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Research on semistructured data over the last severa years has focused on data models, query languages, and systems
where the database is model ed as someform of labeled, directed graph [Abi97, Bun97]. The recent emergence of eXtensible
Markup Language (XML) as a new standard for data representation and exchange on the World-Wide Web has drawn
significant attention [BPSM98]. Researchers have casually observed a striking similarity between semistructured data
models and XML. While similarities do abound, some key differences dictate changes to any existing data model, query
language, or DBM S for semistructured datain order to fully support XML. This paper describes our experiences migrating
the Lore database management system for semistructured data [MAGT97] to work with XML. We present our modified
data model, whose definition was a subtly challenging task given that XML itself isjust a textua language. Based on this
model, we describe changes to Lorel, Lore's query language. We aso briefly discuss changes to Lore's dynamic structural
summaries (DataGuides[GW97]) and the relationship of DataGuides to XML's Document Type Definitions (DTDS).

1 OEM andLord

Lore is a complete database management system designed specifically to handle semistructured data [MAG'97]. Lore's
origina datamodel, OEM (for Object Exchange Model), isasimple, self-describing, nested object model that can intuitively
be thought of as alabeled, directed graph [PGMWO95]. In OEM all entities are objects that can either be atomic or complex.
Each object hasauniqueobject identifier (oid). Atomic objectscontain avauefrom oneof theatomictypes, eg.,i nt eger,
real ,string,gif,etc. A complex object’'svaueisaset of {label, subobject) pairs, where each label gives a textual
description of the relationships between the object and its subobject. In the graph view of an OEM database, objects are
nodes in the graph, complex objects have outgoing edges labeled with the relationship to their subobjects, and atomic
objects contain their value. A single object in OEM may serve multiple rolesif it has multiple incoming edges, possibly
with different labels. A Nameisan aiasfor asingleobject and serves as an entry point into the database graph. Lore squery
language, Lorel, has afamiliar sel ect - f r om wher e syntax and is based on OQL [Cat94], with certain modifications
and extensions that are useful when querying semistructured data. Detailson Lorel can be foundin [AQM*97].

2 XML

XML isatextua language quickly gaining popularity for data representation and exchange on the Web [BPSM98]. Nested,
tagged elements are the building blocks of XML. Each tagged element has a sequence of zero or more attribute/vaue
pairs, and a sequence of zero or more subelements. These subelements may themselves be tagged elements, or they may be
“tagless’ segmentsof text data. Because XML wasdefined asatextual languagerather than adatamodel, an XML document
always hasimplicit order—order that may or may not be relevant but is nonethel ess unavoidablein atextual representation.
A well-formed XML document places no restrictionson tags, attributenames, or nesting patterns. Alternatively, adocument
can be accompanied by a Document Type Definition (DTD), essentially agrammar for restricting the tags and structure of a
document. An XML document satisfyingaDTD grammar is considered valid. While not exactly a data model, a standard
Document Object Model (DOM) for XML has been defined [AB* 98], to enable XML to be manipulated by software. The
DOM defines how to trandate an XML document into data structures and thus can serve as a starting point for any XML
data modd.

In addition to attributesin XML, and the fact that XML is ordered and OEM is not, another obvious difference between
XML and OEM is the treatment of tagg/labels. In OEM, labels are used only as entry points and to denote relationships
to other objects—an OEM object need not have a single label that it “owns’. In contrast, the XML DOM specifies that
each (non-text) element containsitsidentifyingtag. Another key difference isthat the XML DOM today does not directly
support graph structure (as opposed to trees), no doubt an artifact of XML's document orientation. Currently, XML uses
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special attribute typesto encode graph structure. An element can have a single attribute of type ID whose value provides a
uniqueidentifier that can be referenced by attributes of type IDREF or IDREFS from other elements. Consider thissimple
example:

<Person I d="P1" Nane='Jeff Ul nmn’ Colleague="P2'/>
<Person I d="P2' Nanme='Jenni fer Wdoni Col | eague="P1'/>
<Publication Title="A First Course in Database Systens’ Author="Pl1 P2'/>

Assume attribute | d is of type ID, Col | eague is of type IDREF, and Aut hor is of type IDREFS. The above example
encodes a graph where the Col | eague and Aut hor attributes serve as labeled references to Per son eements (similar
to labeled subobjectsin OEM).!

XML's"second-class’ support of graph structure leads to interesting decisionsin specifying atrue datamodel and query
language. Should an XML data model be atree that corresponds to XML's text representation (like the DOM), or agraph
that includes the intended links? Our view is that both approaches are important. In some situations, an application may
wishto process XML dataasalitera tree, where IDREF(S) attributes are nothing more than text strings. In other situations,
an application may wish to process XML dataasitsintended semantic graph. Our decisionisto support both modes—Iliteral
and semantic—which auser or application can select between. The choice of mode has adirect impact on query evaluation
and results, as we will see |ater.

3 LoresXML DataModel

In Lore's new XML-based data model, an XML element isapair {eid, value), where eid is aunique element identifier, and
valueiseither an atomic text string or a complex value containing the following four components:

1. A string-valued tag corresponding to the XML tag for that e ement.

2. Anordered list of attribute-name/atomic-val uepairs, where each attribute-nameisa string and each atomic-value has
an atomic type? drawn fromi nt eger ,r eal , st ri ng, etc., or | D, | DREF, or | DREFS.

3. Anordered list of crosslink subelements of the form {label, eid), where labedl isa string. Crosslink subelements are
introduced via an attribute of type | DREF or | DREFS.

4. An ordered list of normal subelements of the form (label, eid), where label is a string. Normal subelements are
introduced vialexical nesting within an XML document.

We differentiate normal subelements (4) from crosslink subel ements (3) so we can support both literal and semantic modes
in our model.

An XML document is mapped easily into our datamodel. Notethat we ignorecomments and whitespace between tagged
elements. As a base case, text between tags is translated into an atomic text element; we do the same thing for CDATA
sections, used in XML to escape text that might otherwise be interpreted as markup [BPSM98]. Otherwise, a document
element istrandated into acomplex data element such that:

1. Thetag of the dataelement isthe tag of the document el ement.

2. The ligt of attribute-name/atomic-value pairs in the data element is derived directly from the document element’s
atributelist.

3. For each attribute value 7 of type IDREF in the document element, or component 7 of an attribute value of type
IDREFS, thereis one crosslink subelement (label, eid) in the data element, where label isthe corresponding attribute
name and eid identifies the unique data el ement whose ID attribute val ue matches :.

4. The subelements of the document element appear, in order, as the norma subelements of the data element. The label
for each data subelement isthe tag of that document subelement, or Text if the document subelement is atomic.

Note that multiple XML documents can be loaded into a single database, and any system of cross-document links (e.g.,
XLink or XPointer) can be used provided information that uniquely identifies elementsis not | ost.

LUnfortunately, currently in XML aDTD is required to specify attributetypes, soit is commonto useinelegant heuristicsto deduce | D/IDREF/IDREFS
typeswhen aDTD is not available.

2While the XML specification does not include attribute types, some extensionsto XML do, and we have chosen to include attributes types in our
model.
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<DBGroup>
<Member Name="Smith" Advisor="m1" >
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</Project> Text
</DBGroup>
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Figure1: An XML document and its graph

Once one or more XML documents are mapped into our data model it is convenient to visualize the data as a directed,
labeled, ordered graph. The nodesin the graph represent the data el ements and the edges represent the e ement-subelement
relationship. Each node representing a complex data e ement contains atag and an ordered list of attribute-name/atomic-
value pairs; atomic dataelement nodes contain string values. There are two different types of edgesin thegraph: (i) normal
subelement edges, labeled with the tag of the destination subelement; (i) crosslink edges, l1abeled with the attribute name
that introduced the crosslink. Note that the graph representation isisomorphic to the data model, so they can be discussed
interchangesbly.

Asmentioned earlier, itisuseful to view the XML datain one of two modes: semanticor literal. Semantic modeisused
when the user or application wishesto view the database as an interconnected graph. The graph representing the semantic
mode omits attributes of type IDREF and IDREFS, and the distinction between subelement and crosslink edges is gone.
Literal mode is available when the user wishesto view the database as an XML document. IDREF and IDREFS attributes
arevisibleas textual strings, while crosslink edges areinvisible. In litera mode, the database is dways atree.

Figure 1 showsasmall sample XML document and the graph representationin our datamodel. Element identifiers(eids)
appear within nodes and are written as &1, &2, etc. Attribute-name/atomic-value pairs are shown next to the associated
nodes (surrounded by {}), with IDREF attributesin italics. Subelement edges are solid and crosslink edges are dashed. The
ordering of subelementsis left-to-right. We have not shown the tag associated with each element since it is straightforward
to deduce for this simple database. (For example, node & 3 has the tag Member and not Advisor.) In semantic mode, the
database in Figure 1 does not include the (italicized) IDREF attributes. In litera mode, the (dashed) crosdinks are not
included. Note that there is some structural heterogeneity in the data even though the sample data was kept purposefully
small.

4 LoresXML Query Language

We now discuss the modifications we have made to the Lorel query language to accommodate the differences between our
new XML datamodel and OEM, and to exploit XML fesatures not present in OEM. Recall that a database in our data model
can be interpreted either in semantic mode or in literal mode. For simplicity let us assume that the desired mode is sel ected
for each query.

Distinguishingbetween attributesand subelements.  Path expressions are thebasi ¢ building bl ocksof the Lorel language
[AQMT97]. A path expressionin Lore is essentially a sequence of labels, eg., DBGr oup. Menber . Pr oj ect, which
may include label wildcards and regular expression operators. During query evauation, path expressions are matched
to paths in the database graph. For XML, we extend the meaning of path expressions to navigate both attributes and
subelements, and we introduce path expression qualifiersin order to distinguish between the two when desired. We use the
optiona symbol > before a label to indicate matching subel ements only, and the optiona symbol @to indicate matching
attributes only. When no qualifier is given, both attributes and subelements are matched—we expect this to be the most
common case. Table 1 shows simple examples of path expressions with qualifiers applied over the database in Figure 1.




[ Qualification | Symbol | Example | Matchesin semantic mode | Matchesin literal mode ]

Subelementsonly | > DB.Member.>>Name &6 &6
DB.Member.>>Advisor | &3,&7 &7

Attributes only @ DB.Member.@Name “ Smith” “ Smith”
DB.Member.@Advisor | empty “ml1”

None None DB.Member.Advisor &3, &7 &7,“m1”

Table 1: Path expression qualifiers

Function | Description |
Flatten(e) Ignoring all tags, recursively serializes all text valuesin the subtree rooted at element e
(following normal subelementsonly).

Concatenate(e) | Concatenatesall immediate text children of element e and ignores all other subelements.

Tag(e) Returns the XML tag of elemente.
Eid(e) Returns a string representation of the eid of element e.
XML(e) Transformsthe graph, starting with element e, into an XML document. Note that thereis no

single “correct” way to generate an XML document from graph-structured data, so it will be
difficult to use this option to compare against string constants.

Table 2: Functionsto transform elements into strings

Recall from Section 3 that in semantic mode IDREF(S) attributesare not visible, whilein literal mode IDREF(S) are treated
like other attributes and crosslink edges are not visible.

Comparisons. We anticipate that many different kinds of comparisons may be useful in queries over XML data. For
example, constants might be compared against attribute values or against el ement text. We might want to compare against
a seriadization of al text elements in an XML subtree, ignoring markup. In graph-structured data, we might want to test
for eid equality. Rather than supporting many distinct comparison operators, we decided instead that for the purpose of
comparisons we would treat each XML component as some kind of atomic value, either through default behavior or via
explicit transformation functions, as follows.

Attribute values are always atomic. For elements, Table 2 describes severa built-in functions that can be used to
transform an el ement into a string; these functions can be used outside of comparisonsif desired, e.g., inthesel ect clause.
(Each function returns NULL if called over an attribute instead of an element.) Sinceit isinconvenient for a user to have
to specify functions for every comparison, keeping in the spirit of Lorel we set default semantics when functions are not
supplied based on our impression of the most common and intuitive uses:

1. For an atomic (Text ) dement, the default value isthe text itself.

2. For dements that have no attributes and only one or more Text eements as children, the default value is the
concatenation of the children’stext values (a restricted case of the Concatenate function).

3. For al other elements, the default value is the element’s eld represented as a string (the Eid function).

Example:  Suppose we are looking for group members whose advisor is “Ullman”. In the origina version of Lord,
DBGr oup. Menber . Advi sor =" U | nan" does the trick. Based on Figure 1 it appears that for our XML data model
we must write DBGr oup. Merrber . Advi sor. Text =" U | man", and indeed this expression will give us the correct
answer. However, note that the former comparison aso will give us the correct answer by virtue of default semantics case
(2) above. Spacelimitationspreclude numerous examplesin thispaper, but in general we have found that most Lorel queries
designed for an OEM database can be used unmodified on a corresponding XML database, such as the simple example we
have just shown.

Range qualifiers. We have extended Lore so that the expression “[ range] ” can optionaly be applied to any path
expression component or variable. The range is a list of single numbers and/or ranges, eg., [ 2- 4, 7] . When such a
range qualifier isapplied to alabel in a path expression, we limit matched values to those within the range. For example,
“sel ect y from DBG oup. Menber x, x.Ofice[1-2] y”returnsthefirsttwoOf fi ce subelementsof every



group member.> When a range qudifier is applied to a variable then we limit the entire set of variable bindings to the
specified range. For example, “sel ect y[ 1-2] from DBG oup. Menber x, x. O fice y” returnsthefirst two
O f i ce eements over al of the membersin the database.

Order-by clause. The result of a query is an ordered list of eids identifying the elements selected by the query. (Any
attributes in the query result are coerced into elements.) If there isno or der - by clause in the query then the ordering
is unspecified. In some applications it may be important for the query result to be ordered based on the origind XML
document. We term this ordering the document order of the database, and we extend the functionality of the standard Lorel
or der - by clausewithan“or der - by docurnent - or der ” expression. (Newly constructed elements in query results,
since they do not come directly from the original document, currently are placed at the end of the document order with an
unspecified order among them.) Document order is frequently exactly what we want, but it can produce unintuitive results
for graph-structured data. We have defined other orderings that seem appropriate in certain cases, but space limitations
preclude their discussion in this paper.

Transformations and structured results. Using queries to restructure XML data may be more common than it was in
OEM, so we have introduced two new query language constructs to transform data and return structured query results. The
first construct, thewi t h clause, isadded tothestandard sel ect - f r om wher e query form and wasintroduced originaly
inLorel’sview specification language. When awi t h clauseis present in aquery, thequery result replicates all datasel ected
by thesel ect clause, along with all data reachable viaany of a set of path expressionsin thewi t h clause. A complete
descriptionisgiven in [AGM T 97].

We also have extended Lord to support Skolem functions [End92], for more expressive data restructuring than was
provided in Lorel previoudly. In Lorel, a Skolem function accepts an (optional) list of variables as arguments and produces
one unique element for every binding of elements and/or attributes to the argument(s). When a new set of bindings for
the arguments is passed into a Skolem function then a new database element is created and returned. Subsequent calls
to the same function with the same argument bindings returns the same result element. Skolem functions are not new to
semistructured query languages, first appearing in MSL [PAGM96] then later in StruQL [FFLS97] and YATL [CDSS98],
but they are new to the XML version of Lordl.

Updates. Unlikemost other semistructured and object-oriented query languages, Lorel supportsan expressive, declarative
updatelanguage[AQM*97]. Space limitationspreclude discussing in detail the effect of XML on Lorel’s update language,
or moregeneraly theintricaciesof XML and updates, but let ustouch uponthetopicbriefly. A number of changes discussed
above carry over directly to our update language. Additiona modifications include the ability to create both attributes and
elements, and order-relevant updates (e.g., inserting after the fourth subelement). Note that it is not always obvious how
semantic versus litera mode should be interpreted in the context of updates. A further issue is that of maintaining a
correspondence between an XML database and an XML document in the face of updates. Thisissue has several interesting
aspects to it, including ambiguity when serializing newly created database el ements, and ensuring continued validity with
respect to adocument’s DTD.

5 DataGuidesand DTDs

Since semistructured databases generally have no predefined, fixed schema, we have introduced DataGuides—concise and
accurate structural summaries of the underlying database [GW97]. A DataGuide isitself agraph, where every label pathin
the database appears exactly once in the DataGuide and every label path in the DataGuide existsin the original database.

When a DTD is not supplied, the notion of a DataGuide is just as important for XML as for OEM. We can reuse our
original construction and maintenance a gorithms for DataGuides with relatively minor modifications to accommodate our
extended XML datamodel. Oneinteresting aspect is the introduction of order. We can extend our DataGuide definition to
incorporate order, but if we do it strictly then we may end up with very large DataGuides where much of theinformationis
duetovariaionsinorder. Given that thegoal of the DataGuideisto summarize the database, we are investigatingtechniques
for using weighted averages over al instance data to determine order within the DataGuide.

When DTDs are used to restrict the data, then of course the DataGuide becomes |ess important. However, because
DataGuides serve severa functionsin Lore and can be expensive to build, we can now build a DataGuide (actualy, an
Approximate DataGuide [GW99]) directly from aDTD. An interesting direction is to combine DataGuides with DTDs: it
iseasy to envision a scenario where DTDs are available for specific portions of an XML database, but the overall database

3We have decided that within each element we order attributes first, then crosslink subelements, then normal subelements. This orderingis relevant in
caseswhere alabel in a path expression may match more than onekind of XML component.



is still semistructured. We can build a DataGuide over the portions not governed by DTDs, with appropriate linksto DTDs
where appropriate. Note also that DTDs currently do not support graph structure beyond restricting attribute typesto ID
and IDREF(S), so DataGuides are more expressive than DTDsin thisregard.

6 Conclusion and Status

We have described the fundamental changes we made in migrating Lore's datamodel and query language to support XML.
We have nearly finished converting our Lore implementation to match the specificationsin thisdocument. We intendto look
at performance enhancements to our Lore-XML system based on changes to thedatamodel and query language, specifically
intheareas of indexing and datalayout. So far we havefocused on using Lore as afine-grained XML database rather than a
coarse-grained document repository. We are a so considering a new approach that mixes the decomposition of (portions of)
XML documents into their components in the database, together with storing document copies and maintai ning mappings
between the two.
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