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Abstract

Many online data sources are updated autonomously and independently. In this paper, we make the
case for estimating the change frequency of the data, to improve web crawlers, web caches and to help
data mining. We first identify various scenarios, where different applications have different requirements
on the accuracy of the estimated frequency. Then we develop several “frequency estimators” for the iden-
tified scenarios. In developing the estimators, we analytically show how precise/effective the estimators
are, and we show that the estimators that we propose can improve precision significantly.

1 Introduction

With the explosive growth of the internet, many data sources are available online. Most of the data sources
are autonomous and are updated independently of the clients that access the sources. For instance, popular
news web sites, such as CNN and NY Times, update their contents periodically, whenever there are new
developments. Also, many online stores update the price/availability of their products, depending on their
inventory and on market conditions.

Since the sources are updated autonomously, the clients usually do not know exactly when and how often
the sources change. However, we believe that the clients can significantly benefit by estimating the change
frequency of the sources. For instance, the following applications can use the estimated change frequency
to improve their effectiveness.

e Improving a web crawler: A web crawler is a program that automatically visits web pages and
builds a local snapshot and/or index of web pages. In order to maintain the snapshot/index up-to-date,
the crawler periodically revisits the pages and updates the pages with fresh images. A typical crawler
usually revisits the entire set of pages periodically and updates them all. However, if the crawler can
estimate how often an individual page changes, it may revisit only the pages that have changed (with
high probability), and improve the “freshness” of the local snapshot without consuming as much
bandwidth. According to [4], the crawler may improve the “freshness” by orders of magnitude in
certain cases, if it can adjust the “revisit frequency” based on the change frequency.

e Improving the update policy of a data warehouse:A data warehouse maintains a local snapshot,
called amaterialized viewof underlying data sources, which are often autonomous. This materialized
view is usually updated during off-peak hours, to minimize the impact on the underlying source data.
As the size of the data grows, however, it becomes more difficult to update the view within the limited
time-window. If we can estimate how often an individual data item (e.g., a row in a table) changes,
we may selectively update only the items likely to have changed, and thus incorporate more changes
within the same amount of time.



e Improving web caching: A web cache saves recently accessed web pages, so that the next access to
the page can be served locally. Caching pages reduces the number of remote accesses to minimize
access delay and network bandwidth. Typically, a web cache uses an LRU (least recenthagsed)
replacement policybut it may improve theache hit ratioby estimating how often a page changes.

For example, if a page was cached a day ago and if the page changes every hour on average, the
system may safely discard that page, because the cached page is most probably obsolete.

e Data mining: In many cases, the frequency of change itself might be useful information. Forinstance,
when a person suddenly accesses his bank account very often, it may signal fraud, and the bank may
wish to take an appropriate action.

In this paper, we study how we can effectively estimate how often a data item (or an element) changes.
We assume that we access an elemepéatedlythroughnormal activities, such as a periodic crawling of
web pages or the users’ repeated access to web pages. From these repeated accesses, we detect changes to
the element, and then we estimate its change frequency.

We have motivated the usefulness of “estimating frequency of change,” and how we accomplish the task.
However, there exist important challenges in estimating frequency of change, including the following:

1. Incomplete change history:Often, we do not have complete information on how often and when an
element changed. For instance, a web crawler can tell if a page has changed between accesses, but it
cannot tell how many times the page changed.

Example 1 A web crawler accessed a page on a daily basis for 10 days, and it detected 6 changes.
From this data, the crawler may naively conclude that its change frequefi¢ilis= 0.6 times a day.

But this estimate can be smaller than the actual change interval, because the page may have changed
more than once between some accesses. Then, what would be the fair estimate for the change interval?
How can the crawler account for the missed changes? o

Previous work has mainly focused on how to estimate the change frequency given the complete change
history [10, 13]. As far as we know, there has been no work on how to estimate the frequency based
on incomplete information.

2. Irregular access interval: In certain applications, such as a web cache, we cannot control how often
and when a data item is accessed. The access is entirely decided by the user’s request pattern, so the
access interval can be arbitrary. When we have limited change history and when the access pattern is
irregular, it becomes very difficult to estimate the change frequency.

Example 2 In a web cache, a user accessed a web page 4 times, at day 1, day 2, day 7 and day 10. In
these accesses, the system detected changes at day 2 and day 7. Then what can the system conclude
on its change frequency? Does the page change ¢vemays /2 = 5 days on average? 0

3. Difference in available information: Depending on the application, we may get different levels
of information for different data items. For instance, certain web sites tell us when a page was last-
modified, while a majority of web sites do not provide this information. Depending on the scenario, we
may need different “estimators” for the change frequency, to fully exploit the available information.
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In this paper, we study how we can estimate the frequency of change when wia¢@wpletechange
history of a data item. To that end, we first identify various issues and place them into a taxonomy (Sec-
tion 2). Then for each branch in the taxonomy, we propose an “estimator” and show analytically how good
the proposed estimator is (Sections 4 through 6). In summary, our paper makes the following contributions:

e We identify the problem of estimating the frequency of change and we present a formal framework to
study the problem.

e We propose several estimators that measure the frequency of change much more effectively than
existing ones. For the scenario of Example 1, for instance, our estimator will predict that the page
changed).8 times per day (as opposed to thé we guessed earlier), which reduces the “bias” by
33% on average.

¢ We present the analytical results that show how precise/effective our proposed estimators are.

1.1 Related work

The problem of estimating change frequency has been long studied in statistics community [10, 13, 9, 2].
However, most of the previous work assumed that the complete change history is known, which is not true in
many practical scenarios. In this paper, we study how to estimate the change frequency basedfiete
change history.

Reference [4] studies how a crawler should refresh the local copy of remote web pages to improve the
“freshness” of the local copies. Assuming that the crawler knows how often web pages change, the reference
shows that the crawler can improve the freshness significantly. In this paper, we show how a crawler can
estimatethe change frequency of pages, to implement the refresh policy proposed in the reference.

In our companion paper [3] (submitted to the VLDB 2000 Experience track), we explain how a web
crawler can use the techniques that we develop here. The paper compares various crawler design choices
based on the statistics collected from more than half million web pages, and it proposes an architecture that
employs the estimation techniques that we develop in this paper.

Many researchers studied how to build a scalable and effective web caching system, to minimize the
access delay, the server load and the bandwidth usage [14, 5, 1]. While some of the work touches on the
consistency issue of cached pages, they focus on developiag protocol that may reduce the inconsis-
tency. In contrast, our work proposes a mechanism that can be used to imprpageheplacement policy
on existingarchitecture.

In data warehousing context, a lot of work has been done to efficiently maimaiarialized view
[6, 7, 15]. However, most of the work focused on different issues, such as minimizing the size of the view
while reducing the query response time [7].

2 Taxonomy of issues

Before we start discussing how to estimate the change frequency of an element, we first need to clarify
what we mean by “change of an element.” What do we mean by the “element” and what does the “change”
mean? To make our discussion concrete, we assume that an element is a web page and that the change
is any modification to the page. However, note that the technique that we develop is independent of this
assumption. The element can be defined as a whole website or a single row in a database table, etc. Also



the change may be defined as more than, sag%amaodification to the page, or as updates to more than 3
columns of the row. Regardless of the definition, we can apply our technique/analysis, as long as we have a
clear notion of the element and a precise mechanism to detect changes to the element.

Given a particular definition of an element and the change, we assume that we repeatedly access an
element to estimate how often the element changes. This access may be performed at a regular interval or
at random intervals. Also, we may acquire different levels of information at each access. Based on how we
access the element and what information is available, we develop the following taxonomy.

1. How do we trace the history of an element?n this paper, we assume that we repeatedly access an
element, either actively or passively.

e Passive monitoring: We do not have any control over when and how often we access an ele-
ment. In a web cache, for instance, web pages are accessed only when users access the page.
In this case, the challenge is how to analyzegivenchange history to best estimate its change
frequency.

e Active monitoring: We actively monitor the changes of an element and can control the access
to the element. For instance, a crawler can decide how often and when it will visit a particular
page. When we can control the access, another important question is how often we need to
access a particular element to best estimate its change frequency. For instance, if an element
changes about once a day, it might be unnecessary to access the element every minutes, while it
might be insufficient to access it every month.

In addition to the access control, different applications may have different access intervals.

e Regularinterval: In certain cases, especially for active monitoring, we may access the element
at a regular interval. Obviously, estimating the frequency of change will be easier when the
access interval is regular. In this case, (number of detected changes)/(monitoring period) may
give us good estimation of the change frequency.

e Random interval: Especially for passive monitoring, the access intervals might be irregular. In
this case, frequency estimation is more challenging,

2. What information do we have? Depending on the application, we may have different levels of
information regarding the changes of an element.

e Complete history of changesWe know exactly when and how many times the element changed.
In this case, estimating the change frequency is relatively straightforward; It is well known that
(number of changes)/(monitoring period) gives “good” estimation of the frequency of change
[10, 13]. In this paper, we do not study this case.

e Last date of change:We only know when the element was last modified, but not the complete
change history. For instance, when we monitor a bank account which records the last transaction
date and its current balance, we can tell when the account was last modified by looking at the
transaction date.

e Existence of change:The element that we monitor may not provide any history information
and only give us its current status. In this case, we can compute the “signature” of the element at
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each access and compare these signatures between accesses. By comparing signatures, we can
tell whether the element changed or not. However, note that we cannot tell how many times or
when the element changed by this method.

In Section 4, we study how we can estimate the frequency of change, when we only know whether
the element changed or not. Then in Section 5, we study how we can exploit the “last-modified date”
to better estimate the frequency of change.

3. How do we use estimated frequencyDifferent applications may use the frequency of change for
different purposes.

e Estimation of frequency: In data mining, for instance, we may want to study the correlation
between how often a person uses his credit card and how likely is a default. In this case, it might
be important teestimatethe frequency accurately.

e Categorization of frequency: We may only want to classify the elements into several frequency
categories. For example, a web crawler may perform a “small-scale” crawl every week, crawling
only the pages that are updated very often. Also, the crawler may perform a “complete” crawl
every three months to completely refresh all pages. In this case, the crawler may not be interested
in exactly how often a page changes. It may only wardléssifypages into two categories, the
pages to visit every week and the pages to visit every three months.

In Section 4 and 5, we study the problemesttimatingthe frequency of change, and in Section 6, we
study the problem ofategorizingthe frequency of change.

3 Preliminaries

In this section, we will review some of the basic concepts for the estimation of frequency, to help readers
understand our later discussion. We also summarize experimental data that shows that web page changes
follow a Poisson process. A reader familiar with a Poisson process and estimation theory may skip this
section.

In Section 3.1, we first explain how we model the changes of an element. A model for the change is
essential to compare various “estimators.” Then in Section 3.2, we explain the concept of “quality” of an
estimator. Even with the same experimental data, different estimators give different values for the change
frequency. Thus we need a well-defined metric that measures the effectiveness of different estimators.

3.1 Poisson process: the model for the changes of an element

In this paper, we assume that an element changesRnisson processA Poisson process is often used

to model a sequence of random events that happen independently with fixed rate over time. For instance,
occurrences of fatal auto accidents, arrivals of customers at a service center, etc., are usually modeled by
Poisson processes. In particular, web pages are known to follow a Poisson Process. In our companion
paper [3], we trace the change history of 720,000 web page collected from 270 sites for 4 months and
compare the result against what the Poisson process model predicts. Based on this comparison, we show
that the Poisson process describes the changes of web pages very well. For example, Figure 1 is one of
the graphs that compare thetual change intervals of pages against the prediction of the Poisson process
model. (The graph is based on the pages that change &vatstyson average We also plotted similar
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Figure 1: The actual change intervals of pages ak@jure 2: Two possible distributions of the estima-
the prediction of the Poisson process model tor A

graphs for the pages that change at other average change interval and got similar result.) The horizontal axis
represents the change interval of pages, and the vertical axis represents the fraction of changes with that
given change interval. The straight line is the prediction of a Poisson process and the dots are the observed
changes in the experiment. Clearly, the experimental data is clustered around the predicted line.

While the study clearly shows that web pages follow the Poisson process, it is also limited because the
experiment was conducted for a limited time window (4 months) and the web pages were accessed on a daily
basis. Therefore, our study does not verify the Poisson process model for the pages that change very often
(more than once every day) or the pages that change very slowly (less than once every 4 months). However,
we believe these pages are of low interest to most practical applications. For example, crawlers rarely can
access pages more than once every'daya crawler does not care too much whether a page changes exactly
once every day or more than once every day. Also, there may exist a set of pages that change at a regular
interval, which do not necessarily follow the Poisson process. However, these pages are not easy to identify
when a crawler manages hundreds of millions of web pages. For this reason we believe it is safe to assume
that the entire set of pages change by a random praceaserage

Returning to the description of a Poisson process, weXl(3¢ to refer to the number of occurrences of
a change in the intervdD, ¢t]. Then a Poisson processrate or frequency\ has the following properties:

Fors > 0 andt > 0, the random variableX (s + t) — X (s) has the Poisson probability
k
distribution Pr{X(s+1t)—X(s) =k} = %e‘” fork=0,1,...

The parametek of a Poisson process is thgerage frequencyr rate that the change occurs. We can verify
this fact by calculating how many events are expected to occur in a unit interval:
& )\k -2

BIX(t+1) - X(t)] = i RPr{X(t+1) — X(t) =k} =Y & ]Z =\
k=0 k=1 '

3.2 Quality of estimator

The goal of this paper is to estimate the frequency of chanffem the repeated accesses to an element. To
estimate the frequency, we need to summarize the observed change hissamppdesas a single number

crawlers should not abuse web sites. If a crawler accesses a web site too often, the site often blocks access completely.



that corresponds to the frequency of change. In Example 1, for instance, we summarized the six changes in
ten visits as the change frequency6gfl0 = 0.6/day. We call this summarization procedure gstimator
of the change frequency. Clearly, there exist multiple ways to summarize the same observed data, which can
lead to different change frequencies. In this subsection, we will study how we can compare the effectiveness
of various estimators.

An estimator is often expressed as a function of the observed variables. For instankehdethe
number of changes that we detected dhbe the total access period. Then, we may Mise X/T as the
estimator of the change frequenayas we did in Example 1. (We use the notation “hat” to show that we
want to measure the parameter underneath it.) Here, nottlma random variable, which is measured
by sampling (or repeated accesses). Therefore, the estithasoalso a random variable that follows a
certain probability distribution. In Figure 2, we show two possible distributions. ks we will see, the
distribution of \ determines how effective the estimatois.

1. Unbiasedness:Let us assume that the element changes at the average frequamhich is shown
at the bottom center of Figure 2. Intuitively we would like the distributiorh & be centered around
the value). Mathematically}\ is said to baunbiasedwhen the expected value &fE[S\], is equal to
A

2. Efficiency: In Figure 2, it is clear thah may take a value other than even ifE[S\] = A. For any
estimator, the estimated value might be off from the real valudue to some statistical variation.
Clearly, we want to keep the variation as small as possible. We say that the estimasomore
efficientthan the estimatoks, if the distribution of\; has smaller variance than that'ef In Figure 2,
for instance, the estimator with the distribution (a) is more efficient than the estimator of (b).

3. Consistency:Intuitively, we expect that the value dfapproaches, as we increase the sample size.
This convergence of to A can be expressed as follows:

Let )\, be the estimator with sample size Then)\,, is said to be @onsistenestimator of) if

lim Pr{|A, — A| < e} =1 forany positivee

4 Estimation of frequency: existence of change

How can we estimate how often an element changes, when we only know whether the element changed or
not between our accesses? Intuitively, we mayXigé' (X: the number of detected chang&s,monitoring

period) as the estimated frequency of change, as we did in Example 1. In Section 4.1 we study how effective
this naive estimatoX /T is, by analyzing itdias consistencyandefficiency Then in Section 4.2, we will
propose a new estimator, which is less intuitive tif7", but is much more effective.

4.1 Intuitive frequency estimator: X/T

To help the discussion, we first define some notation. We assume that we access the element at a regular
interval I and that we access the elementimes. (Estimating the change frequency for irregular accesses
is a very difficult problem, and we defer the discussion to Section 6.) Also, w&useindicate whether



the element changed or not in tfith access. More precisely,

1 if the element changed iith access,
0 otherwise.

Then, X is defined as the sum of aK;'s, X = )" | X;, and represents the total number of changes that
we detected. We usE to refer to the total time elapsed during ouaccesses. Since we access the element
every I time units,7 = nI = n/f, wheref(= 1/I) is the frequency at which we access the element.
We also assume that the changes of the element follow a Poisson process withTraén, we can define
the frequency ratio = )/ f, the ratio of the change frequency to the access frequency. Whelarge
(A > f), the element changes more often than we access it, and misesmall (. < f), we access the
element more often than it changes.

Note that our goal is to estimate given X;’'s andT'(= n/ f). However, we may estimate the frequency
ratior(= A/ f) first and estimate indirectly fromr (by multiplying » by f). In the rest of this subsection,
we will assume that our estimator is the frequency ratiwhere

A 1/X\ X
“?‘?(ﬂ‘ﬁ

Note that we need to measukethrough an experiment and then use the nunib¢o estimater-.

1. Is the estimator 7 biased?As we argued in Example 1, the estimatedill be smaller than the actual
r, because theetectedhumber of changesY, will be smaller than thectual number of changes.
Furthermore, this bias will grow larger as the element changes more often than we access it (i.e, as
r = A/ f grows larger), because we miss more changes when the element changes more often.

We can verify this intuition by computing the expected value' ,0f[r], and comparing it with the
actualr. To computeE|[r], we first compute the probability that the element does not change
between accesses [10].

Lemma 1 Letq be the probability that the element does not change during time intéreal 1/ f).

)\Oe—)\l
Then q:Pr{X(t—l—I)—X(t) :0}: :ef)‘I:ef)‘/f:efr

o!

]

By definition, X is equal to zero when the element does not change betweén-theth and theith
access. Because the change of the element is a Poisson process, the changes at different accesses are
independent and eact, takes the value

1 with probability 1 — ¢
0 with probabilityg (= e™")

independently from othek;’s. Then from the definition ofX, X is equal tom, whenm X;’s are
equal tol: Pr{X =m} = (])(1 — q)™¢"~ ™. Therefore,

Bl =Y TPr{f=T0 =3 TPr{X =m}=1-e
m=0 m=0
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Figure 3: Bias of the intuitive estimator= X/n  Figure 4: Statistical variation of = X /n overn

Note that for7 to be unbiasedE[r] should be always equal ta Clearly,1 — e~" is notr, and the
estimatorr is biased. In Figure 3, we visualize the biag:pby plotting £/[] /r overr. The horizontal
axis is logarithmic to show the values more clearly whes small or large. (In the rest of this paper,
we use a logarithmic scale, whenever convenient.} i unbiased E[#] = r), the graphE[r]/r
would be equal to 1 for any (the dotted line), but because the estimatésismaller than the actual
E[r]/r is always less than 1. From the graph, it is clear #g{ is about the same as(E[r]/r ~ 1)
whenr (= A\/f) is small (i.e., when the element changes less often than we access iEj|/is
significantly smaller tham (E[7]/r < 1), whenr is large. Intuitively, this is because we miss more
changes as we access the element less oftea £/f > 1). From the graph, we can see that the
bias is smaller than 10%([7]/r > 0.9) when the frequency ratiois smaller than 0.21. That is, we
should access the elemdnt).21 ~ 5 times as frequently as it changes, in order to get less than 10%
bias.

2. Is the estimator 7 consistent? The estimator = X /n is not consistent, because the biag' afoes
not decrease even if we increase the sample sjzthe difference between and E[r| (E[r]/r =
(1 — e™")/r) remains the same independently of the size.of

This result coincides with our intuitior#; is biased because we miss some changes. Even if we access
the element for a longer period, we still miss a certain fraction of changes, if we access the element at
the same frequency.

3. How efficient is the estimator?To evaluate the efficiency @f let us compute its variance.

V[i]=E[f?] - E[ffP=e"(1—¢")/n

Then, the standard deviationdis o = /V[#] = \/e " (1 —e")/n

Remember that the standard deviation tells us how clustered the distributids afoundE|[7|; Even
if E[r] ~ r, the estimator may take a value other thanbecause our sampling process (or access to
the element) inherently induces some statistical variation.

From the basic statistics theory, we know th&dkes a value in the interval [7] — 2o, E[r]+20) with
95% probability, assuming follows the normal distribution [12]. In most applications, we want to



4.2

minimize this confidence interval (whose length is proportionat)teelative to the actual frequency
ratio ». Therefore, we want to reduce the the ratio of the confidence interval to the frequency ratio,
o/r, as much as we can. In Figure 4, we show how this ratio changes over the samplebgize
plotting its graph. Clearly, the statistical variation/r decreases as increases; While weannot
decrease thbiasof # by increasing the sample size, wa&n minimize thestatistical variation(or the
confidence interval) with more samples.

Also note that when is small, we need a larger sample sizéo get the same variation/r. We
explain what this implies by the following example.

Example 3 A crawler wants to estimate the change frequency of a web page by visiting thépage
times, and it needs to decide on the access frequency.

Intuitively, the crawler should not visit the page too slowly, because the crawler misses many changes
and the estimated change frequency is biased. But at the same time, the crawler should not visit the
page too often, because the statistical variatign can be large and the estimated change frequency
may be inaccurate.

For example, let us assume that the actual change frequency of the page is, say, once every week
(A = 1/week), and the crawler accesses the page once every two weeksl(/2 weeks). Then

the bias of the estimated change frequency% (E[r]/r ~ 0.43)! On the other hand, if the
crawler revisits the page every daf € 1/day), then the statistical variatiaryr is 0.75 and thed5%
confidence interval ig/r = 150%! In the next subsection, we will try to identify the best revisit
frequency for this example based on an improved estimator. o

Improved estimator: — log(X /n)

While the estimatotX /7" is known to be quite effective when we have@mpletechange history of an
element [10, 13], our analysis showed that it is less than desirable when we haweapletechange

history. The estimator is biased and we cannot reduce the bias by increasing the sample size. In this
subsection, we propose another estimatdsg (X /n), which has more desirable properties.

Intuitively, we can derive our new estimator from Lemma 1. In the lemma, we computed the probability

¢ that the element does not change at each acagsse~*// = ¢~". By rearranging this equation, we get

r=—loggq

Note that we can measure the probabilityn the above equation by an experiment; For example, if we
accessed an element 100 times, and if the element did not change in 70 accesses, we can reasonably infer
that the probabilityg is 70/100. Then from the equation, we can estimate that the frequencyrratio
—1log(70/100) = 0.36. Note that this estimated frequency ratig6 is slightly larger thar®).30 (= 30/100)

that the previousX/n estimates. This is because our new estimator accounts for the changes that we may
have missed between some accesses. Also note that we can estimate the yatnerefaccurately by
increasing the sample size. Therefore, we can estimitere precisely andecrease the bidsy increasing

the sample size! (We verify this claim later.) This property has a significant implication in practice. If we

use the estimatoX /n, we can reduce the bias only by adjusting #ueess frequency (or by adjusting

r), which might not be possible for certain applications. However, if we use the estimabarg, we can
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reduce the bias to the desirable level, simply by increasingitingber of accessde the element. For this
reason, we believe our new new estimator can be useful for a wider range of applications/ thin

To define the new estimator more formally, Jétbe the number of accesses where the element did not
change & = n — X). Then, our new estimator is

N f=—log(X/n) or #=—log(X/n)

We can derive our new estimator in a slightly different way. In Section 4.1, we showed that the estimator
X /nis biased, such thdf[X/n] = 1 — e™". By rearranging the equation, we get

r = —log(l — E[X/n])

Intuitively from the equation, we suspect that we may get the correatue if we use-log(1 — X/n) as
our estimator, instead of /n. Notice thatl — X/n = (n — X)/n = X /n. That is, we may consider our
new estimator- log(X /n) as the bias corrected estimatorXfn!

While intuitively attractive, the estimater log(X /n) has a mathematical singularity. When the element
changes whenever we access it (i.€.,= 0), the estimator produces infinity, becauséog(0/n) = co.
This singularity makes the estimator technically unappealing, because the expected value of the estimator,
E[#], is now infinity due to this singularity. (In other words,is biased to infinity!) We can avoid this
singularity by adding a small constant, 0.5, Xoandn as follows:

. X 405
r=—log n+ 0.5

This modified estimator does not have a singularity wies- 0, becauséog (202 ) = Jog(-%3.) +£ .

n+0.5 n+0.5
In the rest of this subsection, we will study the properties of this modified estimator log(ifjfg_';’)

1. Is the estimator unbiased?To see whether the estimator is biased, let us compute the expected value
of #. From the definition ofX,

Pr(x =i} =Pr(x =n-i) = (T) @ - oy

Then,

Ef] = E {— log (fig;ﬂ _ —izn;log <;i%55> (?) (1—e =iy (1)

We cannot obtain a closed-form expression in this case. Thus we study its property by numerically
evaluating the expression and plotting the results. In Figure 5 we show the grégjh|pf overr

for severaln values. For comparison, we also show the graph of the previous estiXiatorin the

figure.

From the graph, we can see that our new estimatbrg(X+0'5) is much better thaX /n. While

- n+0.5
X/n is heavily biased when > 0.5, —log(232) is not heavily biased untit > 1 for n > 3.

2In Appendix A, we show why we add 0.5, not some other number, to avoid the singularity.
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Figure 5: Bias of the estimatoer log(%) Figure 6 The region where the estimator

—log(2322) is less than 10% biased

Clearly, the new estimator becomes less biased as we increase the samplaé=sizenstance, when
n = 3, 7 shows bias if- > 1, but whenn = 50, it is not heavily biased untit > 3.

Given that the estimator becomes less biased as the sample size grows, we may ask how large the
sample size should be in order to getuartbiasedresult. For instance, what sample size gives us less
than 10% bias? Mathematically, this can be formulated as follows: Find the regioarafr, where

<0.1
r

' Bl —r

is satisfied. From the formula of Eq. 1, we can numerically compute the regiernaatl» where

the above condition is met, and we show the result in Figure 6. In the figure, the grey area is where
the bias is less than 10%. For instance, whes 20, the estimator is less than 10% biased when

r < 3.48. Note that the unbiased region grows larger as we increase the sampie ¥ireenn = 20,

7 is unbiased when < 3.5, but whenn = 80, 7 is unbiased when < 5. We illustrate how we can

use these graphs to select the revisit frequency when we discuss the efficiency of the new estimator.

2. How efficient is the estimator? As we discussed in Section 471may take a value other thareven
if E[r] ~ r, and the value of /r tells us how large this statistical variation can be.

To plot thes /r graph of— log({f +92), we first compute the variance of

V[i] = E[F*] - B[]

5 (e (222)) ()i

7=

- (S (252) (v

From this formula, we can numerically computgr = /V[7]/r for variousr andn values and we
show the result in Figure 7. As expected, the statistical variatjongets smaller as the sample size
n increases. For instance/r is 0.4 for r = 1.5 whenn = 10, buto/r is 0.2 for the same- value

12
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Also note that the statistical variatieryr takes its minimum at ~ 1.5 within the unbiased region of
r. For instance, when = 20, the estimator is practically unbiased wher: 2 (the bias is less than
0.1% in this region) and within this range/r is minimum when- ~ 1.35. For other values ofi, we
can similarly see that /r takes its minimum when ~ 1.5. We can use this result to decide on the
revisit frequency for an element.

Example 4 A crawler wants to estimate the change frequency of a web page by visiting it 10 times.
While the crawler does not know exactly how often that particular page changes, say many pages
within the same domain are known to change roughly once every week. Based on this information,
the crawler wants to decide how often to access that page.

Because the statistical variation (thus the confidence interval) is smallestrwhein5 and because

the current guess for the change frequency is once every week, the optimal revisit frequency for that
page is7 daysx 1.5 =~ once every 10 days. Under these parameters, the estimated change frequency
is less thar0.3% biased and the estimated frequency may be off from the actual frequency by up to
35% with 75% probability. We believe that this confidence interval will be more than adequate for
most crawling and caching applications.

In certain cases, however, the crawler may learn that its initial guess for the change frequency may
be quite different from the actual change frequency, and the crawler may want to adjust the access
frequency in the subsequent visits. We briefly discuss on this adaptive policy later. o

3. Is the estimator consistent? We can prove that the estimatéris consistent, by showing that
lim E[f] = r and lim V[7] = 0 for anyr [12]. Although it is not easy to formally prove, we
7IEL)eI(i)(i‘ve our estimatgf igoindeed consistent. In Figure B[7]/r gets close to 1 as — oo for anyr,
and in Figure 7¢ /r (thusV'[]) approaches zero as— oo for anyr. As an empirical evidence, we
show the graphs of[] andV'[#] overn whenr = 1 in Figure 8.E/[r] clearly approaches 1 afid[7]

approaches zero.
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5 Estimation of frequency: last date of change

In this section, we propose a new estimator which can estimate the change frequency more precisely when
the last-modified date is available. To help readers, we show how we obtained the final estimator step by
step, instead of presenting the estimator in its final form and studying its quality. We first start from a simple
idea, which is the basis for our new estimator. Then we gradually modify the estimator to fix the “bugs” in
the estimator.

5.1 Construction of the estimator

How can we use the last-modified date to estimate the change frequency? In a Poisson process, the ex-
pected time to the previous event is the same as the expected time to the next event, which islgqual to
(Figure 9) [8]. Therefore, if we definé; as the time to the previous change atitieaccess,

T; = (last-modified time- access time) ath access

E[T;] is equal tol/\. When we accessed the elementimes, the sum of all}’'s, 7 = > | T}, is then
E[r] = Y, E[T;] = n/\. From this equation, we suspect that if we ugle- as our estimator, we may
get an unbiased estimatéiin/7] = A. Note thatr in this equation is a number that needs to be measured
by repeated accesses.

While intuitively appealing, this estimator has some problems. The most serious problem is when the
element does not change between some accesses. In Figure 10, for example, the element i$ diccessed
but it changed only twice. If we apply the above estimator naively to this examplé| be 5 andr will be
T1 + --- + T5. Therefore, this naive estimator practically considers that the element changed 5 times with
the last modified dates @f, T, . .., T5. This estimation clearly does not match with the actual changes of
the element, and thus leads to biaBituitively, we may get a better result if we divide the actual number
of changes, 2, by the sum @h andT5, the final last-modified dates for the two changes. Based on this
intuition, we modify the naive estimator to the one shown in Figure 11.

The new estimator consists of three functiomst() , Update() andEstimate() , and it main-
tains three global variabled, X, andT. Informally, N represents the number of accesses to the element,
X represents the number of detected changes,Tamgpresents the sum of time to the previous change at

3We can verify the bias by computing[n,/7] when < f. We do not show the derivation/graph in this paper.
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Init()
N = 0; /* number of accessed */
X = 0; /* number of changes detected */
T = 0; /* sum of last modified dates */
Update(Ti, li)
N =N + 1;
/* Has the element changed? */
If (Ti < li) then
X =X+ 1
T=T+ Tij
else
T =T+l
Estimate()
return X/T;
Elr]/r Elr]/r
2
n=2
1.8
1.6
1.4
n=y
TL_].O 1.2 n=2
l ,,,,,,,,,,,,,,,,,,,,,,,
0.8
T 0.6 r

0.1 1 10 100

Figure 12: Bias of the estimator in Figure 11 Figure 13: Bias of the estimator with the n&s-
timate()  function

each access. (We do not use the varidbie the current version of the estimator, but we will need it later.)
Initiglly, the Init unction is called to set all variables to zero. Then whenever the element is accessed,
the ) e() function is called, which increas@&sby one and updates and T values based on detected
changes. The argumehit to Update() is the time to the previous change in tile access and the argu-
méntliisthe interval Between the accesses. If the element has changed betwgen thth access and
th%'islth'éééééé]"’i"Wrilrlwb'é smaller than the access intervial. Note that thdJpdate() function increases
X bylone, only when the element has changed (i.e., wher: li ). Also note that the function increases
Tbyli , nofByTi, when the'element’has not changed. By updaXrandT in this way, this algorithm
implements the estimator that we intend.

To study the bias of this estimator, we show the the graph|[6f/r overr in Figure 12. We computed
this graph analytically (Appendix B) and verified the result by simulations. To compute the graph, we
assumed that we access the element at a regular intetzal 1/ f) and we estimate the frequency ratio
r = A/f (the ratio of the change frequency to the access frequency). Remembétjthat = 1 when
the estimator is not biased, which is shown as a dotted line. The solid line shows the actual graphs of the

estimator for various.
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X = (X-1) - X/(N*log(1-X/N));
return X'/T;

T A Estimate()

n=3
n=>5
n =10

Figure 15: Statistical variation of the new estimator aver

6 Categorization of frequency: Bayesian inference

So far, we have studied how &stimatethe change frequency given its change history. But for certain
applications, we may only want to categorize elements into several classes based on their change frequencies.

Example 6 A crawler completely recrawls the web once every month and partially updates a small subset
of the pages once every week. Therefore, the crawler does not particularly care whether an element changes
every week or every 10 days, but it is mainly interested in whether it needs to crawl a page either every week
or every month. That is, it only wants to classify pages into two categories based on their changeistory.

For this example, we may still use the estimators of previous sections and classify pages by some thresh-
old frequency. For example, we may classify a page into the every month categossifritetedrequency
is lower than once every 15 days, and otherwise categorize the page into the every week category. In this
section, however, we will study an alternative approach, which is based on the Bayesian decision theory.
While the machinery that we use in this section has been long used in statistics community, it has not been
applied to thadncompletechange history case. After a brief description of the estimator, we will study the
effectiveness of this method and the implications when the change histories are incomplete.

To el our i
pages that
p1 belongs
P{p1€ ng%l,
two probabiliti anges. Then at each point of titde; & Cyy } > P{pmecCu},
we considep, belongs taCyy, and otherwise we considgt belongs ta”,,. (While we use a two category
example to simpliby.our discussiony the teeghnique can be generalized to more than two categories.)

Initially we do not have any information on how oftgn changes, so we start with fair valu&{p; €
Cw} = 0.5andP{p1e Cy} = 0.5. Now let us assume we first accesgedfter 5 days and we learned that
p1 had changed. Then how should we upd@fg, < Cy } andP{p;€ C;}? Intuitively, we need to increase
P{p1e Cw } and decreas®{p,;c C)}, because; had changed in less than a week. But how much should
we increase’{p;€ Cy }? We can use Bayesian theorem to answer this question. Mathematically, we want
to reevaluateP{p; € Cy } and P{p:€ Cys} given the even¥, whereFE represents the change of. That
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Figure 17: The accuracy of the Bayesian estimator
Figure 16: The accuracy of the Bayesian estimatfar various access frequencies

is, we want to computé&{p,c Cy | E} and P{p,€ C; | E'}. According to Bayesian theorem,

P{(peCw)NE} P{(p1eCw) N E}

P{E} ~ P{EA(meCw)} + P{EA(p1eCu)}
B P{E|p1€Cyw}P{p1€Cw}
- P{E|pieCw}P{p1eCw} + P{E|pie Crp} P{p1eCir}

P{p1eCw |E} =

(2)

In the equation, we can compufe{ £ |p; € Cy } (the probability thatp; changes in 5 days, when its
change frequency is a week) aft{ £/ | p; € Cjs} (the probability thatp; changes in 5 days, when its
change frequency is a month) based on the Poisson process assumption. Also we previously assumed that
P{p1€ Cw} = P{ple C]V[} =0.5. Then,

(1-— 6_5/7)0.5 ~
P{peCw | E} = (1 —e5/7)0.5+ (1 — e5/30)0.5 017
1 — e-5/30)0.5
P{p1eCy | E} = R, =028

(1—e=57)0.5+ (1 — e=5/30)0.5

That is,p; now belongs ta'y, with probability 0.77 andp, belongs taC; with probability 0.23. Note that
these new probabilities).77 and0.23, coincides with our intuition.P{p; € Cy } has indeed increased to
0.77 from 0.5 and P{p,1€ C } has decreased.

For the next access, we can repeat the above process. If we detect another change after 5 days, we
can updateP{p,; € Cy | E} and P{p; € Cy | E'} by using Eq 2, but now wittP{p,; € Cyw} = 0.77 and
P{p1€ Cy} = 0.23. After this step,P{p.€ Cy } increases t0.92 and P{p,€ C), } becomed).08.

Contrary to the estimator of Section 4, note that this new estimator does not require that we access the
page at a regular interval. Therefore, even if we access an element at an irregular interval and if we only
know whether the element changed or not, we can still categorize pages. Also note that we do not set an
arbitrary threshold to categorize elements. Even if we can apply the previous estimators, we still need to set
a threshold to classify pages, which can be quite arbitrary. By using the Bayesian estimator, we can avoid
setting this arbitrary threshold, because the estimator itself naturally classifies pages.

In Figure 16 we show how accurate the Bayesian estimator is. In the graph, we show the probability
that a page is classified int@y; when its change frequency Js(the horizontal axis) for various values.
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We obtained the graph analytically assuming that we access the page every 10 days. From the graph we can
see that the estimator classifies the page quite accurately. For instance \ﬂhﬁ% the estimator places

the page irC); with more thar80% probability forn = 3. Also, when\ > ﬁek it places the page ity

with more than80% probability forn = 3. Clearly the estimator categorizes the page more accurately as

the sample size increases. Wher- 10, the estimator categorizes the page correctly with more 96&n
probability.

While the Bayesian estimator is quite accurate and can handle the irregular access case, we can get
more accurate result by carefully deciding on how often we access the page. To illustrate this issue, we
show in Figure 17 the accuracy graph for various access frequencies. From the graph, we can see that the
estimator is much more accurate when the access frequency lies b%@pﬁgandﬁ( (f = 1/10 days)
than when it lies outside of this rangé € 1/day or f = 1/2 months). For example, wheh= 1/day, the
estimator places the pagedh, with high probability even when > ﬁek Intuitively, we can explain this
phenomenon as follows: When we access the page much more often than it changes, we do not detect any
changes to the page at all in the first several accesses. Until we detect the first change, we keep increasing
P{p.1€Cy} and keep decreasind{p:€ Cw }. Therefore we tend to place the pageiyy whenn is small.

Although this bias disappears after we access the page many times (more specifically, whép\ or
larger), we can avoid this bias in the first place by selecting an appropriate revisit frequency if we can.

7 Conclusion and Future work

In this paper, we studied the problem of estimating the change frequency of an element, wherotlesie
the complete change history. We proposed new estimators that compute the change frequency reasonably
well even with the incomplete change history. Also, we analytically showed how effective the proposed
estimators are, discussing the practical implications of the various choices.

While our estimators are much more effective than existing ones, we believe we can extend our current
work in the following ways:

1. Irregular access: The estimators in Sections 5 and 6 can handle the irregular access case, but the
estimator in Section 4 requires regular access to the element. We still need to develop an estimator,
which canestimatethe change frequenayithoutthe last-modified date when the accessregyular.

2. Adaptive scheme:Even if we initially decide on a certain access frequency, we may want to adjust it
during the experiment, when the estimated change frequency is very different from our initial guess.
Then exactly when and how much should we adjust the access frequency?

Example 7 Initially, we guessed that a page changes once every week and started visiting the page
every 10 days. In the first 4 accesses, however, we detected 4 changes, which signals that the page
may change much more frequently than we initially guessed.

In this scenario, should we increase the access frequency immediately or should we wait a bit longer
until we collect more evidence? When we access the page less often than it changes, we need a large
sample size to get an unbiased result, so it might be good to adjust the access frequency immediately.
On the other hand, it is also possible that the page indeed changes once every week on average, but it
changed in the first 4 accesses by pure luck. Then when should we adjust the change frequency to get
the optimal result?
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Although this problem is a very important question when we only know whether a page has changed

or not, it is not a big issue when the last modified date is available. In Section 5, we showed that the

bias is practically negligible independent of the access frequency (Figure 13) and that the statistical

variation gets smaller as we access the page less frequently (Figure 15). Therefore, it is always good
to access the page as slowly as we can. In this case, the only constraint will be how early we need to
estimate the change frequency. 0

. Changing A: Throughout this paper, we assumed that the change frequeoicgn element is static

(i.e., does not change). This assumption may not be valid in certain cases, and we may need to test
whether) changes or not.

If A changes very slowly, we may be able to detect the changenifl use the estimatedo improve,

say, web crawling. For example, Mfchanges once every month, we may estimate the first few
days of every month and use the estimakefdr the rest of the month. Then by comparing tkis

for each month, we may also compute how mudhcreases/decreases every month. However, when
A changes very rapidly, it will be difficult and impractical to estimatand use the estimatedto
improve say crawling or caching.
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Figure 18: Thea: values which satisfy the equati@ﬂog(nﬁﬁa) =1

A Avoiding the singularity of the estimator — log(X /n)

The estimator- log(X /n) has a singularity wheiX' = 0, becauséog(0/n) = co. In this section, we study
how we can avoid the singularity.

Note that the singularity arises because we pass the nunassthe parameter of a logarithmic function.
Intuitively, we can avoid the singularity if we increase slightly whenX = 0, so that the logarithmic
function does not get even whenX = 0. In general, we may avoid the singularity if we add small numbers
a andb (> 0) to the numerator and the denominator of the estimator, so that the estimathrg,is%).

Note that whenX = 0, —log(X£8) = — log(;%;) # oo if a > 0.
Then what value should we use forandb? To answer this question, we use the fact that we want the

expected valuel[7], to be as close te as possible. As we showed in Section 4.2, the expected value is

w-s s (B2 (55) (-

=0

which can be approximated to

EJi] ~ [—log <Ziz>} + [nlog (nn_;ﬁrbﬂ rt

by Taylor expansion [11]. Note that we can make the above equatiéifo~ r + ..., by setting the
constant term-log(2%%) = 0, and the factor of the term,n log(;27%5) = 1.

From the equation- log(zi‘g) = 0, we geta = b, and fromnlog(n’jja) = 1, we get the graph of
Figure 18. In the graph, the horizontal axis shows the value afid the vertical axis shows the value of
a which satisfies the equatidng(nﬁ—m) = 1 for a givenn. We can see that the value @ftonverges to
0.5 asn increases and thatis close t00.5 even whem is small. Therefore, we can conclude that we can

minimize the bias by setting = b = 0.5.

B Computing the bias of the estimator in Figure 11

We can compute the bias of the estimator by deriving the p.d.f. (probability density functiokiy foland
by computing the expected value &f/7T based on the density function. Deriving the p.d.f. is quite long
and complex, but we briefly sketch how we can obtain it. For the derivation, we assume that we access the
elementn times at the regular intervdl (= 1/f f: the access frequency).
It is relatively straightforward to compute the probability théat= k (k = 1,...,n). The variableX
is equal tok when the element changed inaccesses. Since the element may change at each access with
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probabilityl — e~" (r = A/ f, r: frequency ratio),

n

it (D) - e

Now we compute the probability thdt = ¢ (0 < t < nI) whenX = k. If we useT; to represent the
time added td" at theith accessT can be expressed as

n
T=>T
i=1

Since the element did not change(in— k) accesses wheK = k, we addedn — k) times of/ to 7". Then

k
T=m-kI+) T,
=1

whereg; is theith access in which the element changed. Without losing generality, we can assume that the
element changed only in the firstaccesses. Then

k
T=(m-kI+) T 3)
=1
In those changed accesses, the probabilitythat ¢ is

)\67)\7&
_ <t<
P{Tit}{leT fo<t<I )

0 otherwise

because the element follows a Poisson process. From Eqg. 3 and 4, we can compute the’wtieof
X = k by standard statistical techniques [12]. We #3¢7 = ¢} to denote the p.d.f. df’ when X = k.
Then the expected value &f/T can be computed by the following formula.

E [é] -y (P{X — k) /OM (g) PAT = 1) dt)

S (roen [ () ir-na)  ommes t-o

ComputingE[#]/r from E[X/T] is straightforward. From the equation= \/f = %/ f, we can derive

e _E [ - (P8 [ (5 e -y ®

r r
k=1

C Correcting the bias of Figure 11

In this section, we study the mathematical property of Eq. 5 and try to remove its bias. The complete
analytical form of Eq. 5 is very complex and hard to interpret. So we first study the limit values of Eq. 5
whenr — 0 andr — oo and try to extend this result to the general case.

In essence, Eq. 5 is the sumroferms, where each term corresponds the case when we gefeahges
in n accesses. Intuitively, whex>> f (orr = \/f — o0) the element will change in all of the accesses,
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so the dominant term in the equation will be the one with the largdst = n). Similarly, when\ <« f

(orr = X\/f — 0) the element will not change in any of the accesses, so the dominant term will be the one
with smallestt (¢ = 1). We can confirm this intuition by computing the limit of the facief X = &k} /r in

Eq. 5. Whenr — oo,

lim P{X:k}: 0 !f k=1,...,n—1
r—00 T 1 if k=n
Also whenr — 0,
hmP{X:k}: n !f k=1
r—0 r 0 if k=2,....n

From these limits, we can compute the limits of Eq. 5.

i B0 = i 35 (PEEE [T (B i =y o)
nl
= Jim | (}lt>P{T_t}dt
=7
i 2 = (P52 [ (5) mar =)

] nl 1
:n}% ; <ft> P{T =t} dt

=nlo i
=g n—1

Intuitively, we can interpret this result as follows: Whetis very large (i.e. we access the element much
less frequent than it changes), we almost always detebinges im accesses. So the estimator practically
becomes:/T in this case, and according to the limit value the bias/&» — 1). Note that the estimated
frequency ratio is slightly larger than the actual frequency ratiggrsusn — 1). Then how can we remove
this bias whenr is large? One obvious solution is to use— 1)/T as our estimator instead of/T'. Then
the bias of the estimator becomes

N nl

tim 2 iy (” 1)P{T Ha=""1_,
r—oo T r—oo Jo ft n—1

That is, the estimated frequency ratio becomes the same as the actual frequency ratio!

At the other extreme, when is very small, we almost always detect no change or at best only one
change. Sinc&X/T = 0 whenX = 0, the only important term now is whel = 1, and the estimator
practlcally becomes$/T'. As we derived, the bias islog (") whenr ~ 0. To eliminate this bias, we may
useWnTl) as the numerator, instead bfvhenX = 1. Then

E[f]

. E| : 1/(nlog(5%
lim — = nlim e —
0

0 ))> P{T =t} dt =

In summary, we can eliminate the bias when- oo by using(n — 1) as theX value whenX = n, At

the other extreme, when— 0 we can usew as theX value if X = 1.

log(727)

Zown1)
nlog(-7)

r—0 7 r—0
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