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Abstract

Many online data sources are updated autonomously and independently. In this paper, we make the
case for estimating the change frequency of the data, to improve web crawlers, web caches and to help
data mining. We first identify various scenarios, where different applications have different requirements
on the accuracy of the estimated frequency. Then we develop several “frequency estimators” for the iden-
tified scenarios. In developing the estimators, we analytically show how precise/effective the estimators
are, and we show that the estimators that we propose can improve precision significantly.

1 Introduction
With the explosive growth of the internet, many data sources are available online. Most of the data sources

are autonomous and are updated independently of the clients that access the sources. For instance, popular

news web sites, such as CNN and NY Times, update their contents periodically, whenever there are new

developments. Also, many online stores update the price/availability of their products, depending on their

inventory and on market conditions.

Since the sources are updated autonomously, the clients usually do not know exactly when and how often

the sources change. However, we believe that the clients can significantly benefit by estimating the change

frequency of the sources. For instance, the following applications can use the estimated change frequency

to improve their effectiveness.

• Improving a web crawler: A web crawler is a program that automatically visits web pages and

builds a local snapshot and/or index of web pages. In order to maintain the snapshot/index up-to-date,

the crawler periodically revisits the pages and updates the pages with fresh images. A typical crawler

usually revisits the entire set of pages periodically and updates them all. However, if the crawler can

estimate how often an individual page changes, it may revisit only the pages that have changed (with

high probability), and improve the “freshness” of the local snapshot without consuming as much

bandwidth. According to [4], the crawler may improve the “freshness” by orders of magnitude in

certain cases, if it can adjust the “revisit frequency” based on the change frequency.

• Improving the update policy of a data warehouse:A data warehouse maintains a local snapshot,

called amaterialized view, of underlying data sources, which are often autonomous. This materialized

view is usually updated during off-peak hours, to minimize the impact on the underlying source data.

As the size of the data grows, however, it becomes more difficult to update the view within the limited

time-window. If we can estimate how often an individual data item (e.g., a row in a table) changes,

we may selectively update only the items likely to have changed, and thus incorporate more changes

within the same amount of time.
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• Improving web caching: A web cache saves recently accessed web pages, so that the next access to

the page can be served locally. Caching pages reduces the number of remote accesses to minimize

access delay and network bandwidth. Typically, a web cache uses an LRU (least recently used)page

replacement policy, but it may improve thecache hit ratioby estimating how often a page changes.

For example, if a page was cached a day ago and if the page changes every hour on average, the

system may safely discard that page, because the cached page is most probably obsolete.

• Data mining: In many cases, the frequency of change itself might be useful information. For instance,

when a person suddenly accesses his bank account very often, it may signal fraud, and the bank may

wish to take an appropriate action.

In this paper, we study how we can effectively estimate how often a data item (or an element) changes.

We assume that we access an elementrepeatedlythroughnormalactivities, such as a periodic crawling of

web pages or the users’ repeated access to web pages. From these repeated accesses, we detect changes to

the element, and then we estimate its change frequency.

We have motivated the usefulness of “estimating frequency of change,” and how we accomplish the task.

However, there exist important challenges in estimating frequency of change, including the following:

1. Incomplete change history:Often, we do not have complete information on how often and when an

element changed. For instance, a web crawler can tell if a page has changed between accesses, but it

cannot tell how many times the page changed.

Example 1 A web crawler accessed a page on a daily basis for 10 days, and it detected 6 changes.

From this data, the crawler may naively conclude that its change frequency is6/10 = 0.6 times a day.

But this estimate can be smaller than the actual change interval, because the page may have changed

more than once between some accesses. Then, what would be the fair estimate for the change interval?

How can the crawler account for the missed changes? 2

Previous work has mainly focused on how to estimate the change frequency given the complete change

history [10, 13]. As far as we know, there has been no work on how to estimate the frequency based

on incomplete information.

2. Irregular access interval: In certain applications, such as a web cache, we cannot control how often

and when a data item is accessed. The access is entirely decided by the user’s request pattern, so the

access interval can be arbitrary. When we have limited change history and when the access pattern is

irregular, it becomes very difficult to estimate the change frequency.

Example 2 In a web cache, a user accessed a web page 4 times, at day 1, day 2, day 7 and day 10. In

these accesses, the system detected changes at day 2 and day 7. Then what can the system conclude

on its change frequency? Does the page change every(10 days)/2 = 5 days on average? 2

3. Difference in available information: Depending on the application, we may get different levels

of information for different data items. For instance, certain web sites tell us when a page was last-

modified, while a majority of web sites do not provide this information. Depending on the scenario, we

may need different “estimators” for the change frequency, to fully exploit the available information.
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In this paper, we study how we can estimate the frequency of change when we haveincompletechange

history of a data item. To that end, we first identify various issues and place them into a taxonomy (Sec-

tion 2). Then for each branch in the taxonomy, we propose an “estimator” and show analytically how good

the proposed estimator is (Sections 4 through 6). In summary, our paper makes the following contributions:

• We identify the problem of estimating the frequency of change and we present a formal framework to

study the problem.

• We propose several estimators that measure the frequency of change much more effectively than

existing ones. For the scenario of Example 1, for instance, our estimator will predict that the page

changes0.8 times per day (as opposed to the0.6 we guessed earlier), which reduces the “bias” by

33% on average.

• We present the analytical results that show how precise/effective our proposed estimators are.

1.1 Related work

The problem of estimating change frequency has been long studied in statistics community [10, 13, 9, 2].

However, most of the previous work assumed that the complete change history is known, which is not true in

many practical scenarios. In this paper, we study how to estimate the change frequency based theincomplete

change history.

Reference [4] studies how a crawler should refresh the local copy of remote web pages to improve the

“freshness” of the local copies. Assuming that the crawler knows how often web pages change, the reference

shows that the crawler can improve the freshness significantly. In this paper, we show how a crawler can

estimatethe change frequency of pages, to implement the refresh policy proposed in the reference.

In our companion paper [3] (submitted to the VLDB 2000 Experience track), we explain how a web

crawler can use the techniques that we develop here. The paper compares various crawler design choices

based on the statistics collected from more than half million web pages, and it proposes an architecture that

employs the estimation techniques that we develop in this paper.

Many researchers studied how to build a scalable and effective web caching system, to minimize the

access delay, the server load and the bandwidth usage [14, 5, 1]. While some of the work touches on the

consistency issue of cached pages, they focus on developing anewprotocol that may reduce the inconsis-

tency. In contrast, our work proposes a mechanism that can be used to improve thepage replacement policy

on existingarchitecture.

In data warehousing context, a lot of work has been done to efficiently maintainmaterialized views

[6, 7, 15]. However, most of the work focused on different issues, such as minimizing the size of the view

while reducing the query response time [7].

2 Taxonomy of issues
Before we start discussing how to estimate the change frequency of an element, we first need to clarify

what we mean by “change of an element.” What do we mean by the “element” and what does the “change”

mean? To make our discussion concrete, we assume that an element is a web page and that the change

is any modification to the page. However, note that the technique that we develop is independent of this

assumption. The element can be defined as a whole website or a single row in a database table, etc. Also
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the change may be defined as more than, say, a30% modification to the page, or as updates to more than 3

columns of the row. Regardless of the definition, we can apply our technique/analysis, as long as we have a

clear notion of the element and a precise mechanism to detect changes to the element.

Given a particular definition of an element and the change, we assume that we repeatedly access an

element to estimate how often the element changes. This access may be performed at a regular interval or

at random intervals. Also, we may acquire different levels of information at each access. Based on how we

access the element and what information is available, we develop the following taxonomy.

1. How do we trace the history of an element?In this paper, we assume that we repeatedly access an

element, either actively or passively.

• Passive monitoring: We do not have any control over when and how often we access an ele-

ment. In a web cache, for instance, web pages are accessed only when users access the page.

In this case, the challenge is how to analyze thegivenchange history to best estimate its change

frequency.

• Active monitoring: We actively monitor the changes of an element and can control the access

to the element. For instance, a crawler can decide how often and when it will visit a particular

page. When we can control the access, another important question is how often we need to

access a particular element to best estimate its change frequency. For instance, if an element

changes about once a day, it might be unnecessary to access the element every minutes, while it

might be insufficient to access it every month.

In addition to the access control, different applications may have different access intervals.

• Regular interval: In certain cases, especially for active monitoring, we may access the element

at a regular interval. Obviously, estimating the frequency of change will be easier when the

access interval is regular. In this case, (number of detected changes)/(monitoring period) may

give us good estimation of the change frequency.

• Random interval: Especially for passive monitoring, the access intervals might be irregular. In

this case, frequency estimation is more challenging,

2. What information do we have? Depending on the application, we may have different levels of

information regarding the changes of an element.

• Complete history of changes:We know exactly when and how many times the element changed.

In this case, estimating the change frequency is relatively straightforward; It is well known that

(number of changes)/(monitoring period) gives “good” estimation of the frequency of change

[10, 13]. In this paper, we do not study this case.

• Last date of change:We only know when the element was last modified, but not the complete

change history. For instance, when we monitor a bank account which records the last transaction

date and its current balance, we can tell when the account was last modified by looking at the

transaction date.

• Existence of change:The element that we monitor may not provide any history information

and only give us its current status. In this case, we can compute the “signature” of the element at
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each access and compare these signatures between accesses. By comparing signatures, we can

tell whether the element changed or not. However, note that we cannot tell how many times or

when the element changed by this method.

In Section 4, we study how we can estimate the frequency of change, when we only know whether

the element changed or not. Then in Section 5, we study how we can exploit the “last-modified date”

to better estimate the frequency of change.

3. How do we use estimated frequency?Different applications may use the frequency of change for

different purposes.

• Estimation of frequency: In data mining, for instance, we may want to study the correlation

between how often a person uses his credit card and how likely is a default. In this case, it might

be important toestimatethe frequency accurately.

• Categorization of frequency:We may only want to classify the elements into several frequency

categories. For example, a web crawler may perform a “small-scale” crawl every week, crawling

only the pages that are updated very often. Also, the crawler may perform a “complete” crawl

every three months to completely refresh all pages. In this case, the crawler may not be interested

in exactly how often a page changes. It may only want toclassifypages into two categories, the

pages to visit every week and the pages to visit every three months.

In Section 4 and 5, we study the problem ofestimatingthe frequency of change, and in Section 6, we

study the problem ofcategorizingthe frequency of change.

3 Preliminaries
In this section, we will review some of the basic concepts for the estimation of frequency, to help readers

understand our later discussion. We also summarize experimental data that shows that web page changes

follow a Poisson process. A reader familiar with a Poisson process and estimation theory may skip this

section.

In Section 3.1, we first explain how we model the changes of an element. A model for the change is

essential to compare various “estimators.” Then in Section 3.2, we explain the concept of “quality” of an

estimator. Even with the same experimental data, different estimators give different values for the change

frequency. Thus we need a well-defined metric that measures the effectiveness of different estimators.

3.1 Poisson process: the model for the changes of an element

In this paper, we assume that an element changes by aPoisson process. A Poisson process is often used

to model a sequence of random events that happen independently with fixed rate over time. For instance,

occurrences of fatal auto accidents, arrivals of customers at a service center, etc., are usually modeled by

Poisson processes. In particular, web pages are known to follow a Poisson Process. In our companion

paper [3], we trace the change history of 720,000 web page collected from 270 sites for 4 months and

compare the result against what the Poisson process model predicts. Based on this comparison, we show

that the Poisson process describes the changes of web pages very well. For example, Figure 1 is one of

the graphs that compare theactual change intervals of pages against the prediction of the Poisson process

model. (The graph is based on the pages that change every10 dayson average. We also plotted similar
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graphs for the pages that change at other average change interval and got similar result.) The horizontal axis

represents the change interval of pages, and the vertical axis represents the fraction of changes with that

given change interval. The straight line is the prediction of a Poisson process and the dots are the observed

changes in the experiment. Clearly, the experimental data is clustered around the predicted line.

While the study clearly shows that web pages follow the Poisson process, it is also limited because the

experiment was conducted for a limited time window (4 months) and the web pages were accessed on a daily

basis. Therefore, our study does not verify the Poisson process model for the pages that change very often

(more than once every day) or the pages that change very slowly (less than once every 4 months). However,

we believe these pages are of low interest to most practical applications. For example, crawlers rarely can

access pages more than once every day,1 so a crawler does not care too much whether a page changes exactly

once every day or more than once every day. Also, there may exist a set of pages that change at a regular

interval, which do not necessarily follow the Poisson process. However, these pages are not easy to identify

when a crawler manages hundreds of millions of web pages. For this reason we believe it is safe to assume

that the entire set of pages change by a random processon average.

Returning to the description of a Poisson process, we useX(t) to refer to the number of occurrences of

a change in the interval(0, t]. Then a Poisson process ofrate or frequencyλ has the following properties:

For s ≥ 0 and t > 0, the random variableX(s + t) − X(s) has the Poisson probability

distribution Pr{X(s + t)−X(s) = k} = (λt)k

k! e−λt for k = 0, 1, . . .

The parameterλ of a Poisson process is theaverage frequencyor rate that the change occurs. We can verify

this fact by calculating how many events are expected to occur in a unit interval:

E[X(t + 1)−X(t)] =
∞∑

k=0

kPr{X(t + 1)−X(t) = k} =
∞∑

k=1

k
λke−λ

k!
= λ

3.2 Quality of estimator

The goal of this paper is to estimate the frequency of changeλ, from the repeated accesses to an element. To

estimate the frequency, we need to summarize the observed change history, orsamples, as a single number
1Crawlers should not abuse web sites. If a crawler accesses a web site too often, the site often blocks access completely.
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that corresponds to the frequency of change. In Example 1, for instance, we summarized the six changes in

ten visits as the change frequency of6/10 = 0.6/day. We call this summarization procedure theestimator

of the change frequency. Clearly, there exist multiple ways to summarize the same observed data, which can

lead to different change frequencies. In this subsection, we will study how we can compare the effectiveness

of various estimators.

An estimator is often expressed as a function of the observed variables. For instance, letX be the

number of changes that we detected andT be the total access period. Then, we may useλ̂ = X/T as the

estimator of the change frequencyλ as we did in Example 1. (We use the notation “hat” to show that we

want to measure the parameter underneath it.) Here, note thatX is a random variable, which is measured

by sampling (or repeated accesses). Therefore, the estimatorλ̂ is also a random variable that follows a

certain probability distribution. In Figure 2, we show two possible distributions ofλ̂. As we will see, the

distribution ofλ̂ determines how effective the estimatorλ̂ is.

1. Unbiasedness:Let us assume that the element changes at the average frequencyλ, which is shown

at the bottom center of Figure 2. Intuitively we would like the distribution ofλ̂ to be centered around

the valueλ. Mathematically,̂λ is said to beunbiased, when the expected value ofλ̂, E[λ̂], is equal to

λ.

2. Efficiency: In Figure 2, it is clear that̂λ may take a value other thanλ, even ifE[λ̂] = λ. For any

estimator, the estimated value might be off from the real valueλ, due to some statistical variation.

Clearly, we want to keep the variation as small as possible. We say that the estimatorλ̂1 is more

efficientthan the estimator̂λ2, if the distribution of̂λ1 has smaller variance than that ofλ̂2. In Figure 2,

for instance, the estimator with the distribution (a) is more efficient than the estimator of (b).

3. Consistency:Intuitively, we expect that the value of̂λ approachesλ, as we increase the sample size.

This convergence of̂λ to λ can be expressed as follows:

Let λ̂n be the estimator with sample sizen. Thenλ̂n is said to be aconsistentestimator ofλ if

lim
n→∞Pr{|λ̂n − λ| ≤ ε} = 1 for any positiveε

4 Estimation of frequency: existence of change
How can we estimate how often an element changes, when we only know whether the element changed or

not between our accesses? Intuitively, we may useX/T (X: the number of detected changes,T : monitoring

period) as the estimated frequency of change, as we did in Example 1. In Section 4.1 we study how effective

this naive estimatorX/T is, by analyzing itsbias, consistencyandefficiency. Then in Section 4.2, we will

propose a new estimator, which is less intuitive thanX/T , but is much more effective.

4.1 Intuitive frequency estimator: X/T

To help the discussion, we first define some notation. We assume that we access the element at a regular

interval I and that we access the elementn times. (Estimating the change frequency for irregular accesses

is a very difficult problem, and we defer the discussion to Section 6.) Also, we useXi to indicate whether
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the element changed or not in theith access. More precisely,

Xi =


1 if the element changed inith access,

0 otherwise.

Then,X is defined as the sum of allXi’s, X =
∑n

i=1 Xi, and represents the total number of changes that

we detected. We useT to refer to the total time elapsed during ourn accesses. Since we access the element

everyI time units,T = nI = n/f , wheref(= 1/I) is the frequency at which we access the element.

We also assume that the changes of the element follow a Poisson process with rateλ. Then, we can define

the frequency ratior = λ/f , the ratio of the change frequency to the access frequency. Whenr is large

(λ � f ), the element changes more often than we access it, and whenr is small (λ � f ), we access the

element more often than it changes.

Note that our goal is to estimateλ, givenXi’s andT (= n/f). However, we may estimate the frequency

ratio r(= λ/f) first and estimateλ indirectly fromr (by multiplying r by f ). In the rest of this subsection,

we will assume that our estimator is the frequency ratior̂, where

r̂ =
λ̂

f
=

1
f

(
X

T

)
=

X

n

Note that we need to measureX through an experiment and then use the numberX to estimater.

1. Is the estimator r̂ biased?As we argued in Example 1, the estimatedr̂ will be smaller than the actual

r, because thedetectednumber of changes,X, will be smaller than theactual number of changes.

Furthermore, this bias will grow larger as the element changes more often than we access it (i.e, as

r = λ/f grows larger), because we miss more changes when the element changes more often.

We can verify this intuition by computing the expected value ofr̂, E[r̂], and comparing it with the

actualr. To computeE[r̂], we first compute the probabilityq that the element does not change

between accesses [10].

Lemma 1 Let q be the probability that the element does not change during time intervalI (= 1/f ).

Then q = Pr{X(t + I)−X(t) = 0} =
λ0e−λI

0!
= e−λI = e−λ/f = e−r

2

By definition,Xi is equal to zero when the element does not change between the(i− 1)th and theith

access. Because the change of the element is a Poisson process, the changes at different accesses are

independent and eachXi takes the value

Xi =


1 with probability1− q

0 with probabilityq (= e−r)

independently from otherXi’s. Then from the definition ofX, X is equal tom, whenm Xi’s are

equal to1: Pr{X = m} =
(

n
m

)
(1− q)mqn−m. Therefore,

E[r̂] =
n∑

m=0

m

n
Pr
{
r̂ =

m

n

}
=

n∑
m=0

m

n
Pr{X = m} = 1− e−r
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Note that forr̂ to be unbiased,E[r̂] should be always equal tor. Clearly,1 − e−r is not r, and the

estimator̂r is biased. In Figure 3, we visualize the bias ofr̂, by plottingE[r̂]/r overr. The horizontal

axis is logarithmic to show the values more clearly whenr is small or large. (In the rest of this paper,

we use a logarithmic scale, whenever convenient.) Ifr̂ is unbiased (E[r̂] = r), the graphE[r̂]/r
would be equal to 1 for anyr (the dotted line), but because the estimatedr̂ is smaller than the actualr,

E[r̂]/r is always less than 1. From the graph, it is clear thatE[r̂] is about the same asr (E[r̂]/r ≈ 1)

whenr (= λ/f) is small (i.e., when the element changes less often than we access it), butE[r̂] is

significantly smaller thanr (E[r̂]/r � 1), whenr is large. Intuitively, this is because we miss more

changes as we access the element less often (r = λ/f � 1). From the graph, we can see that the

bias is smaller than 10% (E[r̂]/r > 0.9) when the frequency ratior is smaller than 0.21. That is, we

should access the element1/0.21 ≈ 5 times as frequently as it changes, in order to get less than 10%

bias.

2. Is the estimator r̂ consistent?The estimator̂r = X/n is not consistent, because the bias ofr̂ does

not decrease even if we increase the sample sizen; the difference betweenr andE[r̂] (E[r̂]/r =
(1− e−r)/r) remains the same independently of the size ofn.

This result coincides with our intuition;̂r is biased because we miss some changes. Even if we access

the element for a longer period, we still miss a certain fraction of changes, if we access the element at

the same frequency.

3. How efficient is the estimator?To evaluate the efficiency of̂r, let us compute its variance.

V [r̂] = E[r̂2]− E[r̂]2 = e−r(1− e−r)/n

Then, the standard deviation ofr̂ is σ =
√

V [r̂] =
√

e−r(1− e−r)/n

Remember that the standard deviation tells us how clustered the distribution ofr̂ is aroundE[r̂]; Even

if E[r̂] ≈ r, the estimator̂r may take a value other thanr, because our sampling process (or access to

the element) inherently induces some statistical variation.

From the basic statistics theory, we know thatr̂ takes a value in the interval(E[r̂]−2σ,E[r̂]+2σ) with

95% probability, assuminĝr follows the normal distribution [12]. In most applications, we want to
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minimize this confidence interval (whose length is proportional toσ) relative to the actual frequency

ratio r. Therefore, we want to reduce the the ratio of the confidence interval to the frequency ratio,

σ/r, as much as we can. In Figure 4, we show how this ratio changes over the sample sizen by

plotting its graph. Clearly, the statistical variationσ/r decreases asn increases; While wecannot

decrease thebiasof r̂ by increasing the sample size, wecanminimize thestatistical variation(or the

confidence interval) with more samples.

Also note that whenr is small, we need a larger sample sizen to get the same variationσ/r. We

explain what this implies by the following example.

Example 3 A crawler wants to estimate the change frequency of a web page by visiting the page10
times, and it needs to decide on the access frequency.

Intuitively, the crawler should not visit the page too slowly, because the crawler misses many changes

and the estimated change frequency is biased. But at the same time, the crawler should not visit the

page too often, because the statistical variationσ/r can be large and the estimated change frequency

may be inaccurate.

For example, let us assume that the actual change frequency of the page is, say, once every week

(λ = 1/week), and the crawler accesses the page once every two weeks (f = 1/2 weeks). Then

the bias of the estimated change frequency is57% (E[r̂]/r ≈ 0.43)! On the other hand, if the

crawler revisits the page every day (f = 1/day), then the statistical variationσ/r is 0.75 and the95%
confidence interval isσ/r = 150%! In the next subsection, we will try to identify the best revisit

frequency for this example based on an improved estimator. 2

4.2 Improved estimator:− log(X̄/n)

While the estimatorX/T is known to be quite effective when we have acompletechange history of an

element [10, 13], our analysis showed that it is less than desirable when we have anincompletechange

history. The estimator is biased and we cannot reduce the bias by increasing the sample size. In this

subsection, we propose another estimator− log(X̄/n), which has more desirable properties.

Intuitively, we can derive our new estimator from Lemma 1. In the lemma, we computed the probability

q that the element does not change at each access:q = e−λ/f = e−r. By rearranging this equation, we get

r = − log q

Note that we can measure the probabilityq in the above equation by an experiment; For example, if we

accessed an element 100 times, and if the element did not change in 70 accesses, we can reasonably infer

that the probabilityq is 70/100. Then from the equation, we can estimate that the frequency ratior =
− log(70/100) = 0.36. Note that this estimated frequency ratio0.36 is slightly larger than0.30 (= 30/100)

that the previousX/n estimates. This is because our new estimator accounts for the changes that we may

have missed between some accesses. Also note that we can estimate the value ofq more accurately by

increasing the sample size. Therefore, we can estimater more precisely anddecrease the biasby increasing

the sample size! (We verify this claim later.) This property has a significant implication in practice. If we

use the estimatorX/n, we can reduce the bias only by adjusting theaccess frequencyf (or by adjusting

r), which might not be possible for certain applications. However, if we use the estimator− log q, we can
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reduce the bias to the desirable level, simply by increasing thenumber of accessesto the element. For this

reason, we believe our new new estimator can be useful for a wider range of applications thanX/n is.

To define the new estimator more formally, letX̄ be the number of accesses where the element did not

change (̄X = n−X). Then, our new estimator is

λ̂/f = − log(X̄/n) or r̂ = − log(X̄/n)

We can derive our new estimator in a slightly different way. In Section 4.1, we showed that the estimator

X/n is biased, such thatE[X/n] = 1− e−r. By rearranging the equation, we get

r = − log(1−E[X/n])

Intuitively from the equation, we suspect that we may get the correctr value if we use− log(1 −X/n) as

our estimator, instead ofX/n. Notice that1 −X/n = (n −X)/n = X̄/n. That is, we may consider our

new estimator− log(X̄/n) as the bias corrected estimator ofX/n!

While intuitively attractive, the estimator− log(X̄/n) has a mathematical singularity. When the element

changes whenever we access it (i.e.,X̄ = 0), the estimator produces infinity, because− log(0/n) = ∞.

This singularity makes the estimator technically unappealing, because the expected value of the estimator,

E[r̂], is now infinity due to this singularity. (In other words,r̂ is biased to infinity!) We can avoid this

singularity by adding a small constant, 0.5, toX̄ andn as follows2:

r̂ = − log
(

X̄ + 0.5
n + 0.5

)

This modified estimator does not have a singularity whenX̄ = 0, becauselog( 0+0.5
n+0.5) = log( 0.5

n+0.5) 6= ∞.

In the rest of this subsection, we will study the properties of this modified estimatorr̂ = − log( X̄+0.5
n+0.5 )

1. Is the estimator unbiased?To see whether the estimator is biased, let us compute the expected value

of r̂. From the definition ofX̄ ,

Pr{X̄ = i} = Pr{X = n− i} =
(

n

i

)
(1− q)n−iqi

Then,

E[r̂] = E
[
− log

(
X̄ + 0.5
n + 0.5

)]
= −

n∑
i=0

log
(

i + 0.5
n + 0.5

)(
n

i

)
(1− e−r)n−i(e−r)i (1)

We cannot obtain a closed-form expression in this case. Thus we study its property by numerically

evaluating the expression and plotting the results. In Figure 5 we show the graph ofE[r̂]/r over r

for severaln values. For comparison, we also show the graph of the previous estimatorX/n, in the

figure.

From the graph, we can see that our new estimator− log( X̄+0.5
n+0.5 ) is much better thanX/n. While

X/n is heavily biased whenr > 0.5, − log( X̄+0.5
n+0.5 ) is not heavily biased untilr > 1 for n ≥ 3.

2In Appendix A, we show why we add 0.5, not some other number, to avoid the singularity.

11



0.2 0.5 1 2 5 10

0.2

0.4

0.6

0.8

1

n=3
n=10

n=50

r̂ = X/n

r̂ = − log( X̄+0.5
n+0.5 )

E[r̂]/r

r

Figure 5: Bias of the estimator− log( X̄+0.5
n+0.5 )

2 5 10 20 50 100

0.2

0.5

1

2

5

10
r

n

Bias < 10%

Bias > 10%

Figure 6: The region where the estimator
− log( X̄+0.5

n+0.5 ) is less than 10% biased

Clearly, the new estimator becomes less biased as we increase the sample sizen. For instance, when

n = 3, r̂ shows bias ifr > 1, but whenn = 50, it is not heavily biased untilr > 3.

Given that the estimator becomes less biased as the sample size grows, we may ask how large the

sample size should be in order to get anunbiasedresult. For instance, what sample size gives us less

than 10% bias? Mathematically, this can be formulated as follows: Find the region ofn andr, where∣∣∣∣E[r̂]− r

r

∣∣∣∣ ≤ 0.1

is satisfied. From the formula of Eq. 1, we can numerically compute the region ofn andr where

the above condition is met, and we show the result in Figure 6. In the figure, the grey area is where

the bias is less than 10%. For instance, whenn = 20, the estimator is less than 10% biased when

r < 3.48. Note that the unbiased region grows larger as we increase the sample sizen. Whenn = 20,

r̂ is unbiased whenr < 3.5, but whenn = 80, r̂ is unbiased whenr < 5. We illustrate how we can

use these graphs to select the revisit frequency when we discuss the efficiency of the new estimator.

2. How efficient is the estimator?As we discussed in Section 4.1,r̂ may take a value other thanr even

if E[r̂] ≈ r, and the value ofσ/r tells us how large this statistical variation can be.

To plot theσ/r graph of− log( X̄+0.5
n+0.5 ), we first compute the variance ofr̂

V [r̂] = E[r̂2]− E[r̂]2

=
n∑

i=0

(
log
(

i + 0.5
n + 0.5

))2(n

i

)
(e−r)i(1− e−r)n−i

−
(

n∑
i=0

log
(

i + 0.5
n + 0.5

)(
n

i

)
(e−r)i(1− e−r)n−i

)2

From this formula, we can numerically computeσ/r =
√

V [r̂]/r for variousr andn values and we

show the result in Figure 7. As expected, the statistical variationσ/r gets smaller as the sample size

n increases. For instance,σ/r is 0.4 for r = 1.5 whenn = 10, but σ/r is 0.2 for the samer value
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whenn = 40.

Also note that the statistical variationσ/r takes its minimum atr ≈ 1.5 within the unbiased region of

r. For instance, whenn = 20, the estimator is practically unbiased whenr < 2 (the bias is less than

0.1% in this region) and within this range,σ/r is minimum whenr ≈ 1.35. For other values ofn, we

can similarly see thatσ/r takes its minimum whenr ≈ 1.5. We can use this result to decide on the

revisit frequency for an element.

Example 4 A crawler wants to estimate the change frequency of a web page by visiting it 10 times.

While the crawler does not know exactly how often that particular page changes, say many pages

within the same domain are known to change roughly once every week. Based on this information,

the crawler wants to decide how often to access that page.

Because the statistical variation (thus the confidence interval) is smallest whenr ≈ 1.5 and because

the current guess for the change frequency is once every week, the optimal revisit frequency for that

page is7 days× 1.5 ≈ once every 10 days. Under these parameters, the estimated change frequency

is less than0.3% biased and the estimated frequency may be off from the actual frequency by up to

35% with 75% probability. We believe that this confidence interval will be more than adequate for

most crawling and caching applications.

In certain cases, however, the crawler may learn that its initial guess for the change frequency may

be quite different from the actual change frequency, and the crawler may want to adjust the access

frequency in the subsequent visits. We briefly discuss on this adaptive policy later. 2

3. Is the estimator consistent? We can prove that the estimator̂r is consistent, by showing that

lim
n→∞E[r̂] = r and lim

n→∞V [r̂] = 0 for any r [12]. Although it is not easy to formally prove, we

believe our estimator̂r is indeed consistent. In Figure 5,E[r̂]/r gets close to 1 asn → ∞ for anyr,

and in Figure 7,σ/r (thusV [r̂]) approaches zero asn →∞ for anyr. As an empirical evidence, we

show the graphs ofE[r̂] andV [r̂] overn whenr = 1 in Figure 8.E[r̂] clearly approaches 1 andV [r̂]
approaches zero.
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5 Estimation of frequency: last date of change
In this section, we propose a new estimator which can estimate the change frequency more precisely when

the last-modified date is available. To help readers, we show how we obtained the final estimator step by

step, instead of presenting the estimator in its final form and studying its quality. We first start from a simple

idea, which is the basis for our new estimator. Then we gradually modify the estimator to fix the “bugs” in

the estimator.

5.1 Construction of the estimator

How can we use the last-modified date to estimate the change frequency? In a Poisson process, the ex-

pected time to the previous event is the same as the expected time to the next event, which is equal to1/λ
(Figure 9) [8]. Therefore, if we defineTi as the time to the previous change at theith access,

Ti = (last-modified time− access time) atith access

E[Ti] is equal to1/λ. When we accessed the elementn times, the sum of allTi’s, τ =
∑n

i=1 Ti, is then

E[τ ] =
∑n

i=1 E[Ti] = n/λ. From this equation, we suspect that if we usen/τ as our estimator, we may

get an unbiased estimatorE[n/τ ] = λ. Note thatτ in this equation is a number that needs to be measured

by repeated accesses.

While intuitively appealing, this estimator has some problems. The most serious problem is when the

element does not change between some accesses. In Figure 10, for example, the element is accessed5 times

but it changed only twice. If we apply the above estimator naively to this example,n will be 5 andτ will be

T1 + · · · + T5. Therefore, this naive estimator practically considers that the element changed 5 times with

the last modified dates ofT1, T2, . . . , T5. This estimation clearly does not match with the actual changes of

the element, and thus leads to bias.3 Intuitively, we may get a better result if we divide the actual number

of changes, 2, by the sum ofT2 andT5, the final last-modified dates for the two changes. Based on this

intuition, we modify the naive estimator to the one shown in Figure 11.

The new estimator consists of three functions,Init() , Update() andEstimate() , and it main-

tains three global variablesN, X, andT. Informally, N represents the number of accesses to the element,

X represents the number of detected changes, andT represents the sum of time to the previous change at
3We can verify the bias by computingE[n/τ ] whenλ� f . We do not show the derivation/graph in this paper.
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Init()
N = 0; /* number of accessed */
X = 0; /* number of changes detected */
T = 0; /* sum of last modified dates */

Update(Ti, Ii)
N = N + 1;
/* Has the element changed? */
If (Ti < Ii) then

X = X + 1;
T = T + Ti;

else
T = T + Ii;

Estimate()
return X/T;
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Figure 12: Bias of the estimator in Figure 11
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Figure 13: Bias of the estimator with the newEs-
timate() function

each access. (We do not use the variableN in the current version of the estimator, but we will need it later.)

Initially, the Init() function is called to set all variables to zero. Then whenever the element is accessed,

theUpdate() function is called, which increasesN by one and updatesX andT values based on detected

changes. The argumentTi to Update() is the time to the previous change in theith access and the argu-

mentIi is the interval between the accesses. If the element has changed between the(i − 1)th access and

the ith access,Ti will be smaller than the access intervalIi . Note that theUpdate() function increases

X by one, only when the element has changed (i.e., whenTi < Ii ). Also note that the function increases

T by Ii , not byTi , when the element has not changed. By updatingX andT in this way, this algorithm

implements the estimator that we intend.

To study the bias of this estimator, we show the the graph ofE[r̂]/r overr in Figure 12. We computed

this graph analytically (Appendix B) and verified the result by simulations. To compute the graph, we

assumed that we access the element at a regular intervalI (= 1/f ) and we estimate the frequency ratio

r = λ/f (the ratio of the change frequency to the access frequency). Remember thatE[r̂]/r = 1 when

the estimator is not biased, which is shown as a dotted line. The solid line shows the actual graphs of the

estimator for variousn.
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Estimate()
X’ = (X-1) - X/(N*log(1-X/N));
return X’/T;
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Figure 15: Statistical variation of the new estimator overr

6 Categorization of frequency: Bayesian inference
So far, we have studied how toestimatethe change frequency given its change history. But for certain

applications, we may only want to categorize elements into several classes based on their change frequencies.

Example 6 A crawler completely recrawls the web once every month and partially updates a small subset

of the pages once every week. Therefore, the crawler does not particularly care whether an element changes

every week or every 10 days, but it is mainly interested in whether it needs to crawl a page either every week

or every month. That is, it only wants to classify pages into two categories based on their change history.2

For this example, we may still use the estimators of previous sections and classify pages by some thresh-

old frequency. For example, we may classify a page into the every month category if itsestimatedfrequency

is lower than once every 15 days, and otherwise categorize the page into the every week category. In this

section, however, we will study an alternative approach, which is based on the Bayesian decision theory.

While the machinery that we use in this section has been long used in statistics community, it has not been

applied to theincompletechange history case. After a brief description of the estimator, we will study the

effectiveness of this method and the implications when the change histories are incomplete.

To help our discussion, let us assume that we want to categorize a web page (p1) into two classes, the

pages that change every week (CW ) and the pages that change every month (CM ). To trace which category

p1 belongs to, we maintain two probabilitiesP{p1 ∈ CW } (the probability thatp1 belongs toCW ) and

P{p1∈CM} (the probability thatp1 belongs toCM ). As we accessp1 and detect changes, we update these

two probabilities based on the detected changes. Then at each point of time, ifP{p1∈CW} > P{p1∈CM},
we considerp1 belongs toCW , and otherwise we considerp1 belongs toCM . (While we use a two category

example to simplify our discussion, the technique can be generalized to more than two categories.)

Initially we do not have any information on how oftenp1 changes, so we start with fair valuesP{p1∈
CW } = 0.5 andP{p1∈CM} = 0.5. Now let us assume we first accessedp1 after 5 days and we learned that

p1 had changed. Then how should we updateP{p1∈CW } andP{p1∈CM}? Intuitively, we need to increase

P{p1∈CW} and decreaseP{p1∈CM}, becausep1 had changed in less than a week. But how much should

we increaseP{p1∈CW}? We can use Bayesian theorem to answer this question. Mathematically, we want

to reevaluateP{p1∈CW} andP{p1∈CM} given the eventE, whereE represents the change ofp1. That
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is, we want to computeP{p1∈CW |E} andP{p1∈CM |E}. According to Bayesian theorem,

P{p1∈CW |E} =
P{(p1∈CW ) ∧E}

P{E} =
P{(p1∈CW ) ∧ E}

P{E ∧ (p1∈CW )}+ P{E ∧ (p1∈CM )}
=

P{E | p1∈CW}P{p1∈CW}
P{E | p1∈CW }P{p1∈CW}+ P{E | p1∈CM}P{p1∈CM} (2)

In the equation, we can computeP{E | p1 ∈ CW } (the probability thatp1 changes in 5 days, when its

change frequency is a week) andP{E | p1 ∈ CM} (the probability thatp1 changes in 5 days, when its

change frequency is a month) based on the Poisson process assumption. Also we previously assumed that

P{p1∈CW} = P{p1∈CM} = 0.5. Then,

P{p1∈CW |E} =
(1− e−5/7)0.5

(1− e−5/7)0.5 + (1− e−5/30)0.5
≈ 0.77

P{p1∈CM |E} =
(1− e−5/30)0.5

(1− e−5/7)0.5 + (1− e−5/30)0.5
≈ 0.23

That is,p1 now belongs toCW with probability0.77 andp1 belongs toCM with probability0.23. Note that

these new probabilities,0.77 and0.23, coincides with our intuition.P{p1∈CW } has indeed increased to

0.77 from 0.5 andP{p1∈CM} has decreased.

For the next access, we can repeat the above process. If we detect another change after 5 days, we

can updateP{p1∈ CW |E} andP{p1∈ CM |E} by using Eq 2, but now withP{p1∈ CW } = 0.77 and

P{p1∈CM} = 0.23. After this step,P{p1∈CW} increases to0.92 andP{p1∈CM} becomes0.08.

Contrary to the estimator of Section 4, note that this new estimator does not require that we access the

page at a regular interval. Therefore, even if we access an element at an irregular interval and if we only

know whether the element changed or not, we can still categorize pages. Also note that we do not set an

arbitrary threshold to categorize elements. Even if we can apply the previous estimators, we still need to set

a threshold to classify pages, which can be quite arbitrary. By using the Bayesian estimator, we can avoid

setting this arbitrary threshold, because the estimator itself naturally classifies pages.

In Figure 16 we show how accurate the Bayesian estimator is. In the graph, we show the probability

that a page is classified intoCM when its change frequency isλ (the horizontal axis) for variousn values.
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We obtained the graph analytically assuming that we access the page every 10 days. From the graph we can

see that the estimator classifies the page quite accurately. For instance, whenλ ≤ 1
month the estimator places

the page inCM with more than80% probability forn = 3. Also, whenλ ≥ 1
week it places the page inCW

with more than80% probability forn = 3. Clearly the estimator categorizes the page more accurately as

the sample size increases. Whenn = 10, the estimator categorizes the page correctly with more than95%
probability.

While the Bayesian estimator is quite accurate and can handle the irregular access case, we can get

more accurate result by carefully deciding on how often we access the page. To illustrate this issue, we

show in Figure 17 the accuracy graph for various access frequencies. From the graph, we can see that the

estimator is much more accurate when the access frequency lies between1
month and 1

week (f = 1/10 days)

than when it lies outside of this range (f = 1/day orf = 1/2 months). For example, whenf = 1/day, the

estimator places the page inCM with high probability even whenλ > 1
week. Intuitively, we can explain this

phenomenon as follows: When we access the page much more often than it changes, we do not detect any

changes to the page at all in the first several accesses. Until we detect the first change, we keep increasing

P{p1∈CM} and keep decreasingP{p1∈CW}. Therefore we tend to place the page inCM whenn is small.

Although this bias disappears after we access the page many times (more specifically, whenn ≈ f/λ or

larger), we can avoid this bias in the first place by selecting an appropriate revisit frequency if we can.

7 Conclusion and Future work
In this paper, we studied the problem of estimating the change frequency of an element, when we donothave

the complete change history. We proposed new estimators that compute the change frequency reasonably

well even with the incomplete change history. Also, we analytically showed how effective the proposed

estimators are, discussing the practical implications of the various choices.

While our estimators are much more effective than existing ones, we believe we can extend our current

work in the following ways:

1. Irregular access: The estimators in Sections 5 and 6 can handle the irregular access case, but the

estimator in Section 4 requires regular access to the element. We still need to develop an estimator,

which canestimatethe change frequencywithout the last-modified date when the access isirregular.

2. Adaptive scheme:Even if we initially decide on a certain access frequency, we may want to adjust it

during the experiment, when the estimated change frequency is very different from our initial guess.

Then exactly when and how much should we adjust the access frequency?

Example 7 Initially, we guessed that a page changes once every week and started visiting the page

every 10 days. In the first 4 accesses, however, we detected 4 changes, which signals that the page

may change much more frequently than we initially guessed.

In this scenario, should we increase the access frequency immediately or should we wait a bit longer

until we collect more evidence? When we access the page less often than it changes, we need a large

sample size to get an unbiased result, so it might be good to adjust the access frequency immediately.

On the other hand, it is also possible that the page indeed changes once every week on average, but it

changed in the first 4 accesses by pure luck. Then when should we adjust the change frequency to get

the optimal result?
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Although this problem is a very important question when we only know whether a page has changed

or not, it is not a big issue when the last modified date is available. In Section 5, we showed that the

bias is practically negligible independent of the access frequency (Figure 13) and that the statistical

variation gets smaller as we access the page less frequently (Figure 15). Therefore, it is always good

to access the page as slowly as we can. In this case, the only constraint will be how early we need to

estimate the change frequency. 2

3. Changingλ: Throughout this paper, we assumed that the change frequencyλ of an element is static

(i.e., does not change). This assumption may not be valid in certain cases, and we may need to test

whetherλ changes or not.

If λ changes very slowly, we may be able to detect the change ofλ and use the estimatedλ to improve,

say, web crawling. For example, ifλ changes once every month, we may estimateλ in the first few

days of every month and use the estimatedλ for the rest of the month. Then by comparing theλ’s

for each month, we may also compute how muchλ increases/decreases every month. However, when

λ changes very rapidly, it will be difficult and impractical to estimateλ and use the estimatedλ to

improve say crawling or caching.
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A Avoiding the singularity of the estimator − log(X̄/n)

The estimator− log(X̄/n) has a singularity when̄X = 0, becauselog(0/n) = ∞. In this section, we study
how we can avoid the singularity.

Note that the singularity arises because we pass the number0 as the parameter of a logarithmic function.
Intuitively, we can avoid the singularity if we increasēX slightly whenX̄ = 0, so that the logarithmic
function does not get0 even whenX̄ = 0. In general, we may avoid the singularity if we add small numbers
a andb (> 0) to the numerator and the denominator of the estimator, so that the estimator is− log( X̄+a

n+b ).
Note that whenX̄ = 0,− log( X̄+a

n+b ) = − log( a
n+b) 6= ∞ if a > 0.

Then what value should we use fora andb? To answer this question, we use the fact that we want the
expected value,E[r̂], to be as close tor as possible. As we showed in Section 4.2, the expected value is

E[r̂] = E
[
− log

(
X̄ + a

n + b

)]
= −

n∑
i=0

log
(

i + a

n + b

)(
n

i

)
(1− e−r)n−i(e−r)i

which can be approximated to

E[r̂] ≈
[
− log

(
n + a

n + b

)]
+
[
n log

(
n + a

n− 1 + b

)]
r + . . .

by Taylor expansion [11]. Note that we can make the above equation toE[r̂] ≈ r + . . . , by setting the
constant term− log(n+a

n+b ) = 0, and the factor of ther term,n log( n+a
n−1+b) = 1.

From the equation− log(n+a
n+b ) = 0, we geta = b, and fromn log( n+a

n−1+a) = 1, we get the graph of
Figure 18. In the graph, the horizontal axis shows the value ofn and the vertical axis shows the value of
a which satisfies the equationlog( n+a

n−1+a) = 1 for a givenn. We can see that the value ofa converges to
0.5 asn increases and thata is close to0.5 even whenn is small. Therefore, we can conclude that we can
minimize the bias by settinga = b = 0.5.

B Computing the bias of the estimator in Figure 11
We can compute the bias of the estimator by deriving the p.d.f. (probability density function) forX/T and
by computing the expected value ofX/T based on the density function. Deriving the p.d.f. is quite long
and complex, but we briefly sketch how we can obtain it. For the derivation, we assume that we access the
elementn times at the regular intervalI (= 1/f f : the access frequency).

It is relatively straightforward to compute the probability thatX = k (k = 1, . . . , n). The variableX
is equal tok when the element changed ink accesses. Since the element may change at each access with
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probability1− e−r (r = λ/f , r: frequency ratio),

P{X = k} =
(

n

k

)
(1− e−r)k(e−r)n−k

Now we compute the probability thatT = t (0 ≤ t ≤ nI) whenX = k. If we useTi to represent the
time added toT at theith access, T can be expressed as

T =
n∑

i=1

Ti

Since the element did not change in(n− k) accesses whenX = k, we added(n− k) times ofI to T . Then

T = (n− k)I +
k∑

i=1

Tci

whereci is theith access in which the element changed. Without losing generality, we can assume that the
element changed only in the firstk accesses. Then

T = (n− k)I +
k∑

i=1

Ti (3)

In those changed accesses, the probability thatTi = t is

P{Ti = t} =




λe−λt

1− e−r
if 0 ≤ t ≤ I

0 otherwise
(4)

because the element follows a Poisson process. From Eq. 3 and 4, we can compute the p.d.f. ofT when
X = k by standard statistical techniques [12]. We usePk{T = t} to denote the p.d.f. ofT whenX = k.
Then the expected value ofX/T can be computed by the following formula.

E

[
X

T

]
=

n∑
k=0

(
P{X = k}

∫ nI

0

(
k

t

)
Pk{T = t} dt

)

=
n∑

k=1

(
P{X = k}

∫ nI

0

(
k

t

)
Pk{T = t} dt

)
(whenk = 0,

k

t
= 0)

ComputingE[r̂]/r from E[X/T ] is straightforward. From the equation̂r = λ̂/f = X
T /f , we can derive

E[r̂]
r

=
E
[

X
fT

]
r

=
n∑

k=1

(
P{X = k}

r

∫ nI

0

(
k

ft

)
Pk{T = t} dt

)
(5)

C Correcting the bias of Figure 11
In this section, we study the mathematical property of Eq. 5 and try to remove its bias. The complete
analytical form of Eq. 5 is very complex and hard to interpret. So we first study the limit values of Eq. 5
whenr → 0 andr →∞ and try to extend this result to the general case.

In essence, Eq. 5 is the sum ofn terms, where each term corresponds the case when we detectk changes
in n accesses. Intuitively, whenλ � f (or r = λ/f → ∞) the element will change in all of the accesses,
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so the dominant term in the equation will be the one with the largestk (k = n). Similarly, whenλ � f
(or r = λ/f → 0) the element will not change in any of the accesses, so the dominant term will be the one
with smallestk (k = 1). We can confirm this intuition by computing the limit of the factorP{X = k}/r in
Eq. 5. Whenr →∞,

lim
r→∞

P{X = k}
r

=

{
0 if k = 1, . . . , n− 1
1 if k = n

Also whenr → 0,

lim
r→0

P{X = k}
r

=

{
n if k = 1
0 if k = 2, . . . , n

From these limits, we can compute the limits of Eq. 5.

lim
r→∞

E[r̂]
r

= lim
r→∞

n∑
k=1

(
P{X = k}

r

∫ nI

0

(
k

ft

)
Pk{T = t} dt

)

= lim
r→∞

∫ nI

0

(
n

ft

)
Pn{T = t} dt

=
n

n− 1

lim
r→0

E[r̂]
r

= lim
r→0

n∑
k=1

(
P{X = k}

r

∫ nI

0

(
k

ft

)
Pk{T = t} dt

)

= n lim
r→0

∫ nI

0

(
1
ft

)
P1{T = t} dt

= n log
(

n

n− 1

)

Intuitively, we can interpret this result as follows: Whenr is very large (i.e. we access the element much
less frequent than it changes), we almost always detectn changes inn accesses. So the estimator practically
becomesn/T in this case, and according to the limit value the bias isn/(n − 1). Note that the estimated
frequency ratio is slightly larger than the actual frequency ratio (n versusn− 1). Then how can we remove
this bias whenr is large? One obvious solution is to use(n − 1)/T as our estimator instead ofn/T . Then
the bias of the estimator becomes

lim
r→∞

E[r̂]
r

= lim
r→∞

∫ nI

0

(
n− 1

ft

)
Pn{T = t} dt =

n− 1
n− 1

= 1

That is, the estimated frequency ratio becomes the same as the actual frequency ratio!
At the other extreme, whenr is very small, we almost always detect no change or at best only one

change. SinceX/T = 0 whenX = 0, the only important term now is whenX = 1, and the estimator
practically becomes1/T . As we derived, the bias isn log( n

n−1) whenr ≈ 0. To eliminate this bias, we may
use 1

n log( n
n−1

) as the numerator, instead of1 whenX = 1. Then

lim
r→0

E[r̂]
r

= n lim
r→0

∫ nI

0

(1/(n log( n
n−1 ))

ft

)
P1{T = t} dt =

n log( n
n−1 )

n log( n
n−1 )

= 1

In summary, we can eliminate the bias whenr →∞ by using(n − 1) as theX value whenX = n, At
the other extreme, whenr → 0 we can use 1

n log( n
n−1

) as theX value ifX = 1.
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