-
query are extracted to form a new sub-tree replacing the
original relationship node. The process is illustrated by
�gure 12.

The above process can also be thought as a semi-join
between the object represented by the relationship node
and the object in the query node.

Now we look at the return side of the query Q. First,
the relationship node, r1, is replaced by the attributes

7

The expression associated with the relationship attribute "lab_results" is:
 SoilSample.SampleID = LabResult.SampleID

Steps:

1) We form a new query, Q1, from the sub-tree which contains the
 relationship node.

CLASS

LIT

OP

REL ATTR

ATTR

LIT
lab_results "Lead"

=

ATTR

Contaminant

LabResult

Contaminant "Lead"

SampleIDOP
=

c1: Q1:

Constraint Link
Return Link

2) Assume that the result for the Querry Q1 is:

SampleID

"3040A"

"5580Z"

"3452T"

""4422P"

3) The original constraint c1, gets replaced by the following
 constraint: OP

OPOP

OPOP OP OP

ATTR ATTRATTR ATTR LITLITLIT
SampleID SampleID SampleID SampleID

OR

OR OR

= == =

LIT
"3040A" "5580Z" "3452T" "4422P"

Figure 12: Decompose a composite sub-tree in the con-
straint side

of the query object from the expression associated with
that relationship. (�gure 13)

The Expression associating SoilSample and Laboratory is:
 SoilSample.LabID = Laboratory.LabID

ATTR ATTR ATTR ATTR

ATTR

ATTR

OPOP

LITLITLITLIT

LIT

OPOP

SampleID SampleID SampleID SampleID

AND

OR

=

OR

= =
OP

=
OP

OP

OR

OP

OP

=

Location "TAN=04"

Description

"3040A" "5580Z" "3452T" "4422P"

ATTR
LabID

r1

c1

Note: The constraint subtree c1 has been replaced, as explained in the previous figure.

SoilSample
CLASS

Figure 13: The new query Q'

Then the results of Q' become a new constraint for the
relationship node and form a subquery Q2. (See Figure
14)

We will use a method provided by the fusion compo-
nent to merge the two results based on the values of
Lab id.

After these steps, the original query has been decom-
posed into several primitive queries (Q1, Q' and Q2). One
query may depend on the result of the other one (e.g. Q'
uses the result of Q1 to form itself) which implies an
ordering of execution. To get the result, each primitive
query will be passed to the Routing component.

Assume the result of the query Q’ is:

"AX Sample 1"

"Z2 Sample 5"

"T8 Sample 2"

"AB123"

"AB123"

"AB123"

Description LabID

ATTR ATTR LITLIT

OPOP

Laboratory
CLASS

"Oregon"LabState

= =

"AB123"LabID

ATTR
LabName

ATTR
LabID

OP

AND

Figure 14: The new subquery Q2

5.2 Routing

At the beginning of the routing, the attributes involved in
the query all belong to a single class. However, they may
be distributed among several data sources. The Routing
component retrieves all the data by routing the query to
the correct data sources.

We make the assumption here that partial data per-
taining to objects from di�erent sources can be correlated
if their key attributes have the same values. Furthermore,
this implies that all keys of a given object must be avail-
able from all sources which export that object.

Let us illustrate the use of Routing by continuing our
example. The Decomposition component decomposes the
query Q into three queries : Q1, Q' and Q2. Each is sent
to the Routing component one after another.

Consider the query Q1 (�gure 15) with attribute source
information:

LabResult

Contaminant "Lead"

SampleID=

ATTR

CLASS

OP ATTR

LIT

from S1

from S2

Figure 15: Query Q1 with source information

The return attribute is not from the same data source
as the constraint attribute. In this case, we cannot di-
rectly use Contaminant="Lead" to get the corresponding
Sample IDs. We �rst obtain all the objects which satisfy
the constraint from source S1 along with their key at-
tributes, and then use the obtained key values to retrieve
the values of Sample ID from source S2.

8

Consider the query Q' (�gure 16) :

ATTR ATTR ATTR ATTR

ATTR

ATTR

OPOP

LITLITLITLIT

LIT

OPOP

SampleID SampleID SampleID SampleID

AND

OR

=

OR

= =
OP

=
OP

OP

OR

OP

OP

=

Location "TAN=04"

Description

"3040A" "5580Z" "3452T" "4422P"

SoilSample
CLASS

ATTR
LabID

from S1,S2

from S1,S2 from S2

C

Figure 16: Query Q' with source information

All the attributes in the constraint section are from the
same sources. However, not all return attributes are from
the same sources. In this case two modi�ed queries (�g-
ure 17) will be sent to each source. They both have the
same constraint section but the return section is di�er-
ent. Since SampleID is the key, we will group the results
together according to it's value.

Query1 (sent to S1)

 . . .

CLASS

ATTR ATTR

SoilSample

Description SampleID

 . . .

CLASS

ATTR ATTR ATTR

SoilSample

SampleIDLabIDDescription

Query2 (sent to S2)

Figure 17: Two new queries

Consider the query Q2 (�gure 18) :
Since the attributes on the left side and right side of

the operator node OP' are not from the same sources,
we construct a query for each side requesting the key
attribute, LabID. From these results, we �nd the common
set of key values (due to the fact that the operator is
\AND") and then use them to retrieve the return values
of the original query Q2.
Using keys is one of ways to correlate data from dif-

ferent sources. Once we have more knowledge or under-
standing about the data, we can do more than solely rely
on the key.

5.3 Information Fusion

The Information Fusion component contains two opera-
tions to integrate data. The �rst one is the Union oper-
ation. It uses the same assumption about key attributes
that the routing component does. It groups data objects

"Oregon"
LIT

OP
=

CLASS
Laboratory

ATTR
LabID

ATTR
LabState

LabID
ATTR

"AB123"
LIT

OP
=

CLASS
Laboratory

ATTR
LabID

CLASS

ATTR ATTR

ATTRATTR

OP

LIT LIT

OP

OP

Laboratory

LabState "Oregon" LabID "AB123"

=

LabName LabIDAND

=

from S1 from S1,S2

from S1,S2

The queries sent to the different sources are:

S1

S1 and S2

Q2_q1

Q2_q2

OP’

Figure 18: Query Q2 with source information and source
dependent queries

together if they belong to the same class and have the
same key values. At the same time, duplicated attributes
are eliminated as shown in �gure 19.

<&o1 SoilSample Set {&o11 &o12}> <&o4 SoilSample Set {&o41 &o42}>
 <&o11 SampleID String "3040A"> <&o41 SampleID String "3040A">
 <&o12 Description String "AX Sample 1"> <&o42 LabID String "AB123">
<&o2 SoilSample Set {&o21 &o22}> <&o5 SoilSample Set {&o51 &o52 &o53}>

 <&o22 Description String "Z2 Sample 5"> <&o52 LabID String "AB123">
 <&o21 SampleID String "5580Z"> <&o51 SampleID String "5580Z">

 <&o31 SampleID String "3452T"> <&o61 SampleID String "4422P">
 <&o32 Description String "T8 Sample 2">

<&o1 SoilSample Set {&o11 &o12 &o13}>
 <&o11 SampleID String "3040A">
 <&o12 LabID String "AB123">
 <&o13 Description String "AX Sample 1">
<&o2 SoilSample Set {&o21 &o22 &o23}>
 <&o21 SampleID String "5580Z">
 <&o22 LabID String "AB123">
 <&o23 Description String "Z2 Sample 5">
<&o3 SoilSample Set {&o31 &o32}>
 <&o31 SampleID String "3452T">
 <&o32 Description String "T8 Sample 2">
<&o4 SoilSample Set {&o41}>
 <&o41 SampleID String "4422P">

UNION

<&o3 SoilSample Set {&o31 &o32}> <&o6 SoilSample Set {&o61}>
<&o53 Description String "Z2 Sample 5">

Figure 19: Union operation example

However, we may encounter inconsistency where ob-
jects have the same key values but con
icting values for
their other attributes. In this case, both con
icting at-
tribute values will be returned, each value labelled with
its data sources of origin.

In general, the Union operation can be thought like the
application both the join and union relational algebra
operations together. It is mainly used by the routing
component in order to group data together that is from
the same class, but from di�erent sources.

The second operation is Merge, which is used by the

9

Decomposition component to assemble the results of two
primitive queries (�gures 13 and 14) where one is from
the root node of the query and the other is from the sub-
query formed by one of relationship nodes in the return
side. The Merge operation evaluates the relationship ex-
pression for every pair of objects from the two results
sets, and assembles those objects satisfying the expres-
sion. This operation is shown in �gure 20.

The expression associated with at_lab is:

SoilSample.LabID = Laboratory.LabID

Results from Q’: Results from Q2:

<&o1 SoilSample Set {&o11 &o12}> <&o2 Laboratory Set {&o21 &o22}>
 <&o11 Description String "AX Sample 1"> <&o21 LabName String "Oregon Lab.">
 <&o12 LabID String "AB123"> <&o22 LabID String "AB123">

<&o3 SoilSample Set {&o31 &o32}>
 <&o31 Description String "AX Sample 1">
 <&o32 at_lab Set {&o321}>
 <&o321 LabName String "Oregon Lab.">

MERGE

Note: Both the SoilSample LabID and the Laboratory LabID nodes are removed
since they were not requested in the original query Q.

Figure 20: Merge operation example

6 Wrapper

The wrapper component represents access to a single data
source. It receives source independent queries, translates
them to source speci�c queries, accesses the data source,
and translates source speci�c return values into source
independent return values. As shown in �gure 21, the
wrapper has four components: the QEM To SQL compo-
nent, the Table To OEM component, the Semantic Model
component, the SQL Access component, and the Com-
munication Transport Component.
Both QEM to SQL and Table to OEM belong to a

larger class of translation components, whose purpose are
to translate from QEM to a source speci�c query lan-
guage, and to translate from a source speci�c data repre-
sentation to OEM. Similar components are used to trans-
late queries from QEM to a subset of Lorel, MSL, and
MQL as well as from OEM to SQL Tables and HTML.
Though the individual translation components might

internally have di�erent architectures and use di�erent
translation algorithms, all rely on a local Semantic Model
component to obtain runtime domain speci�c informa-
tion such as class terminology, attribute names, and ta-
ble mappings. Varying levels of capabilities can be sup-
ported at the level of the source depending on the extent
of translation involved.
The SQL Access component, is responsible for direct

access to the data source. Though all sources in IDIMS
are currently relational, other types of sources which sup-
port alternate forms of query access can easily be inte-
grated into the system. De�ning whether a data source

can or cannot be integrated into IDIMS is equivalent
to de�ning whether the queries of the data source can
be translated into or from primitive QEM queries. The
range of queries supported at the level of sources range
from full blown SQL to predicate matches in the form
'value = x'.

QEM
to

SQL

Semantic
Model OEM

Table
to

. . .

QEM OEM

Sybase Oracle ODBC

Figure 21: Generic Wrapper Architecture

7 Assessment and Conclusions

The mediation system described in this paper, IDIMS,
provides a method to preserve an individual and/or
group's knowledge and memory about retrieving and in-
tegrating data residing in multiple, heterogeneous data
sources. IDIMS also provides a generalized informa-
tion integration system. The initial prototype software
was developed to integrate data retrieved from multiple
sources de�ned within an INEEL environmental restora-
tion domain. The same software has been successfully
used to implement a data integration mediation system
for a domain within a State of Pennsylvania organization
that issues and tracks permits provided to clients respon-
sible for performing clean-up activities at sites located in
Pennsylvania. The key to this reuse of the same software
components within this new domain was through the use
of a new domain model described via the Object De�ni-
tion Language (ODL) to the mediator and wrappers. No
modi�cations were required in any of the software com-
ponents.
In addition, the original version of IDIMS accessed

and integrated data divided between only two separate
sources. One source was an Oracle database and the sec-
ond source was a FoxPro database. However, by the time
the initial version of IDIMS was implemented in the end-
users' environment, the FoxPro database had been reor-
ganized into two separate source directories. The me-
diation system was able to handle this data reorganiza-
tion seamlessly by treating the two directories as sep-
arate sources. Simply by creating a wrapper ODL �le
for each FoxPro directory and de�ning three wrappers
(two FoxPro and one Oracle) to the mediator, the sys-
tem was able to handle this data source reorganization

10

without any software modi�cations. Through the use of
these ODL �les, the mediation system semantic model
becomes truly dynamic. No recompilations of any soft-
ware components are required. Changes in the domain
model or data source mappings are immediately re
ected
the next time the mediation system is activated.

8 Future Work

This mediation system has been successfully used in two
separate domains, additional capabilities are planned for
inclusion in future versions of the system. Follow-on work
is being conducted to enhance the capability of the me-
diation system to capture and utilize additional human
knowledge about the data, its sources, and its integration
process. An expert system tool will be used to encode
this additional knowledge into a computer-useable form.
This will allow the mediator to preserve and utilize infor-
mation and data not currently stored in the data sources
themselves. Additional rules for integrating data will also
be provided. Other capabilities which have been identi-
�ed for inclusion are listed below:

1. Designation of a primary and secondary source for
attributes based upon data content.

2. Rede�nition of the primary source for each attribute
when some speci�ed condition(s) are met.

3. Additional data abstraction and aggregation, such
as the ability to provide an average of the contents
of a speci�ed attribute when the individual data oc-
currences are spread across multiple sources. (The
wrapper for each separate source could not compute
the average because each wrapper does not have ac-
cess to the entire set of occurrences.)

4. Ability to reuse wrappers with multiple mediators
that have varying domain terminologies by incorpo-
rating a domain translation capability. This domain
translation will allow the reuse of wrappers that may
use di�erent terminology from the mediator termi-
nology, as long as the wrapper contains a proper
subset of the mediator domain model.

5. Provision for an object in the mediator's domain
model to have attributes that map to attributes from
multiple objects within one associated wrapper.

9 Acknowledgements

We would like to thank Nancy Lehrer and Charles Chan-
nell for their guidance and many suggestions in the course
of the project. We would also like to thank Catherine
Tornabene for initial proof-reading and corrections.

References

[1] G. Wiederhold, \Mediators in the Architecture
of Future Information Systems", IEEE Computer,
March 1992, pp. 38-39.

[2] A. Tomasic, L. Raschid, and P. Valduriez, \Scaling
Heterogeneous Databases and the Design of Disco",
Proc. of the 16th ICDCS, 1996, pp. 449-457.

[3] M. Carey et al., \Towards Heterogeneous Multime-
dia Information Systems: The Garlic Approach",
Proc. of the Intl. Workshop on Research Issues in
Data Engineering, March 1995, pp. 124-131.

[4] Y. Papakonstantinou, H. Garcia-Molina, and J.
Ullman, \Medmaker: A mediation system based
on declarative speci�cations", IEEE Conference on
Data Engineering, 1996

[5] V. Subrahmanian et al., \HERMES: A Het-
erogeneous Reasoning and Mediator System",
http://www.cs.umd.edu/projects/hermes/overview
/paper.

[6] R. Cattell et al., The Object Database Standard -
ODMG 93, Morgan Kaufmann, 1993.

[7] Y. Papakonstantinou et al., \Object exchange across
heterogeneous information sources", IEEE Confer-
ence on Data Engineering, 1995.

[8] S. Abileboul, D. Quass, J. McHugh, J. Widom and
J. Wiener, \The Lorel query language for semistruc-
tured data", Journal of Digital Libraries, November
1996.

[9] T. Finin et al., \Speci�cation of the KQML Agent-
Communication Language",
http://www.cs.umbc.edu/kqml/papers.

11

