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Abstract

This paper introduces techniques for reducing data dissemination costs of query subscrip-
tions. The reduction is achieved by merging queries with overlapping, but not necessarily equal,
answers. The paper formalizes the query-merging problem and introduces a general cost model
for it. We prove that the problem is NP-hard and propose exhaustive algorithms and three
heuristic algorithms: the Pair Merging Algorithm, the Directed Search Algorithm and the Clus-
tering Algorithm. We develop a simulator for evaluating the di�erent heuristics and show that
the performance of our heuristics is close to optimal.

1 Introduction
With information dissemination (information push), data is delivered from a set of producers to
a (typically) larger set of consumers. Examples of dissemination-based applications include infor-
mation feeds (e.g., stock and sports tickers of news wires), tra�c information systems, electronic
newsletters, and entertainment delivery [16]. We focus on a type of dissemination system where the
consumers in advance submit subscriptions de�ning their interests. Each subscription may include
one or more queries over the data that the producers hold or generate. The producers run the
queries periodically, disseminating information of speci�c interest to the consumers. Systems such
as Pointcast [30], Marimba [28], Backweb [3], and Airmedia [2] are examples of subscription-based
dissemination.

Subscription-based dissemination services are well suited to users' needs, but can be very ex-
pensive. As a real world example, a 1996 study that monitored Internet tra�c found that more
than 17% of the HTTP Internet tra�c involved PointCast [19]. Additionally, PointCast \pulls"
saturated company networks so much that large corporations have limited or even outlawed the
use of PointCast on their desktop PCs [29]. In this paper we study a novel technique that can sig-
ni�cantly reduce tra�c and server loads. The overconsumption of resources in subscription-based
dissemination services is the result of three factors. First, the network is point-to-point (i.e., the
answers to each query subscription are transmitted separately to each consumer). Second, each
query is processed independently. And third, previous work do not make full use of the processing
power of clients. Instead, clients are considered \dumb" processes that are unable to perform any
post-�ltering of data they receive.

�This work was partially supported by DARPA, as part of the BADD Technical Enhancements Program and the
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The overhead of point-to-point dissemination can be reduced by using a multicast network. For
example, consider the case where n clients issued exactly the same query in their subscriptions. A
subscription service using a point-to-point network will process and transmit the answers to those
queries n times, while a multicast-based service will establish a \channel" for the answer and will
transmit the answer only once [19].

However, in many applications, it is unlikely that a large number of clients will issue exactly
the same query, preventing us to fully exploit the advantages of a multicast network. In this paper,
we present algorithms for e�cient use of a multicast network for such applications. We achieve
this by considering merging not only identical queries but also queries with answers that overlap
signi�cantly. By merging these queries, the server has to process fewer queries and the amount
of information sent may be reduced. (As we will see later, in some cases, merging queries might
increase the data sent.) On the negative side, the merged answers may contain some data that
is irrelevant to a client. As a result, the client needs to make use of their processing power and
apply a post-�ltering extraction query over the received data in order to obtain the answer to its
original query. For example, say we merge queries q1 : �2�A�40R(A) and q2 : �3�A�41R(A) into
q3 : �2�A�41R(A). The server can then process this single query and send the result, ans(q3), to
the clients that issued q1 and q2. The q1 client will need to extract the q1 answer from ans(q3)
by applying the extraction query q1 : �A�40(q3). Similarly, the q2 client applies its own extraction
query to eliminate all elements less than 3. By merging q1 and q2, we reduce both the amount of
work done by the server to process the query and the amount of information sent to the clients;
however, this is at the expense of having to post-process the messages at the clients.

In this paper we address the query merging tradeo�s. We present a framework for studying
query merging (sometimes called logical-channel building) and its costs. We present a variety
of algorithms for merging, some optimal, and some heuristic. We study the complexity of the
algorithms. We use a simulation tool to evaluate their performance (i.e., time required for merging,
and dissemination costs saved).

We start by presenting a motivating example (Section 2). We then specify our problem more
formally (Section 3) and de�ne our cost model (Section 4). Next, a speci�c scenario using geographic
queries is considered (Section 5). The algorithms are presented in Section 6, and their evaluation
in Section 7.

2 Motivating Example

To illustrate we use the DARPA Battle�eld Awareness and Data Dissemination initiative (BADD),
which funded this work. The goal of BADD is to develop an operational system that delivers to
combat troops an accurate, timely, and consistent picture of the battle�eld and provides access
to key transmission mechanisms and worldwide data repositories. Figure 1 outlines the relevant
components of the BADD architecture.

In BADD, a database receives new information (e.g., satellite images, intelligence reports) from
a set of information sources. The database also receives queries from operation units, answers the
queries (on an on-going basis), and disseminates the answers. The operation units are limited
capacity computers that can perform simple operations on the data received.
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Figure 1: The BADD Scenario

A common request in the BADD environment is information (troop presence, weather, topogra-
phy, etc.) about a geographical area. For these requests, sources typically associate a geographical
location with each object. For example, if the data source is a relational database, it may have
the schema R(longitude, latitude, attributes), where the pair (longitude, latitude) identi�es the lo-
cation, and attributes describes the object. This database can be visualized as in Figure 2(a). The
dots in the �gure represent the objects that have a given longitude and latitude. As stated before,
operation units will query this database for objects inside a geographical area. For simplicity, we
will assume that such area is a rectangle, de�ned by two coordinates (c1; c2) and (c3; c4). The
queries over the database will have the form: �(c1<=latitude<=c3)^(c2<=longitude<=c4 )R. Figure 2(b)
illustrates this query. Although we will use this simple scenario as a running example, we want to
stress that our algorithms can handle more complicated queries and database schemas.
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Figure 2: A Sample BADD Database and queries

In Figure 2(c) we illustrate the merging of two BADD queries q1 and q2. Since these queries
are very similar, it may be advantageous to merge them in to a single query mrg(fq1; q2g). Note
that the answer to the new query will contain objects that were not in the answer of q1, or in the
answer of q2, or both. The operation units that receive the answer of mrg(fq1; q2g) must be able
to derive from it the answers to q1 and q2.
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3 Problem Speci�cation

Our objective is to reduce the cost of answering a set of query subscriptions made by clients to a
server. We attempt to reduce the cost by �nding a (possibly) di�erent set of queries, with lower
processing and transmission costs, from which the clients can derive the answers to their original
queries. In this section, we discuss our conceptual model in detail.

3.1 Conceptual Model

The conceptual model for a query subscription service is shown in Figure 3. In this model, we have
a set of clients, C = fc1; :::; cng, that require information. The information need of ci is described
by a set of subscriptions. Each subscription consists of a query and its timing requirements (e.g.,
how often it should be run). For simplicity, we assume that all subscriptions have identical timing
requirements. Thus, we can view the subscriptions of client ci simply as a set of queries Qi. We
call Q the set of all queries received by the server.

.
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Figure 3: Subscription Service Conceptual Model

Clients send their sets of queries to a server. The server periodically processes the queries
against a database, and sends answers to the clients. Before processing queries, the server runs a
merge algorithm that combines \similar" queries. The output of the merge process is a collection
M = fMig where each Mi contains the queries that are merged. The queries in each Mi are
merged into a single query, mrg(Mi). We use ans(q) to represent the answer to query q. Thus, the
server generates ans(mrg(Mi)) for each Mi in M. For completeness, we require that [iQi = [iMi.
Similarly, we require that ans(q) � ans(mrg(Mi)) for every q 2Mi. We call the di�erence between
the answer to the merged query sent to a client, ans(mrg(Mi)), and the original query, ans(q), the
irrelevant information for q sent to the client.

To illustrate these concepts, say client c1 submits queries Q1 = fx; yg, and c2 submits Q2 = fzg.
The server may merge them into M1 = fx; zg and M2 = fyg. Then the server runs mrg(M1) and
mrg(M2) against the database and generates A1 = ans(mrg(M1)) and A2 = ans(mrg(M2)). Note
that A1 needs to be sent to both c1 and c2 and that each must apply an extractor to obtain the
desired answer. For example, the extractor, e, that c1 applies to A1 should yield e(A1) = ans(x).
Thus, when the server sends A1 out, it must include a header containing the following information:

� A list of clients that should receive A1.

� For each such client c, one or more pairs, (e; q), where e is an extractor and q is a query
identi�er. The extractor e is what client c needs to apply to obtain the answer to its original
query q.
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Note that more than one (e; q) pair is needed if multiple c queries are involved in A1. If clients
do not need to know what queries generated answers, then the query identi�ers are not required.
In our example, the information sent with A1 would be c1 : (ex; x) and c2 : (ez ; z). Client c1 then
applies ex(A1) to obtain its answer to query x while c2 applies ez(A1) to obtain its answer.

There are many options for implementing extractors. For example, the server could tag each
individual answer object with the identi�er of the query that generates the object, or with the
identi�er of the client that should receive the object. Then each extractor only needs to look for
the appropriate tags. In some cases, the extractor for a query is the query itself. In particular, this
happens when queries only have selections and projections. A related issue is which component
generates an extractor. Above we assumed that extractors were generated by the server and sent
with answers. However, if the client can deduce its extractors (e.g., if the extractor is the original
query itself), then the server need not send them.

Note that our basic model does not specify what kind of network is used to send queries to the
server and answers to the clients. In the next section, when we discuss cost, we will introduce the
multicast network to the model. This model is extended in [10].

4 The Cost Model

As described in Section 3.1, the server receives a set of queries Q and outputs a set M where each
of its elements is a set of queries to be merged. The query merging problem is to �nd the set M
with the minimum cost. The input for the problem is a cost function cost(), a merge procedure
mrg(), and a set of queries Q. The output is a collection M such that the total cost, cost(M), is
minimized.

The cost of processing the queries and sending the answers back is represented by the total
resources consumed. The total resources consumed are the sum of all the resources used by the
server, the network, and the clients. The costs involved in our model can be summarized as follows:

� Server cost to run the merging algorithm and to process the merged queries.

� Cost of transmitting the answers of the merged queries.

� Client cost of applying the extraction procedure.

In order to compute the resources used, we need to estimate the size of the query answers
and the cost for computing them. Such estimate can be obtained using well-known database
system techniques [27]. We use cost(q) to denote the estimated cost of retrieving q's answer. The
estimated total cost of retrieving all the answers (equal to cost(mrg(M1)) + cost(mrg(M2)) + :::+
cost(mrg(Mm))) will be denoted as cost(M). We will denote the estimated size of q's answer
as size(q). The total size of all the answers (equal to size(mrg(M1)) + size(mrg(M2)) + ::: +
size(mrg(Mm))) will be denoted as size(M) (note that this is the total amount of data that the
server needs to transmit to the clients).

As stated before, clients extract the answers to each of their queries independently by applying
an extraction query to the messages they receive. The independence assumption means that a
client may do some redundant work. For instance, consider a client that submits two queries that
are then merged by the server. The client receives a single message containing both answers. It
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processes the message once to extract the answers for the �rst query, and then again to get the
second set of answer objects. In extracting the �rst answer, the client will consider some objects
as irrelevant, even though they will be later found to be relevant for the second query. We believe
this independent processing model is the most realistic since clients are expected to be relatively
simple and unable to process di�erent queries concurrently. We will denote the size of the irrelevant
information for query qi by ui = size(mrg(Mj))�size(qi), provided qi 2Mj . We will call U(Q;M)
the sum of all ui (U(Q;M) =

P
qi2Q(ui)).

The resources used by each component of the system can be computed as follows:

� Server cost: If the complexity of the merging algorithm is low, its cost will be insigni�cant in
a subscription service. Therefore we will ignore the cost of executing the merging algorithm.

The other component of the server cost is the time for computing and retrieving the answers
from the database. The cost of computing the query answers will be denoted as KA �cost(M),
where KA is a proportionality constant.

Costserver = KA � cost(M)

� Network cost: Our network model assumes a multicast medium; namely, one where we can
establish channels that allow sending data from one server to many clients. (In the extended
version of this paper [10] we also consider a multicast network with a �xed number of physical
channels.) The network cost will be proportional to two factors. First, the network resources
consumed are proportional (by factor KT ) to size of the data being transmitted (size(M)).
Since we expect the size of the header and the size of the queries to be very small compared
to the size of the data, we will ignore these when computing the size of an answer message.
Second, in some cases we may need to establish network connections or \logical channels" for
each Mi set. Messages then just include a logical channel id, and clients can subscribe to one
or more channels. The cost of maintaining logical channels (e.g. table space in the routers,
or operating system connection overhead) is proportional (by a factor KM) to the number of
merged queries transmitted. Thus,

Costnetwork = KM � jMj+KM � jMj.

� Client cost: As answers are multicast, clients need to spend resources receiving the information
they want plus the irrelevant information added by the merging algorithm. These resources
are proportional to the amount of data received. The total amount of relevant data received
by the clients is

P
qi2Q size(qi), while the total amount of irrelevant data is U(Q;M). (Recall

that queries are processed independently at each client, as we discussed earlier.) Therefore, the
cost at the clients is equal to KU � (

P
qi2Q size(qi)+U(Q;M)), where KU is a proportionality

constant. Note that when comparing merging alternatives, we can ignore the cost of listening
to the relevant data since this cost does not depend on the merging algorithm and it will
cancel out in the comparison. (Of course, when computing actual costs we need to consider
both costs.) In the following expression we focus only on the di�erential cost between merging
strategies.

Costclients = KU � U(Q;M).

Using the three cost components, we can compute the total cost as:
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Costtotal = Costserver + Costnetwork + Costclients

Costtotal = KA � cost(M) +KM � jMj+KT � size(M) +KU � U(Q;M).

5 Geographic Queries
The framework and cost model presented so far is very general. The parameters in the cost
model allow us to handle a wide range of capabilities in the servers and in the clients. We can
model scenarios with clients ranging from very simple palm devices to sophisticated �eld computers.
Similarly, we can handle servers having the functionality of a simple �le system, to servers supported
by a full edged database. However, due to the limited space available in this paper, we will focus
on a particular scenario. To illustrate how the merge procedure may operate and how the cost
model can be used, we will use geographic query example presented in Section 2.

5.1 The Merging Procedure for Geographic Queries

As before, we consider the database to be a single relation R, that has position attributes (e.g.,
\latitude" and \longitude"), as well as other attributes describing that position. A geographic
query has the form �(c1<=latitude<=c3)^(c2<=longitude<=c4 )R.

In Figure 4 we illustrate three di�erent merge procedures that can be used in this geographic
query scenario. In the �gure, the solid lines represent the queries, and the dotted line represents
the result of the merge procedure. Figure 4(a) shows the bounding rectangle merging procedure, the
merging procedure introduced in Section 2. This procedure merges a set of 2-dimensional selection
queries into a single 2-dimensional selection query. We can visualize this merged query as the
smallest rectangle that bounds the original queries. The bounding rectangle merging procedure is
very simple (and therefore fast to execute). Additionally, it is easy to extract the answers to the
original queries from the answers to the merged query, as we just need to re-apply the original
geographical query on the received answers. However, a disadvantage is that the answer includes
objects that will be irrelevant to some or all of the input queries.

There are other possible merge procedures for the geographic query scenario. Figure 4(b) shows
the bounding polygon merging procedure. This procedure also generates a single merged query, but,
the query may have disjunctions. Although, the merge query contains less irrelevant information
than the bounding rectangle merging procedure, irrelevant information is still present (the area
of the polygon outside each query is irrelevant to the query). We can again use the original
query as the extraction function for this merging procedure. Figure 4(c) shows a merge procedure
that completely eliminates irrelevant information. However, �ve \merged" queries are generated.
A client implementing the extraction function for this merging procedure needs to combine the
answers to the �ve merged queries in order to �nd the answer to the original query.

In summary, there are many choices for merge procedures that trade o� complexity of the
merged query, complexity of the extractor and amount of irrelevant information added.

In this paper, we have assumed that jmrg(M)j= 1. However, our model can be extended to the
case when jmrg(M)j > 1 by taking the union of the answers in mrg(M) to create a single answer.
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Figure 4: Three Di�erent Merge Procedures

5.2 Cost Model for Geographic Queries

In the geographic scenario, the queries are only selection and projection queries. In this case no
intermediate results are generated to compute the answers. Therefore, with the use of clustering
indices, the cost of the server is directly proportional to the number of messages and the size of the
answers:
Costserver = k1 � jMj+ k2 � size(M)

By incorporating k1 and k2 into the values of KM and KT , we can simplify the cost model to:
Costtotal = KM � jMj+KT � size(M) +KU �U(Q;M). In Section 7 we illustrate how values for the
model parameters can be obtained in a particular scenario.

5.3 The 2-Query Merging Problem for Geographic Queries

The 2-Query Merging Problem, is the special case of the query merging problem when jQj = 2. Our
geographic query example is convenient for illustrating why the 2 query merge problem is simple,
but why it is hard for more than 3 queries.

In the 2-Query Merging Problem we want to decide if it is worthwhile to merge two queries
q1 and q2 into a merged query q3. For compactness, in the following discussion, let us denote
size(qi) as Si. Therefore, the cost of processing and transmitting queries q1 and q2 separately will
be KM + KT � S1 and KM + KT � S2 respectively, for a total cost of 2KM + KT (S1 + S2). If we
merge the queries into a single query q3, the total cost will be KM + KT � S3 + KU � U(Q;M),
where U(Q;M) = 2 � S3 � S1 � S2. We derive the U(Q;M) term in the following way: if we send
a message with only ans(q1), the client receives an answer with size S1. If we send a message with
ans(q3) instead, the client will receive an answer of size S3. The di�erence (S3 � S1) is the size of
the irrelevant results received by the client. We can use a similar derivation for the other client
and conclude that the size of the irrelevant information for the other client is (S3� S2). Therefore
the total size of irrelevant information is U(Q;M) = 2 � S3 � S1 � S2.

From these expressions, it is easy to derive a decision rule that tells us exactly when it is
bene�cial to merge two queries (this is, if the second cost we computed is less than the �rst cost).
Therefore, it is bene�cial to merge q1 and q2 if KM +KT � [S1+S2�S3]+KU � [S1+S2�2 �S3] > 0.

Unfortunately, the general problem (jQj > 2) is signi�cantly harder, since there are many ways
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to combine a set of queries into merged queries. For example, if we have three queries as input, it
could be the case that it is not worthwhile merging any pair of them, but it is worthwhile merging
the three queries into a single query. On the other hand, it could be the case that it is worthwhile
merging one speci�c pair, but not the other pair and not the three queries. In conclusion, we would
have to consider all possible ways to partition the input queries into subsets. For each possible
partition we compute a cost, and then we pick the partition with minimum cost. This approach
leads to an exponential algorithm. In fact, in the extended version of this paper [10] we show that
the query merging problem is NP-hard.

Let us use our geographical database scenario to show a case when merging three queries is
optimal, although merging any pair is not. In Figure 5, we show three queries over our geographical
database.
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Figure 5: 3-Query Merging Example

In the following discussion, we will assume that the answer of a query over each square unit
in the diagram has size S and that we are using the bounding rectangle merging procedure.
Therefore, size(q1) = size(q2) = 2S, size(q3) = S, and size(mrg(q1; q3)) = size(mrg(q2; q3)) =
size(mrg(q1; q2)) = size(mrg(q1; q2; q3)) = 4S. Since there are three queries, there are �ve ways
to merge then: we can merge 2 of them (3 combinations), we can merge all of them, or we can
keep them separately. By deriving the costs of all the �ve possible ways of merging the queries, we
conclude that merging all of the queries is advantageous, although merging any pair is not, when
all of the following equations are satis�ed:

S >
KM

4KU

and S >
KM

5KU +KT

and S <
2KM

7KU �KT

: (1)

These equations are satis�able; for instance, if we pick S = 1, KM = 10, KT = 9, and KU = 4 all
the equations will be true.

6 Algorithms for the Query Merging Problem

In this section we introduce heuristic algorithms for the query merging problem. However, we �rst
briey summarize two exhaustive algorithms that serve as reference points. We will compare the
performance of all algorithms in Section 7.3.
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6.1 Exhaustive Algorithm

An exhaustive algorithm for solving the query merging problem is presented in [10]. Unfortunately,
exhaustive approaches have a doubly exponential complexity on the number of queries. This high
complexity order makes exhaustive algorithms impractical for all but the smallest jQj.

There exists a better algorithm for exhaustively solving the query merging problem when the
cost model ensures the single-allocation property: each qi in the solution is in one and only one
element of M. The single-allocation property means that if we want to process a set of queries
fq1; q2; q3; q4g, we do not need to consider merged queries such as M = ffq1; q2; q3g; fq1; q4gg where
a qi (in this case q1) is in more than one element of M. In the extended version of this paper, we
present the Partition Algorithm that exploits this property and has a complexity of O(nn)

Although this may seem as a small improvement over the general exhaustive algorithm of the
previous section; it signi�cantly extends the values of jQj for which we can use an exhaustive
algorithm. For example, if we have a limit of 5 minutes, we could �nd the optimal solution for up
to jQj = 12 using the Partition Algorithm, but only up to jQj = 4 using the Exhaustive Algorithm.

6.2 Pair Merging Algorithm

The Pair Merging Algorithm takes a greedy approach to solve the query merging problem. The
foundations of this algorithm are two simplifying assumptions. First, we assume that the cost
model has the single-allocation property (as de�ned in Section 6.1). Second, and more important,
we assume that pair-wise decisions (i.e., deciding which pairs of queries to merge) will lead to the
correct global solution. The second assumption is in general incorrect (as shown in Section 5.3).
However, the assumption allows us to e�ciently obtain solutions that, in practice, are very close
to the real \optimal" solution (see Section 7.3). At the end of this section, we will show that the
complexity of the algorithm is O(jQj2).

The Pair Merging Algorithm maintains a set of sets of queries. Initially, each set contains each
single query. Then for all pairs of sets, the algorithm computes the change in the total cost if each
pair is merged. The pair that produces the largest positive decrease in cost is chosen and the sets
are replaced by their union. The algorithm continues picking and merging sets until no merging of
any pair decreases the total cost.

We evaluate the cost achieved by merging sets using our cost model. For instance, for the
geographic cost model we are using as our running example (Section 5.2), we can use a generalization
of the formula in Section 5.3 for solving the 2-query merging problem. In particular, it can be
shown [10] that when merging two sets, Ma and Mb, containing the queries fqa1 ; qa2; :::; qapg and
fqb1 ; qb2 ; :::; qbrg respectively, the expression for solving the 2-query merging problem is:

Costsep�Costmerge = KM +KT � (size(mrg(Ma))+ size(mrg(Mb))� size(mrg(Ma[Mb)))+KU �

fp � size(mrg(Ma)) + r � size(mrg(Mb))� (p+ r)size(mrg(Ma [Mb))g.

Note, that we can obtain the expression for solving the 2-query merging problem given in
Section 5.3 by making size(mrg(Ma)) = S1, size(mrg(Mb)) = S2, size(mrg(Ma[Mb))) = S3, and
the number of queries in each set equal to one (p = r = 1).
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The Pair Merging Algorithm, as presented, needs to compute the cost of doing all possible
merges in every step. However, in each step, only two of the sets (the ones that we decide to
merge) have changed. The other sets remain the same so we can use all the computation involving
them in the next step. Speci�cally, in step k of the algorithm, there are (jQj � k + 1) � (jQj � k)=2
possible pairs; of those, only jQj � k� 1 are new pairs. The rest were all candidate pairs that were
considered in the previous iteration. Note, that the fact that those candidates were not chosen in
a previous iteration, does not preclude them to be chosen later (as long as they have a positive
bene�t). To avoid computing the costs again for those sets, in each step, we save all computed
costs in a pro�t table. Before computing the cost of merging a set, we check in the pro�t table to
see if the cost was already computed; if it was, we take it from the table; otherwise, we compute
it and add it to the table. After selecting the pair of sets to be merged, we remove all entries of
the pro�t table that are related with those sets. Using the pro�t table, the number of cost model

evaluations is jQj2 +
PjQj�1

i=1 i� 1. Therefore, the complexity of the algorithm is O(jQj2).

6.3 Directed Search Algorithm

The Pair Merging Algorithm works in only one direction, that is, it starts with a set M where
all the queries are single elements, and tries to merge those sets as much as possible. A potential
weakness of this approach is that the Pair Merging Algorithm can be trapped into a local minimum
of the cost function and miss the global minimum. This weakness is not unique of the Pair Merging
Algorithm. Under a general cost function there are no polynomial algorithms that can avoid this
weakness. However, in this section, we introduce the Directed Search Algorithm, a variation of the
Pair Merging Algorithm that attempts to ameliorate this weakness.

The Directed Search Algorithm is based on two changes to the Pair Merging Algorithm. First, in
addition to merging sets in M, the Directed Search Algorithm may split one set in M into two sets,
one containing only one element and another with the remaining elements. The rationale behind
this change is that splitting sets, allows the algorithm to \undo" a bad decision made earlier. We
limit one of the sets to have only one element to reduce complexity. If we allow a more general
splitting function, the splitting step of the algorithm becomes exponential. The second change is
to use multiple initial states and choose the one that leads to the minimum cost. In this way, if one
initial state leads to a local minimum from which we cannot escape, there is a good chance that a
di�erent initial state will avoid that minimum.

Choosing the set of initial states, T, is critical for the performance of the algorithm. The best
set of initial states would be one that allows the algorithm to explore as much as possible of the
search space. In our experiments, we included the initial states where all the queries are separate
(jMj = jQj), the initial state where all queries are merged (jMj = 1), as well as random partitions
of Q. The Directed Search Algorithm is presented in the extended version of this paper [10].

The worst case complexity of the algorithm is O(jTjjQjjQj). This is because it is possible for the
algorithm to explore the entire search space. Nevertheless, the algorithm is guaranteed to �nish,
as it only advances when there is a lower cost option. Although, the worst case performance is
exponential, in our experiments this bound was never reached. Furthermore, in the experiments
the algorithm showed a polynomial average running time.
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6.4 Clustering Algorithm

The Clustering Algorithm takes a \divide and conquer" approach to the query merging problem.
The foundation of the algorithm is the de�nition of a \distance" metric between queries. Basically,
if the distance between two queries is \far enough," we can ignore all combinations of merged
queries that contain those queries. In this section, we will describe the algorithm, independently
of the distance metric. In the following section, we will de�ne the distance metric and introduce
concrete examples.

A graphical intuition of the Clustering Algorithm is presented in Figure 6. In the �gure there
are �ve queries, q1 to q5. Queries q1, q3, and q5 are very close together, and therefore are good
candidates for merging among themselves. However, queries q2 and q4 are far and it may not
make sense to even consider merging with them. Speci�cally, the Clustering Algorithm works
by computing the \distance" between each pair of queries and if this distance is below a certain
threshold, it puts the two queries in the same cluster. In the �gure, the algorithm may start by
�nding that the distance between the q2 and q4 is below the threshold and therefore should be in
the same cluster (drawn as a dotted line). Then, the algorithm may �nd that q1 and q3 are also
below the threshold and will put them in the same cluster. Then, the algorithm may �nd that the
distance between q5 and q3 is also below the threshold, but because q3 already belongs to a cluster,
the algorithm adds q5 to that cluster, instead of creating a new one. If q5 were close to several
clusters (that is, q5 is close to at least a member of each of those clusters), a single cluster would
be formed containing q5 and all of those clusters.

After this, the algorithm cannot �nd more pair of queries with distances belong the threshold
and the clustering phase ends. In the following phase, we need to apply within each cluster any of
the algorithms previously studied to merge its queries.

q
4

q
5

q3

far

q

q
2

1

Figure 6: Clustering Algorithm Scenario

As the Clustering Algorithm considers pairs of queries, its performance is the greater of O(jQj2)
and O(mrgalg(jQ

0j), where mrgalg is the performance of the merging algorithm used in the sec-
ond phase and Q0 is the cluster with the maximum number of queries. Obviously, the clustering
algorithm works well only if there are clusters in the data. There are two cases for non-clustered
data: queries will either be very close together or they will be very far apart. In the �rst case,
the algorithm will identify just a single cluster that contains all the queries (and therefore will not
improve the running time of the second phase). In the second case, the algorithm will indicate that
the are are not opportunities for merging queries, and the second phase need not be run.
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In the next section, we will de�ne the distance metric. Depending on this metric, the Clustering
Algorithm behaves as an exact or as a heuristic algorithm. Due to limited space, we will only present
a heuristic distance metric. In the extended version of this paper [10], an exact metric is presented.

6.4.1 A Heuristic Distance Metric

Given queries q1 and q2, we want to determine if it will ever be advantageous to place them in
the same partition, even if q1 or q2 have already been merged with other queries. To check, we
can compute the maximum bene�t that may be obtained by combining q1 (or a merged query
containing it) and q2 (or a merged query containing it). In doing so, we will assume that costs not
directly related to q1 and q2 are not a�ected by the decision (this may be false). If the maximum
bene�t is non-negative, we place q1 and q2 in the same cluster; otherwise, we leave them separate
(though they may be eventually be combined due to another query that is close to both). This
gives us a heuristic rule, but as we will see, our experimental results show it performs very well.

To illustrate, consider the cost model for geographic queries. To obtain the maximum possible
bene�t, we consider three components:

� KM � jMj: By merging two queries together, we reduce the size of jMj by one. Note that we
are ignoring the possible e�ects on M after merging the two queries (which may reduce jMj

even more).

� KT � size(M): In the best case (this is when the result of q1 is contained in the result q2), the
bene�t size(M) will be at most min(sizefq1g; sizefq2g).

� KU �U(Q;M): In the best case, U(Q;M), the bene�t will be reduced by 2�size(mrg(fq1; q2g))�
size(fq1g)� size(fq2g).

Therefore, we should leave queries in separate clusters when:
KM +KT �min(sizefq1g; sizefq2g)�KU � 2 � size(mrg(fq1; q2g))� size(fq1g)� size(fq2g) < 0.

7 Performance Evaluation

In order to test the e�ciency of the algorithms developed, a simulator has been implemented for
geographic queries. It simulates an environment in which the queries are given on a two-dimensional
database (see Figure 7). The database elements consist of two search attributes and the queries
received by the server are range queries. The simulator consists of three main modules. The �rst
module provides input to the simulator. The user speci�es certain parameters like the dimensions
of region covered in database, the size and number of queries, the cost parameters (KM , KT , KU)
and the merge algorithm used. Given these parameters, this module generates a set of queries which
is used as an input for the algorithms. The second module runs one of the algorithms described
previously (i.e., Pair Merging, Directed Search, or Clustering algorithms). Finally, the last module
evaluates the savings of the heuristic algorithms and quanti�es their deviation from the optimal
solution.

7.1 Generating Input

In most environments, it is quite likely that the input given by clients generates a pattern which
creates groups of queries that are located near each other. Some portions of the database are likely
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Figure 7: Screen Shot of the Simulator

to be accessed more frequently than others. For instance if the database speci�es atmospheric
conditions, the portions of the database denoting the regions with higher population are more
likely to get queries. Similarly, in a battle�eld situation, the number of queries in regions which
have more combat troops will be much higher. Therefore, rather than generating random input
queries, a clustering e�ect has been added to the input generating module, in which some queries
tend to create small clusters.

Queries are generated in two ways; randomly and using clustering. The parameter cf is the
ratio of the number of queries generated using clustering to the number of total queries. So cf jQj
gives the number of queries generated using clustering and (1� cf)jQj gives the number of queries
generated randomly. The parameter sf is the ratio of number of queries in a cluster to the number
of queries generated using clustering. We can compute the number of queries in a cluster and
the number of clusters by sf � cf � jQj and 1=sf respectively. For each cluster, a cluster origin
is generated randomly in the database. The distances of the queries in a cluster to the origin
is computed using a normal distribution N(0; df2) where df is the density of the clusters. The
direction of each query from the cluster origin is generated randomly (i.e., a random value between
0� and 360�). Another input parameter gives the size of the queries. The minimum and maximum
ranges for both attributes are given. The size of each query is selected randomly in these ranges.

7.2 Cost Parameters

To select values for our cost parameters KM , KT and KU , we need to consider the speci�cs of the
system we are studying, e.g., how costly it is to transmit data, relative to the other costs. The
parameters impact not just the solution obtained, but how hard it is to �nd the optimal solution.
For instance, there are some values for which it is trivial to �nd the optimal solution (consider
KM = 1, KT = 0, KU = 0). For other values, algorithms such as Pair Merging may not �nd the
optimal solution.

In this subsection we briey illustrate how these parameters can be estimated in a given scenario.
Please keep in mind that this is simply an illustration. We measure costs in dollars, since this makes
it easier to compare processing and network costs.

At the server, we can �rst estimate the dollar cost of one second of processing as follows. We
estimate that the server and its database system cost $100; 000, and this system will be amortized
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for 2 years, giving a cost of $50; 000 per year. In addition, operating costs are $50; 000 per year,
say. Thus, the cost per server second is

CS = (50; 000[dollar=year]+ 50; 000[dollar=year])=31; 536; 000[sec=year]
CS = 0:003171[dollar=sec]

(In this and the expressions that follow we show the units in square brackets.) We test the
server with queries that yield no answer (null queries), and discover that the server can process 1
query per second. We then test queries with di�erent result sizes and discover that each additional
answer object adds 1/100 second to the query time. Thus, we estimate the dollar cost at the server
as

Costserver = CS [dollars=sec] � (1[sec=query] � jMj[query] + 0:01[sec=object] � size(M)[object])

For the network, we compute the dollar cost per megabyte transmitted using numbers for a
DSL service provided by Stanford. A DSL modem including installation cost is $1165, or $48:50
per month if we amortize over 2 years. The monthly fee is $235, and the maximum bandwidth is
1.1Mbs. This gives us a dollar cost per MB of

CN = (48:50[dollar=month]+ 235[dollar=month])=((1:1Mbs=8[b=B]) � 2592000[sec=month])
CN = 0:0007956[dollar=MB]

Using the results of [8], we estimate that setting up the connection for each query answer
consumes 100KB. We also estimate that each answer object is 1KB in size. Hence, the network
cost is

Costnetwork = CN [dollar=MB] � (0:1[MB=query]� jMj[query]+ 0:001[MB=object]� size(M)[object])

For computing client costs, we assume the client is a handheld device, and that the major cost
is due to battery use. Using the PalmPilot as an example, a daily usage of 30 minutes results in a
battery lifetime of 2 months. In other words, we get 1800 minutes of processing per battery change.
We estimate the cost of batteries (including labor) at $5. Thus, the cost per second is

CC = 5[dollars=replacement]=(1800[min=replacement] � 60[sec=min])
CC = 0:0000463[dollar=sec]

By performing experiments, we estimate that processing each answer object, whether useful or
not, takes 0.1 second of processing on the client device. Thus, the client cost is

Costclient = CC [dollar=sec] � 0:1[sec=object] � (
P

qi2Q size(qi)[object] + U(Q;M)[object])

Combining the constants we have estimated, we obtain the following values for the overall cost
model: KM = 0:003251, KT = 0:000032, KU = 0:00000463.

As we have stated, our main objective in this section has been to illustrate the process by
which one can estimate these constants. The performance experiments that must be performed to
estimate costs, and the actual values obtained, can of course vary, but in the end, one can obtain
cost proportionality constants that make it possible to compare the costs incurred at each stage of
the multicast process.
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7.3 Experiments

In this section we study the performance of the Pair Merging, Directed Search, and Clustering
algorithms. Sample geographical queries were generated and both the exhaustive and heuristic
algorithms were used to evaluate the results. Obviously the exhaustive algorithms give the optimal
solution for a given set of queries. In order to evaluate the e�ciency of our algorithms, we wish to
address the following questions:

� What is the probability that the heuristic algorithms �nd the optimal solution?

� If the algorithms do not �nd the optimal solution, how far are the solutions to the optimal
ones?

� In what scenarios does query merging pay o�, and what are the potential gains?

Since we want to focus on how well our algorithms perform, rather than on predicting perfor-
mance of a particular system, we select a scenario where it is particularly hard to �nd the optimal
solution, and where we will stress the algorithms. This scenario was obtained by running the sim-
ulator over many di�erent sets of parameters, and selecting the values (for cf , sf , df , KM , KT ,
KU) where the heuristic algorithms found solutions further from the optimal. Thus, the results we
will present here are pessimistic for the heuristic algorithms. As we will see, the results are rather
good for the high-stress scenario, so this means the algorithms will perform even better in almost
any other scenario.

Cost Parameters

Parameter value
�10�5

KM 365
KT 3.25
KU 0.16

Query Generating Parameters

Parameter value

cf 0.80
sf 0.30
df 100
jQj 100
Maximum Query size 40x40
Minimum Query size 20x20

Other Parameters

Parameter value

Database Size
jQj � 12 100x100
jQj > 12 400x400

Sample Size 10000
jTj 50

Figure 8: Base values

The input parameters and their base values are given in Figure 8. The values used for KM , KT ,
KU are close to those illustrated in Section 7.2, but adjusted slightly to stress the algorithms more.
Incidentally, note that only the ratio between KM , KT , KU matters when comparing algorithms.
If we multiply each of these values with a constant factor, the overall cost would change but the
goodness of the solutions would not change. In our experiments, we use two di�erent database
sizes depending on the number of queries. When having a small number of queries, we used a
smaller database size, so queries were not so dispersed that merging was never advantageous. The
Sample Size speci�es the number of times the simulator was run to generate the results shown in
the graphs.

In Figure 9, we can see the sensitivity of the Pair Merging Algorithm to the cost parameters
KM , KT and KU . The y-axis gives us the resulting number of merged queries (jMj). The parameter
values on the x-axis are normalized. For instance, in the central graph in Figure 9, the number 1.5
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on the x-axis indicates that KT was chosen to be 1:5 times the base value, i.e, 1:5 � 0:0000325 =
0:00004875. As we can see from these graphs, the algorithm seems to be most sensitive to KM

since the overall cost is directly related to jMj. We can also observe that for high values of KT , a
change in this parameter does not have a great inuence on the algorithm since the network cost
dominates.
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Figure 9: Sensitivity Analysis

In Figure 10, the performance of the Pair Merging and the Directed Search algorithms are
compared. This graph gives the fraction of the runs where the Directed Search Algorithm performs
better than the Pair Merging Algorithm. The x-axis indicates the number of initial states for the
Directed Search Algorithm. For instance, if we use 50 initial states, Directed Search �nds a better
solution than Pair Merging in about 20% of the cases, and in the remaining 80% of the cases both
�nd the same solution. Note that Pair Merging never �nds a better solution since it considers a
subset of the merge con�gurations considered by Directed Search. Thus, the �gure quanti�es how
much better Directed Search becomes as we increase the number of initial states (jTj).

Number of Initial States

%
of
ca
se
s
�
n
d
in
g
lo
w
er

co
st
th
an
P
ai
r
M
er
gi
n
g

100806040200

25

20

15

10

5

0

Figure 10: Performance of Directed Search Al-
gorithm Compared to Pair Merging Algorithm
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Figure 11: Percentage of Cases Finding the
Optimal Solution

Figure 11 shows the fraction of runs where the Pair Merging and Directed Search algorithms
�nd the optimal solution (as found by the Partition Algorithm). We only consider 12 queries or
less as the Partition Algorithm must evaluate as many combinations as the jQjth Bell number. For
jQj = 12, this is 4,213,597 combinations, and beyond that it grows to unmanageable sizes. We
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omitted the trivial case jQj = 2, as both algorithms are guaranteed to �nd the best solution.

As we can see, the chances of reaching the optimal solution decreases as the number of queries
increase in both algorithms. The Directed Search Algorithm is more likely to reach the optimal
solution. Extrapolating the curves, the results seem to imply that for large numbers of queries, it
will be very unlikely that the optimal solution is found with heuristic algorithms. This is bad news,
except that our next graphs will show that the deviation from optimal is very small.

To compute the deviation from optimum, let us say that the cost of disseminating a given set
of queries without any merging is Costinitial. Let Costoptimal be the optimal cost obtained by an
exhaustive algorithm, and let Costheuristic the cost reached by a heuristic algorithm. We measure
the distance of the heuristic solution to the optimal solution as follows:

Distance = 100 �
Costheuristic � Costoptimal

Costinitial � Costoptimal

This formula gives the deviation from optimum, relative to the maximum costs that may be
saved through merging. For instance, a value of 0:0% indicates the solution is optimal, and a value
of 100:0% indicates the cost is the same as with no merging.

Figure 12 shows the distance of the solutions. As expected, the distance for Pair Merging and
Directed Search increase as we increase the number of queries. The Directed Search Algorithm has
distances equal to zero for jQj � 7 because it is acting almost as an exhaustive algorithm. Recall
that, in our experiments, we used 50 initial states for the Directed Search Algorithm. The total
number of cases for jQj = 3 to 7 ranges between 5 and 877; thus, there is a high probability that
Directed Search will be able to search the whole space. As the number of queries increase, the
Directed Search Algorithm is no longer able to do an exhaustive search and its distance increases.
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Figure 12: Distance to Optimum of the Pair
Merging and Directed Search Algorithms
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Figure 13: Distance of Suboptimal solutions to
Optimum

Although we would need more data points to con�rm this, we hypothesized that the the curves
in Figure 12 have a logarithmic growth. So we expect that the heuristic algorithms will continue
to have small distances even for relatively large number of queries. Furthermore, recall that we
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selected our base parameters to stress our algorithm, so they are likely to perform much better in
most other scenarios. Each data point in Figure 12 gives the distance averaged over all 10,000 runs.

In Figure 13, on the other hand, we show the average distance for those runs where the optimal
solution was not found. (Note the change of scale.) The distance for Directed Search increases a
bit around 9 queries, but this is simply because at this point the algorithm stops being close to
exhaustive. Beyond 9 queries, the distance for Directed Search should start decreasing. To see this,
recall that the distance of Directed Search will always be lower or equal to that of Pair Merging.
Since Pair Merging shows a clear decreasing trend, Directed Search must also be decreasing. This
is good news, for it predicts that distances (errors) will be small for large numbers of queries. As
we increase the number of queries, the search space becomes huge, but the number of solutions that
are very close to the optimal one also grows rapidly, so the heuristic algorithms have an excellent
chance of �nding a very good solution. Again, recall that our base scenario is one where it is hard
to �nd the optimal solution, so in many other cases, distances will be even smaller.

In Figure 14 we can see the total cost after merging obtained by the Pair Merging, Directed
Search and the Clustering with Heuristic Distance Metric algorithms. Since the costs given by
the Pair Merging and Directed Search algorithms are very close, we showed them as a single line.
To compute the cost of the Clustering Algorithm, the Pair Merging Algorithm was run on each
of the clusters generated. The no merge cost is the cost of processing the queries without any
merging. If our cost parameters are based on dollars (see Section 7.2), then the costs in Figure 14
are in dollars. The actual costs shown are small (a few dollars), but keep in mind that this is
for a small number of queries. As the number of queries grows, so will the savings introduced by
query merging. Furthermore, if the multicast is repeated say every hour, then the savings will be
multiplied by 24� 365 in a year, and we can see that the savings can be signi�cant.
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Figure 14: Final Total Cost
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Figure 15: Running Time of Algorithms

The Clustering Algorithm does not yield better solutions, but we expect it have a smaller
running time, since the merging algorithm runs on clusters with smaller number of queries. This is
quanti�ed in Figure 15, which shows the running times of the algorithms, measured by the number
of merge/split operations. Recall that the complexity of the exhaustive algorithm is O(jQjjQj),
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whereas the complexities of the Pair Merging and Directed Search algorithms is O(jQj2). As we
can see, the Clustering Algorithm is much faster as the number of queries increases, while still
�nding solutions that are close to those of the other algorithms. Thus, the Clustering Algorithm
seems to be a good choice for scenarios with many queries.

In our �nal experiment we attempt to quantify when query merging pays o� and by how much.
Clearly, the most critical factor is the amount of overlap between submitted queries. If the queries
are mostly disjoint, there will be little advantage to merging; it there is signi�cant overlap, we
expect signi�cant gains. To get a sense for these gain, we can vary parameter cf , which controls
the fraction of the queries that exhibit clustering. When cf = 1 all queries are clustered, and when
cf = 0, all queries are independent. Figure 16 shows the total costs incurred in processing the
queries when merging is used and when it is not used, as a function of cf . Notice that even when
queries are independent, merging introduces savings because there is still some random overlap
among queries. As cf increases, the overlap increases, and the savings grow. Again, keep in mind
that the savings of 1 to 2 dollars seen, will increase if there are more queries (100 were used for
this experiment), and the savings will occur every time results are multicast.

No Merge
Pair Merging

Clustering Factor (cf)

T
ot
al
C
os
t

10.80.60.40.20

3.4

3.2

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

Figure 16: Total Cost Before and After Pair Merging

8 Related Work

The Data Dissemination Problem has been studied by a number of projects [18, 6, 21, 13, 1, 17,
12, 5]. However, none of them attempt to reduce costs by automatically merging similar queries.

The Query Merging Problem is also related to Client-side caching in client/server con�gura-
tions [22]. In this approach, data is loaded into each client cache as answers to other queries
are broadcast by the server. When a client is ready to make a query, it �rst checks in its own
cache to see if the cache already contains the answer. The di�erence with our work, is that in the
client-caching approach, queries are not known, so the server cannot optimize the global cost.

There are a number of data dissemination products and services in the market [7, 30, 3, 28].
However, as far as we know they do not attempt to do any real query merging. Most of these
products are very simple, requiring clients to maintain their subscriptions and to \pull" from
the server any new information. Servers normally unicast the results to each client, making this
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approach non-scalable and resulting in a very high cost.

The Cellular Telephony and Telecommunication research community has also consider the prob-
lem of improving the bandwidth use on broadcast channels [20][9][24]. The di�erence between this
e�ort and our work is the level of abstraction. While the telephony community focus on random
memory page requests (and therefore, there is little information available to the optimizer), our
work focus on queries and query answers which allows us to have more sophisticated schemes.

The BADD problem [23, 14] has generated a wealth of research in the data dissemination arena.
References [4] and [26] have proposed multicast protocol, that can be used as a low level support
to our algorithms. Deployment of Internet services through a satellite broadcast channel has been
studied in [25] and \smart information push" by [15]. Reference [32] extends the client-side caching
by considering caches not only at the client, but also at intermediate locations \close" to the clients.
Finally, in [33] the data staging problem is described and heuristics to solve it are presented.

The query merging problem in a geographical database is closely related to the polygon covering
problem [11], and to the set covering problem [31]. However, the special characteristics of the Query
Merging Problem make it di�cult to directly use the well known solutions to those problems.

9 Conclusions

In this paper we have studied the Query Merging Problem. We presented a very general frame-
work and cost model for evaluating merging, and we presented a variety of merging algorithms.
To illustrate and experimentally evaluate performance, we considered geographic queries as a rep-
resentative example. Our results show that dissemination costs can be signi�cantly decreased by
applying a merging algorithm, and that heuristic algorithms work well.

Choosing which algorithm to use depends on the number of query subscriptions, the time
available, and the precision required. If we have a small number of queries, we can use the Partition
Algorithm (the practical limit is twelve queries when running in a typical workstation). If the
running time is critical (e.g., in a scenario where queries and subscriptions change dynamically and
hence the merge sets must be recomputed on the y), then using the Clustering Algorithm before
applying any merging algorithm improves the running time signi�cantly. If �nding the best solution
is important and the number of queries is large, the Directed Search Algorithm should be used.
When using the Directed Search Algorithm, the number of initial states can be chosen according
to the running time limitations.

In this paper we presented a general dissemination model in which only broadcast was used. In
the extended version of this paper [10] we consider multiple physical channels. We are also working
on other extensions, such as subscriptions with di�erent frequencies, and handling incremental
changes to the set of queries.
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