
Paper Number AR 300

Merging Ranks from Heterogeneous Internet Sources �

Luis Gravano H�ector Garc��a-Molina

Computer Science Department

Stanford University

Stanford, CA 94305-9040, USA

fgravano,hectorg@cs.stanford.edu

Phone: +1-415-723-3605

FAX: +1-415-725-2588

Abstract

Many sources on the Internet and elsewhere rank the objects in query results ac-

cording to how well these objects match the original query. For example, a real-estate

agent might rank the available houses according to how well they match the user's pre-

ferred location and price. In this environment, \meta-brokers" usually query multiple

autonomous, heterogeneous sources that might use varying result-ranking strategies. A

crucial problem that a meta-broker then faces is extracting from the underlying sources

the top objects for a user query according to the meta-broker's ranking function. This

problem is challenging because these top objects might not be ranked high by the

sources where they appear. In this paper we discuss strategies for solving this \meta-

ranking" problem. In particular, we present a condition that a source must satisfy so

that a meta-broker can extract the top objects for a query from the source without ex-

amining its entire contents. Not only is this condition necessary but it is also su�cient,

and we show an e�cient algorithm to extract the top objects from sources that satisfy

the given condition.

1 Introduction

Increasingly, sources on the Internet and elsewhere rank the objects in the results of selection

queries according to how well these objects match the original condition. For such sources,

query results are not
at sets of objects that match a given condition. Instead, query results

are sorted starting from the top object for the query at hand.

A typical example of this kind of sources is a source that indexes text documents and

answers queries using some variation of the vector-spacemodel of document retrieval [Sal89].

�This material is based upon work supported by the National Science Foundation under Cooperative

Agreement IRI-9411306. Funding for this cooperative agreement is also provided by DARPA, NASA, and

the industrial partners of the Stanford Digital Libraries Project. Any opinions, �nding, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily re
ect the

views of the National Science Foundation or the other sponsors.

1

Example 1: Consider aWorld-Wide Web search engine like Excite (http://www.excite.-

com). Given a query consisting of a series of words, like \distributed databases," Excite

returns the matching documents sorted according to how well they match the query. This

way, Excite might return a given WWW page as the top match for the query with a score

of 82%, some other page as the second top match with a score of 80%, and so on.

Although text sources are probably the best known example, sources with multimedia

objects like images are also becoming common. Matches between query values and objects

in such sources are inherently \fuzzy" [NBE+93].

Example 2 : Consider a World-Wide Web search engine for images like Image Surfer

(http://isurf.interpix.com/). Given an image of interest, Image Surfer returns a rank

of the images that are closest to the given one in terms of their color distribution. The

query results for such a source are inherently ranked. In e�ect, most users would want to

�nd images with a color distribution that is close, not identical, to that of a given image.

Even sources with more \traditional" and structured data that rank their query results

are appearing on the Internet. These sources rank the highest those objects that match the

user's speci�cation the best.

Example 3: Consider a real-estate agent that accepts queries on the Location and Price

attributes of the available houses. This agent could treat query conditions as if they were

regular Boolean conditions. This way, the agent (or the user) could determine an acceptable

radius around the preferred location, and an acceptable price range, and simply return all

the houses with a location and price within these limits. However, there could be too

many matching houses, making the user's task of going over them tedious. Also, houses

with, say, a very good price but slightly outside of the acceptable location area might be

missed. Therefore, some on-line real-estate agents already rank their query results (e.g.,

CyberHomes, at http://www.cyberhomes.com/). Thus, the top house returned to the user

would be one that is closest to the speci�ed location and is relatively inexpensive. As we

will see, sources might choose to weigh these two criteria for their rankings in di�erent

ways.

As the popularity of this type of sources increases, so does the number of meta-brokers.

A meta-broker is a service that receives a user query, queries several relevant sources, and

merges the query results into a single query result for the user that issued the query. Such

meta-brokers also provide ranked query results. A key problem that a meta-broker has to

address is how to extract the top matches for a query from sources that might use widely

di�erent ranking algorithms, as the following examples illustrate.

Example 4: A service like SavvySearch (http://guaraldi.cs.colostate.edu:2000/)

queries multiple WWW search engines at once, including Excite. It then combines the

results into a single ranked result. If a page p is returned only by Excite with a score of

82%, and a page p0 is returned only by HotBot (http://www.hotbot.com/) with the same

score, then both pages would be judged by SavvySearch as equally good for the query at

hand. However, Excite and HotBot may use radically di�erent scoring algorithms, so it is

really not meaningful to merge the results based on the source scores.

2

The solution is to have the meta-broker have its own scoring function that it uses to rank

and merge the retrieved objects. With this scheme, each page or object retrieved is given a

new target score, regardless of its source score, and these target scores are used to merge the

results. For this to work, the meta-broker needs to retrieve enough information about the

source objects to evaluate its target function on them. As we discuss in Section 4, in some

cases it is not possible to retrieve all the necessary target scoring attributes, thus making

it simply impossible to merge the results in a reasonable way. However, even if the meta-

broker can retrieve the necessary attributes for each object, there is still the very important

problem of extracting the right source objects, i.e., of extracting the source objects that

will yield the highest target scores, without having to examine all of the source objects.

Example 5: Suppose that the score that the real-estate agent of Example 3 assigns a

house for a query is 0:1 � l+0:9 � p, where l is a number between 0 and 1 that indicates how

close the house is to the target location (higher values of l are better), and p is a number

between 0 and 1 that indicates how close the price of the house is to the target price (higher

values of p are better). Now, suppose that a meta-broker would like to weigh location and

price equally, and it does so by assigning houses a score of 0:5 � l+ 0:5 � p.

Suppose that a user is looking for houses with preferred location in Palo Alto and a

target price of $100K. Furthermore, suppose that the agent has only one house in Palo

Alto, with l = 1 (perfect location) and p = 0:2 (high price). All the remaining houses

available to the agent are located in Mountain View, with l = 0:6 (not as good a location)

and p = 0:4 (moderate price).

Using the de�nitions above, the real-estate agent would assign a score of 0:1�1+0:9�0:2 =

0:28 to the Palo Alto house, whereas the meta-broker would assign such a house a higher

score of 0:5 �1+0:5 �0:2 = 0:6, since the meta-broker weighs location and price equally. Also,

the agent would assign a score of 0:1 � 0:6 + 0:9 � 0:4 = 0:42 to any Mountain View house,

whereas the meta-broker would assign any such house a score of 0:5 � 0:6 + 0:5 � 0:4 = 0:5.

Consequently, the answer to the user's query from the meta-broker should be the Palo Alto

house, because it has the highest score for the query according to the meta-broker's scoring

algorithm. However, the real-estate agent, where the record of the Palo Alto house resides,

ranks all of the other houses, which are all Mountain View houses, higher than the Palo

Alto house, so the meta-broker would have to retrieve all of the agent's contents before

extracting the top house, i.e., the Palo Alto house.

Example 5 illustrates that it may be hard for a meta-broker to extract the best objects

from autonomous sources when they use scoring functions that are di�erent, or even slightly

di�erent, from the target function used by the meta-broker. This raises some important

questions. For example, for what types of source and target scoring functions is it possible to

retrieve results \e�ciently," without having to retrieve full source contents? In these cases,

what is the right strategy for obtaining and ranking results? For instance, given an end-user

query, what types of queries, and in what order, should we submit to the sources? Also,

how much does the meta-broker need to know about the source scoring function? Turning

to a negative scenario, are there \uncooperative" source scoring functions for which there

is no strategy whatsoever that avoids an \exhaustive" full retrieval of the source contents?

In this paper we address these and other related questions. We start by proposing an

Internet searching and ranking model (Section 2). Within this model, we then precisely

3

characterize the classes of source and target functions that make retrieval \e�cient" or

\exhaustive" (Section 5). In the former case, we present an algorithm for searching sources

and �nding the top-ranking objects according to the meta-broker's target function (Sec-

tion 3). We also describe variations to our model, and their impact on search and ranking

(Section 4).

Our goal in this paper is to explore the fundamental complexity and limitations of meta-

brokers. We believe that our results can guide implementors of search engines, making it

clear what scoring functions may make it hard for a client meta-broker to merge information

properly, and making it clear how much the meta-broker needs to know about the scoring

function. This last point is important since typically search engine builders wish to keep

their scoring function secret because it is one of the things that di�erentiates them from

other sources. At the meta-broker end, we believe that our results can also be helpful in

the design of the target scoring function, and in distinguishing cases where merging results

is meaningful and cases where it is not.

2 Our search model

The previous section presented examples of sources and meta-brokers, and illustrated the

problems that meta-brokers face when querying autonomous sources. In this section we

de�ne our searching model more precisely, and revisit the real-estate agent example in light

of the new de�nitions.

A source S contains a single relation RS with attributes A1; : : : ; An. S accepts queries

over RS . A query over S simply speci�es target values for some of the attributes of RS .

Thus, a query Q is an assignment of values v1; : : : ; vn to the attributes A1; : : : ; An of RS .

Some of the vi values might be don't care values (noted *"). The rest of the vi values are

the signi�cant values in the query.

Given a query, source S responds with the objects (i.e., tuples) of RS that \best match"

the query values [Fag96]. The query results contain the values for A1; : : : ; An for every

object returned. (In Section 4 we discuss sources for which this property does not hold.)

Property 1: Information in query results: The record for an object t in the query re-

sults returned by a source S contains all the values t[1]; : : : ; t[n] for the attributes A1; : : : ; An

that can be used to formulate queries over S.

Each object t in the result for queryQ is ranked according to the source score Source(S;Q; t)

that source S computes for Q and t. These scores range from 0 to 1. Since sources are

autonomous, these scores could be computed in a completely arbitrary way. However, we

expect them to be a function of the signi�cant values of Q, as discussed below.

Example 6: Consider the real-estate agent S of Example 5, with relation RS(Location,

Price). As mentioned above, a query to this agent may specify a target location L =

Palo Alto and some target price P = $100K, for example. In other words, such a query

Q = (L; P) asks for houses located close to Palo Alto, and with a price not too much higher

or lower than $100K.

4

The answers that the agent gives the user are the objects of RS ranked according to S's

source score for Q 1. This source score is arbitrary, as mentioned above. For example,

Source(S; (L; P); t) =

8><
>:

l if P = �

p if L = �

0:1 � l+ 0:9 � p otherwise

where l is some number between 0 and 1 that is inversely proportional to the distance

between t and the preferred location L, and p is some number between 0 and 1 that is

inversely proportional to the distance between the price of t and P , as mentioned above.

A meta-broker receives a user query Q and returns the top objects for Q that appear

in any of the available sources, according to the target score. The target score Target(Q; t)

for query Q and object t is some known function of the signi�cant values in Q. The values

of Target range from 0 to 1.

Example 6: (cont.) Continuing with the example above, we can de�ne:

Target((L; P); t) =

8><
>:

l if P = �

p if L = �

0:5 � l + 0:5 � p otherwise

Consequently, Target is quite similar to Source: these two functions just di�er in the weight

that they assign to each of the two query attributes when they are both signi�cant.

To extract the objects for a query Q with the highest Target scores (i.e., the top Target

objects), a meta-broker queries multiple sources that hold di�erent instances of the same

relation R and that use di�erent source score functions. The meta-broker extracts from

each source S all of the objects t with Source(S;Q; t) � g, for some score 0 � g � 1. (We

will discuss how to �nd g in Section 3.) The meta-broker then computes the Target score of

these objects without accessing the objects themselves, using the attribute values returned

in the query results (Property 1). Finally, the meta-broker returns the top Target objects

for the query.

Example 6: (cont.) Consider the top result that source S returns for the query Q above:

Location: Mountain View; Price: $150K; Source score: 0.42

The meta-broker can then simply discard the Source score for this house, and compute

the Target score using its own algorithm. The meta-broker does this for all of the objects

extracted from the sources, and returns the objects with the highest Target scores.

The Source and Target scores for a query may vary widely, as we have seen. The

following de�nition captures those Source scores that are reasonably close to a given Target

score. This de�nition will be useful later to characterize the sources for which we can

extract the top Target objects e�ciently.

1In the remainder of the paper, we refer to both source S and its relation RS as source S, for simplicity.

5

De�nition 1: A query Q is manageable at source S if there is a constant 0 � � < 1 such

that

Source(S;Q; t) � Target(Q; t)� �

for all possible objects t. In other words, a query is manageable at a source if the Source

scores for this query are not too much lower than the corresponding Target scores.

Example 7: A query Q for the real-estate agent specifying both a Location and a Price is

manageable at S for the Target and Source scores de�ned in Example 6. In e�ect, we can

take � = 0:4:

Target(Q; t)�� = 0:5�l+0:5�p�0:4 = 0:1�l+0:4�(l�1)+0:5�p� 0:1�l+0:9�p= Source(S;Q; t)

Example 8: Consider the following Target score for the real-estate scenario:

Target((L; P); t) =

8><
>:

l if P = �

p if L = �

maxfl; pg otherwise

and the following Source score:

Source(S; (L; P); t) =

8><
>:

l if P = �

p if L = �

minfl; pg otherwise

Then, a query Q specifying both a Location and a Price is not manageable at S, if l and

p can assume arbitrary values between 0 and 1. In e�ect, consider an object t with l = 1

and p = 0. (Such a house has a perfect location according to the user's speci�cation,

but an exorbitant price.) Then, Source(S;Q; t) = minf1; 0g = 0 < Target(Q; t) � � =

maxf1; 0g� � = 1� �, 80 � � < 1. Consequently, there is no value of � that will satisfy the

condition in De�nition 1.

Intuitively, Q is not manageable at S because top objects for Target can have arbitrarily

low scores for Source. Therefore, we would have to retrieve all of the objects in S to �nd

the top objects for Target, and this is exactly what we are trying to avoid.

Source S is autonomous, and the meta-broker might not know S's Source function.

However, in this section we assume that the meta-broker knows whether a query Q is

manageable at S. (Section 4 relaxes this property and considers sources where it does not

hold.)

Property 2: Information about source manageability: Given a query Q and a source

S, the meta-broker knows whether Q is manageable at S. Furthermore, in case it is, the

meta-broker knows a value for � as in the de�nition of manageability (De�nition 1).

De�nition 2: Let Q be a query with a signi�cant value vj for attribute Aj . Then, the

single-attribute query Qj for Q and Aj is the query that results from Q by setting the value

for vi to *" (\don't care") for all i 6= j.

6

To deal with sources like the one in Example 8, we introduce the notion of a cover for

a query 2:

De�nition 3: A set of non-overlapping single-attribute queries C = fQ1; : : : ; Qmg is a

cover for a query Q if 90 � g1; : : : ; gm; G < 1 such that 8 object t:

Target(Qi; t) � gi; i = 1; : : : ; m) Target(Q; t) � G

Intuitively, we will later use the single-attribute queries in a cover to extract a set of

objects from a source that includes the top Target objects. This way, we will be able to

work with sources at which a given query is not manageable (Example 8), or that would

otherwise require potentially ine�cient executions (Example 6).

Example 9: Let Q1 be the single-attribute query for Q and the Location attribute, and Q2

be the single-attribute query for Q and the Price attribute. Consider the Target and Source

scores of Example 6. Then, the set fQ1g is a cover for Q. In e�ect, for any 0 � g < 1,

we can de�ne G = 0:5 � (g + 1). Thus, if an object t is such that Target(Q1; t) � g, then

Target(Q; t) � 0:5 � g+0:5 � p � 0:5 � (g+1) = G. Similarly, the sets fQ2g and fQ1; Q2g are

also covers for Q.

Example 10: Consider Example 8, using the min and max functions for Source and Target,

respectively. The set fQ1g is not a cover for Q. In e�ect, an object t with Target(Q1; t) = 0

might still have Target(Q2; t) = 1, making Target(Q; t) = maxf0; 1g = 1. Therefore, for

no G < 1 will the de�nition of cover hold. Similarly, fQ2g is not a cover for Q. However,

fQ1; Q2g is a cover.

The main property of sources that we investigate in the rest of the paper is de�ned next.

As we will see, if a source satis�es this property for a query, then there are cases where we

do not need to extract the entire contents of the source to �nd the top Target objects for

the query. Furthermore, we will show that if a source does not satisfy this property, then

we always need to extract its entire contents.

De�nition 4: A source S is tractable for a query Q if there is a cover C for Q that consists

only of queries that are manageable at S (i.e., if there is a manageable cover for Q at S,

in short).

Example 10: (cont.) Although Q is not manageable at source S, as shown above,

there is a manageable cover for it, namely fQ1; Q2g. (Qi is manageable at S because

Target(Qi; t) = Source(S;Qi; t) 8 object t, i = 1; 2.) Therefore, S is tractable for Q.

In the following section, we show how to extract the top Target objects for a query from

a tractable source.

2The notion of cover is related to that of a complete set of atomic conditions in [CG96]. (See Section 6.)

7

Algorithm 1 Top

Input: A query Q and a source S that is tractable for Q.

Method:

(1) Pick a manageable cover C = fQ1; : : : ; Qmg for Q at S.

(2) for i = 1 to m

(3) De�ne �i for Qi as in De�nition 1.

(4) Pick 0 � g1; : : : ; gm; G < 1 for cover C as in De�nition 3.

(5) for i = 1 to m

(6) Retrieve all objects t with Source(Qi; t) � Gi = gi � �i.

(7) Compute Target(Q; t) for all objects t retrieved.

(8) if 9i such that Gi � 0 then

/* We have retrieved all objects in S */

(9) Go to Step (14).

(10)if 8t retrieved, Target(Q; t) � G then

(11) Find new 0 � g0

1; : : : ; g
0

m; G
0 < 1 for C

as in De�nition 3 such that:

* g0

i � gi 8i = 1; : : : ; m.

* 9j such that either g0

j = 0 or g0

j � gj � �, for some

arbitrary, prede�ned constant � > 0.

(12) Replace gi by g0

i (i = 1; : : : ; m) and G by G0.

(13) Go to Step (5).

(14)Output those objects retrieved that have the highest Target score.

Figure 1: Algorithm to retrieve the top Target objects for a query from a tractable source.

3 Extracting top objects from a tractable source

In this section we present an algorithm to extract the top Target objects for a query from

a tractable source. Since we will deal with a single source, and to simplify our notation,

we sometimes omit mentioning the source explicitly. For example, we use Source(Q; t) as

shorthand for Source(S;Q; t).

Consider a query Q and a source S that is tractable for Q. The algorithm in Figure 1,

which we refer to as Top, extracts the top Target objects for Q from S 3.

Example 11: Consider the real-estate agent and the scenario of Example 6. Then, Al-

gorithm Top can choose fQ1; Q2g as the cover for query Q (Step (1)). Since Target and

Source agree on single-attribute queries, it follows that �1 = �2 = 0 (Steps (2) and (3)). We

can use any 0 � g1; g2 < 1 and G = 0:5 � (g1 + g2) in the de�nition of cover (De�nition 3).

Suppose that Algorithm Top then picks, say, g1 = g2 = 0:8 with G = 0:8 (Step (4)). Then,

the algorithm retrieves from S all objects t with Source(Q1; t) � 0:8 or Source(Q2; t) � 0:8

(Steps (5) and (6)). There is only one such house, the Palo Alto house, that matches the

�rst condition, and no house that matches the second condition.

3Algorithm Top reduces the problem of �nding the top Target objects for Q in S to the problem of �nding

all objects t in S with Target(Q; t) > G, for some G. [CG96] uses a similar strategy for processing queries

over a multimedia repository.

8

At this point, the algorithm has extracted all objects t with Target(Q1; t) � 0:8+�1 = 0:8

or with Target(Q2; t) � 0:8+ �2, because Q1 and Q2 are manageable for S (see below). If a

house t has not been retrieved, then Target(Q1; t) < 0:8 and Target(Q2; t) < 0:8. Because

fQ1; Q2g is a cover, then Target(Q; t) � G = 0:8. The Target score for Q for the Palo Alto

house is 0:6 � 0:8 (Step (7)), as discussed above. Consequently, the algorithm goes to Step

(11) and lowers g1 to, say, 0.7, and g2 to, say, 0.45, assuming � = 0:1, for example.

No new objects are retrieved in Steps (5) and (6), since all of the Mountain View houses

have a Source score for Q1 of 0.6 (6� g1 = 0:7) and a Source score forQ2 of 0.4 (6� g2 = 0:45).

The Palo Alto house is retrieved again, of course. Since G for g1 and g2 is now 0:575, which

is less than 0.6, the Target score for the Palo Alto house for Q, then the algorithm stops

(Step (14)) and returns the object with the highest score found so far, i.e., the Palo Alto

house.

Theorem 1: Let Q be a query and S a source that is tractable for Q. Then, Algorithm

Top extracts the top Target objects for Q from S.

Proof: The algorithm terminates, since the original gi values are decreased (Step (11))

either to zero, in which case the algorithm stops after Steps (8) and (9), or by at least �,

for a constant � > 0.

If the algorithm stops because there is some Gi � 0, then it has extracted all objects t

with Source(Qi; t) � 0, i.e., all of the objects in S. In particular, it has retrieved the top

Target objects.

If when the algorithm stops Gi > 0 8i = 1; : : : ; m, then it has extracted all objects t

with Target(Qi; t) � gi. Also, it has retrieved an object t0 with Target(Q; t0) > G (Step

(10)). Consequently, from the fact that C is a cover for Q and the choice of G, it follows

that any object t that has not been retrieved has Target(Q; t) � G. Object t0 is already

better for Q than any unretrieved object. Hence, the top Target objects are among the

objects already extracted from S.

Consider a source S that is tractable for a query Q. We cannot guarantee that Algorithm

Top never extracts all the objects in S. As a trivial example, consider the case when there

is only one object t in S, and t is such that Target(Q; t) = 1. The algorithm then necessarily

extracts all the objects in S, namely, object t.

Nevertheless, in many common cases Algorithm Top is much more e�cient than this.

In particular, if Q has a manageable cover with high associated gi values (De�nition 3) and

low associated �i values (De�nition 1), then the algorithm might stop after examining just

a few of the objects in S. Furthermore, as the following theorem shows, we can always

de�ne the contents of S in such a way that the algorithm stops without retrieving all of

these objects from S.

Theorem 2: Let Q be a query and S a source that is tractable for Q. Assume that there is

a manageable cover C = fQ1; : : : ; Qmg for Q such that gi � �i > 0 8i = 1; : : : ; m (�i and gi

are as in De�nitions 1 and 3, respectively). Then, Algorithm Top might �nd the top Target

objects from Q in S before extracting all of the objects in S.

Proof: We will \populate" S in such a way that Algorithm Top stops (correctly, from

Theorem 1) before examining all the objects in S.

9

De�ne the contents of S as just two objects, t and t0. Object t is such that Target(Q; t) >

G, for some G that is suitable for g1; : : : ; gm. Consequently, from the de�nition of cover,

Target(Qj ; t) > gj for some j. Therefore, from the choice of �j , Source(Qj; t) > gj��j = Gj .

Now, de�ne object t0 in such way that Source(Qi; t
0) < Gi 8i = 1; : : : ; m.

Let Algorithm Top choose cover C in Step (1), and g1; : : : ; gm; G in Step (4). Then, the

algorithm would retrieve t in Step (6), since Source(Qj ; t) � Gj for some j, and it would

not retrieve t0, since Source(Qj ; t) < Gi 8i. Furthermore, Target(Q; t) > G. Consequently,

the algorithm stops after checking that the condition in Step (10) is false and executing

Step (14), without ever extracting object t0.

Theorem 2 shows that source tractability, together with the assumption in the theorem

that 8i, gi � �i > 0, form a su�cient condition for being able to sometimes extract a top

Target object from a source without accessing all of its objects. As we will see in Section 5,

source tractability is also a necessary condition: if a source is not tractable for a query, we

must always access all of its contents to extract the top Target objects for the query.

4 Varying source types

Section 3 presented an algorithm to extract top objects from sources that satis�ed a number

of properties. However, the sources that a meta-broker has to deal with are intrinsically

autonomous and heterogeneous. Some sources reveal how they process queries, while others

conceal this. Some sources return quite complete information together with their query

results, while others just provide quite basic data. In this section we revisit the properties

of Section 3 and see in what cases we can adapt Algorithm Top for sources where these

properties do not hold.

Property 1: Information in query results

Algorithm Top requires that sources return the values of the objects for those attributes

with signi�cant values in a query. In e�ect, Step (7) of the algorithm computes the Target

scores for the objects retrieved using these values. However, some sources might return just

object ids, or just a few of these attribute values in the query results. In such a case, a

possibility for Algorithm Top is to access each object retrieved in its entirety to obtain all

the information needed for the Target scores, which could be quite time consuming.

Alternatively, if the meta-broker knows how to map Source scores into Target scores for

single-attribute queries (like in the real-estate agent scenario of Example 6), then it might

compute the Target scores for the original query without accessing the actual attribute

values for each object. This requires, of course, that the sources report their Source scores.

If these scores are not available, then the meta-broker needs the attribute values.

Example 12: Consider the real-estate agent of Example 6. In this case, the Target function

for our meta-broker coincides with the agent's Source function for single-attribute queries.

Consider a query Q with signi�cant values for both the Location and Price attributes.

Then, if an object t is retrieved by both the single-attribute queries for Location and Price

with Source scores s1 and s2, respectively, then the meta-broker can compute Target(Q; t)

as 0:5 � s1 + 0:5 � s2. However, if t is retrieved by only one of these queries, then the meta-

10

broker cannot compute the Target score this way, and it has to obtain the missing attribute

value for t.

Property 2: Information about source manageability

Algorithm Top requires that a meta-broker know what single-attribute queries are man-

ageable at a source. Furthermore, a meta-broker needs to know the � values (De�nition 1)

that bound how much lower than the Target scores the Source scores might be (Steps (2)

and (3)). All this information can be derived from the Source scoring function of a source.

Unfortunately, most of the time this function is not publicly known, as the sources view it

as their competitive advantage.

If the Source function for a source is not known, and Property 2 does not hold either

(i.e., the meta-broker does not know whether an attribute is manageable or not, or the �

values), then a meta-broker can only try to guess all this information by issuing sample

queries to the sources. However, whatever conclusion the meta-broker draws about a Source

function would only be a statistical guess, since there is no way to guarantee (unless more

information is available) that the corresponding source would not behave di�erently in the

future, for example. Thus, users would still get ranked query results from the meta-broker,

but they should be warned that high ranking objects might be missing from these results.

Example 13: Consider the real-estate agent of Example 6. Suppose that a meta-broker

does not know whether a single-attribute query on Location is manageable at the source.

Suppose that the meta-broker, o�-line, issued a series of single-attribute queries on Location

to the source and computed, for each such query Li, ei = max
t retrievedfTarget(Li; t) �

Source(Li; t)g. Based on the ei values retrieved, the meta-broker might then decide that

indeed such single-attribute queries are always manageable at the source, with associated

� = maxf0;maxifeigg. In particular, in our real-estate scenario, � would be determined to

be zero, which is the right decision.

To proceed as in the example above, a meta-broker needs the Source scores for each object

retrieved. If a source does not even report these scores, then a meta-broker would have to

resort to other forms of \guessing" for the � values.

Other implicit properties of the source behavior

Algorithm Top asks sources for all objects with Source score Gi or higher for a single-

attribute query and for arbitrary values of Gi (Steps (5) and (6)). However, a source

interface might fail to allow this in several ways.

First, a source might not accept a single-attribute query for a particular attribute. For

example, the real-estate agent of Example 6 might not accept queries that specify a target

Price but not a target Location. In this case, we can rede�ne cover (De�nition 3) to allow

for multiple-attribute queries.

Example 14: Consider a source S and a query Q over attributes A1, A2, and A3. Suppose

that S does not accept single-attribute queries on A1. However, S accepts multi-attribute

query Q1;2, which is the restriction of Q to A1 and A2, and S also accepts single-attribute

query Q3. Assume that 90 � g1;2; g3; G < 1 such that 8 object t, if Target(Q1;2; t) � g1;2

11

and Target(Q3; t) � g3 then Target(Q; t) � G. Then, C = fQ1;2; Q3g is a cover for Q if we

now allow multi-attribute queries like Q1;2 in a cover.

Thus, if we can �nd a manageable cover using multiple-attribute queries, then Algorithm

Top might proceed as before. Otherwise, the meta-broker will not be able to extract the

top Target objects from the source (Section 5).

As a second problem that a meta-broker might have with a source, the source might

only return the top objects for a query, without including the Source scores for the objects

returned. In such a case, a meta-broker does not know if it has retrieved all the objects with

a Source score of at least Gi or not, and Step (6) needs this information. Unfortunately,

the de�nition of manageability does not allow us to infer much about the Source score of

an object given its Target score. For example, consider a source that assigns most objects a

Source score of 1 for a given query. Then, the top k Source objects for that query might not

include any of the top Target objects. Therefore, to work with such a source a meta-broker

would need to know some bound on how di�erent the Source and Target scores might be.

Finally, a source might always return a �xed maximum of, say, 200 objects per query, for

e�ciency reasons or to prevent users from downloading all the source's valuable contents,

for example. In such a case, a meta-broker that wants all objects t with Source(Qi; t) � Gi

might retrieve only those objects with Source(Qi; t) � G0

i, for some higher G0

i. If these

higher values (and their associated G
0, as in De�nition 3) are not low enough to make the

condition in Step (10) false, then the meta-broker cannot guarantee that it has obtained

the top Target objects from the source, and will have to return only approximate results.

In summary, ranking objects from autonomous sources is a di�cult problem. For Al-

gorithm Top to work, the sources need to provide a query interface that permits \powerful

enough" searches based on scores, and the sources must return \su�cient" information on

the matching objects so that the meta-broker can compute its Target scores. Finally, the

meta-broker needs to know some \fundamental properties" of the source scoring functions.

Given all that is needed by our algorithm, one may wonder if there could be some

other algorithms that require less source functionality or less knowledge of the sources. In

the next section, we show how under some very broad assumptions, essentially there is no

algorithm that can rank results in a meaningful way for a source that is not tractable for

a given query.

5 Source tractability as a necessary condition

In this section, we will see that if our source is not tractable, then any strategy to extract the

top Target objects from the source using single-attribute queries must always retrieve all the

objects. To prove this, we need to make some assumptions about Source and Target scoring

functions. We believe that these assumptions are not restrictive, and all reasonable scoring

functions that we can think of meet these criteria. These assumptions are in addition to

the properties in Section 3.

Our �rst assumption about the Source scores for a query implies that these scores can

take values ranging all the way from 0 to 1. Using this assumption we rule out \constant"

Source score functions, for example.

Assumption 1: Density of Source: Let Q be a query and 0 � g � 1. Then, 9t1, t2
objects such that Source(Q; t1) � g and Source(Q; t2) � g.

12

Our second assumption a�ects both the Target and Source scores for a query Q. In

essence, these scores must only depend on the attributes corresponding to the signi�cant

values in Q. Thus, the attribute values for \don't care" attributes are irrelevant for Target

and Source.

Assumption 2: Locality of Source and Target: Let Q be a query and A1; : : : ; Am the

attributes with signi�cant values in Q. Let t and t0 be two objects such that t[Ai] = t0[Ai] for

i = 1; : : : ; m (i.e., t and t0 agree on all the signi�cant attributes in Q). Then, Target(Q; t) =

Target(Q; t0) and Source(Q; t) = Source(Q; t0).

Our �nal assumption a�ects the Target scores for a query Q, and is related to Assump-

tion 2. If we \improve" an object t for Q by changing its value for Aj so that it is better

for Qj , for some j, then Target(Q; t) should not decrease. Also, this assumption bounds

the e�ect of a change in Target(Qj ; t) over Target(Q; t).

Assumption 3: Monotonicity of Target: Let Q be a query and A1; : : : ; Am the attributes

with signi�cant values in Q. Let t and t
0 be two objects such that t[Ai] = t

0[Ai] for i =

1; : : : ; m, i 6= j for some j. Also, Target(Qj ; t) � Target(Qj ; t
0)� �, for some � � 0. Then,

Target(Q; t) � Target(Q; t0)� �.

Next, we de�ne the class of executions for a query Q that we analyze in this section.

In short, these executions follow the methodology of Algorithm Top in that they query the

source using single-attribute queries for Q, until they have obtained \enough" objects and,

hopefully, the top Target objects for Q. These executions decide when they have retrieved

enough objects based only on the objects that they retrieve. They do not, for example,

have any \magic" information about the unseen contents of the source.

De�nition 5: Let S be a source, Q a query, and C = fQ1; : : : ; Qmg a set of single-

attribute queries for Q. Then, a partial retrieval for Q and S using C is a set of objects

ft 2 SjSource(Qi; t) > gi; for some i = 1; : : : ; mg, with 0 < gi < 1, i = 1; : : : ; m 4. The

gi values are determined based on the objects retrieved, and not on the rest of the source

contents.

To prove the main result of this section, we �rst need the following lemma, which

identi�es a condition that implies manageability.

Lemma 1: Let Q be a query and S a source for which 90 < x � y < 1 such that 8 object

t, either Source(Q; t) > x or Target(Q; t) < y. Then, Q is manageable at source S.

Proof: We need to �nd 0 � � < 1 such that 8 object t, Source(Q; t) � Target(Q; t) � �.

Let � = maxf1 � x; yg. (� > 0, since � � y > 0, and � < 1, since 1 � x < 1 and y < 1.)

Consider an object t. From the assumptions, it follows that either Source(Q; t) > x or

Target(Q; t) < y:

4This de�nition excludes executions that request all objects with a non-zero Source score for Qi, since

gi has to be greater than zero. However, this is not a limitation for most sources, where Source scores have
�nite precision.

13

1. Source(Q; t) > x:

Source(Q; t) > x � Target(Q; t)� 1 + x = Target(Q; t)� (1� x)

because Target(Q; t) � 1.

Furthermore, 1� x � �. Then, Source(Q; t) � Target(Q; t)� �.

2. Target(Q; t) < y:

Target(Q; t) < y � �

Then, Target(Q; t) � � < 0. Consequently, Source(Q; t) � Target(Q; t) � �, because

Source(Q; t) � 0.

We are now ready for our main result. Consider a partial retrieval for a query Q and a

source S that is not tractable for Q and that has no objects with a Target score of 1. The

following theorem shows that such a partial retrieval might miss objects that are better than

any object retrieved. In fact, we can always build better objects and \include" them in the

source. These objects would not be retrieved, because the execution that built the partial

retrieval at hand would see exactly the same top Source objects for each single-attribute

query. Thus, this execution would stop at exactly the same point as before for each of

the single-attribute queries (De�nition 5), hence missing the (new) top Target objects.

Consequently, such a partial retrieval might always be incorrect, leaving no alternative but

to extract the entire source contents to obtain the top Target objects for Q.

Theorem 3: Consider a query Q and a minimal cover C = fQ1; : : : ; Qmg for Q. Assume

that 9j such that Qj is not manageable at source S, and Qi is manageable at source S, 8i 6=

j. Consider a partial retrieval for Q and S using C, and let G = maxt retrievedfTarget(Q; t)g.

Assume that G < 1. Then, we can build an object l not in the partial retrieval such that

Target(Q; l) > G.

Proof: Let 0 < gi < 1, i = 1; : : : ; m, be the values used by the partial retrieval for Q and

S using C (De�nition 5). For every i 6= j, pick an object ti such that Source(Qi; ti) � gi.

(Such objects exist from Assumption 1.) From the choice of ti and the de�nition of partial

retrieval, it follows that ti is not retrieved by query Qi. Let ai = Target(Qi; ti) (0 � ai � 1).

From the minimality of C it follows that C�fQjg is not a cover for Q. Then, there is an

object l0 such that Target(Qi; l0) � ai 8i 6= j and Target(Q; l0) > G. Otherwise, C � fQjg

would be a cover for Q. (If m = 1, just pick any object l0 with Target(Q; l0) > G.)

Furthermore, Target(Qi; l0) � ai = Target(Qi; ti) 8i 6= j.

We now build an object l1 using the tis and l0:

l1[i] =

(
ti[i] if i = 1; : : : ; m, i 6= j

l0[i] otherwise

From the choice of l1 it follows that:

� i = 1; : : : ; m, i 6= j: Target(Qi; l1) = Target(Qi; ti), because l1[i] = ti[i] and using

Assumption 2. Furthermore, Target(Qi; ti) = ai � Target(Qi; l0).

14

� Otherwise: Target(Qi; l1) = Target(Qi; l0), because l1[i] = l0[i] and using Assump-

tion 2.

Then, Target(Qi; l1) � Target(Qi; l0), 8i. Hence, from Assumption 3, it follows that

Target(Q; l1) � Target(Q; l0) > G. Also, for i = 1; : : : ; m, i 6= j, Source(Qi; l1) =

Source(Qi; ti) � gi. Hence l1 is not retrieved by any of the Qi queries, i 6= j.

Next, we build another object l2. We will use l1 and l2 to construct the �nal object

l that we need for our proof. Let 0 < � < Target(Q; l1) � G. Now, let x = gj and

y = maxfx;Target(Qj ; l1) � �g. (Then, 0 < x � y < 1.) Since Qj is not manageable at

S, from Lemma 1 it follows that there is an object l2 such that Source(Qj ; l2) � x and

Target(Qj ; l2) � y. Then, Source(Qj ; l2) � gj and Target(Qj ; l2) � Target(Qj ; l1)� �.

Finally, let us de�ne object l by letting l[i] = l1[i] 8i 6= j and l[j] = l2[j]. Then,

� i 6= j: Target(Qi; l) = Target(Qi; l1).

� Otherwise: Target(Qj ; l) = Target(Qj ; l2) � Target(Qj ; l1)� �.

Then, from Assumption 3 it follows that Target(Q; l) � Target(Q; l1)� � > Target(Q; l1)�

Target(Q; l1) +G = G. Also,

� i = 1; : : : ; m, i 6= j: Source(Qi; l) = Source(Qi; l1) � gi.

� Otherwise: Source(Qj ; l) = Source(Qj ; l2) � gj .

Thus, we have constructed an object l that satis�es the conditions in the theorem.

Corollary 1: Let C = fQ1; : : : ; Qmg be a (not necessarily minimal) cover for the query Q

of Theorem 3 such that it does not contain any manageable cover for Q. Then, we can still

build an object l as in Theorem 3 for any partial retrieval for Q and S using C.

Proof: Let Qi1 ; : : : ; Qir be all the manageable queries in C. Since they do not constitute a

cover for Q, we can still build object l1 as in Theorem 3. Then, we \�ll" each of the values

for each Qj that is not manageable in exactly the same way as we did for l1, using the fact

that Qj is not manageable and Lemma 1.

Note that the main results of this section only cover algorithms that work via multiple

single-attribute queries. We believe that this is not a restriction for most sources, since

we expect the Source scores to match the Target scores for single-attribute queries more

often than for multi-attribute queries. Consequently, our result has broad applicability, and

points out the fundamental properties that are required for extracting the top objects for

a query across multiple autonomous sources.

6 Related work

The problem of merging document ranks from multiple sources has received recent atten-

tion in the information retrieval �eld, where it is often referred to as the collection fusion

problem. Given a query, the goal is to extract as many of the relevant documents as possi-

ble from the underlying document collections. As with our problem, key decisions include

how far \down" each document rank to explore, and how to translate Source scores (local

15

similarity measures) into Target scores (usually global similarity measures). An approach to

address these problems is to learn from the results of training queries. Given a new query,

the closest training queries are used to determine how many documents to extract from

each available collection, and how to interleave them into a single document rank [VGJL95].

Another approach is to calibrate the document scores from each collection using statistics

about the word distribution in the collections [CLC95]. One important di�erence between

this line of work and ours is that we want to guarantee that meta-brokers extract the

top Target objects from the sources and return these objects ordered according to their

Target scores. In contrast, the work on the collection fusion problem develops heuristics or

techniques for placing relevant documents (a subjective notion) as high as possible in the

combined document ranks for a query, sometimes using the Source scores as indicators of

relevance.

For document collections, it is particularly hard to compute the Target score for a

document from the query results that are typically returned by text search engines. In e�ect,

these results do not include entire documents, and have very little information other than

the Source scores. To address this problem, the STARTS protocol proposal [GCGMP97]

developed at Stanford speci�es what information should accompany the query results that

a text search engine returns so that document rank merging is facilitated. For example,

this information includes the number of occurrences of each query word in each document

in the query result. A meta-broker can then use this data to merge multiple document

ranks by computing Target scores without accessing the documents themselves.

A closely related problem is how to query a repository of complex, multimedia objects.

These objects might have attributes like images and text. Thus, the matches between query

values and such multimedia attributes are inherently fuzzy, and the objects are ranked

according to how well they match the query values. The work in [Fag96] and [CG96]

studies how to query such repositories e�ciently. In particular, [Fag96] studies upper and

lower bounds on the number of objects that we need to extract from a repository so that

the overall top objects are retrieved and returned to the user that issued a query. [CG96]

addresses the cost-based optimization of queries over such repositories. This work assumes

that a single repository handles all attributes of an object. Therefore, there is no need to

\calibrate" the scores that an object gets for a particular attribute, for example. Using

our terminology, all single-attribute queries are manageable with � = 0. (See Section 7 for

further discussion.)

Finally, there has been a signi�cant amount of work on querying multiple heterogeneous

sources. In this paper, we assume that all sources export a uniform interface so they can

all answer queries over the same set of attributes. We can use the techniques in [FK93,

PGMGU95], for example, to build wrappers around the sources and provide the illusion of

such a uniform interface.

7 Conclusion

Many sources rank the objects in query results according to how well these objects match

the original query. In this environment, meta-brokers usually query multiple autonomous,

heterogeneous sources that might use varying result-ranking strategies. In this paper we

have studied two crucial problems that a meta-broker faces: guaranteeing that it has ex-

tracted all the top objects for a user query from the underlying sources, and re-ranking

16

these objects according to its own criterion. These are di�cult problems, and the goal of

this paper is to characterize the sources where we have some hope of dealing with these

problems e�ciently. We have presented necessary properties that any source should satisfy,

under broad assumptions. If a source does not verify these properties, then a meta-broker

might miss top objects from the source, unless all of the source's contents are retrieved.

We have also described a simple algorithm to extract the top objects from a source where

our properties hold.

The results in this paper, and Algorithm Top in particular, do not guarantee e�cient

executions. In e�ect, Algorithm Topmight retrieve large portions of a source when searching

for top Target objects. An interesting open issue is then the optimization of queries over

multiple sources, perhaps using statistics on the sources' contents to obtain small �i and

large gi values, for example. A promising direction is to adapt the work in [Fag96] and

[CG96] to our distributed, heterogeneous scenario. Another interesting issue is how to deal

with sources that do not satisfy the properties and assumptions that our results need. We

touched on this issue in Section 4, but we need to explore further, for example, how to deal

with sources that return no more than, say, 200 objects per query. These characteristics

also impact the optimization of queries over these sources.

Acknowledgments

We thank Umesh Dayal, Svetlozar Nestorov, and Narayanan Shivakumar for helpful dis-

cussions.

References

[CG96] Surajit Chaudhuri and Luis Gravano. Optimizing queries over multimedia

repositories. In Proceedings of the 1996 ACM SIGMOD Conference, 1996.

[CLC95] James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching distributed

collections with inference networks. In Proceedings of the 18th Annual SIGIR

Conference, 1995.

[Fag96] Ronald Fagin. Combining fuzzy information from multiple systems. In 15th

ACM Symposium on Principles of Database Systems, June 1996. Also avail-

able as IBM Almaden Research Center Technical Report RJ 9980.

[FK93] J.-C. Franchitti and R. King. Amalgame: a tool for creating interoperating

persistent, heterogeneous components. In Advanced Database Systems, pages

313{36. Springer-Verlag, 1993.

[GCGMP97] Luis Gravano, Chen-Chuan Kevin Chang, H�ector Garc��a-Molina, and An-

dreas Paepcke. STARTS: Stanford proposal for Internet meta-searching. In

Proceedings of the 1997 ACM SIGMOD Conference, 1997.

[NBE+93] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic,

P. Yanker, and C. Faloutsos. The QBIC project: Querying images by content

using color, texture, and shape. In Storage and retrieval for image and video

databases (SPIE), pages 173{187, February 1993.

17

[PGMGU95] Yannis Papakonstantinou, Hector Garcia-Molina, Ashish Gupta, and Jef-

frey Ullman. A query translation scheme for rapid implementation of wrap-

pers. In Fourth International Conference on Deductive and Object-Oriented

Databases, pages 161{186, National University of Singapore(NUS), Singapore,

1995.

[Sal89] Gerard Salton. Automatic text processing: the transformation, analysis, and

retrieval of information by computer. Addison Wesley, 1989.

[VGJL95] Ellen M. Voorhees, Narendra K. Gupta, and Ben Johnson-Laird. The col-

lection fusion problem. In Proceedings of the 3rd Text Retrieval Conference

(TREC-3), 1995.

18

