
A Comprehensive Model for Arbitrary Result Extraction
Neal Sample, Dorothea Beringer, Gio Wiederhold

Computer Science Department

Stanford University, Stanford CA 94305

1-415-725-8363

{Nsample, Beringer, Gio}@cs.stanford.edu

ABSTRACT
Distributed objects and remote services adhere to various
standards for data delivery and result extraction. There are
multiple means of requesting results and multiple ways of
delivering those results. By examining several popular and
idiosyncratic methods, we have developed a comprehensive
model that combines the functionality of all component models.
This model for arbitrary result extraction from distributed
objects provides increased flexibility for object users, and an
increased audience for module providers.

Keywords
Distributed objects, remote services, result extraction,
autonomy, partial extraction, progressive extraction.

1. INTRODUCTION
1.1 Traditional RPCs and asynchronous

extraction
We address the problem of obtaining results from any of
multiple computational servers in response to requests made by
a client program. The simplest form of result extraction is the
traditional synchronous remote procedure call (RPC).
Parameters are passed in, the client waits patiently for the
results, and finally all results are simultaneously available. Only
a single object is returned with certain function calls, but most
languages offer procedure calls where you can have more than
one OUT-parameter. It is even possible in C++ with the use of
pointers, and it is cleanly implemented in CORBA. This has
been the dominant form of result extraction in most
programming languages and for many distributed systems (e.g.
CORBA, where a typical procedure call is defined in the IDL
syntax like void mymethod(in TYPE1 param1, out
TYPE2 param2, out TYPE3 param3) .

1.2 Alternative extraction models

There are other models of data extraction that have received
little attention in most programming languages and paradigms.
These alternative models generally are strictly more functional
than the traditional procedure call, and are being used
increasingly as a replacement to RPC-style result extraction.
They all, in at least some aspect, provide more functionality or
flexibility than the RPC. One of the most important
enhancements has been the addition of asynchrony. Clients that
do not have to stall while results are computed or delivered are
strictly more powerful than those that must. Asynchronous
result extraction has been used even in many sequential
computing languages like Java and Ada, and is enabled in
various ways, through message passing, threading, rendezvous,
etc. Asynchrony as a tool to delay or reorder result extraction is
well understood and widely used [12, 13].

Partial extraction of data results has become almost ubiquitous
with the advent of web browsing. There are examples of other
extraction models (such as the progressive extraction of results)
that have seen limited use in specialized arenas. We can also
envision other models encompassing some of the more esoteric
extraction models that are potential more flexible than any in
wide or limited use today. Perhaps the most important of these
model we refer to is “partial extraction.” Partial extraction is
taking only the desired portions of a result set, thus saving the
costs associated with extracting the entire set. For instance,
almost all modern web browsers have the ability to download
only text, without images, to speed browsing on slower
connections. Many browsers also allow users to filter unwanted
objects (i.e., embedded audio) out of html documents. The web
has brought “partial extraction” to the desktop as the default
browsing model.

Another model for result extraction, again strictly more
powerful than the traditional RPC, is the “progressive
extraction” model. In many scientific computations, such as
adaptive mesh refinements, answers become “better” (e.g., more
precise) over time. It can be very important to extract results as
progress is made toward an acceptable solution for steering,
early termination, or other reasons. A typical application of this
type is the design of an aircraft wing [2, 3, 5, 12]. Certain
scientific and mathematical processes, like Newton’s method of
successive approximation for roots of an equation, can also
utilize this type of extraction [4]. The traditional RPC result
extraction model does not lend itself well to progressive
extractions.

Decomposition of the traditional call model has been discussed
for some time [10]; we advocate a further breakdown of the
extraction phase of this model. We propose an extraction
model, developed in the course of research and development of
the language CLAM (Composition Language for Autonomous

Megamodules) [8] within the CHAIMS (Composing High-level
Access Interfaces for Multisite Software) megaprogramming
project [1], that encompasses these three important
augmentations (asynchronous, partial, progressive) to RPC-style
result extraction models. The amalgamation of these three
extraction paradigms leads to a general model, more expressive
than any of the three taken alone.

1.3 Current system support for partial and
progressive extraction

For many languages and systems, the generic asynchronous
remote procedure call model of result extraction provides
enough flexibility. In cases where it does not, custom solutions
abound. Occasionally, these custom solutions become
widespread, often circumstantially, e.g., because of runtime
support rather than language specification. For instance, partial
extraction within the available community of web-browsers does
not arise from html, per se. It is a consequence of parsing html
pages and making only selective http requests. In effect, the
web-browser implements the partial extraction of results while
the html provides a “schema” of the results available. For
example, when web users choose not to download certain types
of content, the web-browser implements the filtering and is not
affected by the html or the http protocol.

We accept this html/http/browsing model as appropriate for
partial extractions when a schema for the data is available. Of
course, without such a schema, partial extractions would be
meaningless. At some level, this constrains the domain for
which partial extraction is semantically meaningful or even
practical. However, since the model of partial extraction wholly
encompasses the traditional RPC method of result extraction,
this is not a problem.

Progressive extractions are frequently consequences of elaborate
development projects or again arise as a consequence of the
nature of the data involved. We can look again to web-browsing
to find (an extremely limited) form of progressive extraction,
one that arises from the data at hand rather than html or http.
Within certain result sets, like weather maps, the results change
over time. By simply re-requesting the same data, progressive
updates to the data may be seen by a client. On the other hand,
to see a broader picture of progressive result extraction, we turn
to (usually) hand-tooled codes specialized for single
applications.

As far as we know, there is currently no language with
primitives supporting progressive extractions. Additionally,
what marginal runtime and protocol support for progressive
extractions there is seems to only exist because of specialized
data streams (like browsing weather services), and not because
of intentional support. We have found examples of hand-coded
systems that allow partial result extractions, at predefined
process points, to allow early result inspection [3]. Such
working codes have been built to allow users to steer executions
and to test for convergence on iterative solution generators.
However, a language and runtime system to develop arbitrary
codes that allow progressive extractions is not to be found. This
is especially true of compositions languages geared toward
distributed objects.

Herein we outline a set of language primitives expressive
enough to capture each of these result extraction models
simultaneously. We also review an implementation of this

general result extraction model, as encompassed within the
megaprogramming language CLAM and the supporting
components within the CHAIMS system [7].

2. RESULT EXTRACTION WITHIN
CLAM
2.1 Definitions and motivation
We focus on result extraction. In our studies, interesting
“results” come from computational services rather than simple
data services like databases, web servers, etc. Computational
services are those that add value to input data. Results from
computational services are tailored to their inputs, unlike data
services where results are often already available before and
after the service is used (like static pages from a web server).
Various extraction methods have potentially more value in the
context of computational services than in the context of data
services. We define “partial extraction” as the extraction of a
subset of available results. We define “Progressive extraction”
as the extractions of the same result parameter with different
content/data at different points in a computation. The different
points of computation can deliver different accuracy of specific
results, as is typical for simulations or complex calculations for
images. Or they can signify dependencies of the results on the
actual time, as is the case for weather data that changes over
time.

We went through several versions of CLAM that led to our
current infrastructure. Originally limited to partial data
extractions, repeated iterations in the design process yielded the
general-purpose client-centric result examination and extraction
model that seems to be maximally flexible. We say this model
is “client-centric” because, unlike an exception or callback-type
model, clients initiate all data inspection and collection. In this
“data on demand” approach, clients expect that servers do not
“push” either data or status, but rather must make requests for
both. We specifically contrast this client-centric approach to the
CORBA event model seen in 3.4.

Finally, we present CLAM as one possible language and
implementation of our generic result extraction model. CLAM
is a composition language, rather than computationally oriented
language [8, 14]. As such, it is aptly suited to the presentation
of this extraction model, though not necessarily a programmer’s
language of choice for a given problem. We advocate this
extraction model here, and present it within a particular working
framework (CHAIMS).

2.2 Language specification
In CLAM, there are two basic primitives essential to our result
extraction model: EXAMINE and EXTRACT. We use
EXAMINE to inspect the progress of a calculation (or method
invocation, procedure, etc.) by requesting data status or, when
provided by the server, also information about the invocation
progress concerning computation time.

EXAMINE

• Purpose
The EXAMINE primitive is used to determine the state and
progress of the invocation referred to by an
invocation_handle. EXAMINE has two status fields: state
and progress. The state can be any of {DONE, NOT_DONE,
PARTIAL, ERROR}. The progress field is an integer, used
to indicate progress of results as well as of the invocation.

The various pieces of status and progress information are only
returned when the client requests them, in line with the client-
centric approach.

• Syntax

(mystatus=status) =
invocation_handle. EXAMINE()

(mystatus=status) =
invocation_handle. EXAMINE(parameter)

(mystatus=status, myprogess=progress) =
invocation_handle. EXAMINE()

(mystatus=status, myprogess=progress) =
invocation_handle. EXAMINE(parameter)

Imagine a megamodule (a module providing a service) that has a
method "foo" which returns three distinct <results/data
elements>, A, B, and C. If foo is just invoked, and no work has
been done, A, B, and C will all be incomplete. A call to
foo_handle.EXAMINE() will thus return NOT_DONE.
When complete, a call to foo_handle.EXAMINE() will
return DONE, because the work has been performed. If there
are some meaningful results available for extraction before all
results are ready, foo_handle.EXAMINE() returns
PARTIAL. In case of error with the invocation of foo, ERROR
is returned.

If the megamodule supports invocation progress information,
(mystatus = status, myprogess = progress) =
invocation_handle.EXAMINE() is used instead of (mystatus
= status) = invocation_handle.EXAMINE() in order to get
progress information about the invocation. This progress
information indicates how much progress the computation has
made already in terms of time used and estimated time needed to
complete. Ideally this progress information is in agreement with
pre invocation cost estimation which is also provided by CLAM
(see primitive ESTIMATE in [8]). Yet as conditions like server
load can change very rapidly, it is essential to be able to track
the progress of the computation from its invocation to its
completion.

Upon receipt of invocation status “PARTIAL,” a client knows
that some subset of the results are extractable, though not that
any particular element of the result data is ready for extraction
(nor that the result contains progressive and thus temporary
values) or has been finalized. Yet PARTIAL indicates to the
client that it would be worth while to inspect individual result
parameters to get their particular status information.

Once again, imagine foo with return data elements A, B, and C.
In this case, A is done, B is partially done with extractable
results available, and no progress has been made on C. A call to
foo_handle.EXAMINE() would return PARTIAL, because
some subset of the available data is ready. Subsequently, a
client issue of foo_handle.EXAMINE(A) will return
DONE, foo_handle.EXAMINE(B) will return {PARTIAL,
50}, and foo_handle.EXAMINE(C) will return
NOT_DONE. Interpretations of the results from the
examination A and C are obvious. In the case of result B,
assuming that the result value is 50% completed, and the server
makes this additional information available to the client, a return
tuple such as {PARTIAL, 50} would express this.

Remember, the second parameter returned by EXAMINE is an
integer. CLAM places no restriction on its general use. Servers
impart their own meaning on such parameters. However, the
recommended usage is for the value to indicate a “percentage (0-
100) value of completion.” Such semantic meaning associated
with a particular server is available to client builders via a
special repository.

CLAM couples the EXAMINE primitive with an equally
powerful EXTRACT mechanism.

EXTRACT

• Purpose

The EXTRACT call collects the results of an invocation. A
subset of all parameters returned by the invocation can be
extracted. In fact, parameters which are extracted are the ones
explicitly specified at the left hand side of the command.

• Syntax

(myvar1=outvar1, myvar2= ...) =
invocation_handle. EXTRACT()

Returning to our previous example of the method foo, we look at
EXTRACT. The return fields are name/value pairs, and may
contain any subset of the available data. For the example
method foo, we might do the following: (tmpa=A, tmpb=B)
= foo_handle.EXTRACT() . This call would return the
current values for A and B, leaving C on the server.

This extract primitive allows to extract just those results that are
ready as well as needed. This in contrast to a much simpler
extract where simply all results would be returned with each
extract command, independent of their state.

2.3 Analysis of the extraction model
Different flavors of extraction are available with different levels
of functionality in EXTRACT and EXAMINE. We present here
the various achievable extraction modes when only portions of
the complete set of CLAM data extraction primitives are
available. This analysis shows how EXAMINE and EXTRACT
relate and interact to provide each of the result extraction flavors
outlined in this paper.

Within EXAMINE, simple inspection returns a per invocation
status value from {DONE, NOT_DONE, PARTIAL, ERROR}.
There are two augmentations made to the EXAMINE primitive.
The first augmentation is the addition of a second parameter, the
progress indicator. The second augmentation is the ability to
inspect individual parameters. These two augmentations
provide four distinct possible examination schemes:

(1) without parameter inspection, and without progress
information

(2) without parameter inspection, but with progress
information which is invocation specific

(3) with parameter inspection, but without progress
information

(4) with parameter inspection, and with progress
information which is parameter specific

There are two types of EXTRACT in CLAM:

(a) EXTRACT returns all values from an invocation (like
an RPC)

(b) EXTRACT retrieves specific return values (like
requesting specific embedded html objects).

The two extraction options, when coupled with the four possible
types of EXAMINE, form eight possible models of extraction.

Error! Reference source not found. shows the table of
possible combinations and outlines basic functionality
achievable with each potential scheme. Even with the simplest
case as shown in entry 1a, an EXAMINE that works on a per
invocation basis only (cannot examine particular parameters)

and an EXTRACT that only returns the entire set of results. The
extraction model remains more powerful than a typical
C++/Fortran-like procedure call because of the viable
asynchrony achieved. The model retains its client-centric
orientation. The client polls at chosen times (with EXAMINE)
and can extract the data whenever desired. The assumption in
CLAM is that the client may also extract the same data multiple
times. This places some burdens on the support system that we
discuss in the next section.

Table 1. EXAMINE/EXTRACT relationships

single EXTRACT (a) per return element EXTRACT (b)

per invocation EXAMINE,

One parameter (1)

1a. Like an asynchronous procedure
call
e.g., Java RMI

1b. Limited partial extraction . Like 1a,
with the added ability to extract a subset of
return data at a time indicated by PARTIAL
(limited to one checkpoint) or after all results
are completed.

per invocation EXAMINE,

Two parameters (2)

2a. Very limited. Progressive
extraction becomes possible, with
data completion level indirectly
indicated by second parameter. Must
retrieve entire data set.

2b. Very limited. Progressive extraction still
possible, no legitimate potential for partial
extractions other than a unique set as in 1b.

per result EXAMINE,

One parameter (3)

3a. Allows for data retrieval as
particular return values are complete,
but entire set must be retrieved each
time (semantic partial extraction).

3b. True partial extraction becomes possible
here. No real progressive extraction.

e.g., Web-browsing

per result EXAMINE,

Two parameters (4)

4a. Progressive extraction becomes
possible, with data completion level
indicated by second parameters.
Must retrieve entire data set. Can
determine more detail than 2a.

4b. Partial and progressive extraction are
both possible. Single results may be
extracted at various stages of completion.
e.g., CLAM

The mechanism of table entry 1b is mainly used for partial result
extraction when all results are completed, yet not all results are
needed. The client has the possibility to only extract those
results needed right away, and can leave the other results on the
server until they are extracted at a later point or time, or the
client indicates it is no longer interested in the results. The main
advantage of this level of partial extraction is the avoidance of
transmitting huge amounts of data when it is not needed. This is
particularly the case when one result parameter contains some
meta-information that tells the client if it needs the other result
parameters at all. This mechanism can be compared to the
partial download of web-pages by a web-browser. In a first
download the browser might exclude images. At a later point the
person using the web-browser might request the download of
some specific or all images based on the textual information
received in the first download. This usage of partial extraction
has become very important as it allows to partially download
small amount of information, and only spend the costs (mainly
time when using slow connections) for the costly images when
really needed.

There is a limited capability for process progress inspection
even with only one return parameter in table entry 1b. With the
set {DONE, NOT_DONE, PARTIAL, ERROR}, there is room
for limited process inspection. The return of “PARTIAL” from
a server may indicate a unique meaningful checkpoint to a
client. It could be used to indicate some arbitrary level of

completion or that some arbitrary subset of data was currently
meaningful. This single return value is really a special binary
case of the second return value from EXAMINE. Together with
a per return element EXTRACT, this model can only reasonably
be used to extract one specific, pre-defined subset of results
before final extraction of the entire return data set. Figure 1 one
shows this use of PARTIAL for creating a single binary partition
of results this way: PARTIAL indicates in this specific case that
the results A and B are ready, yet C is not yet ready. If e.g., A
and C were ready yet not yet B, this could not be indicated and
the status NOT_DONE would be returned.

For clarity, we examine more closely the power associated with
each entry in the above table. Entry 1a, when there is only one
status parameter per invocation (i.e., for all of foo) and only the
ability to extract the entire return data set, is clearly the most
limited. It is very much like an asynchronous remote procedure
call, with the clear distinction that the client polls for result
readiness. Also data are only delivered when the client requests
it, as noted previously.

In table entry 1b, we see that adding per element extraction
capability allows clients to reasonably extract one portion of the
data set if it is done earlier than the whole. This capability is
still very limited. This model can only reasonably be used to
extract one specific, pre-defined subset of results before final
extraction of the entire return data set. The return value
"PARTIAL" can be used to indicate that a partial set of results

are done, whereas the examination return value "DONE" may
indicate that all results are ready. This use of PARTIAL can be
seen in Figure 1. Again, it is only possible to create a single
binary partition of results this way.

A B C

PARTIAL

foo

ready ready not ready

RETURN VALUES FROM FOO

Figure 1. Overloading PARTIAL with additional semantic
information

In table entry 2a, we see that very limited progressive extraction
of the data is made possible by the addition of the second
parameter to EXAMINE. The status of the results can be
indirectly derived from the progress of the invocation. This
indirect progress indication only applies to the entire result
return set, which is really only useful if there is only one result
parameter or all the result parameters belong tightly together.
This is a superset of the web-browser extraction method,
actually. With the web-browser extract method for weather data
to be computed, images, or simulations , no meta-information
about the data is returned to the client (i.e., status about the data
being 20% complete, etc.). To add such meta-data to web
browsing, the browser must be further extended to actively
process return values through another mechanism like Java or
JavaScript.

In table entry 2b, we see that very limited progressive extraction
of the data is again made possible by the addition of the second
parameter to EXAMINE. There is really no more power in this
examination and extraction model than table entry 2a. However,
creative server programmers could take advantage of a scheme
similar to that shown in Figure 1. Still, even under such
circumstance, programmers are again limited to one predefined
subset for extraction and are not allowed the flexibility seen in
entries 3b and 4b.

In table entry 3a, we see the addition of per return value
examination information. If there is only one return value from
a method, the functions of entries 3a, 3b, 4a, and 4b are identical
to entries 1a, 1b, 2a, and 2b, respectively. We refer to entry 3a
as semantic partial extraction because the per result examination
allows the user to know exactly when individual return results
are ready, but the entire data set must be extracted to get any
particular element. This can cause unnecessary delay and
overhead, especially with large return data sets.

In table entry 3b, we see the first fully functional partial
extraction. Whereas in entries 1b and 2b individual return
values could be selected from the return set, partial extraction
was not meaningful without a per return value EXAMINE
primitive as offered here.

In table entry 4a, progressive extraction is possible, with
progress indicators for each data return value. On the other
hand, it still suffers from the same overhead as table entry 3a: all

data must be extracted at each stage. This expense cannot be
avoided.

In table entry 4b, we see the manifestation of the complete
CLAM examine/extraction model, one that has all facets of the
general result extraction model. Both partial and progressive
extractions are possible, including partial-progressive
extractions (where arbitrary individual elements may be
extracted at various stages of completion). Without exception,
this model is strictly more powerful than any of the others.

2.4 Granularity in partial extraction
In our discussion of Table 1 we had the special case where it is
only possible to extract exactly one subset of parameters (case
1b) and the more general case wherein the partial extraction of
an arbitrary set of parameters can be extracted (case 3b). In both
cases, the granularity of extraction is given by the individual
method parameter. One method parameter is either extracted as
a whole, or not at all. If a module supplier wants to provide a
very fine granularity for partial extraction, the results of a
method have to be split up into as many different parameters as
possible. This allows fine granularity for partial examination
and extraction, yet has two distinct disadvantages:

- if the result parameters are correlated and together form a
larger logical structure, this higher level structure gets lost in
the specification of the method as well as in the extraction

- the client is burdened with reconstructing any higher level
data structure. This is an overhead concerning programming
as well as concerning information dissemination (the client
needs to get the information from somewhere how to
reconstruct a higher level structure, information that is not
necessarily part of the method specification).

add as a figure part of the repository definition in XML with the
definition for the parameter PersDat -- leave out the details about
short cuts for simple parameters -- from schema spec.

(DOROTHEA’S TREE)

Figure 2. Sample CLAM repository information

There is another way to provide a fine granularity for partial
extraction of result parameters without burdening the client with
the reconstruction of higher level data structures. The module
provider makes the substructure of the result parameter public,
and allows users to examine and request only part of a result
parameter. One possible way to do that is by using XML for
parameters [15]. The structure of parameters are defined by
DTDs (or XML-Schemas) and made public along with the
method interfaces [16]. For CLAM the DTD for the XML-
parameters is defined in the CHAIMS repository as shown in
Figure 2. If the client wants to extract parameters as a whole,
the client uses the CLAM syntax as discussed in section 2.2. If
the client wants to examine and extract just part of a parameter,
the client adds an XQL query string to each parameter name in
the examine or extract command. For the parameter "PersDat"
specified in Figure 2 a client could just examine and extract the
element “Lastname” with the following CLAM commands:

(lastname_status = status) =
ivh.EXAMINE("PersDat" ; "Lastname")

(lastname = "PersDat" ; "Lastname") =
ivh.EXTRACT()

XQL is a very simple query language that allows clietns to
search for and extract specific sub-elements of an XML-
parameter. In the above example, the whole data structure
“PersDat” is searched for an element with the tag “Lastname,”
which is then returned inclusive all of its sub-elements. XQL
would also allow clients to specify the whole path (e.g.
“/Persdat/Name/Lastname”), or to search for an element
anywhere within another element (e.g., “/Persdat//Lastname”) or
anywhere within the entire parameter (e.g., “//Lastname”). In
our specific example, all of these queries return the same data.
XQL also allows more complex queries including conditions
and subscripts (for more details see [17]).

Using XQL queries for extracting partial results of
computational methods should not be confused with using XQL
queries to extract data from an XML database, in spite of the
apparent similarities. There are several differences:

- here we query non-persistent data; the lifetime of the result
parameters is linked to the duration of the invocation

- there exists no overall schema for all the result parameters of
one module or even of several modules. The scope of the XML
specification (the DTD in the repository) is one single
parameter. The relationships between the parameters is not an
issue for partial extraction.

- Due to the first two differences, there is also no need or use for
a join operation, and a simple query language like XQL fulfills
all the needs for partial extraction (whereas for XML-databases
more complex query languages like XML-QL might be better
suited [18]).

2.5 Implementation issues
2.5.1 Wrapping
Within CHAIMS, all server modules have certain compatibility
requirements. Many server modules are actually wrapped
legacy code that do not have the necessary components to act as
remote servers. For minimal CHAIMS compliance, any legacy
module can trivially support an EXAMINE/EXTRACT
relationship like that in table entry 1a. This is a single
EXTRACT with a per invocation EXAMINE. Simply treat the
legacy module like a black box that returns only {DONE,
NOT_DONE, ERROR} (without PARTIAL). Also, because
return values are collected in the CHAIMS wrapper, the client
can freely choose when to request the data, though it must
request the data explicitly. The client may also perform multiple
requests for the same data without further augmentation of the
original code (table entry 1b).

CLIENT SERVER/MEGAMODULE

SETUP connection
wrapper legacy code

INVOKE “foo”

INVOKE “foo”

EXAMINE

EXAMINE

EXTRACT

EXTRACT

TERMINATE

Figure 3. Client-wrapper communication

To use the more powerful models of data extraction, significant
modification would be required of naïve modules. We
originally classified the two augmentation types (to legacy
modules) as either partial or progressive-type augmentations.
Partial extraction augmentations are those that make a particular
subset of the return data externally available before the
completion of the entire invocation. Progressive extraction
augmentations are those that post information in multiple stages,
i.e., at implementer-defined checkpoints.

Native modules designed for partial and progressive extraction
must have a way to post interim results that may be extracted by
clients. The interim results must be held in some structure so
that request for data may be serviced without interrupting the
working code.

The CHAIMS wrapper is a threaded component that handles
messages and provides a means of storing interim results and
delivering those results to clients. To implement partial and
progressive extractions, two pieces of information are required:
status and data. When a module posts an interim result (to be
delivered by the wrapper or a native server), both pieces of
information must be given about the result value.

This status does not need to be provided per method or pre-
invocation, however. Such information is extracted from
collected knowledge about all partial results. When no partial
results are ready, status is NOT_DONE. When all partial results
are ready, status is DONE. When some results are ready at any
level, per invocation status is simply PARTIAL. When any
partial result indicates ERROR, however, the per invocation
status should be set to ERROR. This prevents a blind per
invocation extraction of all data elements when some may be
corrupt.

2.5.2 Result marshalling methods
There are two equally appropriate methods for marshalling
partial results, depending upon application: passive and active.
The marshalling concerns are basically the servers’, not the
clients’. With a passive approach, whenever a client specifically
requests status or partial results, the message handler requests
that information from the working code. The appropriate
routines for doing so are provided in the runtime layer (CPAM –
Composition Protocol for Autonomous Megamodules) in the

form of a Java class, or they may be user developed. Of course,
native codes written with the intent of posting partial results are
easier to work with than wrapped codes and can use any suitable
language (Java, or otherwise). Figure 4 better shows the
marshalling and examination interaction between a wrapper and
legacy code. The status and progress information is held in the
wrapper. Also, temporary storage locations for the extractable
parameters are located in the wrapper.

The active approach to data marshalling is more appropriate for
certain problem types. In this method, when a server program
reaches a point where it is appropriate to post status and results,
it does so, directly to the CPAM objects or wrapper layer. The
trade-offs between the approaches should be clear. Active
posting is conceptually simpler and easier to code, but requires
the overhead posting and storing interim results that may never
be examined. Figure 4 shows how an active approach to data
marshalling would proceed through time. After the wrapper
receives an EXAMINE request, the appropriate routines actively
inspect the legacy code to update the status/progress structure in
the wrapper. After the EXTRACT is received, the request is
passed to the legacy code, and the data structures are then
updated, before results are passed back to the client.

WRAPPER

EXAMINE

LEGACY CODE

result A

result B

result C

status progress

EXAMINE

EXTRACT A,B

EXTRACT A,B

T
IM

E

Figure 4. Wrapper result marshalling

2.5.3 Termination
The ability to delay extractions and make repeated extractions
implies that a server no longer knows exactly when a client is
finished with an invocation. With a traditional RPC, this was
not a problem. In that case, when the work was complete,
results were returned, and the server (or procedure) had no
further obligations to the client. With arbitrary extraction, the
server is obligated to hold data for the client.

Even without allowing repeated extractions, there are more
subtle reasons for which the server must hold data for clients. In
the case of a partial extraction from our example method foo, a
client may extract result fields A and B, but the server does not
know that the client is not also interested in result field C. Since
there is no a priori communication of intent from client to
server, their relationship must be changed somewhat.

The obligation for a server to cache and store results is balanced
by a client’s obligation to explicitly terminate an invocation.
This explicit termination merely signals to a server that a client
is no longer interested in further extractions from a particular

invocation, but is an integral detail of this model of result
extraction.

2.5.4 Repository
There should be a repository of method interfaces and the
structure of return values available to programmers using this
arbitrary extraction model. Of course, when programming “in
the small,” (i.e., stand-alone programs, in-house projects, etc.),
this is not really an issue at all. When making services available
for sale/use externally, service providers must provide the
appropriate information about the results which can be
extracted. For instance, if delivering foo over the net, a provider
should indicate to users that fields A, B, and C may be extracted
separately. This information in the context of CHAIMS (where
we assume “programming in the large”) is provided via a
repository.

3. COMPARISONS
In the following we compare the extraction model as defined in
CLAM and mirrored primitive by primitive in the CHAIMS
access protocol CPAM to the extraction models found in the
following protocols:

• web browsing

• JointFlow

• SWAP

• CORBA-DII

3.1 Partial and progressive result extraction
in web browsing

Web browsing generally falls into the category of services that
we refer to as data services. Recall, data services primarily
deliver specific data requested by clients, rather than
computational services which add value to client supplied data.
Clients are usually represented by one of many available web
browsers or crawlers while web servers deliver data to those
clients. Clients request data using the http protocol. Data
extracted (documents delivered) from servers are often written
in html, and often have components of varying types, including
images, audio, and video.

Web browsing occurs in batch and interactive ways. Batch
browsing is performed by crawlers for many reasons, such as
indexing, archiving, etc. Interactive browsing is performed by
humans for numerous reasons, such as information gathering,
electronic commerce, etc. A browser of either sort makes a
request to a server for a specific document. That document is
returned to the client, and serves as a template for further
requests. If the document is html, the browser may parse the
document and determine that there are other elements that form
the complete document (i.e., images tags). The document serves
as a schema, describing the other elements that may be extracted
from the server.

After a main document has been fetched, we can consider the
possible partial and progressive extractions that can take place.
To extract a sub-element of a web page, an http request is sent to
a server, and the data or an error message is returned. In batch
browsing, the textual information contained in the page is
frequently enough to be meaningful. This is very different from
the generalized result extraction model we discuss in that the
schema of the results is not meaningful in itself. But, in web-
browsing, the page retrieved is often meaningful, not just for the

sub-elements it describes. This aside, we consider result
extraction in terms of gathering sub-elements from pages

In interactive browsing, partial extraction is a simple process,
and is at least marginally exploitable in the most widely used
interactive browsers (Netscape and Microsoft’s Internet
Explorer). Both feature an “auto-load” feature that can be
toggled (to varying degrees) to automatically load (or not load)
different content type such as images, audio, or video. For
instance, some users are concerned with images and text, but do
not with to be disturbed by audio. Their browser makes the http
requests for all sub-elements, save audio. This is partial
extraction. In other cases, especially with slower internet
connections, images are expensive to download, users may
choose to not automatically download images until determining
that a particular image or set of images is important enough to
invest time in.

Partial extraction in web-browsing is a special case of the
general partial extraction model in that the first result to be
extracted always contains information about the other results to
be extracted. Based on this first result, the client not only
determines its interest in the other elements of the page, but also
gets the information about what other results are available at all.
This is in contrast to our general model, where a result
parameter may but need not provide information about other
result parameters, and where all possible result parameters are
specified in a repository beforehand.

The most commonly found progressive extraction in web
browsing is quite different from progressive extraction in a
computational service though progressive extraction of
computational services over the web, e.g. improving simulation
data, is also feasible. In a computational service, progressive
extraction refers to extracting various transformations of input
data over the life of a computation. In web browsing,
progressive extraction is actually repeated extraction of a
changing data stream. Weather services on the web often
provide continuous updates and satellite images. Stock tickers
provide updated information so users can have current
information about their investments. Repeated extractions from
the same stream show the stream’s progress through time.
Sometimes these repeated extractions may be done by manually
reloading the source, or they may be pulled from servers by html
update commands, JavaScript’s, embedded Java-code, etc. Such
data is retrievable any time and its progress status is always
DONE and 100% accurate, yet we expect the data to contain
also information about to which point of time it refers.

3.2 Incremental result extraction and
progress monitoring in JointFlow

JointFlow is the Joint Workflow Management Facility of
CORBA [6]. It is an implementation of the I4 protocol of the
workflow reference model of WfMC [11] on top of CORBA.
JointFlow adopts an object oriented view of workflow
management: processes, activities, requesters, resources, process
managers, event audits etc. are distributed objects, collaborating
to get the overall job done. Each of these objects can be
accessed over an ORB, the JointFlow specification defines their
interfaces in IDL. We have chosen JointFlow for comparison as
it is a protocol that also support the request of remote
computational units which can yet need not to have some degree
of autonomy, and the protocol is also based on asynchronous

invocation of work and extraction of results, having special
primitives for invocation, monitoring, and extraction.

Work is started in that a requester asks a process manager to
create a new process. The requester then communicates directly
with the new process, setting context attributes in the process
and invoking the start operation of the process. A process my be
a physical device, a wrapper of legacy code, or it may initiate
several activity objects which might in turn use resources (e.g.
humans) via assignments or itself act as requesters for other
processes. Our focus of interest here is the interaction between
the requester and the process concerning result extraction and
progress monitoring.

3.2.1 Monitoring the Progress of Work
Both, processes and activities are in one of the following states:
running, not_running.not_started, not_running.suspended,
completed (successfully), terminated (unsuccessfully), aborted
(unsuccessfully). A requester can query the state of a process,
the states of the activities of the process (by querying and
navigating the links from processes to activities), and the states
of assignments (by querying and navigating the links from
activities to assignments). If the requester knows the workflow
model with all its different steps implemented by the process,
the requester might be able to interpret the state information of
all subactivities and assignments and figure out what the
progress of the process is. If the model is not known, e.g., due
to an autonomy boundary as they are assumed in CHAIMS, the
only status information provided by the JointFlow protocol itself
is essentially completed or not yet completed. In contrast,
CHAIMS supports the notion that certain services may support
progress information (e.g. 40% done) that can be monitored.
This information is more detailed than just running or complete,
and more aggregated and better suited for autonomous services
than detailed information about component activities.

In contrast to CHAIMS that polls all progress information, in
JointFlow a process signals its completion to the requester by an
audit event. These audit events could also be used to
implement CHAIMS-like progress monitoring on top of
JointFlow: a process can have a special result attribute for
progress information and the process is free to update that
attribute regularly. It then can send an audit event with the old
and new value of the progress indicator result to its requester
after each update. Yet this result attribute cannot be polled by a
requester (in contrast to CPAM and SWAP), because get_result
only returns results if all results are available at least as
intermediate results.

3.2.2 Extracting Results Incrementally
Both, processes and activities have an operation
get_result():ProcessData (returning a list of name value pairs).
Get_result does not take any input parameter and thus returns all
the results. The get_result operation may be used to request
intermediate result data, which may or may not be provided
depending upon the work being performed. If the results cannot
yet be obtained, the operation get_result raises an exception and
returns garbage. The results are not final until the whole unit of
work is completed, resulting in a state change to the state
complete and a notification of the container process or the
requester. This kind of extracting intermediate results
corresponds to the progressive extraction of all result attributes
in CHAIMS. The following features found in CHAIMS are not
available in JointFlow:

• Partial extraction with get_result: only all or none
of the result values can be extracted by get_result, and
there is no mechanism to return an exception only for
some of the values.

• Progressive extraction with get_result of just one
result attribute when not yet all other results are
ready for intermediate or final extraction

• There is no accuracy information for intermediate
results, unless it is in a separate result attribute. There
is no possibility to find out about the availability or the
accuracy of intermediate results unless requesting
these results.

Though partial and progressive result extraction are not part of
the design of JointFlow, they also can be achieved by using
audit events and by pushing progressive and partial results onto
the requester, instead of letting the requester poll for them. A
process or an activity can send out an audit event to its requester
or to the containing process whenever one of the result values
has been updated. This event would then contain the old as well
as the new result value. In case of large data and frequent
updates, this messaging mechanism could result in huge
amounts of traffic. The mechanism would have to be extended
by special context attributes that tell the process or activity in
advance which results should be reported in which intervals.
Yet this results in a very static and server centric approach, in
contrast to the client-centric approach in CHAIMS that is based
on data on demand. Also, as partial and progressive result
extraction are not mandated by the JointFlow protocol itself, it is
questionable how many processes and activities would actually
offer it.

3.3 Incremental result extraction and
progress monitoring in SWAP

SWAP (Simple Workflow Access Protocol) is a proposal for a
workflow protocol based on extending http. It mainly
implements I4 (to some extend also I2 and I3) of the WfMC
reference model. SWAP defines several interfaces for the
different components (which are internet resources) of the
workflow system that interact via SWAP. The three main
components are of type ProcessInstance, ProcessDefinition and
Observer. The messages exchanged between these components
are extended http-messages with headers defined by SWAP.
The data to be exchanged is encoded as text/xml in the body of
the message.

A process instance (having the interface ProcessInstance) is
created and started by sending a
CREATEPROCESSINSTANCE message to the appropriate
ProcessDefinition resource. This message also contains the
context data to be set and the URI of an observer resource that
should be notified about completion and other events. The
response contains the URI of the newly created process instance.
The process is started either automatically by the
ProcessDefinition resource if the
CREATEINSTANCEMESSAGE contains the startImmediately
flag, or by sending a PROPPATCH message to the process
instance with the new state running. A process instance
resource can delegate work to other resources by acting itself as
an observer and ask some ProcessDefinition resources for the
creation of other process instances. As in JointFlow and in
CHAIMS, the process instance creation, setting of context

attributes, start of the process, and the extraction of results are
done asynchronously.

3.3.1 Result Extraction and Result Monitoring
Results are extracted from a process instance by sending it the
message PROPFIND at any time during the execution of a
process instance. This message either returns all available
results, or if it contained a list of requested result attributes, it
only returns the selected ones. Only result attributes are
returned that are available. If requested attributes are not yet
available, presumably an exception should be returned for these
result attributes. SWAP does not specify if the results returned
by PROPFIND have to be final or not. Given the possibility to
ask for specific result attributes, and to get exceptions for
specific result attributes in case they are not available (made
possible by having exceptions encoded in XML instead of
having just one possible exceptions for one procedure call as in
the CORBA based JointFlow protocol), allows some degree of
partial and maybe even progressive extraction.

A process instance signals the completion of work to an
observer with the COMPLETE message. This message also
contains the result data: all the name value pairs that represent
the final set of data as of the time of completion. After sending
the COMPLETE message, the resource does not have to exist
any longer, this in contrast to CHAIMS where the no result data
is lost until the client (observer) sends a TERMINATE.

A process instance can also send NOTIFY messages to an
observer resource. These messages transmit state change events,
data change events, and role change events, data change events
containing the names and values of data items that have
changed.

3.3.2 Incremental Result Extraction as Defined in
the CHAIMS Model

The mechanisms of SWAP allow the following kind of result
extraction and progress monitoring:

• Partial result extraction: Either pushing results via
NOTIFY messages or pulling results via PROPFIND
messages is possible. NOTIFY sends all new result
data, PROPFIND returns all available result data
whether or not they have already been returned by a
previous PROPFIND. Notification of result changes
without sending also the new values is not possible
unless additional result attributes are added. The same
is true for getting the status of individual results:
asking for the status of results without getting also the
results, is not possible unless a state attribute is added
for each data attribute to the set of result attributes.

• Progressive result extraction: The SWAP
specification does not explicitly specify if progressive
result updates in a process instance are allowed or not.
If not, the result attributes would not be available until
their values are final. If yes, then progressive results
can be extracted either by pushing results via NOTIFY
messages or by pulling results via PROPFIND
messages. Accuracy indication is not provided, it
would have to be implemented via additional result
attributes.

3.3.3 Process Progress Monitoring
PROPFIND not only returns all result values available, it also
returns the state of the process instance and additional
descriptive information about the process. As possible states
can be specified by the process itself, PROPFIND also returns
the list of all possible state values, yet in most cases it would
probably just be not_yet_running, running, suspended,
completed, terminated, etc (the basic set of states defined by I4).
A process instance can be asked for the URI of all the processes
it has delegated work to, and an observer then can directly ask
this subprocesses about their statuses. This is analogue to the
model found in JointFlow, and thus has the same drawbacks
concerning autonomy and concerning amalgated progress
information.
Overall progress information is not specified by SWAP, but it
could be implemented by a special result attribute assuming that
result attributes can be changed over time. Such result attributes
could be extracted any time by PROPFIND, independent of the
availability of other result attributes.

Though SWAP does not support incremental result extraction as
defined in CHAIMS, it could quite easily either be added to the
SWAP protocol itself or done by using the SWAP protocol as
defined and applying the simple workarounds mentioned above.
As SWAP has very similar goals in accessing remote processes
as CHAIMS, and as it is a very open and flexible protocol, its
result extraction model is already very close to the one of
CHAIMS and could be easily extended to contain all aspects of
the CHAIMS extraction model. Yet as SWAP has not been
designed with incremental extraction in mind, it does not have
the strong duality between extract and monitoring command as
found in CHAIMS between EXAMINE and EXTRACT.

3.4 Incremental result extraction and
progress monitoring in CORBA

3.4.1 CORBA- DII
CORBA offers two modes for interaction between a client and
remote servers: the static and the dynamic interface to an ORB.
For the static interface an IDL must exist that is compiled into
stub code that can be linked with the client. The client then
executes remote procedure calls as if the remote methods were
local.

The dynamic invocation interface (DII) offers dynamic access
where no stub code is necessary. The client has to know (or can
ask for) the IDL from the remote object, i.e., the names of the
methods and the parameters they take. The client then creates a
request for a method of that object. In this request the method
name appears as a string and the parameters appear as a list of
named values, with each named value containing the name of
the parameter, the value as type any (or a pointer to the value
and a CORBA type code), the length of the parameter, and some
flags. Once the request is created, the method can be invoked.
This is either done synchronously with invoke or
asynchronously with send (in fact, some flags allow more
elaborate settings). Invoke returns after the remote computation
has completed, and the client can read all OUT parameters in the
named value list. In case of a send, the client is not blocked. In
order to figure out when the invocation has finished, the client
can use get_response, either in a blocking (it waits until
invocation is done) or a non-blocking mode. As soon as the
return status of get_response indicates that the remote

computation is done, the client can read OUT parameters from
the named value list.

In case of the asynchronous method invocation in CORBA-DII,
the progress of an invocation can be monitored and asked for by
the client as far as completion is concerned, but no further
progress information is available. Progressive extraction of
results is not supported by DII. Of course a client is free not to
read and use all results after the completion of an invocation, yet
while the computation is going on no partial extraction is
supported.

3.4.2 CORBA Notification Service
In order to mimic the incremental result extraction of CHAIMS,
one could use asynchronous method invocation with DII
coupled with the event service of CORBA. The client could be
implemented as a PullConsumer for a special event channel
CHAIMSresults, the servers could push results into that channel
as soon as they are available, together with accuracy
information. Though event channels could be used for that
purpose (we could require that every megamodule uses event
channels for this), an integration of incremental result extraction
and invocation progress monitoring into the access protocol
itself is definitely more adequate when we consider this to be an
integral part of the protocol. The same is true for the languages
used to program the client: while CLAM directly supports
incremental extraction and progress monitoring, this is not the
case for any of the languages in used for programming CORBA
clients.

4. CONCLUSIONS
In the CHAIMS project, we sought to build a composition-only
language for remote, autonomous services. To do this, we had
to consider many different extraction models used in different
domains. This examination led to the realization that a simple
asynchronous RPC-style approach was not enough.

To build a language and an access protocol to support arbitrary
result extractions took careful consideration of the myriad ways
extractions were currently being used in widespread as well as
hand-crafted systems. Building support and primitives for all of
these result extraction methods (autonomously, progressively,
and partially) and then binding them within one system has led
to the formulation of a comprehensive model for arbitrary result
extraction.

Our model captures the notions of traditional result extraction,
partial extraction and progressive extraction. By combining
two simple primitives in CLAM (EXAMINE and EXTRACT),
the full power of each of these extraction types can be achieved.
This extraction model is appropriate as a template for existing
systems, and future languages as well. It is generic to result
extraction, and only assumes that the necessary asynchrony can
be achieved among components through distributed
communication, threading, or other available means.

5. REFERENCES
[1] D. Beringer, C. Tornabene, P. Jain, and G.

Wiederhold: “A Language and System for
Composing Autonomous, Heterogeneous and
Distributed Megamodules,” DEXA 98: Large-Scale
Software Composition, Vienna, August 1998.

[2] B. Chapman, M. Haines, P. Mehrotra, H. Zima and J.
Van Rosendale, “Opus: A Coordination Language for
Multidisciplinary Applications,” ICASE Technical
Report 97-30, June 1997.

[3] M. Haines and P. Mehrotra, “Exploiting Parallelism
in Multidisciplinary Applications Using Opus,”
Proceedings of the Seventh SIAM Conference on
Parallel Processing for Scientific Computing, San
Francisco, CA, February 1995.

[4] J. Hanly, E. Koffman and J. Horvath, Porgram
Design for Engineers, Addison-Wesley, Menlo Park,
CA, 1995.

[5] ICASE Research Quarterly, Vol. 4, No. 1, March
1995.

[6] Workflow Management Facility, Revised
Submission, OMG Document Number: bom/98-06-
07, July 1998.

[7] L. Melloul, D. Beringer, N. Sample and G.
Wiederhold, “CPAM, A Protocol for Software
Composition,” CAiSE'99, Heidelberg, Germany,
June 1999 (Springer LNCS).

[8] N. Sample, D. Beringer, L. Melloul and G.
Wiederhold: “CLAM: Composition Language for
Autonomous Megamodules,” Third Int'l Conference
on Coordination Models and Languages, COORD'99,
Amsterdam, April 26-28, 1999 (Springer LNCS).

[9] Simple Workflow Access Protocol (SWAP), Keith
Swenson, IETF internet draft, August 1998.

[10] G. Wiederhold, P. Wegner, and S. Ceri: “Towards
Megaprogramming: A Paradigm for Component-
Based Programming”; Communications of the ACM,
1992(11): p.89-99.

[11] Workflow Management Coalition: The Workflow
Reference Model, Document Number TC00-1003,
Nov 1994.

[12] C. Bartlett, M. Haines, and N. Sample: “Pipeline
Expansion in Coordinated Applications,”
International Conference on Parallel and Distributed
Processing Techniques and Applications
(PDPTA’99), June 1999.

[13] T. Pratt and M. Zelkowitz, Programming Languages,
Design and Implementation, 1996, Prentice Hall, Inc.

[14] G. Wiederhold, D. Beringer, N. Sample and L.
Melloul, “Composition of Multi-site Services,” 4th
World Conference on Integrated Design and Process
Technology IDPT'99, Kusadasi, Turkey, June 1999.

[15] T. Bray, J. Paoli and C. Sperberg-McQueen,
“Extensible Markup Language (XML) 1.0,” W3C
Recommendation, February 1998.

[16] A. Davidson, et al., “Schema for Object-Oriented
XML 2.0,” W3C Note, July 1999.

[17] J. Robie, “XQL Tutorial,” March 1999
(http://metalab.unc.edu/xql/xql-tutorial.html).

[18] [18] A. Deutsch, et al., “XML-QL: A Query
Language for XML,” submission to the W3C, August
1998.

