
Mind Your Vocabulary:

Query Mapping Across Heterogeneous Information Sources �

(Extended Version)

Chen-Chuan K. Chang

Electrical Engineering Department

H�ector Garc��a-Molina

Computer Science Department

Stanford University

Stanford, CA 94305-9040, USA

fkevin,hectorg@db.stanford.edu

Abstract

In this paper we present a mechanism for translating constraint queries, i.e., Boolean expressions of

constraints, across heterogeneous information sources. Integrating such systems is di�cult in part because

they use a wide range of constraints as the vocabulary for formulating queries. We describe algorithms

that apply user-provided mapping rules to translate query constraints into ones that are understood and

supported in another context, e.g., that use the proper operators and value formats. We show that the

translated queries minimally subsume the original ones. Furthermore, the translated queries are also

the most compact possible. Unlike other query mapping work, we e�ectively consider inter-dependencies

among constraints, i.e., we handle constraints that cannot be translated independently. Furthermore,

when constraints are not fully supported, our framework explores relaxations (semantic rewritings) into

the closest supported version. Our most sophisticated algorithm (Algorithm TDQM) does not blindly

convert queries to DNF (which would be easier to translate, but expensive); instead it performs a top-

down mapping of a query tree, and does local query structure conversion only when necessary.

1 Introduction

For seamless information access, mediation systems [1, 2] have to cope with the di�erent data representations

and search capabilities of sources. To mask the heterogeneity, a mediator presents a uni�ed context to users.

The mediatormust translate queries from the uni�ed context to the native contexts for source execution. This

translation problem has become more critical now that the Internet and intranets have made available a wide

variety of disparate sources, such as multimedia databases, web sources, legacy systems, and information

retrieval (IR) systems. In this paper we show how to e�ciently translate queries, taking into account

di�erences in operators, data formats, and attribute names.

Example 1: Suppose that a mediator integrates on-line bookstores to provide book information (such as

the services provided by the web site www.acses.com and shopping.yahoo.com). In particular, the mediator

exports an integrated view book (title, ln, fn, : : :) with attributes for title, author last name, �rst name, etc.

� This work was partially supported by NSF Grant IRI-9411306 and IIS-9811992.

1

To search for books, users specify constraints in their queries. Suppose that a user is looking for books by

Tom Clancy, i.e., the constraint query Q is [fn = "Tom"]^ [ln = "Clancy"].

The mediator must then translate the query to search the underlying sources. For instance, consider

source Amazon (at www.amazon.com). This source does not understand attribute ln and fn; instead, it

supports the author attribute, which requires some particular name format. Thus, the translation for Amazon

should be [author = "Clancy,Tom"].

In addition, let's consider source Clbooks (i.e., Computer Literacy at www.clbooks.com). Clbooks also

supports author but allows only operator contains (instead of equality) that searches any words in names.

While Q is not fully expressible at Clbooks, we can come up with the mapping Qc = [author contains Tom]^

[author contains Clancy]. Strictly speaking, this translation is not equivalent; Qc is in fact a relaxation of Q

(i.e., Qc subsumes Q). For instance, "Tom,Clancy" and "Clancy,Joe Tom" match Qc but not Q. Thus, the

mediator needs to redo Q as a �lter to remove the false positives returned from Clbooks.

We can view a query as a Boolean expression of constraints of the form [attr1 op value] or [attr1 op

attr2]. These constraints constitute the \vocabulary" for the query, and must be translated to constraints

understood by the target source. This constraint mapping must consider source capabilities, and thus is not

symmetrical to data conversion (see Section 3). In general, we have to map attributes (e.g., cost to price),

convert data values (e.g., 3 inches to 7.62 centimeters), and transform operators (e.g., \=" to \contains").

It is also critical to note that query mapping is not simply a matter of translating each constraint

separately. Some constraints can be inter-dependent and must be handled together. In general, constraint

mapping is many-to-many. For instance, the query [car-type = "ford-taurus"] ^ [year = 1994] may yield

[make = "ford"] ^ [model = "taurus-94"] at the source. Without respecting constraint dependencies, a

translation cannot guarantee the minimal mappings that are as selective as possible.

Example 2: Consider translating for Amazon the query Q = C1 ^ C2 = (f1 _ f2) ^ f3, where f1 =

[ln = "Clancy"], f2 = [ln = "Klancy"], and f3 = [fn = "Tom"]. Note that Amazon supports attribute author,

of which the last name must be speci�ed. (Thus, a name can be "Clancy,Tom", or simply "Clancy" if the

�rst name is not known.)

If we ignore the potential dependencies between constraints or subqueries, and separately translate C1

and C2, we may obtain only a suboptimal mapping. To illustrate, let S(X) denote the mapping of query

X . Separating C1 and C2 (as well as f1 and f2), we obtain the mapping Qa = S(C1) ^ S(C2) = [S(f1) _

S(f2)] ^ S(f3). Note that S(f3) = True (i.e., no constraint) because Amazon cannot impose constraints on

the �rst name alone. Thus Qa = S(f1) _ S(f2) = [author = "Clancy"] _ [author = "Klancy"].

Qa is actually not \minimal"; it is not as selective as Qb = [author = "Clancy,Tom"] _ [author =

"Klancy,Tom"] (which is in fact the minimal mapping). Intuitively, conjuncts C1 and C2 are \interrelated"

and not separable as they together decide the target constraints on author.

To obtain good translations, we must rely on human expertise, e.g., to tell us that two constraints are

interrelated, or that some function needs to be applied to transform inches to centimeters. Thus, we provide

a rule-based framework for codifying the necessary domain semantics. For instance, one rule may tell us that

a constraint [ln = L] can be mapped to [author = A], where L and A are variables that stand for values. The

rule then provides a human-written function to transform the last name L to the author name A. Another

rule may tell us that the pair of constraints [fn = F] and [ln = L] can be mapped to [author = A], using a

di�erent function that now maps a �rst and last name into a combined string.

Furthermore, based on these rules, our challenge is to translate a full query, where di�erent portions of

the query may match di�erent rules. For instance, consider the query (f1 _ f2) ^ f3 ^ f4. We may have a

rule for mapping (f3 ^ f4) and another for (f2 ^ f3). This latter rule can be applied if we rewrite the query.

2

Which rule should we apply? When and how should we rewrite the query? If we have rules for (f3 ^ f4) and

for f3, f4 alone, which rules should we apply?

This paper presents an e�cient algorithm (called Algorithm TDQM) for mapping queries according to a

set of user-provided rules. The algorithm guarantees an optimal mapping, in which a translated query will

minimally subsume the original one. (We will formally de�ne this concept later; informally it means that the

translated query will not return unwanted answers that were possible to avoid with some better translation.)

In addition, in most cases the algorithm produces the most \compact" translated query, i.e., the query with

the smallest parse tree, out of the possible translations. The algorithm does not blindly convert queries to

DNF, which would be easier to translate, but expensive. Instead it performs a top-down mapping of a query

tree, and does local query structure conversion only when necessary.

Many integration systems have dealt with source capabilities, e.g., Information Manifold [3, 4], TSIM-

MIS [5, 6], Infomaster [7, 8], Garlic [9, 10], DISCO [11], and others [12, 13, 14]. We discuss this related work

in Section 3, but in summary the essential features that distinguish our work are:

� We address dependencies that exist among constraints or subqueries; as far as we know, no other

translation frameworks respect dependencies for optimal mapping.

� We deal with arbitrary constraints; other systems typically push only simple equality constraints to

sources.

� We perform systematic semantic mapping of constraints (with human-speci�ed rules); most other

systems only handle syntactic translation, and do not take advantage of relaxing an unsupported

constraint semantically.

� We e�ciently process complex queries (with conjunctions and disjunctions). Most other systems focus

on simple conjunctive queries, or process complex queries in DNF, which is expensive in general.

This paper focuses on the constraint mapping problem, and does not consider other important translation

issues, e.g., the subsequent generation of physical query plans (many related e�orts have addressed this issue).

Note also that, while we handle complex queries, we currently do not consider negations. Furthermore, we

discuss in reference [15, 16] the generation of e�ective �lter queries (Example 1 illustrated why they were

needed).

We start by de�ning the constraint mapping problem and other fundamental notions. In Section 3 we

review the related e�orts. Section 4 describes the basic mapping mechanism for conjunctive queries. For

complex queries, Section 5 discusses a framework based on the DNF of queries. Section 6 then presents

Algorithm TDQM that does not require DNF. In Section 7 we discuss the separation of conjuncts, which is

a critical foundation for Algorithm TDQM . Finally, Section 8 summarizes the complexity and correctness

properties of Algorithm TDQM .

2 The Constraint Mapping Problem

We describe the constraint mapping problem in a common mediation architecture [1, 2] for integrating

heterogeneous sources. In such systems, wrappers unify the source data models, and mediators interact with

the wrappers to process queries transparently. Our discussion assumes a simple relational view of data.

Speci�cally, wrappers present each source as a set of source relations. We believe our framework is not

sensitive to the data models; e.g., in reference [17] we discuss the translation of hierarchical data.

3

A mediator exports integrated mediator views for users to formulate queries. Thus, a user query U over

some views Vi has the form (in an SQL-like expression) select : : : fromV1 ; : : : ;Vh whereC, or algebraically

U = �C (V1� � � ��Vh), where C is a Boolean expression of constraints. (The projection operation is omitted

as it is irrelevant to our discussion.) Note that we do not consider negation in this paper. A constraint is

either a selection condition [Vi .attr1 op value], or a join condition [Vi .attr1 op Vj .attr2], where attr1 and attr2

are attributes of view Vi and Vj respectively. For simplicity, we may write a selection constraint as [attr1

op value] when the containing view of attr1 is clear from the context (such as in Example 1 and Example 2

where we considered only one integrated view).

In such mediation frameworks, a view is typically an SPJ query over some source relations plus possibly

some data conversion functions; e.g., view (title, ln, fn, review) might be a join of relation (title, review) from

source T1, (title, author) from T2, and a function NameLnFn(author, ln, fn) for converting author to last and

�rst names. We can model such a function as a conceptual relation with the tuples [author, ln, fn] that

\satisfy" the function. Note that in general a view can be a union of SPJ components; e.g., a book view

can be a union of two relations from two bookstore sources. In this case, we can process each component

separately and union the results as typically done.

For source execution, the mediator must rewrite a user query in terms of the source relations. Thus,

with view expansion, U will be rewritten to the following form in Eq. 1, where Ri is the cross-product of

all the source relation instances that a particular source Ti contributes to any queried views, and X is the

cross product of the relevant conceptual relations. We speci�cally refer to the selection condition Q as a

constraint query : In most cases Q is simply the user-query condition C, but in addition Q can also include

the constraints used in the view de�nitions.

U = �Q(R1� � � ��Rn�X) (1)

Intuitively, the constraint mapping problem is to push as much as possible the constraint query to the

sources. That is, the mapping translates Q from the mediator's original context to the target context at each

source. Note that the constraints in Q are generally not readily executable across di�erent contexts. First,

there exists schema di�erence between the views and the sources: The conversion functions in X can present

new attributes (e.g., ln and fn that replace author) or change data representations. Second, there exists

capability di�erence: Unless the mediator only allows the least common denominator of what the sources

support, the constraints can be beyond the capabilities of some sources.

Thus, constraint mapping will �nd the mapping of Q for each source Ti, denoted Si(Q), to retrieve the

relevant subset of Ri. The mediator then combines these source results, passes them through the conversion

functions, and postprocesses with a �lter query F consisting of the residue conditions not fully pushed to

the sources, i.e.,

U = �F [�
S1(Q)(R1)� � � ���

Sn(Q)(Rn)�X]: (2)

Comparing Eq. 1 and Eq. 2, we obtain the essential property for a correct translation:

Q = F ^ S1(Q) ^ � � � ^ Sn(Q) (3)

We next illustrate this translation problem with Example 3, which considers a mediator that integrates

two sources.

Example 3: To illustrate the translation problem, let us consider a mediator for two sources. Suppose that

source T1 provides relation paper(ti, au) for paper titles and authors and aubib(name, bib) for author names

and their bibliography. Source T2 has prof (ln, fn, dept) for professor last, �rst names, and departments. The

4

target contextoriginal context

Q Su(Q)

D

query mapping

σQ
σSu(Q)

select

Su

select

Figure 1: Conceptual illustration of query mapping.

mediator exports a faculty view fac(ln, fn, bib, dept) integrated from aubib and prof , and a publication view

pub(ti, ln, fn) from paper(ti, au).

Suppose that a user is looking for the papers written by some CS faculty interested in data mining. The

constraint query is Q = a:[fac.ln = pub.ln] ^ b:[fac.fn = pub.fn] ^ c:[fac.bib contains data(near)mining] ^

d:[fac.dept = cs]. Note that Q includes both selection and join constraints.

Let's �rst consider the mapping for source T1, i.e., for relations paper and aubib. The join condi-

tions a ^ b together map to x1 : [paper .au = aubib.name]. If source T1 does not support the proxim-

ity operator near, rather than dropping constraint c, we can relax it to (x2:[aubib.bib contains data] ^

x3:[aubib.bib contains mining]) that requires only the occurrences of keywords. Lastly, constraint d maps

to True (it can only be processed in T2). Thus, S1(Q) = x1 ^ x2 ^ x3.

We next perform the mapping for source T2, which contributes relation prof . All the constraints except

d map to True. Suppose that T2 uses department code 230 for CS, thus S2(Q) = [prof .dept = 230].

Finally, the �lter query F is simply the constraint c (i.e., F = c), the only contraint that is not fully

realized at the underlying sources. Thus, Q = F ^ S1(Q) ^ S2(Q).

Since we can perform the mappings for di�erent sources separately (as Example 3 illustrated), we now

focus on a particular source Tu as the translation target and discuss the requirements for Su(Q): To begin

with, Su(Q) must be expressible in target Tu; i.e., Su(Q) contains only those constraints that Tu supports

with its schema and capability. (Thus, Su(Q) uses only the native vocabulary of Tu.)

Furthermore, Su(Q) logically subsumes Q; note that we can rewrite Eq. 3 as Q = Fu ^ Su(Q) (where Fu

is the conjunction of F and Si(Q), i 6= u). For a relation D (in this case D = R1� � � ��Rn�X), Q0 subsumes

Q if �
Q0(D) � �Q(D) regardless of the contents of D. If �

Q0(D) � �Q(D) for some instance of D, then

Q0 properly subsumes Q. Thus, when source Tu evaluates Su(Q) on (the Ru part of) relation D, it will

select a superset of what Q does. Figure 1 shows this subsumption relationship. The extra tuples selected

by the translated query will be removed by the corresponding �lter Fu. Finally, we want Su(Q) to return

as few extra tuples as possible; i.e., Su(Q) should be the most selective mapping. In this case we say that

Su(Q) minimally subsumes Q with respect to Tu. In De�nition 1 we summarize these three requirements

for constraint mapping.

De�nition 1 (Minimal Subsuming Mapping): A mapping Su(Q) is the minimal subsuming mapping

of a constraint query Q w.r.t. the target context Tu, if (1) Su(Q) is expressible in Tu, (2) Su(Q) subsumes

Q, and (3) Su(Q) is minimal, i.e., there is no query Q0 such that (i) Q0 satis�es 1 and 2, and (ii) Su(Q)

properly subsumes Q0.

To illustrate, recall that the mapping Qa in Example 2 is not minimal. To see why, note that there

exists another mapping Qb (see Example 2) that is also expressible in the target context. Furthermore, Qa

properly subsumes Qb.

5

This paper speci�cally discusses the algorithms for mapping a constraint query Q. Note that from now

on we will simply refer to such Q as a query (not to be confused with a full user query U). Also, we write

the mapping as S(Q) (without a subscript) when the target source is clear as in Example 2.

3 Related Work

While information integration has long been an active research area [1, 2, 18], the constraint mapping

problem we study in this paper has not been addressed throughly. Many integration systems have dealt

with source capabilities, e.g., Information Manifold [3, 4], TSIMMIS [5, 6], Infomaster [7, 8], Garlic [9, 10],

DISCO [11], and others [12, 13, 14]. Our work complements the existing e�orts. We speci�cally address the

semantic mapping of constraints, or analogously the translation of vocabulary. In contrast, other e�orts have

mainly focused on generating query plans that observe the native grammar restrictions (such as allowing

conjunctions of two constraints, disallowing disjunctions, etc.).

First, many integration systems (TSIMMIS, Garlic, and DISCO) essentially follow the mediator-views

approach as Section 2 discusses. For query translation, their mediators �rst perform view expansion to

form logical plans, and then their wrappers generate physical plans with capability-based rewriting. They do

process constraints, but often with simplistic assumptions. As mentioned in Section 1, the essential features

that distinguish our work are:

� We address dependencies that exist among constraints or subqueries. Note that such dependencies can

be quite common in practice because heterogeneous sources may use di�erent attributes to structure

the same information (i.e., they may not have matching schemas), as we illustrated in Section 1.

We are not aware of other translation frameworks that respect dependencies for optimal mapping.

Other systems implicitly assume one-to-one mapping of constraints, which leads to suboptimal solutions

as Example 2 illustrated. In particular, they can violate constraint dependencies when generating

physical plans. For instance, Garlic processes complex queries in CNF and is not aware of dependencies.

Some systems use grammar-like, rule-based languages (e.g., QDTL [6], RQDL [19], CFG [12], ODL [11])

to describe acceptable query templates and the associated translations. However, these capability-

description frameworks focus on the grammatic structure of queries. In particular, their rules do not

encode and respect constraint dependencies, unlike ours (see Section 4).

� We deal with arbitrary constraints. Other systems (e.g., [5]) that rely on mediator view expansion

push to sources only simple equality constraints (of the form [attr = value]), i.e., attribute bindings

to exact values. (This masks the capabilities of the sources, because they may be able to process

more sophisticated constraints.) Thus, the problem of constraint mapping is simpli�ed to propagating

bindings (such as from [ln = "Clancy"] ^ [fn = "Tom"] to [author = "Clancy,Tom"]). This propagation

can use the same mechanism as data value conversion in view de�nition (as Section 2 discussed). For

instance, the bindings on ln and fn can be mapped to author via a function LnFnName that is an inverse

of the conversion function NameLnFn used in de�ning the views.

However, constraint mapping is in general not symmetrical to data conversion: Unlike data values,

queries can specify constraints that are partial (e.g., giving only ln) and inexact (i.e., non-equality, e.g.,

[ln sounds-like "Klancy"]). Moreover, constraint mapping must also map operators to respect source

capabilities. For instance, in Example 3, the mapping from data(near)mining to data(^)mining has

nothing to do with data conversion.

6

Original Query Target Query for Amazon

Q̂1 = fl^ft1^fy^fm^fk

fl: [ln = "Smith"]

ft1:[ti contains java(near)jdk]

fy: [pyear = 1997]

fm:[pmonth = 5]

fk: [kwd contains www]

S1 = aa^at1^ad^(at2_as1)

aa: [author = "Smith"]

at1: [ti-word contains java(^)jdk]

ad: [pdate during May/97]

at2: [ti-word contains www]

as1:[subject-word contains www]

Q̂2 = fp^ft2^fc^fi

fp: [publisher = "oreilly"]

ft2:[ti = "jdkforjava"]

fc: [category = "D.3"]

fi: [id-no = "081815181Y"]

S2 = ap^at3^as2^ai

ap: [publisher = "oreilly"]

at3: [title starts "jdkforjava"]

as2:[subject = "programming"]

ai: [isbn = "081815181Y"]

Figure 2: Mapping simple-conjunction queries.

� We perform systematic semantic mapping of constraints (with human-speci�ed rules); most other

systems do not take advantage of relaxing an unsupported constraint semantically. The wrappers

of these systems simply translate a constraint syntacticly (e.g., from [ln = "Klancy"] to the native

command "lookup -ln Klancy") if supported, or else drop it entirely. Instead, semantic rewriting

would explore to relax an unsupported constraint into a closest supported version (such as replacing

near with ^ in Example 3). Garlic wrappers [10] support similar rewritings, but it is not clear how the

mapping is done systematically.

� We e�ciently process complex queries. Most other systems focus on simple conjunctive queries, or

process complex queries in DNF, which is expensive in general. In contrast, our algorithms do not

assume DNF (Section 6). Incidentally, while reference [12] deals with complex queries, their framework

does not translate constraints.

In addition, the second category of integration e�orts adopts the answering-queries-using-views approach

(e.g., [3, 4, 7, 8, 13, 14]). This approach assumes a world view of global relations and global constraints, in

which queries and sources can be described. However, the related e�orts have not tackled how to localize this

\global vocabulary" (i.e., the world view). (They use global relations to model data conversion; as we have

discussed, constraint mapping is not symmetrical to data conversion.) In a truly heterogeneous environment,

while a global vocabulary is useful for semantic integration, the sources are unlikely to agree uniformly on

such a vocabulary. The source relations may have di�erent schematic or syntactic data representations from

that in the normalized world view. In addition, unless the global constraints represent the least common

denominator of the source capabilities, those constraints are unlikely to be uniformly supported. Therefore,

our work complements these e�orts in localizing the global constraints.

4 Simple-Conjunction Queries

Query translation must rely on human expertise. In this section we present a rule-based scheme that codi�es

such expertise. The scheme relies on rules to indicate what groups of constraints need to be mapped as a

unit, and what user-provided functions must be executed to actually transform values (e.g., to change the

units or encoding of values). As we will see, the human-provided rules only specify how to translate the

smallest grouping of basic constraints, e.g., a pair of constraints that must be considered together for proper

7

translation. The translation of full queries is then performed by a query translation algorithm, which relies

on the rules to transform the basic constraints involved. In this section we describe the basic translation

rules, and we discuss an algorithm that can translate any simple conjunctive query. In later sections we then

present algorithms that can handle general Boolean queries. Our rule speci�cations are based on rules we

developed earlier for data translation [17]. Here we adapt this framework for query translation.

This section is organized as follows. To begin with, Section 4.1 presents the rule system and the associated

algorithm. To focus on the essential framework, Section 4.1 considers only selection queries over a single

mediator view (e.g., as in Example 2). In Section 4.2 we then extend the framework slightly to handle the

general case, where queries over multiple views are to be translated for multiple sources. Section 4.3 studies

formally the correctness of the mapping algorithm. Finally, in Section 4.4 we discuss the complexity of the

algorithm.

4.1 The Rule-Based Framework

Given a query Q̂ as a conjunction of constraints in the original context, our goal is to �nd its minimal

subsuming mapping S(Q̂) in the target context. (To stress that the query is conjunctive, we write it as

Q̂.) Our framework in [17] translates data (i.e., attribute-value pairs) as conjunctive equality-constraints.

This section brie
y summarizes the extended framework that allows arbitrary constraints. In particular, we

illustrate the mappings for target Amazon1 from the original context of a mediator. For example, Figure 2

shows two original queries Q̂1 and Q̂2 translated for Amazon to S1 and S2 respectively. Note that we

designate the original constraints with f� and the target constraints a� respectively, where � and � are some

descriptive strings.

In translation, our framework �rst maps individual constraints according to a human-speci�ed mapping

speci�cation, and then formulates the mapping of the whole original query. The mapping speci�cation for a

particular target is a set of mapping rules, e.g., Figure 3 lists the rules KAmazon for target Amazon.

A rule matches a set of (conjunctive) constraints and speci�es its translation, similar to pattern matching

in, e.g., Yacc. As Figure 3 shows, the head (left hand side) of a rule consists of constraint patterns and

conditions to match the original constraints. The tail (to the right of 7!) consists of functions for converting

value formats and an emit : clause that speci�es the target query.

For example, rule R4 in KAmazon (Figure 3) maps a contains constraint on ti to one on attribute ti-word

(e.g., from ft1 to at1 in Figure 2). When pattern [ti contains P1] matches a constraint (e.g., ft1), the variable

P1 (in capitalized symbols) is bound to the corresponding constant, i.e., P1 = "java(near)jdk". The

matching of the head will �re the actions in the tail. In particular, it calls upon function RewriteTextPat to

rewrite the text pattern P1. As Amazon does not support near, P1 is rewritten to P2 = "java(^)jdk". (For

instance, reference [20] describes a general procedure for translating such IR predicates.) As we mentioned,

the functions (as well as the conditions in the head) are supplied externally, and in principle can be written in

any programming languages. Finally, the emission (i.e., the emit : clause) of the rule outputs the mapping

as [ti-word contains P2] (i.e., at1 in Figure 2).

A rule can use conditions (i.e., predicate functions) to restrict the matchings. For instance, while the

pattern inR1 can match any constraint, condition SimpleMapping tests if A1 is bound to a \simple" attribute

that requires only name mapping (with function AttrNameMapping) such as attributes publisher and id-no in

Figure 2.

As illustrated, the evaluation of a rule �nds the matching constraints and computes the emissions. Given

1We assume a target context based on the \power search" interface at www.amazon.com, with slight changes for the purpose

of illustration.

8

R1) [A1 O X]; SimpleMapping(A1) 7! A2 = AttrNameMapping(A1); emit : [A2 O X]

R2) [ln = L]; [fn = F] 7! A = LnFnToName(L, F); emit : [author = A]

R3) [ln = L] 7! emit : [author = L]

R4) [title contains P1] 7! P2 = RewriteTextPat(P1); emit : [title-word contains P2]

R5) [title = T] 7! emit : [title starts T]

R6) [pyear = Y1]; [pmonth = M1] 7! Y2 = NormYear(Y1); M2 = NormMonth(M1);

D = MonthYearToDate(Y2, M2); emit : [pdate during D]

R7) [pyear = Y1] 7! Y2 = NormYear(Y1); emit : [pdate during Y2]

R8) [keywd contains K1] 7! K2 = RewriteTextPat(K1);

emit : [title-word contains K2] _ [subject-word contains K2]

R9) [category = C] 7! S = MapCategoryTerms(C); emit : [subject = S]

Figure 3: Mapping rules KAmazon for Amazon.

a simple-conjunction Q̂, a matching of a rule R is a subset of (the constraints in) Q̂ that together satis�es

the head of R. A rule can have multiple matchings or none; we denote the set of all the matchings of rule

R for query Q̂ by M(Q̂;R). For instance, consider R1 and assume that SimpleMapping(A1) holds only

for attributes id-no and publisher. Referring to Figure 2, we get two matchings for Q̂2 (i.e., M(Q̂2;R1) =

fffpg; ffigg) but none for Q̂1 (i.e., M(Q̂1;R1) = �). Moreover, a matching can have multiple constraints.

For example, constraints fy and fm in Q̂1 together match R6, i.e., M(Q̂1;R6) = fffy; fmgg. Furthermore,

since constraint mapping is generally many-to-many, an emission can be a complex query (rather than a

single constraint). For instance, rule R8 produces the disjunctive constraints on ti-word and subject-word,

assuming Amazon does not explicitly support a kwd attribute (for keywords).

Since the mapping rules just described are the critical basis of our translation framework, they must

observe some requirements. We in fact assume that the human experts only give sound rules. First,

the emission of a rule is by de�nition the minimal subsuming mapping of the corresponding matching.

For instance, because for the matching ffy, fmg rule R6 emits [pdate during May/97] (shown as ad in S1,

Figure 2), we know that S(fy ^ fm) = ad, if R6 is sound.

Furthermore, the matchings of a rule must be indecomposable, i.e., a rule should handle only those truly-

dependent constraints. (We will formally de�ne the notion of decomposability in De�nition 2.) In other

words, the mapping rules e�ectively encode constraint dependencies. For instance, for R6 the matching ffy,

fmg is indeed indecomposable. Separating fy and fm would only result in a suboptimal mapping: Since

Amazon requires that the year be speci�ed in a pdate constraint, there is no mapping for only a month, i.e.,

S(fm) = True. Thus, S(fy) ^ S(fm) = S(fy)^True = [pdate during 97], which is broader that the mapping

ad obtained with R6. For this reason, R6 is a sound rule.

Based on the rule framework, Algorithm SCM (in Figure 4) translates simple conjunctions. The algorithm

is relatively straightforward. First (in step 1), we evaluate the rules to �nd the matchings in a given query Q̂.

As discussed, this matching process e�ectively partitions Q̂ into subsets of indecomposable constraints. We

then compute the emissions for those subsets as their mappings. The target query is simply the conjunction

of all such emissions (step 3).

In addition, we must remove submatchings to avoid redundancy (step 2). We can eliminate a matching

if it is a subset of some other matching, because the latter will generate a \stricter" mapping with more

\underlying constraints." For instance, R6 de�nes the mapping to pdate from both the original pyear and

pmonth, while R7 from only the former. Note that R7 is useful to generate a partial date if pmonth is not

9

Algorithm SCM: Simple-Conjunction Mapping

Input: � Q̂: a simple-conjunction query in the original context.

� K: the constraint mapping speci�cation w.r.t. a target system T .

Output: S(Q̂), the minimal subsuming mapping of Q̂ w.r.t. T .

Procedure:

01. (1) �ndM(Q̂;K), all the matchings of any rule in K:

02. � A M(Q̂;K) � [[M(Q̂;R)], for all R 2 K

03. (2) remove any matching that is a subset of other matchings:

04. == i.e., submatching suppression.

05. � for all mi 2 A:

06. { for all mj 2 A (j 6= i):

07. { if mj � mi: remove mj from A

08. (3) output S(Q̂) as the conjunction of all the emissions

09. for the remaining matchings in A, i.e.,

10. � S(Q̂) =
Q

m2A
S(^(m))

Figure 4: Algorithm SCM for mapping simple conjunctions.

constrained in the original query. However, for queries with both pyear and pmonth, such as Q̂1 in Figure 2,

R7 yields a redundant matching ffyg, given the larger matching ffy, fmg produced by R6. We next illustrate

Algorithm SCM with Example 4.

Example 4: Let's translate query Q̂1 in Figure 2 for target Amazon. We run Algorithm SCM with inputs

Q̂1 and KAmazon to show that it does output S1, i.e., S1 = S(Q̂1).

1. A [[M(Q̂1;R1); : : : ;M(Q̂1;R9)] = [[�; �;

ffflgg; ffft1gg; �; fffy; fmgg; fffygg; fffkgg; �] =

fm3:fflg;m4:fft1g;m6:ffy; fmg;m7:ffyg;m8:ffkgg

2. We remove the matching m7 (of R7), as m7 � m6 (of R6). Thus, A = fm3;m4;m6;m8g.

3. The matchingsmi in A map (by rule R3, R4, R6, R8) to target queries aa, at1, ad, and at2_as1 (shown

on the right top of Figure 2). The output is their conjunction, i.e., S(Q̂1) = aa^at1^ad^(at2 _ as1) =

S1.

4.2 Queries over Multiple Views across Multiple Sources

To focus on the essential framework, in the preceding discussion we assumed the simpli�ed case of mapping

selection queries over a mediator view to a source relation. As Section 2 discussed, a general integration

system may export multiple views integrated from multiple sources. Unlike in the simpli�ed case, for queries

over multiple views, the general system typically supports both selection and join constraints. For the

completeness of our study, this section considers the general case. As we will see, the essential framework

remains e�ective, with only the rule system being slightly more complex.

To illustrate the issues, we will base our discussion on the integration system given in Example 3. Recall

that in the example the mediator exports two views fac and pub, which are integrated from relations paper

and aubib of source T1, and relation prof of source T2. In such a system, a query Q may involve multiple

view instances constrained with join as well as selection conditions. Meanwhile, since the views may involve

di�erent sources, we must translate Q for each source, i.e., to �nd the mappings S1(Q) and S2(Q) (as

Section 2 discussed).

10

K1 = fR1, R2, R3, R4, R5g, for source T1.

R1) [fac.bib contains P1] 7! P2 = RewriteTextPat(P1); emit : [fac.aubib.bib contains P2]

R2) [pub.ti = T] 7! emit : [pub.paper .ti = T]

R3) [A1 = N]; LnOrFn(A1); Value(N) 7!

A2 = AttrNameMapping(A1); emit : [A2 contains N]

R4) [AL = L]; [AF = F]; LnFnAttrs(AL, AF); Value(L); Value(F) 7!

A = AttrNameMapping(AL, AF); N = LnFnToName(L, F); emit : [A = N]

R5) [V1.ln = V2.ln]; [V1.fn = V2.fn] 7!

A1 = AttrNameMapping(V1.ln, V1.fn); A2 = AttrNameMapping(V2.ln, V2.fn)

emit : [A1 = A2]

K2 = fR6, R7, R8g, for source T2.

R6) [fac.A1 = N]; LnOrFn(A1); Value(N) 7!

A2 = AttrNameMapping(fac.A1); emit : [A2 = N]

R7) [fac.dept = D] 7! C = DeptCode(D); emit : [fac.prof .dept = C]

R8) [fac[i].A = fac[j].A]; LnOrFn(A) 7! emit : [fac[i].prof .A = fac[j].prof .A]

Figure 5: Mapping rules K1 and K2 respectively for source T1 and T2.

To perform translation, the framework requires the mapping rules for each source. To illustrate, Figure 5

gives the mapping speci�cations for our example. In particular, the speci�cation K1 consists of the rules

R1, R2, R3, R4, and R5 to de�ne the mappings for source T1. Similarly K2 consists of the rules R6,

R7, and R8 speci�cally for source T2. Note that the speci�cations K1 and K2, as they are for di�erent

sources, are independent of each other. In other words, for a simple-conjunction query Q̂, we will translate it

separately for each source with respect to the particular mapping speci�cation. Therefore, we will evaluate

S1(Q̂) = SCM(Q̂, K1) for source T1 and S2(Q̂) = SCM(Q̂, K2) for source T2.

The mapping process (for each source) is essentially the same as discussed in Section 4.1. For instance,

let us consider mapping the simple conjunction Q̂ = a ^ b^ c ^ d (as given in Example 3) for source T1. We

intuitively showed the mapping in Example 3; now we more formally evaluate S1(Q) = SCM(Q̂, K1). Match-

ing the constraints to the rules in K1 results in the matchings fcg for R1 and fa; bg for R5. Consequently,

rule R1 will �re and yield the mapping (for source T1) S1(c) = [fac.aubib.bib contains data(^)mining]. Note

that in the target constraint we write the source relation as fac.aubib to stress that it is the aubib expanded

from the view fac. In general, di�erent views may be de�ned with the di�erent instances of the same source

relation. Therefore, to distinguish these di�erent relation instances we generally qualify the relation names

with the containing views. For simplicity we assume here that a view does not contain multiple instances of

a relation, but we note that it is straightforward to handle the situation otherwise.

In addition to the selection constraints, we must also handle the mapping of join constraints. In our

example, the join constraints fa; bg over the views fac and pub match rule R5 (by binding V1 to fac and

V2 to pub). Referring to rule R5 (in Figure 5), since the attributes fac.ln and fac.fn together map to

A1 = fac:aubib:name and in addition pub.ln and pub.fn map to A2 = pub:paper :au, the rule will then emit the

mapping S1(a ^ b) = [fac.aubib.name = pub .paper .au]. According to Algorithm SCM the overall mapping is

then S1(Q̂) = S1(c)^S1(a^ b). Note that R5 is designed to handle the join constraints between any pair of

the views that V1 and V2 can bind to, i.e., a pair of fac(ln, fn, bib, dept) and pub(ti, ln, fn), a pair of fac's,

or a pair of pub's.

11

With the essential mapping process illustrated, we next discuss the speci�c complications of dealing

with queries over multiple views. First, in a rule it may be necessary to distinguish between selection and

join constraints when a pattern can match either. For instance, rule R3 is designed to handle the selection

constraints like [fac.ln = "Ullman"] or [pub.fn = "Hector"], since LnOrFn(A1) restricts A1 to matching only ln

or fn attributes. However, note that these attributes can also participate in join constraints such as [fac.ln =

pub.ln]. Therefore, without precaution the pattern [A1 = N] can unintentionally match such join constraints

(e.g., by binding N to pub.ln). Consequently, when it is necessary to focus on only selection constraints, we

can use the condition Value(N) to restrict N to matching only values but not attributes. Similarly, we can

use the condition Attr(N) to restrict the other way and thus focus on join constraints.

Second, to simplify pattern matching, we will normalize a join constraint if it can be written in one way

or the other. In many cases, a constraint can be written as either [attr1 op1 attr2] or [attr2 op2 attr1], where

op2 is the \inverse" of op1 (e.g., [income > expense] � [expense < income]). To avoid enumerating equivalent

patterns for such constraints, we will assume one of the alternatives as the normalized representation. This

normalization is simply rewriting the constraints to adopt certain operators such as \>" instead of \<"

whenever possible. Otherwise, for symmetrical operators (e.g., [income = expense] � [expense = income]),

the rewriting can assume some particular attribute ordering in the normalized representation. Note that,

with this normalization, the mapping rules need only focus on the normalized representations (rather than

enumerating all the alternative patterns).

Finally, we need a way to distinguish the di�erent instances of a view in a query, if any. For instance, a

query that looks for professors with the same last name may have the constraint [fac[1].ln = fac[2].ln]. Since

the query involves two fac instances, we distinguish them with integer indexes. Note that this technique

is similar to using tuple variables in SQL (e.g., select : : : from fac F1, fac F2 where F1.ln = F2.ln).

Consequently, in a mapping rule we also use the technique to distinguish di�erent view instances. For

example, rule R8 in K2 (Figure 5) designates the attribute variables as fac[i].A and fac[j].A. By binding

i = 1, j = 2, and A = ln, the pattern can match [fac[1].ln = fac[2].ln]. Obviously we can omit the indexes (in

both queries and rule patterns) when they are not necessary. For instance, the attribute fac.bib in rule R1

can be viewed as the abbreviation for fac[i].bib and thus match the pattern for any i.

4.3 Correctness of Algorithm SCM

To discuss the correctness of Algorithm SCM , we more formally summarize our requirements for the rules

individually and collectively. To begin with, we �rst de�ne the notion of conjunct decomposability (and the

related notion of separability) in De�nition 2. Based on this notion, De�nition 3 then speci�es the soundness

of the individual rules, as we have informally discussed.

De�nition 2 (Conjunct Decomposability and Separability): A conjunction Q̂ = C1 � � �Cn (n > 1),

where Ci's are arbitrary queries, is decomposable if there exist some proper subsets B1; : : : ; Bm of fC1; : : : ; Cng

(i.e., Bj � fC1; : : : ; Cng), such that S(Q̂) = S(^(B1)) � � �S(^(Bm)). Otherwise, Q̂ is indecomposable.

Furthermore, if Q̂ can be decomposed into fC1g; : : : ; fCng, i.e., S(Q̂) = S(C1) � � � S(Cn), then Q̂ is also

separable. Otherwise, Q̂ is inseparable

In other words, when Q̂ is decomposable, its mapping can be \synthesized" form the mappings of its

proper subqueries. In addition, separability is simply a special case of decomposability, in which case the

conjuncts can be individually separated. For instance, referring to Figure 2, since constraints on ti and

pyear are independent, S(ft1^fy) = S(ft1) ^ S(fy), and thus (ft1 ^ fy) is decomposable (in this case it is

also separable). On the other hand, we cannot decompose (fy ^ fm) since S(fy ^ fm) 6= S(fy) ^ S(fm). In

addition, note that the query ft1^ fy ^ fm is decomposable; S(ft1 ^ fy ^ fm) = S(ft1)^S(fy ^ fm). In other

12

words, we can partition fft1, fy, fmg to the proper subsets fft1g and ffy; fmg. (However, the query is not

separable, since the set ffy; fmg cannot be further separated.)

Note that whether some constraints are decomposable or not is domain speci�c and must be judged

by human experts. Our framework captures this knowledge by requiring that each rule only deal with

indecomposable constraints. (As Section 5 will discuss, disjunctions can always be separated.) Note that,

with this requirement, we can tell if some constraints are interdependent by checking if they together match

a rule. In other words, the mapping rules e�ectively encode constraint dependencies. On the other hand, we

do not need rules for decomposable constraints{ their mapping can be synthesized from their components

(as De�nition 2 requires). Thus each rule gives the minimal subsuming mapping for an indecomposable (or

\atomic") set of constraints. We now summarize the soundness requirements for the mapping rules.

De�nition 3 (Mapping Rule: Soundness): A mapping rule R is sound if the rule satis�es the following

conditions for any matching m = fc1; : : : ; cng of R:

� The constraint conjunction ^(m) = c1 � � � cn is indecomposable.

� The emission that R generates for m is the minimal subsuming mapping for the constraint conjunction.

That is, S(^(m)) = E(R, m), where E(R, m) denotes the emission of R for m.

Furthermore, the mapping speci�cation K (i.e., the set of mapping rules collectively) must also satisfy

some requirements. To begin with, we want every individual rule in K to be sound, as just de�ned. However,

this requirement alone is not su�cient for correct mappings. In particular, an empty set of rules is trivially

sound but is obviously useless. Therefore, we further specify when a rule must be present for query mapping.

That is, we require that the speci�cation be complete, i.e., it has all the necessary rules. Intuitively, we

need a rule to handle every indecomposable combination of constraints. For instance, for mapping to target

Amazon, we must give the rules for the combination of constraints that are not decomposable such as ln and

fn or pyear and pmonth. The speci�cation KAmazon provides R2 and R6 respectively for either case. Note

that this completeness requirement implies that when giving rules we only need to focus on those \essential"

combination of dependent constraints. For instance, for Amazon we can ignore the combinations fln, pyearg,

fln, pmonthg, etc. De�nition 4 formally states the soundness and completeness requirements for mapping

speci�cations.

De�nition 4 (Mapping Speci�cation: Soundness and Completeness): A mapping speci�cation K

is sound if every rule in K is sound.

The speci�cation is complete if for any set fc1; : : : ; cng, where ci's are arbitrary constraints that the

original context supports, K has a rule matching fc1; : : : ; cng if

� the mapping for the constraint conjunction is non-trivial, i.e., S(c1 � � �cn) 6= True, and

� the constraint conjunction c1 � � �cn is indecomposable.

To show the correctness of Algorithm SCM, as a basis we �rst present Lemma 1. The lemma states that

a subconjunction (i.e., a subquery X in a conjunction XY) has a \broader" mapping than that of the whole

conjunction (i.e., S(XY) � S(X)). This result is quite intuitive since a subconjunction is less restrictive

than the conjunction (i.e., XY � X).

Lemma 1: If Q̂ = XY , where X and Y are arbitrary queries, then S(Q̂) � S(X) (and similarly S(Q̂) �

S(Y)).

13

Proof: Assume that S(Q̂) 6� S(X). We will derive a contradiction that S(Q̂) cannot be the minimal

subsuming mapping of Q̂ according to De�nition 1.

Let Q0 = S(Q̂)S(X). We now show that Q0 is a better mapping for Q̂ than S(Q̂). First, Q0 is expressible

in the target context, since both S(Q̂) and S(X) are. Second, Q0 subsumes Q̂, since both S(Q̂) and S(X)

do: Because X � XY or X � Q̂ and (by De�nition 1) S(X) � X, it follows that S(X) � Q̂. In addition,

S(Q̂) � Q̂ also by De�nition 1. Finally, S(Q̂) properly subsumes Q0: Since S(Q̂) 6� S(X) (by assumption), it

follows that S(Q̂) 6= S(Q̂)S(X), i.e., S(Q̂) � S(Q̂)S(X) or S(Q̂) � Q0. Therefore, according to De�nition 1,

S(Q̂) cannot be the minimal subsuming mapping because Q0 can do better, a contradiction.

Finally, Theorem 1 gives the correctness of our algorithm. In other words, when the mapping speci�cation

is both sound and complete, Algorithm SCM will yield the minimal subsuming mapping for a simple con-

junction. Note that the soundness and completeness are therefore indeed the requirements for the mapping

rules that guarantee the mapping optimality.

Theorem 1 (Correctness of Algorithm SCM): Given a simple conjunction Q̂ and the mapping speci-

�cation K that is sound and complete for some target T , Algorithm SCM outputs the minimal subsuming

mapping of Q̂ with respect to T , i.e., SCM(Q̂, K) = S(Q̂).

Proof: To begin with, we consider the output of the algorithm. Referring to Figure 4 but �rst ignoring the

removal of the submatchings (i.e., step 2), the output is simply the conjunction of all the emissions. Let

m̂ denote a matching as a simple conjunction, i.e., m̂ = ^(m). As the rules are sound, the emission for m

de�nes the mapping S(m̂). The output is therefore

SCM(Q̂, K) =
Y

m2M(Q̂;K)

S(m̂) (4)

Furthermore, Eq. 4 will still hold with the removing of submatchings (i.e., step 2 of Algorithm SCM). To

see why, suppose that a matching mj is removed as it is a subset of another matching mi. In other words,

m̂j is a subconjunction of m̂i since mj � mi. Such a submatching mj is indeed redundant for the mapping,

because by Lemma 1 S(m̂j) � S(m̂i). Thus Eq. 4 holds through the removing of every submatching.

Based on Eq. 4, we �rst show that SCM(Q̂, K) � S(Q̂) and then S(Q̂) � SCM(Q̂, K), and thus it follows

that SCM(Q̂, K) = S(Q̂).

(1) SCM(Q̂, K) � S(Q̂): Referring to SCM(Q̂, K) given in Eq. 4, since every m̂ is a subconjunction in Q̂

(i.e., Q̂ = m̂Y , for some Y), according to Lemma 1, S(m̂) � S(Q̂). As this subsumption holds for every m

in M(Q̂;K), it follows that
Q

m2M(Q̂;K) S(m̂) � S(Q̂) or SCM(Q̂, K) � S(Q̂).

(2) S(Q̂) � SCM(Q̂, K): Suppose that, as a simple conjunction of constraints ci, Q̂ = c1 � � � cn. Let us

denote the constraints in Q̂ as C(Q̂), i.e., C(Q̂) = fc1; : : : ; cng.

We can write S(Q̂) =
Q
v�C(Q̂) S(v̂), i.e., the conjunction of the mappings for every subset v of the

constraints. To see why, note that the right hand side is the same as S(c1 � � �cn) ^
Q

v�C(Q̂) S(v̂). Because

that S(Q̂) = S(c1 � � �cn) and that S(Q̂) � S(v̂) for every v � C(Q̂) (by Lemma 1), the equation follows

immediately.

In other words, together with Eq. 4, we can prove that S(Q̂) � SCM(Q̂, K) by showing that

Y

v�C(Q̂)

S(v̂) �
Y

m2M(Q̂;K)

S(m̂) (5)

To do so, it su�ces to show that for every v in the left side, S(v̂) subsumes the right side, i.e., S(v̂) �
Q
m2M(Q̂;K) S(m̂); 8 v. The proof is by induction on jvj, i.e., the number of constraints in v.

14

1. jvj = 1, i.e., v = fcig. We di�erentiate two cases: either v is a matching in M(Q̂;K) or not.

� if v 2 M(Q̂;K), it follows that S(v̂) �
Q
m2M(Q̂;K) S(m̂), since S(v̂) is among the conjuncts in

the right hand side.

� otherwise, v 62 M(Q̂;K), i.e., v is not a matching with respeact to K. In other words, K does

not provide a rule for mapping v. The completeness of K (De�nition 4) thus implies that either

S(v̂) = True or v̂ is decomposable. The latter cannot hold since v consists of only one constraint.

It follows that S(v̂) = True and obviously S(v̂) �
Q
m2M(Q̂;K) S(m̂).

2. jvj = k + 1:

As the hypothesis, assume that S(v̂) �
Q
m2M(Q̂;K) S(m̂) holds for all v such that jvj � k (among

those v in the left side of Eq. 5).

We now show that the subsumption holds when jvj = k + 1. Similarly to case 1 for jvj = 1, we

di�erentiate whether v is a matching. If v 2 M(Q̂;K), the proof is exactly the same as the preceding

case. Otherwise, if v is not a matching, the completeness of the rules K implies either of the followings:

� the mapping for v̂ is trivial. That is, S(v̂) = True and thus S(v̂) �
Q
m2M(Q̂;K) S(m̂).

� Otherwise, v̂ is decomposable, i.e., there exist some proper subsets z1; : : : ; zg of v, such that

S(v̂) = S(ẑ1) � � �S(ẑg). Note that as zi is a proper subset of v and jvj = k + 1, it follows that

jzij � k. Based on the induction hypothesis, S(ẑi) �
Q
m2M(Q̂;K) S(m̂). Since every zi holds this

subsumption, so does S(v̂).

4.4 Complexity

Finally, we note that Algorithm SCM is quite e�cient. To begin with, our rules are very simple{ they

simply encode the groups of dependent constraints and how they should be mapped. Note that rules are

not recursive; matching a rule does not generate new (input) constraints. The matching does not consume

constraints either; a constraint can match multiple rules. In other words, rules are independent, and can be

evaluated in any order.

We can more formally analyze the running time of Algorithm SCM as follows: Given the inputs Q̂ and

K, let N be the number of constraints in Q̂, R the number of rules in K, and P the (maximal) number of

constraint patterns in the head of a rule. First, we can perform rule matchings (i.e., step 1 of Algorithm SCM)

simply by comparing each pattern with each constraint, i.e., the cost will be N � P � R�m, where m is a

constant. Here we assume independent patterns, i.e., no coupling exists among patterns, such as common

variables (e.g., [ln = L] and [fn = L]). We believe this assumption holds in the vast majority of cases. (We

actually have no practical counter example.) Next, step 2 compares each pair of matchings; this step can

be done in M2 � s, where M is the number of matchings found in step 1, and s a constant. Finally, in step

3, we �re the rules to generate the mappings for the remaining matchings; the time for this step is M � r,

where M is the maximal number of the remaining matchings, and r a constant. Therefore, the worst-case

running time is (N � P � R�m) + (M2 � s) + (M � r).

In summary, in the worst-case, the running time is linear in the input size represented by N , P , and R.

The quadratic M term is alleviated by the fact that M is in most cases not a large number. In principle,

M has an upper bound 2N , because any subset of the constraints can be a matching. However, M will

approach this exponential bound only when there exist extremely intensive dependencies such that every

subset of the constraints (e.g., on some name and date) cannot be decomposed in the mapping. Such

15

Algorithm DNF : DNF-based Query Mapping

Input: � Q: an arbitrary query in the original context.

� K: the constraint mapping speci�cation w.r.t. a target system T .

Output: S(Q), the minimal subsuming mapping of Q w.r.t. T .

Procedure:

01. (1) convert Q into its DNF �Q =
Pm
i=1 D̂i,

02. where D̂i is a simple conjunction of constraints.

03. (2) compute S(D̂i) with Algorithm SCM :

04. � for each D̂i: S(D̂i) SCM(D̂i, K)

05. (3) return S(Q) � S(�Q) =
Pm
i=1 S(D̂i).

Figure 6: Algorithm DNF .

\high-degree" dependencies are obviously unlikely in practice since we can expect at least some natural

schematic conventions (e.g., names and dates are typically separated as di�erent attributes). On the other

hand, if constraints are all independent, the upper bound will simply be N . We believe that in practice the

dependencies will be moderate, and thus the quadratic M term will not be signi�cant.

5 DNF-based Scheme for Complex Queries

In this section we present a �rst translation algorithm for complex queries with arbitrary Boolean (^, _)

combination of constraints. Speci�c complications arise for such queries because of the implication of the

Boolean operators. In particular, can the mapping S(�) distribute over ^ and _? In Example 2 we observed

that conjuncts in Q = C1 ^C2 = (f1 _ f2) ^ f3 are not separable. In fact, we can handle Q by rewriting its

structure, as Example 5 illustrates.

Example 5: Consider Q in Example 2, where the mapping was suboptimal because the separated conjuncts

were interrelated. However, if we rewrite Q as D̂1:(f1 ^ f3) _ D̂2:(f2 ^ f3), it turns out that disjuncts are

always separable (according to the results of [15]). Thus, we can handle D̂1 and D̂2 independently, i.e.,

S(Q) = S(D̂1) _ S(D̂2).

Furthermore, as the disjuncts are simple conjunctions, their mappings can be handled with Algorithm SCM.

Thus, S(Q) = SCM(D̂1, KAmazon) _ SCM(D̂2, KAmazon). Since the calls to SCM �re rule R2 to handle

the matchings ff1; f3g for D̂1 and ff2; f3g for D̂2, S(Q) becomes [author = "Clancy,Tom"] _ [author =

"Klancy,Tom"]. Note that the result is indeed the minimal mapping possible.

In general, conjuncts may not be separable, but disjuncts always are. (Reference [15] also studied the

general condition, called inferential completeness, of when conjuncts are actually separable.) Since disjuncts

are always separable, one approach for translation is to �rst convert all queries into disjunctive normal form

(DNF), as was done in Example 5. This approach is followed by Algorithm DNF in Figure 6. After the

algorithm converts a query, the query has the form �Q =
Pm
i=1 D̂i, where D̂i is a simple conjunction. We

can distribute the mapping over _ to each D̂i, because disjuncts are separable, i.e., S(�Q) =
Pm
i=1 S(D̂i).

Furthermore, since each D̂i is just a simple conjunction, it can be readily handled with Algorithm SCM. In

fact, Example 5 has illustrated exactly this process.

Unfortunately, although Algorithm DNF guarantees the minimal translation, it is expensive, in
exible,

and usually unnecessary to rely on DNF. Note that DNF conversion is exponential in the number of con-

straints (because the Boolean satis�ability problem is NP-complete [21]). To name some problems, �rst,

16

Algorithm DNF requires a blind DNF conversion regardless of whether some conjuncts can actually be sepa-

rated. That is, it does not check the potential constraint dependencies to justify the conversion. For instance,

if the constraints of Q in Example 5 were on ti instead of ln and fn, the conversion would be unnecessary.

(KAmazon shows no inter-dependencies between ti constraints.) Furthermore, the conversion is global ; it

structurally rewrites the whole query. As Section 6 discusses, when conversion is necessary, we can identify

and limit its scope to reduce the cost. Lastly, because DNF is typically not a concise Boolean representa-

tion, Algorithm DNF cannot generate compact translations. (We discuss this compactness in Section 8.) In

addition, as we will see in Example 6, Algorithm DNF usually requires repeated work (in step 2) to handle

the repeating occurrences of the same constraints in many disjuncts. To address these problems, we next

discuss a more
exible and e�cient scheme that requires local query conversion only when necessary.

6 Traversal-based Top-Down Query Mapping

This section discusses Algorithm TDQM , which performs constraint mapping in a top-down traversal of a

query tree. Although not essential, for the purpose of explanation, we represent a query in a query tree,

with interior ^ and _ nodes, and leaf constraints. Figure 7 shows a book query Q̂book that we will use

as our running example. (We will explain the shaded annotations later.) Recall that Q̂ means that the

query is conjunctive, while �Q means that it is disjunctive. By viewing ^ and _ as n-ary operators that take

a set of operands, we generally assume that ^ and _ alternate along a path in trees. (Otherwise we can

simply collapse any repeating operators, e.g., ^fa;^fb; cgg = ^fa; b; cg.) In other words, the conjuncts in

a conjunction Q̂ are disjunctive, i.e., Q̂ = ^f �Cig. Similarly, disjuncts are conjunctive, i.e., �Q = _fD̂ig. Of

course, at the leaves, both �Ci and D̂i can be simply a constraint.

Mapping complex queries is di�cult mainly because conjuncts may or may not be separable. Without

this complication, translation would be a straightforward top-down traversal of query trees: By distributing

S(�) over ^ and _, we eventually would only need to handle leaf constraints (with Algorithm SCM). Modulo

the conjunction problem, this top-down process is essentially the intuition for Algorithm TDQM (Figure 8).

The major challenge in Algorithm TDQM is to e�ectively handle conjunctions, which we will explore

in more detail in Section 7. In particular, for inseparable conjuncts, we want to partition them into some

separable subsets. In other words, we want to �nd a decomposition of the conjuncts if they are decomposable

(see De�nition 2). For instance, as we will see, Q̂book is not separable, i.e., S(Q̂book) 6= S(�C1)S(�C2)S(�C3).

However, it turns out that only �C2 and �C3 are truly dependent; i.e., S(Q̂book) = S(�C1)S(�C2
�C3). With the

partition of f �C1g and f �C2; �C3g, the mapping can proceed directly to �C1, and we need to rewrite only the

subtree (�C2 ^ �C3). We will focus on conjunction separation in Section 7. Here we start with Example 6 to

illustrate the top-down traversal approach of Algorithm TDQM .

Example 6 (Algorithm TDQM): Let us consider mapping Q̂book (Figure 7) for Amazon with the rules

KAmazon (Figure 3). To begin with, since Q̂book is conjunctive, we must �gure out how to partition the

conjuncts (or otherwise rewrite the whole query as with Algorithm DNF). Section 7.2 will discuss Algo-

rithm PSafe speci�cally for conjunction partition. As we will see, PSafe(Q̂book, KAmazon) returns two blocks

B1 = f �C1g and B2 = f �C2; �C3g, i.e., S(Q̂book) = S(^(B1))S(^(B2)).

We �rst handle block B1. As it is a single-conjunct block, the mapping proceeds directly to �C1. Fur-

thermore, since disjuncts are always separable, we can separate flff , fk1, and fk2. Since they are all simple

conjunctions (of one or more constraints), we can handle them with Algorithm SCM. In summary, by travers-

ing the �C1 subtree, we obtain S(^(B1)) = SCM(flff , KAmazon)_SCM(fk1, KAmazon)_SCM(fk2, KAmazon).

As for B2, note that intuitively (�C2 ^ �C3) are not separable, because �C2 has a pyear constraint that

can combine with either pmonth constraint in �C3 to �re rule R6 in KAmazon . For inseparable conjuncts,

17

∧ εfyfm1 ∨ εfyfm2

fyfm1 ∨ fyfm2

fm1∨ fm2

fm1∨ fm2

fl

fl

fl
fk1 fk2∧

fl ff

fl ff
fk2

ε
fk1

ε

∨
fl ff ∨ε∨ε

ε

ff

ff

ff
fm1 fm2

∨

fm2

fm2

fm1

fm1

3
∨
C

[ln = “Smith”] [fn = “John”]

[kwd contains “java”]
[kwd contains “www”]

[pmonth = 5] [pmonth = 6]

fy
fy

fy
2

∨
C

[pyear = 1997]

1
∨
C

bookQ
∧

Figure 7: A query tree Q̂book. The shaded annotations illustrate the computation of EDNF.

we must rewrite the subtree to continue the mapping. In particular, we can distribute the root ^ over

the next level _, and thus �B2 = fyfm1 _ fyfm2. Intuitively, by pushing down the problematic ^, we

can eventually collect the dependent constraints in some simple conjunctions (e.g., fyfm1 and fyfm2). As

we rewrite ^(B2) to a disjunctive form, the mapping can proceed to the new disjuncts, i.e., S(^(B2)) =

SCM(fyfm1, KAmazon)_SCM(fyfm2, KAmazon). Thus, the complete mapping of Q̂book is S(^(B1))S(^(B2)).

Observe that during tree traversal, our algorithm actually rewrites the query. In particular, Q̂book is

e�ectively converted to (flff _ fk1 _ fk2) ^ (fyfm1 _ fyfm2) so that dependent constraints are collected in

simple conjunctions. Note that, in comparison, Algorithm DNF would require a global and blind conversion

into DNF: (flfffyfm1_flfffyfm2_fk1fyfm1_fk1fyfm2_fk2fyfm1_fk2fyfm2). Furthermore, mapping based

on DNF requires more work because it is typically not as concise as the original tree. Therefore, in di�erent

invocations of Algorithm SCM we need to repeatedly handle those repeating constraints in various disjuncts

(e.g., fy appears in all the disjuncts of the above DNF, and fm1 in three of them).

As Example 6 informally illustrated, Algorithm TDQM traverses a given query tree to perform the map-

ping. We structure this tree traversal as a recursive procedure in Figure 8. The procedure di�erentiates three

cases: At an _-node (Case-1), it simply separates and recursively calls TDQM on each disjunct. For complex

conjunctions (Case-2), it calls upon Algorithm PSafe to determine the partition of conjuncts, and handle

each block independently. Eventually, at (the conjunction of) leaves (Case-3), it relies on Algorithm SCM

to process simple conjunctions, which is actually the base case that terminates the recursion.

In particular, at a conjunction, we rewrite locally and incrementally each inseparable block into a disjunc-

tive form. As Figure 8 (bottom) shows, function Disjunctivize converts a conjunctive subtree by distributing

the ^ at the root over the _ at the next level. For instance, in Example 6 we rewrote (fy) ^ (fm1 _ fm2)

to (fyfm1 _ fyfm2); the rewriting was localized to block f �C2; �C3g. Furthermore, Algorithm TDQM performs

such rewritings incrementally instead of directly into DNF. For instance, suppose A, B, and C are complex

queries. After Disjunctivize converts (A_B)(C) into (AC _BC), if the dependency is between A and C, we

need not to further rewrite BC at all.

We conclude Algorithm TDQM by giving in Theorem 2 its correctness for mapping arbitrary queries.

Note that here we assume the correctness of Algorithm PSafe, which we will present in Section 7.

Theorem 2 (Correctness of Algorithm TDQM): Given an arbitrary query Q and the mapping speci�-

cation K that is sound and complete for some target T , Algorithm TDQM outputs the minimal subsuming

mapping of Q with respect to T , i.e., TDQM(Q, K) = S(Q).

18

Algorithm TDQM: Top-Down Query Mapping

Input: � Q: an arbitrary query in the original context.

� K: the constraint mapping speci�cation w.r.t. a target system T .

Output: S(Q), the minimal subsuming mapping of Q w.r.t. T .

Procedure:

01. == Case-1: disjunctive queries, i.e., at an _-node.

02. � if Q = _(fD̂1; D̂2; : : : ; D̂ng):

03. { for each D̂i: S(D̂i) TDQM(D̂i, K) == recursively call TDQM for each disjunct.

04. { return S(Q) _(fS(D̂1);S(D̂2); : : : ;S(D̂n)g) == disjuncts are separable.

05. == Case-2: conjunctive queries, i.e., at an ^-node with some non-leaf children.

06. � else if Q = ^(f �C1; �C2; : : : ; �Cng), where at least one �Ci is non-leaf:

07. { P PSafe(Q, K) == Algorithm PSafe partitions Q into a set of separable blocks.

08. { for each B 2 P :

09. { �B Disjunctivize(^(B)) == rewrite a conjunctive block into a disjunctive query.

10. { S(^(B)) TDQM(�B, K) == recursively call TDQM for disjunctive query �B.

11. { return S(Q) ^B2PS(^(B))

12. == Case-3: simple conjunctions, i.e., at a leaf or an ^-node with only leaf children.

13. � else if Q is a simple conjunction with one or more constraints:

14. { return S(Q) SCM(Q, K) == call Algorithm SCM with inputs Q and K.

Function Disjunctivize(^(B)): == rewrite a conjunctive query ^(B) into a disjunctive form �B.

15. == B is a set of k conjuncts, i.e., B = f �C1; �C2; : : : ; �Ckg, and �Ci = _(fD̂i1; D̂i2; : : : ; D̂imi
g).

16. � if k = 1: return �B �C1 == no need to rewrite single-conjunct block.

17. � else: == if more than one conjunct, rewrite ^(B) by distributing ^ over _, e.g.,

18. == ^f(D̂11 _ D̂12); (D̂21 _ D̂22)g becomes _fD̂11D̂21; D̂11D̂22; D̂12D̂21; D̂12D̂22g

19. { return �B _(fD̂1j1 D̂2j2 � � � D̂kjk j ji 2 [1 : mi]g)

Figure 8: Algorithm TDQM for mapping arbitrary queries.

Proof: We di�erentiate between the case when Q is a simple conjunction and otherwise. First, Algo-

rithm TDQM does handle simple conjunction correctly: Referring to Figure 8 (Case-3), when Q is a simple

conjunction, the algorithm simply processes Q using Algorithm SCM , i.e., TDQM(Q, K) = SCM(Q, K). As

K is sound and complete, it follows from Theorem 1 that TDQM(Q, K) = S(Q).

We next consider when Q is an arbitrary query other than a simple conjunction. Assuming that Algo-

rithm TDQM does not handle Q correctly, we will show that the algorithm must also fail with some simple

conjunction, thus a contradiction to the preceding case.

To begin with, for any Q such that TDQM(Q, K) 6= S(Q), we can derive from Q a subquery Q0 that

Algorithm TDQM cannot map correctly either. Compared to Q, such a subquery Q0 is strictly simpler in

the sense that its query tree is a proper subgraph of that of Q. In other words, Q0 consists of only some

(but not all) of the subtrees in Q. Since Q is either conjunctive or disjunctive, we discuss how to �nd such

a subquery Q0 for either case:

1. If Q is disjunctive, i.e., Q = _(fD̂1; : : : ; D̂ng) and n > 1. As discussed in Section 5, disjuncts are

always separable, i.e., S(Q) = S(D̂1)_ � � �_ S(D̂n) (see reference [15, 16]) . For such queries, referring

to Figure 8 (Case-1), our algorithm outputs TDQM(Q, K) = TDQM(D̂1, K) _ � � � _ TDQM(D̂n, K).

If TDQM(Q, K) 6= S(Q), there must exist some disjunct D̂i such that TDQM(D̂i, K) 6= S(D̂i). Let

Q0 = D̂i. Note that Q0 is strictly simpler than Q: In terms of the query trees, Q0 is a subgraph of Q,

since Q0 consists of only one of the n (n > 1) disjunct subtrees in Q.

2. Otherwise, if Q is conjunctive (but not a simple conjunction), i.e., Q = ^(f �C1; : : : ; �Cng) and n > 1.

19

Let fB1; : : : ; Bmg be the partition returned by Algorithm PSafe. As we will see in Theorem 6, the

partition guarantees that S(Q) = S(^(B1)) � � � S(^(Bm)). Let �Bj = Disjunctivize(^(Bj)). Referring

to Figure 8, it is obvious that �Bj � ^(Bj) and thus S(Q) = S(�B1) � � �S(�Bm). In comparison, our

algorithm outputs (via Case-2) TDQM(Q, K) = TDQM(�B1, K) _ � � � _TDQM(�Bm, K). For S(Q) and

TDQM(Q, K) to be di�erent, it is required that TDQM(�Bj , K) 6= S(�Bj), for some Bj .

Let's now focus on such �Bj . Note that �Bj � ^(Bj). Since ^(Bj) covers some or all of the conjuncts in

Q, ^(Bj) or �Bj must be either strictly simpler than or equivalent to Q. (The latter can happen when

Bj consists of all the conjuncts in Q.) Furthermore, as �Bj is disjunctive, we then apply the preceding

case to separate a subquery Q0 that is strictly simpler than �Bj and in turn also strictly simpler than

Q.

Repeating this process recursively, each time we start with the subquery Q0 just identi�ed to �nd an even

simpler subquery, and so on. Thus the sequence of queries so derived are \monotonically" strictly-simpler.

Given a query Q with a �nite parse tree, eventually we will end up with a simple conjunction Q0 (where

neither Case 1 nor Case 2 can apply) such that TDQM(Q0, K) 6= S(Q0). Thus we reach a contradiction since

we have shown that Algorithm TDQM processes simple conjunctions correctly.

We have presented Algorithm TDQM, which maps constraints in the top-down traversal of a query tree

and performs structure conversion only when necessary. Therefore, the remaining challenge is the partition

of conjuncts that respects constraint dependencies. We study this problem next.

7 Conjunct Partitioning

This section discusses how we can partition the conjuncts in a conjunction. First, as a basis, Section 7.1 stud-

ies the safety conditions for conjunct separation (i.e., when it is safe to translate conjuncts independently).

In Section 7.2 we then present Algorithm PSafe, which actually partitions conjuncts safely.

7.1 Safety Conditions for Conjunct Separability

We now explore how to determine if a conjunction Q̂ = C1 � � �Cn can be separated safely (i.e., without

impacting constraint mapping). (See De�nition 2 for the formal de�nition of separability.) We �rst study

the base case when the conjunct Ci's are simple conjunctions, and then the general case when Ci's are

disjunctive. Note that, while the former is not a \natural" pattern in our query trees (which assume

alternating ^ and _), it is the basis for the general case.

7.1.1 Base Case: Simple-Conjunction Conjunctions

We �rst focus on Q̂ = Ĉ1 � � � Ĉn when Ĉi's are simple conjunctions, to determine the safety condition that

ensures S(Q̂) = S(Ĉ1) � � �S(Ĉn). Note that since Ĉi's as well as the entire Q̂ are all simple conjunctions,

their mappings can be handled with Algorithm SCM . Thus, for some mapping rules K, the separability is to

see if SCM(Q̂, K) = SCM(Ĉ1, K) � � �SCM(Ĉn, K). As Algorithm SCM is essentially a rule matching process,

if all the matchings in SCM(Q̂, K) can also be found in some SCM(Ĉi, K), then the condition must hold

true. In other words, Q̂ is separable when no matchings occur across the conjuncts. Example 7 illustrates

this intuition, and then De�nition 5 formally states when conjunction Q̂ is safe to be separated.

Example 7: Let Q̂ = Ĉ1:(flff) ^ Ĉ2:(fy) ^ Ĉ3:(fm1) (part of the query in Figure 7). For rules KAmazon

(Figure 3) representing target Amazon, Q̂ is not separable because of the matching ffy; fm1g (for rule R6),

20

which can only be found when we consider Q̂ as a whole. That is, m is a cross-matching that appears

in M(Q̂;KAmazon) (i.e., the matchings from Q̂ for any rule in KAmazon) but not in any M(Ĉi;KAmazon).

Those conjuncts that contain a cross-matching (in this case Ĉ2 and Ĉ3) cannot be separated, or else the

cross-matching will be adversely omitted.

In particular, if we separate each Ĉi, the mapping will miss the target constraint [pdate during May/97]

(generated by R6 from matching ffy; fm1g). In fact, it will drop the month component, because with the

separation R7 will �re instead (with matching ffyg from Ĉ2).

De�nition 5 (Safety for Base-Case Conjunctions): Let Q̂ = Ĉ1 � � � Ĉn, where Ĉi's are simple conjunc-

tions. Q̂ is safe w.r.t. rules K if M(Q̂;K)�[ni=1M(Ĉi;K) = �; otherwise Q̂ is unsafe.

Note that this safety is su�cient but not necessary for separability. Namely, a cross-matching might

be \redundant," and thus its omission by conjunct separation has no impact on the mapping. While this

redundancy is rare in practice, for the completeness of our study, in what follows we present the precise

(i.e., su�cient and necessary) separability condition for the base-case conjunctions (Theorem 3). It follows

immediately from the precise condition that the safety in De�nition 5 does imply separability (Corollary 1).

Moreover, we note that it can be expensive to fully test the precise condition. In fact, we believe that in

practice a cross-matching is unlikely to be redundant, and the test of De�nition 5 will be adequate. If we

use De�nition 5 and encounter a rare redundant cross-matching, we will have to pay the cost of an extra

query conversion, but the mapping will still be minimal.

Precise Separability Condition

We just observed in Example 7 that a cross-matching m spanning across some Ĉi's can make Q̂ insep-

arable. However, Q̂ is truly inseparable only if the cross-matching is essential such that omitting it would

result in a non-minimal mapping.

To illustrate, consider Example 7 again. The mapping S(Ĉ1)S(Ĉ2)S(Ĉ3) resulted from conjunct sepa-

ration is not minimal for Q̂: The cross-matching m = ffy; fm1g can further contribute to the mapping. In

other words, S(Ĉ1)S(Ĉ2)S(Ĉ3)S(^(m)) is more selective because S(Ĉ1)S(Ĉ2)S(Ĉ3) 6� S(^(m)){ We thus

determine that m is essential for the mapping. With this notion, a conjunction is separable if there is no

essential cross-matchings. We formally state this separability criterion in Theorem 3.

Theorem 3 (Separability for Base-Case Conjunctions): Let Q̂ = Ĉ1 � � � Ĉn, where Ĉi's are simple

conjunctions. Let � =M(Q̂;K)�[ni=1M(Ĉi;K) for some rules K. Q̂ is separable w.r.t. K if and only if for

every matching m 2 �,

S(Ĉ1) � � �S(Ĉn) � S(^(m)): (6)

Proof: (if) Since Ĉ1; : : : ; Ĉn as well as Q̂ are all simple conjunctions, their minimal subsuming mappings

can be generated with Algorithm SCM (Theorem 1). Thus, referring to Eq. 4 discussed in Theorem 1,

the mapping of Q̂ is S(Q̂) = SCM(Q̂, K) =
Q
m2M(Q̂;K) S(m̂). Note that M(Q̂;K) = M(Ĉ1;K) [� � � [

M(Ĉn;K) [�. Therefore,

S(Q̂) =
Q
m2M(Ĉ1;K)

S(m̂) � � �
Q
m2M(Ĉn;K)

S(m̂)
Q
m2� S(m̂):

Similarly, for each Ĉi, the mapping is S(Ĉi) = SCM(Ĉi, K) =
Q
m2M(Ĉi;K) S(m̂). Thus the mapping of Q̂

can be written as

S(Q̂) = S(Ĉ1) � � �S(Ĉn) ^
Q
m2� S(m̂) (7)

Obviously if S(Ĉ1) � � �S(Ĉn) � S(m̂) for every cross-matching m 2 �, then S(Q̂) = S(Ĉ1) � � �S(Ĉn), i.e., Q̂

is separable.

21

(only if) Suppose that there exist matchings x1; : : : ; xl in � such that S(Ĉ1) � � � S(Ĉn) 6� S(x̂i). We can

then write Eq. 7 as S(Q̂) = S(Ĉ1) � � � S(Ĉn) ^ [S(x̂1) � � �S(x̂l)]. Consequently Q̂ is not separable, because

S(Q̂) � S(Ĉ1) � � � S(Ĉn) and thus the right side is not the minimal subsuming mapping.

Operationally, to test separability with Theorem 3, we �rst evaluate �, all the cross-matchings found

with Q̂ but not with any individual Ĉi's. For any such matching m, we check with Eq. 6 if m can actually

contribute to the mapping of Q̂. If S(^(m)) subsumes S(Ĉ1)S(Ĉ2) � � �S(Ĉn), then omittingm has no impact

on S(Q̂). We next illustrate the usage of Theorem 3 with Example 8.

Example 8: Suppose that a source G supports map queries that specify rectangle areas. Speci�cally, queries

are in terms of constraints on attributes Xrange, Yrange (respectively the range of x and y coordinate), Cll and

Cur (respectively the lower-left and upper-right coordinate). For instance, a query selecting an area bounded

by x = 10, x = 30, y = 20, and y = 40 can be written as either g1:[Xrange = (10:30)] ^ g2:[Yrange = (20:40)]

or equivalently g3:[Cll = (10,20)] ^ g4:[Cur = (30,40)]. Figure 9 illustrates this area as the dark rectangle

labeled g1g2. Note that g3 by itself speci�es an open area with boundary x = 10 and y = 20, i.e., the whole

shaded area (including that of g1g2).

Assume a mediatorF supports the same map queries but through di�erent attributes. Speci�cally, F uses

attributes xmin and xmax for respectively the lower and upper bound of x coordinate, and similarly ymin and

ymax. Therefore, the above query can be expressed in F as f1:[xmin = 10]^f2:[xmax = 30]^f3:[ymin = 20]^

f4:[ymax = 40]. Consequently, for translation from F to G, we would compose a speci�cation K with rules

handling the mapping from the conjunction xmin ^ xmax to Xrange, ymin ^ ymax to Yrange, xmin ^ ymin to

Cll, and xmax ^ ymax to Cur.

First, consider an F query Q̂ = Ĉ1^Ĉ2 = (f1f2)(f3f4). We want to test if Q̂ is separable with Theorem 3.

Matching the (sub-) queries against K we obtain M(Ĉ1;K) = fm1:ff1; f2gg, M(Ĉ2;K) = fm2:ff3; f4gg,

and M(Q̂;K) includes m1, m2, plus m3 = ff1; f3g, and m4 = ff2; f4g. There are thus two cross-matchings,

i.e., � =M(Q̂;K)� (M(Ĉ1;K) [M(Ĉ2;K)) = fm3;m4g.

Although we have identi�ed two cross-matchings, Q̂ is in fact separable because both matchings are

\redundant." We test this redundancy with with Eq. 6. In other words, we verify if S(Ĉ1)S(Ĉ2) � S(^(m3))

(and similarly for m4). This subsumption condition indeed holds: S(Ĉ1)S(Ĉ2) = S(f1f2)S(f3f4) = g1g2

(the corresponding x and y ranges), which is subsumed by S(^(m3)) = g3 (the lower-left coordinate). To

illustrate this subsumption, Figure 9 shows that the point (50,30) is in g3 but not g1g2. Similarly, Eq. 6 also

holds for m4. Since no cross-matchings are essential, Q̂ is indeed separable.

As a second example, let's consider Q̂ = Ĉ1 ^ Ĉ2 = (f1f4)(f2f3). In this case M(Ĉ1;K) = �, i.e.,

there is no mapping for either f1 and f4 individually, or together. Similarly, M(Ĉ2;K) = �. However,

M(Q̂;K) is the same as the previous example, i.e., fm1;m2;m3;m4g. Thus we have four cross-matchings:

� = fm1;m2;m3;m4g.

In this case, Q̂ is not separable because some (in fact all) cross-matchings are essential; they fails to

satisfy the condition in Theorem 3, e.g., S(Ĉ1)S(Ĉ2) 6� S(^(m3)). In fact, both S(Ĉi)'s are True because

there is no matching for either Ĉ1 or Ĉ2. The left side of the condition is therefore True, while the right side

is S(^(m3)) = g3. Obviously, True 6� g3, thus the condition fails.

The precise conditions of Theorem 3 can be expensive to apply. Although �nding cross-matchings is

straightforward, testing the subsumption condition Eq. 6 for such matchings can be costly or even impossible.

As Example 8 shows, we need to �nd S(^(m)) as well as S(Ĉi)'s simply for testing separability. Moreover,

testing the subsumption condition itself is very domain-speci�c and is hard to automate, if possible at all.

We therefore give the notion of safety in De�nition 5 as a practical measure for determining separability. It

follows immediately fromTheorem 3 that safety is a su�cient condition (in which case � = �) that guarantees

22

10 30

20

40

g1g2

g3

x

y

(50,30)

Figure 9: Query g3 (all the shaded area) subsumes query g1g2 (the dark rectangle).

separability, as formally stated in Corollary 1. Intuitively, De�nition 5 omits the test of essentialness and

only checks the existence of cross-matchings. In most cases, we believe a redundant cross-matching is rare,

and the simple test of safety will be adequate. Note that Example 8 is an exception since source G supports

inter-dependent attributes (i.e., a pair of Xrange and Yrange is equivalent to a pair of Cll and Cur), which we

believe to be unusual in practice.

Corollary 1: Let Q̂ = Ĉ1 � � � Ĉn, where Ĉi's are simple conjunctions. If Q̂ is safe according to De�nition 5,

then Q̂ is separable.

7.1.2 General Case: Disjunctive-Query Conjunctions

Conjunctions in our query trees generally have the form Q̂ = �C1 � � � �Cn, where �Ci's are disjunctive with

\ingredient" disjuncts Iij , i.e., �Ci = Ii1 _ � � � _ Iimi
. (The ingredients Iij can themselves be complex

queries.) Since �Ci's are conjuncts, any combinations of their ingredients of the form D̂ = I1k1 � � �Inkn is

an implicit conjunction in Q̂. Intuitively, Q̂ is separable when there is no inter-dependencies among the

ingredients from di�erent �Ci's. In other words, when all such \ingredient conjunctions" are separable, i.e.,

S(D̂) = S(I1k1) � � � S(Inkn), then Q̂ as the \whole conjunction" must also be separable, which we illustrate

with Example 9.

Example 9: Suppose Q̂ = �C1
�C2 = (I11 _ I12)(I21). (We can view �C2 as disjunctive with one disjunct.) To

see the ingredient conjunctions, let's convert Q̂ into a disjunctive form with function Disjunctivize (Figure 8).

That is, we compute �Q = Disjunctivize(Q̂) = _(fD̂1:I11I21; D̂2:I12I21g).

We want to show that if the ingredient conjunctions (D̂1 and D̂2) are separable, then so is Q̂, i.e.,

S(Q̂) = S(�C1)S(�C2). Since Q̂ = D̂1 _ D̂2, the left hand side S(Q̂) is equivalent to S(D̂1)_S(D̂2) (disjuncts

are always separable), or S(I11)S(I21)_S(I12)S(I21) because D̂1 and D̂2 are separable. The right hand side

S(�C1)S(�C2) is also equivalent to the last expression, since S(�C1) = S(I11) _ S(I12) and S(�C2) = S(I21).

Example 9 suggests the following safety condition. Note that De�nition 6 de�nes safety recursively; as

we will see, De�nition 5 is the base case that grounds the recursion.

De�nition 6 (Safety for General-Case Conjunctions):

Let Q̂ = �C1 � � � �Cn, where �Ci's are disjunctive, i.e., �Ci = Ii1 _ � � � _ Iimi
, and Iij's are arbitrary queries. Let

�Q = Disjunctivize(Q̂). Q̂ is safe w.r.t. rules K if all the disjuncts (as a conjunction I1k1 � � � Inkn) in �Q are

safe (and thus separable) w.r.t. K; otherwise, Q̂ is unsafe.

Note that, while we can separate a safe conjunction, an unsafe one might actually be separable. To

illustrate these rare cases, consider Q̂ = �C1
�C2 = (x_y)(z). Suppose that fy; zg (among others) is a matching

23

for the mapping rules. Note that Q̂ is unsafe, because the combination (y)(z) is unsafe (since fy; zg is a cross-

matching). Thus Q̂ will normally be inseparable. However, in the particular case when there is no mapping for

either fxg or fx; zg (and thus S(x) = True and S(xz) = S(z)), we can show that S(Q̂) = S(�C1)S(�C2): First,

S(Q̂) = S(xz _ yz) = S(xz)_S(yz) = S(z)_S(yz). Thus we obtain S(Q̂) = S(z), since S(z) � S(yz). Now

consider the mapping of the other way: S(�C1)S(�C2) = S(x _ y)S(z) = [S(x)_S(y)]S(z). Thus S(�C1)S(�C2)

also simpli�es to S(z) since S(x) = True. Therefore, Q̂ is actually separable while being unsafe. Observe

that this \anomaly" is solely because (the mapping of) the unsafe term (y)(z) is \masked" by S(xz) = S(z),

which would not occur if S(x) 6= True.

To explain the anomalies and to show the correctness of De�nition 6, we next discuss the precise separa-

bility condition for the general-case conjunctions. However, such anomalies should be rare in practice. That

is, we believe that we can use De�nition 6, and very seldom misdiagnose a conjunction as not separable.

Again, the misdiagnosis simply means that the resulting mapping may not be the most succinct, but it will

still be minimal.

Precise Separability Condition

We just observed the anomaly that S((x _ y)(z)) = S(x _ y)S(z) even if S(yz) 6= S(y)S(z) (i.e., S(yz) �

S(y)S(z)). Note that because S(x) = True, S(xz) = True ^ S(z) = S(z). Furthermore, since �Q has two

terms xz and yz, the \di�erence" between S(yz) and S(y)S(z), i.e., [S(y)S(z)] :S(yz), is subsumed (or

\absorbed") by the other term S(xz), i.e., [S(y)S(z)] :S(yz) � S(xz). The subsumption holds because the

left side is a conjunction with S(z) and the right is simply S(z). Therefore, this subsumption cancels the

e�ect of the unsafe terms yz.

The above observation suggests that Q̂ is separable if and only if any disjunct in Disjunctivize (Q̂) is either

separable, or else its e�ect can be canceled by the mappings of the other terms. Theorem 4 formally gives

this precise condition for separability.

Theorem 4 (Separability for General-Case Conjunctions): Let Q̂ = �C1 � � � �Cn, where �Ci's are dis-

junctive, i.e., �Ci = Ii1 _ � � � _ Iimi
, and Iij's are arbitrary queries. Let �Q = Disjunctivize (Q̂). Q̂ is separable

w.r.t. rules K if and only if for every disjunct D̂j = I1k1 � � �Inkn in �Q,

[S(I1k1) � � �S(Inkn)] :S(D̂j) �
P

D̂j02
�Q;j0 6=j

S(D̂j0): (8)

Proof: (if)We �rst show that if Eq. 8 holds for every D̂j , then Q̂ is separable. To begin with, the mapping

of Q̂ can be computed with �Q as

S(Q̂) � S(�Q) =
P

D̂j2 �QS(D̂j): (9)

For simplicity, for each D̂j = I1k1 � � �I1kn , let Zj denote S(I1k1) � � �S(Inkn). The left side of Eq. 8 can

then be written as Zj:S(D̂j). Note that in general by Lemma 1,

S(D̂j) � Zj : (10)

If D̂j is separable, then S(D̂j) = Zj .

Suppose that Eq. 8 holds for every D̂j . Since the right side of Eq. 8 is subsumed by that of Eq. 9, by

transitivity it follows that Zj:S(D̂j) � S(Q̂). As this subsumption holds for every D̂j , we can write S(Q̂) as

S(Q̂)_
P

D̂j2 �Q
Zj:S(D̂j) or (by Eq. 9) as

P
D̂j2 �Q

S(D̂j)_
P

D̂j2 �Q
Zj:S(D̂j). In addition, since S(D̂j) � Zj

(see Eq. 10), we can substitute ZjS(D̂j) for S(D̂j) in the �rst term, i.e.,

S(Q̂) =
P

D̂j2 �Q
ZjS(D̂j) _

P
D̂j2 �Q

Zj:S(D̂j) =
P

D̂j2 �Q
Zj [S(D̂j) _ :S(D̂j)] =

P
D̂j2 �Q

Zj

24

Meanwhile, we can show that S(�C1) � � � S(�Cn) also results in the last expression, and thus Q̂ is separable:

S(�C1) � � � S(�Cn) = S(I11 _ � � � _ I1m1
) � � �S(In1 _ � � � _ Inmn

)

= [S(I11) _ � � � _ S(I1m1
)] � � � [S(In1) _ � � � _ S(Inmn

)]

=
P

I1k1 ���Inkn in
�QS(I1k1) � � �S(Inkn) =

P
D̂j2 �QZj (11)

(only if) We show that Q̂ is not separable, if some D̂h fails to satisfy Eq. 8, i.e.,

Zh:S(D̂h) 6�
P

D̂j02
�Q;j0 6=h

S(D̂j0): (12)

As an aside, it is straightforward to see that, in terms of set algebra, if A 6� B and A \ C = �, then

A [C 6� B [C. Based on this property, since Zh:S(D̂h) \ S(D̂h) = �, it follows Eq. 12 that

S(D̂h) _ Zh:S(D̂h) 6� S(D̂h) _
P

D̂j02
�Q;j0 6=hS(D̂j0) (13)

Furthermore, because S(D̂h) � Zh and thus S(D̂h) = ZhS(D̂h), the left side of Eq. 13 equals ZhS(D̂h)_

Zh:S(D̂h) = Zh. Note also that the right side is simply S(Q̂) as given in Eq. 9. Therefore the equa-

tion becomes Zh 6� S(Q̂). In contrast, since Zh is among the disjuncts in Eq. 11, it follows that Zh �

S(�C1) � � �S(�Cn). By comparison we conclude that S(Q̂) 6= S(�C1) � � �S(�Cn), i.e., Q̂ is not separable.

Note that, if a disjunct D̂i is safe (and thus separable), we do not need to test the subsumption condition

Eq. 8 at all. In this case, because S(D̂i) = S(I1k1)S(I2k2) � � �S(Inkn), Eq. 8 holds trivially because the

left side is simply �. In fact, this case is exactly the safety condition presented in De�nition 6. Thus the

correctness of De�nition 6 follows immediately.

Corollary 2: Let Q̂ = �C1 � � � �Cn, where �Ci's are disjunctive queries. If Q̂ is safe according to De�nition 6,

then Q̂ is separable.

When D̂i is unsafe, Theorem 4 further veri�es that such unsafe terms do have an impact on the overall

mapping. In other words, if Eq. 8 holds, then we can ignore such unsafe terms. Note that this subsumption

condition is hard and expensive to verify. In practice, we believe that it is adequate to use the safety condition

instead. De�nition 6 is much cheaper to test, and in most cases unsafe conjunctions are simply inseparable.

7.1.3 Testing the Safety Conditions

We next discuss how to e�ciently test the safety conditions (to determine separability). In principle, to

check if Q̂ = �C1 � � � �Cn is safe, we can recursively apply De�nition 6. As each application will \Disjunctivize"

the query, eventually we will deal with the base case (when all the �Ci's become simple conjunctions) in

De�nition 5.

In fact, we can �rst convert �Ci's into DNF to avoid the recursion: Note that, in De�nition 6, when all
�Ci's are in DNF, the ingredients Iij are just simple conjunctions. Therefore, we can check the safety of

I1k1 � � �Inkn with De�nition 5. We illustrate this process with Example 10.

Example 10: Consider (in Figure 7) Q̂book = �C1
�C2

�C3 = (flff _ fk1 _ fk2)(fy)(fm1 _ fm2). Note that �Ci's

are already in DNF. We show that Q̂book is unsafe. According to De�nition 6, we need the disjunctive form

of Q̂book:

�Qbook = Disjunctivize(Q̂book) = _(f D̂1:(flff)(fy)(fm1); D̂2:(flff)(fy)(fm2); D̂3:(fk1)(fy)(fm1);

D̂4:(fk1)(fy)(fm2); D̂5:(fk2)(fy)(fm1); D̂6:(fk2)(fy)(fm2)g) (14)

25

We then need to check if D̂i's are safe. For this check we can apply De�nition 5 since D̂i's are simple-

conjunction conjunctions. (If �Ci's were not in DNF, we would have to use De�nition 6 recursively.) In this

case all D̂i's are unsafe: There is a cross-matching (for rules KAmazon) ffy; fm1g in D̂1, D̂3, and D̂5, and

ffy; fm2g in the others. Therefore, Q̂book is unsafe.

However, this \brute-force" approach is not as e�cient as possible; it unnecessarily relies on Ĉi's full

DNF. (As discussed, DNF can be expensive to compute, and it contains more terms to check.) The key

intuition for making this process more e�cient is that the safety conditions ultimately depend solely on the

existence of cross-matchings. Therefore, we can omit from �Ci's those constraints that will not contribute to

forming a cross-matching, and thus focus on those may. We call the DNF of such a simpli�ed �Ci the essential

DNF (or EDNF), and write it as De(�Ci). While omitting \useless" terms from �Ci does not impact the safety

results, in most cases it will greatly simplify the safety check. We illustrate by redoing the preceding example.

Example 11 (Essential DNF): Consider again (in Figure 7) Q̂book = �C1
�C2

�C3 = (flff_fk1_fk2)(fy)(fm1_

fm2). As we will see, the EDNF's are De(�C1) = �, De(�C2) = fy, and De(�C3) = fm1 _ fm2. Intuitively, only

those \essential" constraints (i.e., fy, fm1, and fm2) involved in the potential cross-matchings (namely

ffy; fm1g and ffy; fm2g) remain in the EDNF. (We will later explain how to do \prematching" to �nd the

potential matchings.) Note that we use � to represent \something unimportant" (for testing safety) or \don't

care."

Replacing each �Ci by De(�Ci), we can then check the safety with the simpli�ed expression (�)(fy)(fm1 _

fm2). In turn, we will check the safety for simple conjunctions D̂0

1
= (�)(fy)(fm1) and D̂0

2
= (�)(fy)(fm2).

Obviously, testing the safety for these D̂0

i's involves less work than that for D̂i's (based on the full DNF) just

illustrated in Example 10, because using �Ci's EDNF results in fewer and simpler terms. Note that we indeed

obtain the same result that Q̂book is unsafe, since all the cross-matchings (i.e., ffy; fm1g and ffy; fm2g) are

preserved through the simpli�cation.

The major challenge remaining is therefore how to �nd the EDNF expression. We illustrate this with

query Q̂book. Essentially, we want to remove those useless constraints that will never participate in a cross-

matching. Therefore, the �rst step is to �nd all the matchings that may be involved in mapping Q̂book.

(We cannot know the exact matchings until we actually process the whole query.) In particular, we simply

match the rules with all the constraints, regardless of how they actually appear in Q̂book. In other words,

let C(Q̂book) denote the constraints in Q̂book, i.e., C(Q̂book) = ffy; fm1; fm2; fl; ff ; fk1; fk2g. We �rst �nd the

potential matchings: Mp = M(C(Q̂);KAmazon) = fffy, fm1g, ffy, fm2g, ffyg, fflg, ffl, ffg, ffk1g, ffk2gg.

We next discuss how we actually compute the EDNF expression of a query. Note that, since a query

tree may have several ^-nodes that require safety checks, we need EDNF for all of them. Therefore, our

process will compute the EDNF expressions for all nodes (representing subqueries) in the given tree \at

once." Intuitively, note that we can compute the (ordinary) DNF of a query tree in a bottom-up process:

Starting from the leaves, at each node we obtain the DNF (for the subquery rooted there) by merging the

children's DNF in a disjunctive form. For instance, in Example 10, �Qbook is actually the DNF of Q̂book

obtained this way from �Ci's DNF.

Similarly, we can also compute EDNF in such a bottom-up process. In addition, as will be clear, during

the process we remove terms as soon as they become useless. To illustrate, in Figure 7 we annotate each

node with De(R) and D(R) for the subquery R rooted there. The annotations are written as De(R)=D(R)

in the shaded boxes. Note that, as in Example 11, D(Q) denotes the DNF of Q based on the EDNF of its

(immediate) subqueries. Starting from the leaves, at each node (for subquery R), we �rst compute D(R)

from the children's EDNF, and then remove useless terms to obtain its own EDNF. This recursive process

e�ectively streamlines the computation of D(�) and De(�).

26

To illustrate, consider the subtree �C1 in Figure 7; we show that De(�C1) = �. Initially,D(�) for a leaf node

is simply the constraint itself, i.e., D(fl) = fl, D(fk1) = fk1, etc. Note that fk1 is in fact useless since it can

only contribute to the matching ffk1g by itself, as indicated by Mp. Thus we can delete fk1 (and similarly

for fk2) from D(fk1) and obtain De(fk1) = �. (The � symbol serves as a place holder simply for the ease

of computation.) In contrast, we cannot delete fl (and similarly for ff), because Mp contains a (potential)

cross-matching ffl; ffg that fl can contribute to (with other terms outside the current subtree).

For subquery fl ^ ff , based on the children's EDNF, we compute D(flff) = De(fl)De(ff) = flff . It

appears that we can delete the whole term flff , because it fully contains the only relevant matchings fflg

and ffl; ffg in Mp, and thus cannot further combine with other terms to form a cross-matching. However,

deleting flff at this point can result in a false-positive cross-matchings: To see this, consider the conjunction

Q̂ = (flff)(fl)(ff). Since ffl; ffg is fully contained in the �rst conjunct, it is not a cross-matching. However,

if we delete flff and Q̂ becomes (�)(fl)(ff), then we would adversely identify ffl; ffg as a matching across

conjuncts (fl) and (ff).

Moving up one level, we reach the node �C1 for subquery (flff _ fk1 _ fk2). We �rst compute D(�C1)

as the disjunction of its children's EDNF: D(�C1) = De(flff) _ De(fk1) _ De(fk2) = flff _ � _ �. At this

point we can actually delete flff , the false positive just illustrated will not occur because now flff is in

disjunction with some other terms (namely the �'s). To illustrate, consider conjunction (flff _ �)(fl)(ff) =

(flff)(fl)(ff)_(�)(fl)(ff). Note that the second disjunct (�)(fl)(ff) will identify the potential cross-matching

ffl; ffg anyway, regardless it might be a false-positive in the other term. Therefore, deleting (flff) and

rewriting De(�C1) as �_ �_ � does not impact the safety test, unlike the previous case. Finally we can merge

the don't-care's, and thus De(�C1) = �.

Figure 10 presents Procedure EDNF , which streamlines the computation of De(R) and D(R) for every

subquery R in a tree. As just illustrated, we �rst compute the potential matchings Mp (line 1). Then, we

structure the bottom-up process in a recursive subroutine ednf , which traverses the tree in post-order. At

each node, step (1) of ednf �rst computes D(R) form De(�) of the children. To obtain De(R), step (2) then

simpli�es D(R) by deleting useless terms (line 16{21) and merging extra �'s (line 22{23) with the rules that

we intuitively illustrated.

We conclude our discussion with several important features of using EDNF. First, it allows us to focus

on only the essential terms that may potentially contribute to cross-matchings. For example, when a query

does not contain any constraint dependencies (in which case the potential matchings Mp consists of only

single-constraint matchings), then all the EDNF will simply be �. With this reduction, the safety check

has virtually no cost. Furthermore, as we mentioned, we execute Procedure EDNF only once to prepare all

the D(�) and De(�) required by the conjunctive nodes. Finally, we can reuse the potential matchings Mp

computed in Procedure EDNF in the actual mapping process. For instance, in Example 6 we need to call

SCM(flff , KAmazon) to translate the simple conjunction flff . The algorithmwill then match the constraints.

For this task, we can simply reuse from Mp those relevant matchings, i.e., fflg and ffl; ffg. Finally, as we

will formally show in Section 7.3, for our purpose of conjunct separation, EDNF is equivalent to full DNF.

7.2 Partitioning Conjunctive Queries

Based on the safety conditions, we next study how to safely partition conjuncts. This section presents

Algorithm PSafe. As we explained in Section 6, Algorithm PSafe is the critical technique that our mapping

algorithm (Algorithm TDQM in Figure 8) relies on for partitioning conjunctions.

Speci�cally, when a conjunction �C1 � � � �Cn is safe, our algorithmsimply returns the n blocks f �C1g; : : : ; f �Cng,

which means that every conjunct can be independently translated. Otherwise, for an unsafe conjunction,

27

Procedure EDNF : Computing EDNF (essential DNF) for Testing Separability

Input: � Q: an arbitrary query in the original context.

� K: the constraint mapping speci�cation w.r.t. a target system T .

Purpose: computing De(�) and D(�) w.r.t. K for each node (i.e., a subtree) of Q.

Procedure:

01. � Mp M(K;C(Q)) == Mp is \global" to the recursive traversal of the whole tree.

02. � ednf (Q) == call ednf to compute De(�) and D(�) at each node from bottom up.

Subroutine ednf (Q): == recursively traverse Q in post-order to compute De(Q) and D(Q).

03. (1) compute D(Q) from the EDNF of the children subqueries:

04. == Case-1: disjunctive queries, i.e., at an _-node.

05. � if Q = D̂1 _ D̂2 _ � � � _ D̂n:

06. { for each D̂i: De(D̂i) ednf (D̂i) == recursively call ednf for each disjunct.

07. { D(Q) De(D̂1) _De(D̂2) _ � � � _De(D̂n)

08. == Case-2: conjunctive queries, i.e., at an ^-node.

09. Case-2: conjuntive queries

10. � else if Q = �C1
�C2 � � � �Cn:

11. { for each �Ci: De(�Ci) ednf (�Ci) == recursively call ednf for each conjunct.

12. { D(Q) Disjunctivize(De(�C1)De(�C2) � � �De(�Cn)) == convert to disjunction.

13. == Case-3: single constraint, i.e., at a leaf node.

14. � else if Q = c: D(Q) c

15. (2) compute De(Q) by simplifying D(Q):

16. � De(Q) D(Q) == initialize De(Q) with D(Q).

17. � for each disjunct D̂ in De(Q):

18. { if (8m 2Mp s:t : m \ C(D̂) 6= �: == any pontential matching m relevent to D̂

19. a. m � C(D̂), and == m is wholly contained in D̂.

20. b. either 1. m consist of a single constraint, or

21. 2. 9D̂0 in De(Q) s:t : m \ C(D̂0) = �):

22. { replace D̂ with � == nullify D̂ as a \don't care"

23. � simplify De(Q) with the following rules: == to delete extra �'s.

24. { x� = x, x _ x = x, xx = x, for any x including x = �.

25. � return De(Q)

Figure 10: Procedure EDNF for computing D(�) and De(�) of a query.

Algorithm PSafe can collect those indecomposable conjuncts in the same block. This partition can limit

the query structure conversion to within a block. Note that we can instead simply convert the whole un-

safe conjunction into a disjunction (or even directly into DNF as in Algorithm DNF). However, such blind

conversion is not necessary since not all the conjuncts in an unsafe conjunction are interrelated.

More formally, for a conjunction Q̂ = �C1 � � � �Cn, a partition P is a set of blocks Bj , i.e., P = fB1; : : : ; Bmg.

Each block contains some conjuncts �Ci. For instance, for query Q̂book (Example 11) the partition will have two

blocks B1 = f �C1g and B2 = f �C2; �C3g. We require that each conjunct �Ci be handled in exactly one block (so

that �Ci does not repeat in the mapping). Note that the original conjunction can be written as Q̂ = B̂1 � � � B̂m,

where B̂j is the conjunction of block Bj (i.e., B̂j = ^(Bj)). For query mapping the partition must be safe,

i.e., S(Q̂) = S(B̂1) � � �S(B̂m). In our example, we can verify that S(Q̂) = S(B̂1)S(B̂2) = S(�C1)S(�C2
�C3);

the problematic matchings ffy; fm1g and ffy; fm2g are both contained in �C2
�C3. In addition, we want the

blocks to be minimal, i.e., no Bj can be further safely partitioned into smaller blocks. In our Q̂book example,

we cannot separate block f �C2; �C3g.

The partition algorithm extends our discussion for testing the safety conditions (Section 7.1.3). Recall

that we compute the EDNF of conjuncts, and check if any cross-matchings exist across the combinations

28

of the EDNF ingredients, as Example 11 illustrated. Based on this same approach, our partition algorithm

further �nds the blocks of conjuncts that cover (or contain) the identi�ed matchings. By covering all the

cross-matching, we ensure that the resulting blocks are safe to separate. Example 12 illustrates this extension.

Example 12: We continue Example 11 to partition conjunction Q̂book. In Example 11, we found two cross-

matchings: m1 = ffy; fm1g and m2 = ffy; fm2g. To partition Q̂book, we then �nd the blocks that cover the

matchings: Since m1 is a matching contributed by �C2 and �C3, we consider B = f �C2; �C3g as a (candidate)

block for the partition. Similarly,m2 is also covered by the same block. Since m1 and m2 are both exclusively

covered by block B, the partition must include B to cover either matching. Finally, because �C1 does not

participate in any cross-matchings, it is a block by itself. Therefore, the partition is ff �C1g; f �C2; �C3gg.

Essentially, as Example 12 illustrated, our partition algorithm will �nd the blocks that are necessary to

cover all the cross-matchings. On the other hand, not all the blocks that cover some cross-matchings are

required in the partition. Otherwise (if we include all such candidate blocks) the partition might not be

minimal, which means some blocks can be further decomposed. We next illustrate the idea. (Note that, to

simplify presentation, in Example 13 we do not actually compute the conjunct EDNF.)

Example 13: Consider Q̂a = �C1
�C2

�C3 = (x)(y)(yu _ v). Assume that the matchings for constraints x, y,

u, v are fx; yg, fug, and fvg. Apparently, the partition needs blocks f �C1, �C2g and f �C1, �C3g as they both

cover the matching fx; yg. This partition (that includes both blocks) is not minimal: It turns out that only

f �C1; �C2g is necessary, i.e., S(Q̂a) = S(�C1
�C2)S(�C3). In fact, we can verify that Q̂a � (x)(y)(u_ v), and thus

clearly we can separate �C1 and �C3.

To contrast, for the same constraints, consider another query Q̂b = �C1
�C2

�C3 = (x)(y _ u)(y _ v). Again,

the matching fx; yg appears across �C1 and �C2 as well as �C1 and �C3. However, unlike the previous case, now

both blocks f �C1, �C2g and f �C1, �C3g are required. Consequently we will merge the overlapping blocks (so

that �C1 will not be handled twice). Thus the partition is the single block f �C1; �C2; �C3g, i.e., we will evaluate

S(Q̂b) as S(�C1
�C2

�C3).

We present Algorithm PSafe in Figure 11. This algorithm consists of two steps: (Note that, to begin

with, the algorithm uses D(Q̂) and De(�Ci)'s computed form Procedure EDNF in Figure 10.) First, in step

(1), for each cross-matching m, we �nd all the blocks (as subsets of conjuncts �Ci) that minimally cover

m. Finding such blocks is actually a minimal cover problem (formalized in line 9{10 of Figure 11). Note

that in general m can be covered by multiple blocks, and not all of them will necessarily be included in the

partition{ We thus call them candidate blocks. In summary, step (1) �nds all the cross-matchings as well

as the candidate blocks that each covers one or more matchings. Next, in step (2), to form a partition, we

choose some candidate blocks that minimally cover all the cross-matchings (line 16). We then ensure that

the the chosen blocks are not overlapping, and that every conjunct is included in some block. To illustrate,

we next show how Algorithm PSafe actually partitions the queries as intuitively discussed in Example 13.

Example 14 (Algorithm PSafe): Let us partition the queries Q̂a and Q̂b considered in Example 13. As il-

lustrated in Figure 12, we �rst computeD(�) and De(�), and annotated the query trees (similarly to Figure 7).

(Recall that we assume that the potential matchings for constraints x, y, u, v are Mp = ffx; yg; fug; fvgg.)

First, consider Q̂a = �C1
�C2

�C3 = (x)(y)(yu _ v). As Figure 12 shows, D(Q̂a) = (x)(y)(y) _ (x)(y)(�).

(Note that by using EDNF we can focus on the dependent constraints x and y.) Term (x)(y)(y) has a

cross-matching m1 = fx; yg. To �nd the candidate blocks for m1, we look for some subsets of \ingredients"

(x), (y), and (y) (from De(�C1), De(�C2) and De(�C3) respectively) that form minimal covers for fx; yg. In

particular, B1 = f �C1; �C2g and B2 = f �C1; �C3g are such candidates. In addition, we also �nd a cross-matching

29

Algorithm PSafe: Partitioning a Conjunctive Query into Safe and Minimal Blocks

Input: � Q̂: a conjunctive query in the original context; Q̂ = ^(f �C1; �C2; : : : ; �Cng).

� K: the constraint mapping speci�cation w.r.t. a target system T .

Output: a partition of Q̂ w.r.t. K.

Procedure:

01. == This algorithm assumes that De(�Ci)'s and D(Q̂) have been computed with Procedure EDNF.

02. == Let De(�Ci) = Îi1 _ Îi2 _ � � � _ Îimi
, and D(Q̂) = _(fÎ1k1 Î2k2 � � � Înkn jki 2 [1 : mi]g).

03. (1) for each disjunct in D(Q̂), �nd any cross-matchings and the candidate blocks that cover them:

04. � M� �; X � == M�: to store cross-matchings; X: to store candidate blocks. .

05. � for each D̂ = Î1k1 Î2k2 � � � Înkn in D(Q̂):

06. { � M(D̂, K)�[ni=1M(Îiki , K) == the cross-matchings found in D̂.

07. { for each m in �:

08. { add m to M�

09. { �nd all subsets � of f1; 2; : : : ; ng, == C(Îiki) is the set of constraints in Îiki .

10. s:t :fC(Îiki) j i 2 �g is a minimal cover of m from fC(Î1k1); C(Î2k2); : : : ; C(Înkn)g

11. { for each such �: == � represents a candidate block B that covers m.

12. { B f �Ci j i 2 �g == B is a block of conjuncts �Ci's that covers m.

13. { if (B 62 X): add B to X; ~B � == initialize a new candidate block B.

14. { add m to ~B == ~B stores the matchings that B covers (can be more than one).

15. (2) �nd a partition P s.t. each (cross-matching) m in M� is covered by some block in P :

16. � �nd a subset P of X s.t.f ~B j B 2 Pg is a minimal cover of M� from f ~B j B 2 Xg

17. � merge any non-disjoint Bi and Bj in P == make blocks disjoint.

18. � for each �Ci in f �C1; �C2; : : : ; �Cng: == include any �Ci's that do not appear in any chosen block.

19. { if �Ci does not appear in any B 2 P : add block f �Cig to P

20. � return P

Figure 11: Algorithm PSafe for partitioning conjunctive queries.

m2 = fx; yg for the second term (x)(y)(�). (We view m1 and m2 as \distinct" since they appear in di�erent

terms.) In this case, m2 can be covered by block B1.

To determine a �nal partition, we want to select some minimal set of blocks from the candidates (i.e.,

B1 and B2) to cover all the matchings (i.e., m1, and m2). Intuitively, since m2 is exclusively covered by B1,

we must include B1. In fact, B1 itself is su�cient since it actually covers both m1 and m2. Therefore we do

not need to include B2, and Algorithm PSafe outputs the partition ff �C1; �C2g; f �C3gg.

Let us next consider Q̂b = �C1
�C2

�C3 = (x)(y _ u)(y _ v) also in Figure 12. Computed from �Ci's EDNF,

D(Q̂b) has four terms (x)(y)(y) _(x)(y)(�) _(x)(�)(y) _(x)(�)(�). Algorithm PSafe will check each term and

�nd the cross-matchings fx; yg in the �rst three. In particular, the cross-matching in (x)(y)(�) can only be

covered by block B1 = f �C1; �C2g, while that in (x)(�)(y) only by B2 = f �C1; �C3g. Consequently, we need

both B1 and B2 for the partition. Finally, merging the overlapping blocks, Algorithm PSafe outputs a single

block f �C1; �C2; �C3g, i.e., we will evaluate S(Q̂b) as S(�C1
�C2

�C3).

We have presented our algorithm for conjunction partitions. Note that this technique is essential to enable

the e�ective handling of conjunctions. As Section 6 discussed, our translation mechanism (AlgorithmTDQM)

relies on Algorithm PSafe to partition conjuncts, and thus avoid the blind DNF conversions otherwise. Our

discussion of Algorithm PSafe completes the overall translation framework. In the remaining of this section,

we formally prove that Algorithm PSafe is correct.

30

v

∨x
v
ε

yε

∧ xyy ∨ xyε
xy

x
x

y
y
y

y u

u
ε

∧

y
y

y

y∨ε
y∨ε

aQ
∧

∧ xyy ∨ xyε ∨ xεy ∨ xεε
xy ∨ x

x
x
x

v

∨

v
ε

y∨ε
y∨ε

y

y
y

u

∨

u
ε

y∨ε
y∨ε

y

y
y

bQ
∧

Figure 12: Query trees for Example 13.

7.3 Correctness of Algorithm PSafe

We have presented Algorithm PSafe for partitioning conjunctions; in this section we formally develop its

correctness. Given Q̂ = �C1 � � � �Cn, Algorithm PSafe partitions the conjuncts �Ci into some blocks B1; : : : ; Bm.

Our goal is to show that the partition is safe, i.e., S(Q̂) = S(B̂1) � � �S(B̂m). Furthermore, we will show

that the partition is also minimal, i.e., no blocks can be further partitioned safely. However, note that

for the minimality we assume that Algorithm PSafe does not merge the overlapping blocks (i.e., line 17

of Figure 11). (In other words, the minimality holds before block merging, if any.) The merging is to

avoid repeated handling of conjuncts; a merged block can obviously be decomposed into some smaller (but

overlapping) blocks.

This section develops the correctness as follows. First, Theorem 5 presents the basic property for a

partition to be safe. Based on this property, Lemma 2 then shows that Algorithm PSafe is correct, modulo

the use of EDNF (i.e., if the algorithm used full DNF instead). Furthermore, in Lemma 3 we prove that

using EDNF the algorithm gives exactly the same results as using full DNF. Finally, it follows from the

lemmas that Algorithm PSafe does give safe and minimal partitions, which we state in Theorem 6.

We start with Theorem 5 to present the condition that characterizes a safe partition. Essentially, any

safe partition must include some block to cover every cross-matching among the conjuncts. We will show

that when and only when all the cross-matchings are covered can the partition be safe. Note that as a basis

we focus on the cross-matchings identi�ed among the disjuncts in the DNF of Ĉi's. We will discuss the

equivalence of using EDNF in Lemma 3.

Theorem 5 (Safe Partition): Given a conjunctive query Q̂ = �C1 � � � �Cn, let the DNF of �Ci be DNF (�Ci) =

Îi1_� � � _ Îimi
and that of Q̂ be DNF (Q̂) =

P
ki2[1:mi]

Î1k1 � � � Înkn . With respect to a mapping speci�cation

K, a partition P is safe if and only if for every disjunct D̂ = Î1k1 � � � Înkn in DNF (Q̂) and for every cross-

matching m in D̂ (i.e., m 2 � =M(D̂;K)� [ni=1M(Îiki ;K)), P contains some block that covers m.

Proof: (if) Let the partition P = fB1; : : : ; Bmg. Assuming that P covers every cross-matching, we show

that the resulted conjunction B̂ = B̂1 � � � B̂m is safe according to De�nition 6 (and thus P is safe). We can

show the safety of B̂ using the DNF-based scheme (i.e., the \brute-force" approach discussed in Section 7.1.3).

According to the scheme, we �rst compute DNF (B̂). Note that B̂ � Q̂; we thus compute DNF (B̂) =

DNF (Q̂) =
P

ki2[1:mi]
Î1k1 � � � Înkn .

To show that B̂ is safe, we must in turn show the safety for each disjunct D̂ = Î1k1 � � � Înkn in DNF (B̂).

Since every Îiki is a simple conjunction, by De�nition 5, this safety depends on if D̂ has any matchings

contributed by di�erent blocks. (Note that now we are considering the safety in terms of the blocks Bj

31

rather than the individual conjuncts �Ci.) To make explicit the contribution from each block, we group the

ingredients Îiki according to their containing blocks. In other words, we rewrite D̂ as (X̂1) � � � (X̂m), where

each X̂j represents the contribution from block Bj . Formally, X̂j collects the term Îiki if the corresponding

Ci participates in block Bj , i.e.,

X̂j =
Q

Ci2Bj
Îiki : (15)

To apply De�nition 5, we must identify any cross-matchings in M(D̂;K) � [mj=1M(X̂j ;K), denoted by

�x. As we next explain, such cross-matchings cannot exist, i.e., �x = �, and thus D̂ is safe (by De�nition 5),

which in turn leads to the safety of the conjunction B̂. To see why, suppose that there exists a cross-

matching m for (X̂1) � � � (X̂m). Since each Xj consists of several Îiki terms (as Eq. 15 shows), for m to

come from some di�erent X̂j 's, it is required that m come from di�erent Îiki 's. Thus m must also be a

cross-matching for (Î1k1) � � � (Înkn). Since by assumption each of such matchings is covered, the partition

has some block Bc that covers m. Obviously, this covering ensures that m can be found within X̂c, i.e.,

m 2 M(X̂c;K). Consequently, m 62 M(D̂;K) � [mj=1M(X̂j;K). In other words, m cannot be a cross-

matching for (X̂1) � � � (X̂m), a contradiction.

(only if) Suppose that there exists a cross-matching m for some disjunct D̂ = (Î1k1) � � � (Înkn), such that

no block in the partition covers m. As we discussed in the preceding part, in terms of the blocks, we write

D̂ = (X̂1) � � � (X̂m). Note that, �rst, since m is a matching for (Î1k1) � � � (Înkn), m 2M(D̂;K). Second, since

no block covers m, m 62 M(X̂j ;K), for all X̂j . Therefore, we conclude that m 2M(D̂;K)�[mj=1M(X̂j;K).

i.e., m is a cross-matching for (X̂1) � � � (X̂m). In other words, the disjunct D̂ = (X̂1) � � � (X̂m) is not safe,

and thus the partition P is not safe.

We next show in Lemma 2 the correctness of Algorithm PSafe, modulo the use of EDNF. In other words,

assuming that we simply use full DNF as EDNF, we show that the algorithm computes safe and minimal

partitions. The safety follows directly from Theorem 5. As we explained, the minimality refers to the

unmerged blocks (when there are overlapping blocks).

Lemma 2: Assume that we compute the EDNF of a query as its DNF. Given a conjunctive query Q̂ and

a mapping speci�cation K, Algorithm PSafe partitions Q̂ safely with respect to K. Without merging the

overlapping blocks, the partition is also minimal.

Proof: (safety)We �rst show that the partition of AlgorithmPSafe is safe. Let the query be Q̂ = �C1 � � � �Cn.

Note that when the EDNF of �Ci were computed as the full DNF, all De(�Ci)'s as well as D(Q̂) are simply

the DNF of the corresponding queries (see line 1{2 of Figure 11). Observe that Algorithm PSafe �rst �nds

all the cross-matchings in any disjunct D̂ = Î1k1 � � � Înkn of D(Q̂) (step 1), and then chooses the blocks to

cover all such matchings (step 2). It follows from Theorem 5 that the partition so formed is safe.

(minimality) We will prove the minimality by contradiction. Suppose that Algorithm PSafe returns the

partition P = fB1; : : : ; Bmg. Assume that some blocks can be further partitioned such that the resulted

partition is still safe. Without loss of generality, let these non-minimal blocks be B1; : : : ; Bh (h � m).

Suppose that we can partition each of these Bj 's into some proper subsets Bj1; : : : ; Bjwj
such that Bji � Bj .

In other words, the new partition is P 0 = fB11; : : : ; B1w1
; : : : ; Bh1; : : : ; Bhwh

; Bh+1; : : : ; Bmg.

We now show that this new partition P 0 cannot be safe. To illustrate let us consider B1 (among the non-

minimal blocks). Referring to Figure 11, note that Algorithm PSafe (in step 2) �nds P as a minimal cover of

M� (which collects all the cross-matchings). Since P is minimal, B1 cannot be redundant for the covering.

In other words, there exists some matching m 2M� , such that m is exclusively covered by B1. Otherwise,

32

if every matching in M� is covered by some other blocks, then P is not minimal because (P � fB1g) still

covers M�.

However, this cross-matching m cannot be covered by any blocks in P 0, and therefore by Theorem 5 the

new partition is not safe. Since Algorithm PSafe ensures (in step 1) that B1 is a minimal cover for m, none

of the proper subsets B11; : : : ; B1w1
can cover m. Meanwhile, as m is exclusively covered by B1, no other

blocks B2; : : : ; Bm or their subsets Bji can cover m. Overall, m is not covered in the new partition. By

Theorem 5, the new partition is not safe, a contradiction.

To complete our discussion for the correctness of Algorithm PSafe, we must show that using EDNF

(essential DNF) gives the same results as that of using full DNF. That is, for the purpose of Algorithm PSafe,

it is equivalent to use either EDNF or DNF. Lemma 3 presents this result.

Lemma 3: For any conjunctive query Q̂ = �C1 � � � �Cn, Algorithm PSafe gives the same result regardless of

whether we use the EDNF or the full DNF of �Ci as De(�Ci)'s to compute D(Q̂).

Proof: Essentially, Algorithm PSafe identi�es (in step 1) and covers (in step 2) the cross-matchings in

D(Q̂). Consequently, the di�erence between using EDNF and DNF for computing D(Q̂) is in the resulting

cross-matchings, which is designated as M� in Figure 11. To show the equivalence, suppose that using full

DNF will result in the cross-matching set Md while using EDNF will result in Me instead. (Note that we

use the di�erent subscripts to distinguish the variables in the DNF and EDNF-based schemes.) Our proof

consists of two parts:

(a) Md and Me are equivalent in the sense that 8md 2Md, 9me 2Me (and vice versa), such that md and

me have exactly the same set of candidate blocks.

(b) For such equivalent Md and Me, a partition P (as a set of some candidate blocks) is a minimal cover

for Md if and only if it is a minimal cover for Me.

Intuitively, part (a) and (b) correspond to step 1 and 2 in Algorithm PSafe. In other words, in part (a) we

show that Md and Me are equivalent for our purpose. Note that when Md and Me are equivalent, they will

be associated with the same set of candidate blocks (i.e., the variableX in Algorithm PSafe). Then, part (b)

further shows that such equivalent cross-matching sets requires exactly the same minimal covers from the

candidate blocks. Overall, we can conclude that Algorithm PSafe results in the same partitions regardless

of using essential or full DNF, and thus the equivalence is proven.

(a) In this part, we will show that Md and Me are equivalent. Note that the EDNF of a query is essentially

a transformation of the full DNF, as computed with Procedure EDNF . These transformations are actually

done in step 2 of the procedure (Figure 10). Speci�cally, the transformations apply (1) the nullifying rules

which nullify the useless terms (line 17-22, Figure 10) and (2) the simplifying rules which simplify the

expression by deleting the nullifying symbol � and merging repeating terms (line 23-24, Figure 10). Observe

that without these transformations, the procedure would have resulted in the DNF instead of the EDNF of

a query. Thus to show the equivalence ofMd and Me, we must show that the equivalence holds under either

transformation, which we discuss in turn next.

(1) (nullifying rules) We �rst focus on the nullifying rules (and for now omit the simplifying rules in

Procedure EDNF). The EDNF so computed for disjunct �Ci has the form

D
�

e(�Ci) = Îi1�i1 _ � � � _ Îimi
�imi

: (16)

33

(We write here as D�

e(�Ci) and reserve De(�Ci) for the actual EDNF with the simplifying rules also

applied.) Here every �ij represents some zero or more nullifying symbols �, each of which replaces a

useless intermediate term (designated as disjunct D̂ in line 17-22 of Figure 10). In fact, if these useless

terms were not nulli�ed, Eq. 16 would become the full DNF. In other words, assuming thatUij consists

of those (zero or more) useless terms that �ij replaces, the corresponding DNF can be written as

DNF (�Ci) = Îi1Ui1 _ � � � _ Îimi
Uimi

: (17)

� First, we show that for every md 2 Md (in the DNF-based scheme), there exists me 2 Me (in

the EDNF-based scheme), such that md and me have the same candidate blocks. (The converse

will be shown later.) Note that in the DNF-based scheme, with D(Q̂) computed from DNF (�Ci) (as

given in Eq. 17), every such md is a cross-matching for some conjunction (as a disjunct in D(Q̂))

D̂d = (Î1k1U1k1) � � � (ÎnknUnkn). We will show that the same matching (i.e., me = md) exists in the

corresponding term (of the EDNF-based scheme) D̂e = (Î1k1�1k1) � � � (Înkn�nkn).

To begin with, we show that every Uiki is indeed irrelevant to md, i.e., md\C(Uiki) = �. (Recall that

C(Q) denotes the set of constraints in query Q.) As a cross-matching in D̂d, md cannot be contained

in any ÎikiUiki , for all i, i.e.,

md 6� C(ÎikiUiki); 8i (18)

Furthermore, by de�nition each Uiki consists of some useless terms U . The nullifying rules (line 17-22,

Figure 10) require that either md \ C(U) = � or md � C(U). Since the latter contradicts Eq. 18, the

former must hold for every U , and thus md \ C(Uiki) = �.

Corresponding to md, we can �nd some me 2 Me as required. Obviously, for every D̂d= (Î1k1U1k1)

� � � (ÎnknUnkn), the EDNF-based scheme has a counterpart D̂e = (Î1k1�1k1) � � � (Înkn�nkn). As just

explained, since md \ C(Uiki) = �, Uiki is indeed irrelevant for covering md. In other words, for the

purpose of covering md, each term ÎikiUiki is equivalent to Îiki�iki. More formally, let's consider me

= md. Given that md is a cross-matching for D̂d, we can �nd me as a cross-matching for D̂e, because

md \C(ÎikiUiki) = me \C(Îiki�iki) = md \C(Îiki). It also follows that me will be covered by the same

candidate blocks as that of md.

� Next, we show the converse; i.e., for every me 2 Me, there exists md 2 Md, such that md and me

have the same candidate blocks. Since the EDNF-based scheme uses D�

e(�Ci)'s (as given in Eq. 16), me

is a cross-matching found in some conjunction D̂e = (Î1k1�1k1) � � � (Înkn�nkn). Our proof will construct

a counterpart D̂d (for the DNF-based scheme) containing the desired cross-matching md corresponding

to me.

Essentially, the construction is simply to \recover" the nulli�ed terms �ij . Recall that each �ij consists

of zero or more �'s representing some useless terms U . The nullifying rules (line 17-22, Figure 10)

ensure that, with respect to me, every useless term U satis�es either condition (1) me \ C(U) = �, or

(2) me � C(U). In the latter case, there must exist some other term U 0 that parallels U in the same

subquery such that me \ C(U 0) = � (line 21, Figure 10).

We now construct D̂d. Starting from D̂e, we recover each � in every (Îiki�iki) as follows: If the useless

term U behind � satis�es condition (1), we simply recover the � to U (note that me \ C(U) = �).

Else, when U satis�es condition (2), we instead recover the � to the corresponding U 0 (note that

me \ C(U 0) = �). Supposing that Uiki designates the conjunction of those recovered terms, we have

recovered (Îiki�iki) to (ÎikiUiki). Consequently we construct D̂d as (Î1k1U1k1) � � � (ÎnknUnkn). Note

that this construction ensures that me \Uiki = �.

34

We can �nd the desired matching md in D̂d just constructed. First, with all the nulli�ed terms recov-

ered, D̂d = (Î1k1U1k1) � � � (ÎnknUnkn) is the DNF-based counterpart of D̂e= (Î1k1�1k1) � � � (Înkn�nkn).

Furthermore, as just explained our construction ensures that me \ Uiki = �. Therefore, supposing

that md = me, we again obtain that md \ C(ÎikiUiki) = me \ C(Îiki�iki) = md \ C(Îiki). Therefore,

the DNF-based scheme will identify md as a cross-matching (i.e., md 2 Md) in D̂d, and md and me

will require the same candidate blocks.

(2) (simplifying rules) Suppose that we further apply the simplifying rules (line 23-24, Figure 10) to

D
�

e(Ĉi) (given in Eq. 16), resulting in the actual EDNF denoted by De(Ĉi). We next show that the

simplifying rules will not alter the results obtained with D�

e(Ĉi). Since D�

e(Ĉi) and DNF (Ĉi) are

equivalent under Algorithm PSafe (as just proven), the equivalence of De(Ĉi) and DNF (Ĉi) follows

by transitivity.

To begin with, the equivalence is obviously preserved by the rules x_x = x and xx = x since either side

of the equations are logically equivalent. It is straightforward to show that this well-known Boolean

idempotency applies to our partition algorithm, and we thus omit the details here.

Furthermore, the deletion of �'s with the rule x� = x will also preserve the equivalence. Deleting the

�'s from Eq. 16 results in De(�Ci) = Îi1 _ � � � _ Îimi
. Since by de�nition C(�ij) = �, every �ij will not

contribute to any matchings. Therefore, it is clear that the equivalence is also preserved through the

simplifying rules.

(b)We show that if a partition P is a minimal cover forMd, then it also minimally covers Me. The converse

follows immediately since Md and Me are symmetrical.

First, as a cover of Md, P must also cover Me; i.e., any matching me in Me is covered by some block in

P . To see why, note that according to (a), there exists a matching md in Md, such that md and me has the

same candidate blocks. Because P covers Md, P includes some block B that is among the candidate blocks

of md. Consequently, B is also a candidate block of me (and thus B covers me). Therefore P is also a cover

for Me.

Furthermore, P is minimal (as a cover) forMe. Otherwise, suppose that some proper subset P 0 of P also

covers Me. With the converse of the preceding reasoning, P 0 is also a cover forMd, which is a contradiction

to the assumption that P is minimal for Md.

Finally, putting together Lemma 2 and 3, we obtain immediately that Algorithm PSafe indeed partitions

conjunctive queries safely and minimally. We therefore conclude our discussion of correctness with Theorem 6.

Theorem 6 (Correctness of Algorithm PSafe): Given a conjunctive query Q̂ and a mapping speci�ca-

tion K, Algorithm PSafe partitions Q̂ safely with respect to K. Without merging the overlapping blocks,

the partition is also minimal.

8 Optimality, Compactness, and Complexity

Our algorithms produce the best mapping possible, i.e., the translated queries are the most selective while

still subsuming the original ones. This guarantee comes from two facts: First, our basic rules codify the

human expertise that directs the best mapping for individual groups of dependent constraints. Second,

our algorithms correctly handle conjunctions; speci�cally, the partitioning of conjuncts respects constraint

dependencies. In the preceeding sections we have given the formal proof for the correctness of the algorithms.

In particulr, Theorem 2 shows that Algorithm TDQM does generate the minimal subsuming mappings.

35

Furthermore, Algorithm TDQM generates more compact mappings (with fewer terms) as compared to

the DNF-based algorithm (as Example 6 illustrated). Note that, although term minimization [22] is possible,

DNF is inherently not a compact representation for Boolean functions as restricted by the two-level structure.

In contrast, Algorithm TDQM does not use DNF; it calls upon Algorithm PSafe to collect conjuncts (for

structure rewriting) to meet the safety conditions. Unless the safety conditions give a false negative (which

we believe to be rare), our algorithms will rewrite a subquery only if necessary. To quantify, let's measure

the compactness of a query as the number of nodes in the parse tree. For a Boolean expression with

n constraints, the least compact DNF (i.e., the canonical DNF) can have up to 2n minterms, and each

minterm is a conjunction of n constraints. Thus the compactness is on the order of 2n � n. In contrast, the

most compact tree for such an expression would be on the order of n nodes (i.e., the number of constraints).

Because our algorithm preserves the query structure whenever possible, the worst-case compactness ratio

can be as large as (2n� n)=n, i.e., 2n. That is, there may be cases where our scheme will yield a query that

is 2n times smaller than a query produced via DNF conversion. Obviously, this ratio can be arbitrarily large

for large queries.

We also note that, while carefully addressing constraint dependencies, our algorithm is quite e�cient. In

fact, when a query does not involve dependent constraints, our algorithm pays virtually no extra cost (in

addition to the mapping of single constraints). Recall that we address dependencies among conjuncts by

checking the safety conditions. As Section 7.1.3 discussed, we can check the safety for Q̂ = �C1 � � �
�Cn brute

force by �rst converting each �Ci as well as Q̂ to their full DNF's (instead of using EDNF). We then check

through all the disjuncts in the DNF of Q̂. In the worst case, Q̂ can have up to 2nk disjuncts, where n is

the number of conjuncts �Ci and k the (maximal) number of constraints in each �Ci. Thus this brute-force

approach has a \blind" cost on the order of 2nk.

In contrast, our approach based on EDNF will pay a cost \proportional" to the degree of dependency

(informally speaking). Recall that we use EDNF that eliminates useless terms (Example 11). In other words,
�Ci's EDNF will only contain those constraints that participate in potential matchings spanning beyond �Ci.

If e is the number of those \essential" constraints remaining, the EDNF of �Ci will have an upper bound

of 2e terms. Multiplying all such terms from di�erent �Ci's, we obtain a total of 2ne disjuncts to check.

Therefore, this cost (on the order 2ne) is actually a function of the degree of dependency as represented by

e. For instance, when there is no dependency, we have e = 0, i.e., the EDNF's of �Ci's are simply � (e.g.,

De(�C1) = � in Example 11). Therefore, we only need to check one term (i.e., 2ne = 1) consisting of all

�; thus there is virtually no cost. In contrast, the DNF approach still pays the cost of 2nk, which can be

arbitrarily large depending on the query size.

9 Conclusion

In this paper we presented a framework as well as the associated algorithms for translating constraint queries

across heterogeneous information systems. As we discussed, our algorithms produce query mappings that

are both optimal and the most compact possible. Furthermore, our algorithms are e�cient; Algorithm SCM

runs in time linear to the input size, and Algorithm TDQM pays virtually no extra cost when no constraint

dependencies exist.

We have implemented a running prototype for query mapping in the Stanford Digital Libraries Project.

This prototype was based on our earlier work [15, 20] that did not address potential constraint dependencies

and did not provide a mapping rule system. The de�ciencies of this implementation motivated the work

described in this paper. We are in the process of extending the prototype with the algorithms discussed in

this paper.

36

References

[1] GioWiederhold. Mediators in the architecture of future information systems. IEEE Computer, 25(3):51{

60, March 1992.

[2] Je�rey D. Ullman. Information integration using logical views. In Proceedings of the 6th International

Conference on Database Theory, Delphi, Greece, January 1997. Springer, Berlin.

[3] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information sources

using source descriptions. In Proceedings of the 22nd VLDB Conference, pages 251{262, Bombay, India,

1996. VLDB Endowment, Saratoga, Calif.

[4] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Query-answering algorithms for information

agents. In Proceedings of the 13th National Conference on Arti�cial Intelligence, AAAI-96, Portland,

Oreg., August 1996. AAAI Press, Menlo Park, Calif.

[5] Yannis Papakonstantinou, H�ector Garc��a-Molina, and Je�rey Ullman. Medmaker: A mediation sys-

tem based on declarative speci�cations. In Proceedings of the 12th International Conference on Data

Engineering, New Orleans, La., 1996.

[6] Yannis Papakonstantinou, H�ector Garc��a-Molina, Ashish Gupta, and Je�rey Ullman. A query transla-

tion scheme for rapid implementation of wrappers. In Proceedings of the 4th International Conference on

Deductive and Object-Oriented Databases, pages 161{186, Singapore, December 1995. Springer, Berlin.

[7] Oliver M. Duschka. Query Planning and Optimization in Information Integration. PhD thesis, Stanford

Univ., December 1997.

[8] Michael R. Genesereth, Arthur M. Keller, and Oliver M. Duschka. Infomaster: An information integra-

tion system. In Proceedings of the 1997 ACM SIGMOD Conference, Tucson, Ariz., 1997. ACM Press,

New York.

[9] Laura M. Haas, Donald Kossmann, Edward L. Wimmers, and Jun Yang. Optimizing queries across

diverse data sources. In Proceedings of the 23rd VLDB Conference, pages 276{285, Athens, Greece,

August 1997. VLDB Endowment, Saratoga, Calif.

[10] Mary Tork Roth and Peter M. Schwarz. Don't scrap it, wrap it! a wrapper architecture for legacy data

sources. In Proceedings of the 23rd VLDB Conference, pages 266{275, Athens, Greece, August 1997.

VLDB Endowment, Saratoga, Calif.

[11] Olga Kapitskaia, Anthony Tomasic, and Patrick Valduriez. Dealing with discrepancies in wrapper

functionality. Technical Report RR-3138, INRIA, 1997.

[12] H�ector Garc��a-Molina, Wilburt Labio, and Ramana Yerneni. Capability sensitive query processing on

internet sources. In Proceedings of the 15th International Conference on Data Engineering, Sydney,

Australia, March 1999. Accessible at http://www-db.stanford.edu/.

[13] Anand Rajaraman, Yehoshua Sagiv, and Je�rey D. Ullman. Answering queries using templates with

binding patterns. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems, pages 105{112, San Jose, Calif., May 1995.

37

[14] Alon Y. Levy, Anand Rajaraman, and Je�rey D. Ullman. Answering queries using limited external query

processors. In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 27{37, Montreal, Canada, June 1996.

[15] Chen-Chuan K. Chang, H�ector Garc��a-Molina, and Andreas Paepcke. Boolean query mapping across

heterogeneous information sources. IEEE Transactions on Knowledge and Data Engineering, 8(4):515{

521, August 1996.

[16] Chen-Chuan K. Chang, H�ector Garc��a-Molina, and Andreas Paepcke. Boolean query mapping across

heterogeneous information sources (extended version). Technical Report SIDL-WP-1996-0044, Stanford

Univ., September 1996. Accessible at http://www-diglib.stanford.edu.

[17] Chen-Chuan K. Chang and H�ector Garc��a-Molina. Conjunctive constraint mapping for data translation.

In Proceedings of the Third ACM International Conference on Digital Libraries, Pittsburgh, Pa., June

1998. ACM Press, New York.

[18] Sandra Heiler. Semantic interoperability. Computing Surveys, 27(2):271{273, June 1995.

[19] Yannis Papakonstantinou, Ashish Gupta, and Laura Haas. Capabilities-based query rewriting in media-

tor systems. In Proceedings of the 4th International Conference on Parallel and Distributed Information

Systems (PDIS 1996), Miami Beach, Flor., 1996.

[20] Chen-Chuan K. Chang, H�ector Garc��a-Molina, and Andreas Paepcke. Predicate rewriting for translating

boolean queries in a heterogeneous information system. ACM Transactions on Information Systems,

17(1):1{39, January 1999.

[21] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. The design and analysis of computer algo-

rithms. Addison-Wesley, Reading, Mass., 1974.

[22] Edward J. McCluskey. Logic Design Principles. Prentice Hall, Englewood Cli�s, N.J., 1986.

38

