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ABSTRACT
We study the problem of generating e�cient, equivalent
rewritings using views to compute the answer to a query.
We take the closed-world assumption, in which views are
materialized from base relations, rather than views describ-
ing sources in terms of abstract predicates, as is common
when the open-world assumption is used. In the closed-
world model, there can be an in�nite number of di�erent
rewritings that compute the same answer, yet have quite
di�erent performance. Query optimizers take a logical plan
(a rewriting of the query) as an input, and generate e�cient
physical plans to compute the answer. Thus our goal is to
generate a small subset of the possible logical plans without
missing an optimal physical plan.
We �rst consider a cost model that counts the number of

subgoals in a physical plan, and show a search space that
is guaranteed to include an optimal rewriting, if the query
has a rewriting in terms of the views. We also develop an
e�cient algorithm for �nding rewritings with the minimum
number of subgoals. We then consider a cost model that
counts the sizes of intermediate relations of a physical plan,
without dropping any attributes, and give a search space
for �nding optimal rewritings. Our �nal cost model allows
attributes to be dropped in intermediate relations. We show
that, by careful variable renaming, it is possible to do better
than the standard \supplementary relation" approach, by
dropping attributes that the latter approach would retain.
Experiments show that our algorithm of generating optimal
rewritings has good e�ciency and scalability.
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1. INTRODUCTION
The problem of using materialized views to answer queries

[16] has recently received considerable attention because of
its relevance to many data-management applications, such
as information integration [3, 7, 13, 14, 17, 26], data ware-
housing [24], web-site designs [10], and query optimization
[6]. The problem can be stated as follows: given a query on
a database schema and a set of views over the same schema,
can we answer the query using only the answers to the views?
In this paper we study the problem of how to generate

e�cient equivalent rewritings using views to compute the
answer to a query; that is, how to generate logical plans (i.e.,
equivalent rewritings) using views for a query such that the
logical plans are e�cient to evaluate. We take the closed-
world assumption [1], in which views are materialized from
base relations, rather than views describing sources in terms
of abstract predicates, as is common when the open-world
assumption is used [1, 17]. In the closed-world model, there
can be an in�nite number of rewritings using views that
compute the same answer to a query, yet they have quite
di�erent performance.
We focus on the step of generating rewritings for a query,

without specifying in detail how each rewriting is evaluated
in a physical plan. Each rewriting is passed as a logical plan
to an optimizer, which translates the rewriting to a physical
plan, i.e., an execution plan. Each physical plan accesses
the stored (\materialized") views, and applies a sequence of
relational operators to compute the answer to the original
query. The task of the optimizer is to search in the space of
all physical plans for an optimal one. Traditional optimizers
such as the System-R optimizer [22] search in the space of
left-deep-join trees of a logical plan for an optimal physical
plan, which speci�es the execution detail such as join order-
ing, and evaluation of a join (e.g., hash join, merge join).
Our goal is to generate rewritings for a query that are

guaranteed to produce an optimal physical plan, if the query
has a rewriting. In other words, we want to make sure that
at least one rewriting generated by our algorithm can be
translated by the optimizer into an optimal physical plan.
A rewriting is called optimal if it has a physical plan that has
the lowest cost among all physical plans of all rewritings of
the original query under certain cost model. Thus the step
of generating optimal rewritings should be cost-based.
The following example illustrates several issues in gener-

ating optimal rewritings using views for a query:1 (1) There
can be an in�nite number of rewritings for a query. (2)

1We will refer to this example as the \car-loc-part example"



Traditional query-containment techniques [5] cannot �nd a
rewriting with the minimum number of joins. (3) Adding
more view relations to a rewriting could make the rewriting
more e�cient to evaluate.

EXAMPLE 1.1. Suppose we have three base relations:

� car(Make,Dealer). A tuple car(m,d)means that dealer
d sells cars of make m.

� loc(Dealer,City). A tuple loc(d,c)means that dealer
d has a branch in the city c.

� part(Store,Make,City). A tuple part(s,m,c)means
that store s in city c sells parts for cars of make m.

A user submits the following query Q:

q1(S;C) :- car(M;anderson); loc(anderson;C); part(S;M;C)

that asks for cities and stores that sell parts for car makes
in the anderson branch in this city. Assume that we have
the following materialized views on the base relations (for
simplicity, \anderson" is abbreviated as \a"):

V1: v1(M;D;C) :- car(M;D); loc(D;C)
V2: v2(S;M;C) :- part(S;M; C)
V3: v3(S) :- car(M;a); loc(a;C); part(S;M;C)
V4: v4(M;D;C;S) :- car(M;D); loc(D;C); part(S;M;C)
V5: v5(M;D;C) :- car(M;D); loc(D;C)

In the closed-world model, these �ve views are computed
from the three base relations. In particular, views V1 and
V5 have the same de�nition, thus their view relations always
have the same tuples for any base relations. Under the open-
world assumption, however, we would only know that V1
and V5 contain only tuples in car(M;D); loc(D;C); either
or both could even be empty. Suppose we do not have access
to the base relations, and can answer the query only using
the answers to the views. The following are some rewritings
for the query using the views. Notice that there is an in�nite
number of rewritings for the query, since each rewriting P
has an in�nite number of rewritings that are equivalent to P
as queries [25].

P1: q1(S; C) :- v1(M;a;C1); v1(M1; a; C); v2(S;M;C)
P2: q1(S; C) :- v1(M;a;C); v2(S;M;C)
P3: q1(S; C) :- v3(S); v1(M;a; C); v2(S;M;C)
P4: q1(S; C) :- v4(M;a;C; S)
P5: q1(S; C) :- v1(M;a;C1); v5(M1; a; C); v2(S;M;C)

We can show that all of these rewritings compute the an-
swer to the query Q. However, some of them may lack an
e�cient physical plan. For instance, compared to rewriting
P2, rewriting P1 needs one more access to the view relation
V1 and one more join operation. In addition, we cannot
easily minimize P1 to generate P2 using traditional query-
containment techniques [5], since neither of the �rst two sub-
goals of P1 is redundant. Furthermore, although P3 uses one
more view V3 than P2, the former can still produce a more
e�cient execution plan if the view relation V3 is very selec-
tive. That is, if there are few stores that sell parts for cars
that dealer anderson sells, and are located in the same city
as anderson, then view V3 can be used as a �ltering relation.
Rewriting P4 could be an optimal rewriting, since it requires
only one access to view V4. 2

throughout the paper.

In general, given a query and a set of views, the following
questions arise:

1. In what space should we search for optimal rewritings?

2. How do we �nd optimal rewritings e�ciently?

3. How does an optimizer generate an e�cient physical
plan from a logical plan by considering the view de�-
nitions?

1.1 Our solution
In this paper we answer these questions by considering

several cost models. We de�ne search spaces for �nding op-
timal rewritings, and develop e�cient algorithms for �nding
optimal rewritings in each search space. The following are
the main contributions of the paper:

1. We �rst consider a simple cost model M1 that counts
only the number of subgoals in a physical plan. We
analyze the internal relationship of all rewritings for
a query, and show a search space for �nding optimal
rewritings under this cost model (Section 3).

2. We develop an e�cient algorithm called CoreCover for
�nding optimal rewritings in the above search space
under M1 (Section 4).

3. We then study a more complicated cost modelM2 that
considers the sizes of view relations and intermediate
relations [11] in a physical plan of a rewriting. We
also show a search space for �nding optimal rewritings
under M2, and develop an algorithm for �nding them
in this space (Section 5).

4. Finally we study a cost modelM3 that allows attributes
to be dropped in intermediate relations. We show that,
by careful variable renaming, it is possible to do better
than the standard \supplementary relation" approach
[4], by dropping attributes that the latter approach
would retain (Section 6).

Experiments show that the CoreCover algorithm of gener-
ating optimal rewritings has good e�ciency and scalability
(Section 7).

1.2 Related work
The problem of �nding whether there exists an equivalent

rewriting for a query using views was studied in [16]. Re-
cently, several algorithms have been developed for �nding
rewritings of queries using views. Algorithms most closely
related to our approach include the bucket algorithm [12,
17], the inverse-rule algorithm [9, 21, 2], the MiniCon algo-
rithm [20], and the Shared-Variable-Bucket algorithm [19].
(See [15] for a survey.) These algorithms aim at generating
contained rewritings for a query that compute a subset of
the answer to the query, while we want to �nd equivalent
rewritings that compute the same answer to a query. An-
other di�erence is that they have no optimization consid-
erations since under the open-world assumption, di�erent
equivalent rewritings for a query can produce di�erent an-
swers over the same view instance. Under the closed-world
assumption, however, two equivalent rewritings produce the
same answer for any instance of the view database. In this
case, choosing rewritings with more e�cient physical plans
is an interesting issue.



Our algorithms for generating optimal rewritings share
some observations with the MiniCon algorithm. In addi-
tion, as we will see in Section 4, since we want to generate
equivalent rewritings rather than contained rewritings, this
di�erent goal helps us develop more e�cient algorithms by
considering a containment mapping from the expansion of
an equivalent rewriting to the query. The detailed compar-
ison is in Section 4.3.
Other related work includes [6] and [27], which consider

generating e�cient plans using materialized views by replac-
ing subgoals in a query with view literals. In these works,
they aim at improving the performance of query evaluation
by replacing some of the base relations in the query by mate-
rialized views. Our optimization considerations di�er from
theirs in that (1) we take a two-step approach by separating
the rewriting generator and the optimizer, (2) we explore
optimization issues that relate to other parameters such as
selectivity of the view relations. In this perspective, the
introduction of more literals can make a rewriting more ef-
�cient, as shown by the rewritings P2 and P3 in the car-loc-
part example.

2. PRELIMINARIES
In this section, we review some concepts about answering

queries using views. We also introduce some notions that
are used throughout the paper.

2.1 Answering queries using views
We consider the problem of answering queries using views

for conjunctive queries (i.e., select-project-join queries) in
the form:

h( �X) :- g1( �X1); : : : ; gk( �Xk)

In each subgoal gi( �Xi), predicate gi is a base relation, and
every argument in the subgoal is either a variable or a con-
stant. We consider views de�ned on the base relations by
safe conjunctive queries, i.e., every variable in a query's head
appears in the body. A variable is called distinguished if it
appears in the head. We take the closed-world assumption
[1], since the views are computed from existing database
relations. We shall use names beginning with lower-case let-
ters for constants and relations, and names beginning with
upper-case letters for variables. We use V; V1; : : : ; Vm to de-
note views that are de�ned by conjunctive queries on the
base relations.

Definition 2.1. (query containment and equivalence)
A query Q1 is contained in a query Q2, denoted Q1 v Q2,
if for any database D of the base relations, the answer com-
puted by Q1 is a subset of the answer by Q2, i.e., Q1(D) �
Q2(D). The two queries are equivalent, denoted Q1 � Q2,
if Q1 v Q2 and Q2 v Q1. 2

Chandra and Merlin [5] show that a conjunctive query Q1

is contained in another conjunctive query Q2 if and only if
there is containment mapping from Q2 to Q1. The contain-
ment mapping maps the head and all the subgoals in Q2 to
Q1. It maps each variable to either a variable or a constant,
and maps each constant to the same constant.

Definition 2.2. (expansion of a query using views)
The expansion of a query P on a set of views V, denoted
P exp, is obtained from P by replacing all the views in P with

their corresponding base relations. Existentially quanti�ed
variables in a view are replaced by fresh variables in P exp.
2

Definition 2.3. (equivalent rewritings) Given a query
Q and a set of views V, a query P is an equivalent rewriting
of query Q using V, if P uses only the views in V, and P exp

is equivalent to Q, i.e., P exp � Q. 2

In our car-loc-part example, both

P1: q1(S;C) :- v1(M;a; C1); v1(M1; a;C); v2(S;M;C)
P2: q1(S;C) :- v1(M;a; C); v2(S;M;C)

are two equivalent rewritings for the query

Q : q1(S;C) :- car(M; a); loc(a;C); part(S;M;C)

because their expansions

P
exp
1

: q1(S;C) :- car(M; a); loc(a;C1);
car(M1; a); loc(a;C); part(S;M;C)

P
exp
2

: q1(S;C) :- car(M; a); loc(a;C); part(S;M;C)

can be shown to be equivalent to Q. This example also shows
that two equivalent rewritings of the same query might not
be equivalent as queries. That is, although P

exp
1

� P
exp
2

, it
is not true that P1 � P2. Notice that the test for P1 � P2
involves containment mappings in views, while the test for
P
exp
1

� P
exp
2

involves containment mappings in base rela-
tions. We say that two rewritings P1 and P2 are equivalent
as queries if P1 � P2. Whereas, we say that two rewritings
P1 and P2 are equivalent as expansions if P

exp
1

� P
exp
2

.
In the rest of this paper, unless otherwise speci�ed, the

term \rewriting" means an \equivalent rewriting" of a query
using views.

2.2 Efficiency of rewritings
Let P be a rewriting of a query Q using views V. We

de�ne three cost models, as shown in Table 1. For each of
them, we de�ne a physical plan for P and a cost measure on
this physical plan.

Cost Physical plan Cost measure
model
M1 a set of subgoals number of subgoals: n
M2 a list of subgoals

Pn
i=1(size(gi) + size(IRi))

M3 a list of subgoals annotated
Pn
i=1(size(gi) + size(GSRi))

with projected attributes

Table 1: Three cost models

Under cost model M1, a physical plan of P is a set of the
view subgoals in P , and the cost measure is the number of
subgoals in P . That is, the cost of a physical plan F is:

costM1
(F ) = number of subgoals in F

The main motivation of cost model M1 is to minimize the
number of join operations, which tend to be expensive in
practice, when a rewriting is evaluated.
Under cost model M2, a physical plan F of rewriting P is

a list g1; : : : ; gn of the view subgoals in P . The views cor-
responding to these subgoals are joined in the order listed.
After joining the �rst i subgoals in the list, the intermediate
relation IRi is the join result with all attributes retained [11].
The cost measure for F under M2 is the sum of the sizes of
the views joined, plus the sizes of the intermediate relations



computed during the multiway join. More formally, The
cost measure of F under M2 is:

costM2
(F ) =

nX

i=1

(size(gi) + size(IRi))

where size(gi) is the size of the relation for the subgoal gi,
and size(IRi) is the size of the intermediate relation IRi.
The motivation of cost model M2 is that, as shown in [11],
the time of executing a physical plan is usually determined
by the number of disk IO's, which is a function of the sizes
of those relations used in the plan.
Cost modelM3 is motivated by the supplementary-relation

approach [4], whose main idea is to drop attributes during
the evaluation of a sequence of subgoals. UnderM3, a phys-

ical plan of rewriting P is a list g
�X1

1
; : : : ; g

�Xn
n of the view

subgoals in P , with each subgoal gi annotated with a set �Xi

of nonrelevant attributes. All the attributes in �Xi can be
dropped after the �rst i subgoals are processed, while still
being able to compute the answer to the original query after
the evaluation terminates. The generalized supplementary
relation (\GSR" for short) after the �rst i subgoals are pro-
cessed, denoted GSRi, is the intermediate relation IRi with
the attributes in �Xi dropped.
The cost measure for M3 is the sum of the sizes of the

views joined, plus the sizes of the generalized supplemen-
tary relations computed during the multiway join. More

formally, for a physical plan F = g
�X1

1
; : : : ; g

�Xn
n , its cost un-

der M3 is:

costM3
(F ) =

nX

i=1

(size(gi) + size(GSRi))

where size(gi) is the size of the relation for the subgoal gi,
and size(GSRi) is the size of the generalized supplementary
relation GSRi.
Notice that a special case of cost model M3 is when the

nonrelevant attributes in �Xi are de�ned as the attributes
in the join that are not used in either the query's head, or
any subsequent subgoals after subgoal gi. Then we get the
supplementary relation as de�ned in the literature [4, 25].
However, as we will see in Section 6, by careful variable
renaming, it is possible to drop more attributes than the
traditional supplementary-relation approach.

Definition 2.4. (e�ciency of rewritings) Under a cost
model M , a rewriting P1 of a query Q is more e�cient than
another rewriting P2 of Q if the cost of an optimal physical
plan of P1 under cost model M is less than the cost of an
optimal physical plan of P2. A rewriting P is an optimal
rewriting if it has a physical plan with the lowest cost in all
the physical plans of rewritings of Q under M . 2

3. COST MODELM1: NUMBER OF VIEW
SUBGOALS

In this section we study how to �nd optimal rewritings un-
der cost model M1, i.e., rewritings with the minimum num-
ber of view subgoals. We �rst show, given a rewriting, how
to minimize its view subgoals. However, this minimization
step might miss optimal rewritings if it uses only traditional
query-containment techniques. Then we analyze the inter-
nal structure of all rewritings of a query, and give a space
that is guaranteed to include a rewriting with the minimum
number of subgoals, if the query has a rewriting.

3.1 Minimizing view subgoals in a rewriting
Suppose we are given a rewriting P of a query Q using

views V. The �rst step to take is to �nd the minimal equiv-
alent query of P (not P exp) by removing its redundant sub-
goals. Let Pm be this minimal equivalent. However, even for
the minimal rewriting Pm, we might still be able to remove
some of its view subgoals while retaining its equivalence to
Q, because we are really interested in rewritings after expan-
sion of the views. For instance, P3 in the car-loc-part exam-
ple is a minimal rewriting, but we can still remove its subgoal
v3(S) and obtain rewriting P2 with fewer subgoals. Notice
that P2 and P3 are not equivalent as queries, although they
both compute the same answer to the query. Thus in the
second minimization step, we keep removing subgoals from
the minimal rewriting Pm, until we get a locally-minimal
rewriting (\LMR" for short), denoted PLMR. That is, PLMR

is a rewriting from which we cannot remove any subgoals
and still retain equivalence to the query Q. For instance,
the rewritings P1 and P2 are two LMRs of the query. The
rewriting P3 is a minimal rewriting, but not an LMR.
For the obtained rewriting PLMR, we cannot remove fur-

ther subgoals while retaining its equivalence to the query
Q. For instance, neither of the �rst two subgoals in the
rewriting P1 can be removed and still retain its equivalence
to the query Q. However, as we will see shortly, we can still
reduce the number of view subgoals in an LMR by proper
variable renaming. In addition, our goal is to �nd globally-
minimal rewritings (\GMR" for short), i.e., rewritings with
the minimum number of subgoals. For this goal we analyze
the structure of all rewritings of a query.

3.2 Structure of rewritings
Consider the two LMRs P1 and P2 in the car-loc-part ex-

ample. Notice that rewriting P2 is properly contained in P1
as queries, while P2 has fewer subgoals than P1. Surpris-
ingly, we can generalize this relationship between contain-
ment of two LMRs and their numbers of subgoals as follows.

Lemma 3.1. Let P1 and P2 be two LMRs of a query Q.
If P1 v P2 as queries, then the number of subgoals in P1 is
not greater than the number of subgoals in P2. 2

Proof. Since P1 v P2, there is a containment mapping �
from P2 to P1. Suppose that the number of subgoals in P1 is
greater than the number of subgoals in P2. Then at least one
subgoal of P1 is not used in �. Consider the expansions P exp

1

and P exp
2

of P1 and P2, respectively. The mapping � implies
a mapping from P

exp
2

to P exp
1

. This mapping, together with
a containment mapping from Q to P exp

2
, implies a mapping

from Q to P
exp
1

. The latter leads to a rewriting that uses
only a proper subset of the subgoals in P1, contradicting the
fact that P1 is an LMR.

We say an LMR is a containment-minimal rewriting (\CMR"
for short) if there is no other LMR that is properly contained
in this rewriting as queries. For instance, the rewriting P2
in the car-loc-part example is a CMR, while rewriting P1 is
not. However, a GMR might not be a CMR, as shown by
the following query, views, and rewritings:

Query: Q: q(X) :- e(X;X)
Views: V : v(A;B) :- e(A;A); e(A;B)
Rewritings: P1: q(X) :- v(X;B)

P2: q(X) :- v(X;X)



The rewriting P1 is a GMR, but it is not a CMR, since
there is another rewriting P2 (also a GMR) that is properly
contained in P1. We will give a space that is guaranteed to
include a GMR of a query, if the query has a rewriting.

rewritings

2

1

1. Minimal rewritings.

3 4

56

2. Locally minimal

3. Containment minimal

4. Globally minimal

5. Region 3 \ region 4.

6. Region 3 - region 4.

rewritings.

rewritings.

rewritings.

Figure 1: Relationship of rewritings of a query.

The relationship of all di�erent rewritings of a query Q is
shown in Figure 1. It can be summarized as follows:

1. A minimal rewriting P does not include any redundant
subgoals as a query.

2. A locally-minimal rewriting (LMR) is a minimal rewrit-
ing whose subgoals cannot be dropped and still retain
equivalence to the query. As we will see shortly, all
LMRs form a partial order in terms of their number of
subgoals and containment relationship.

3. A containment-minimal rewriting (CMR) P is a lo-
cally minimal rewriting with no other locally minimal
rewritings properly contained in P as queries.

4. A globally-minimal rewriting (GMR) is a rewriting
with the minimum number of subgoals. A globally-
minimal rewriting is also locally minimal. The sub-
tlety here is that by Lemma 3.1, each GMR P has at
least one CMR contained in P with the same num-
ber of subgoals. Thus, for each GMR in region 6 in
Figure 1, there exists a GMR in region 5 that has the
same number of subgoals. Therefore, we can just limit
our search space to all CMRs for �nding GMRs.

More formally, the following two propositions are corol-
laries of Lemma 3.1.

Proposition 3.1. Each GMR P has at least one CMR
that i) is contained in P and ii) has the same number of
subgoals as P . 2

Proposition 3.2. The set of CMRs contains at least one
GMR. 2

EXAMPLE 3.1. Consider the following query Q, view
V , and three rewritings P1, P2, and P3.

Q: q(X;Y;Z) :- e1(X; c); e2(Y; c); e3(Z;c)
V : v(X;Y; Z;W ) :- e1(X;W ); e2(Y;W ); e3(Z;W )
P1: q(X;Y;Z) :- v(X;Y; Z; c)
P2: q(X;Y;Z) :- v(X;Y; Z1; c); v(X1; Y1; Z; c)
P3: q(X;Y;Z) :- v(X;Y1; Z1; c); v(X2; Y; Z2; c);

v(X3; Y3; Z; c)

LMR P1 is properly contained in LMR P2 as queries,
which is properly contained in LMR P3 as queries. Rewriting
P1 is containment minimal. We can generalize this example
to m base relations e1; e2; : : : ; em in the query, and get a
partial order of LMRs that is a chain of length m. 2

Since containment mapping is transitive, all the locally-
minimal rewritings of a query form a partial order in terms
of their containment relationships. The bottom elements in
this partial order are the CMRs. In addition, by Lemma 3.1,
the containment relationship between two LMRs also implies
that the contained rewriting has no more subgoals than the
containing rewriting. Figure 2(a) shows the partial order of
the four LMRs (P1, P2, P4, and P5) in the car-loc-part ex-
ample. Figure 2(b) shows the partial order of the rewritings
in Example 3.1. Each edge in the �gure represents a proper
containment relationship: the upper rewriting properly con-
tains the lower rewriting.

P5

P4

(b)

P2

P3

P1

number of
subgoals

(a)

P2

P13

2

1

Figure 2: Partial order of locally-minimal rewritings
of a query.

3.3 A space including globally-minimal rewrit-
ings

The conclusion of the previous subsection is that we can
search in the space of CMRs for a GMR, if the query has a
rewriting. Now we de�ne a search space in a more construc-
tive way. We need �rst de�ne several notations. Given a
query Q, a canonical databaseDQ of Q is obtained by turn-
ing each subgoal into a fact by replacing each variable in
the body by a distinct constant, and treating the resulting
subgoals as the only tuples in DQ. Let V(DQ) be the result
of applying the view de�nitions V on database DQ. For each
tuple in V(DQ), we restore each introduced constant back
to the original variable of Q, and obtain a view tuple of the
query given the views. Let T (Q;V) denote the set of all
view tuples after the replacement.
In our car-loc-part example, a canonical database for the

query Q is:

DQ = fcar(m; a); loc(a; c); part(s;m; c)g

where the variables M , C, and C are replaced by new dis-
tinct constants m, c, and s, respectively. By applying the
�ve view de�nitions V on DQ, we compute V(DQ):

fv1(m;a; c); v2(s;m; c); v3(s); v4(m;a; c; s); v5(m;a; c)g

Thus the set of view tuples T (Q;V) is

fv1(M;a; C); v2(S;M;C); v3(S); v4(M;a;C; S); v5(M;a;C)g



The following lemma, which is a rephrasing of a result in
[16], helps us restrict the search space for �nding globally-
minimal rewritings for a query.

Lemma 3.2. For any rewriting P

q( �X) :- p1( �Y1); : : : ; pk( �Yk)

of a query Q using views V, there is a rewriting P 0 of Q such
that P 0 is in the form:

q( �X) :- p1( �Y
0
1 ); : : : ; pk( �Y

0
k)

In addition, each pi( �Y
0
i ) is a view tuple in T (Q;V), and

P 0 v P . 2

The main idea of the proof is to consider a containment
mapping � from P exp to Q, and replace each variable X in
P by its target variable �(X) in Q. For instance, let us see
how to transform P1 in the car-loc-part example to the LMR
P2 that uses the view tuples only. Consider the mapping �

from P
exp
1

to Q: fM1 ! M;M ! M;a ! a;C1 ! C;C !
C;S ! Sg. Under �, we transform P1 to:

P
0
1 : q1(M;C) :- v1(M;a; C); v1(M;a;C); v2(S;M;C)

After removing one duplicate subgoal from P 0
1, we have the

rewriting P2.
In Section 3.2, we showed that the set of CMRs contains

a GMR. Below we de�ne a search space for GMRs in a
more constructive fashion. The following lemma shows that
CMRs are contained in a set of rewritings de�ned construc-
tively, hence we can regard this set as a search space for
optimal rewritings under cost model M1.

Lemma 3.3. All LMRs of a query using views that use
only view tuples of the query include all CMRs of the query.2

2

An immediate consequence is the following theorem that
de�nes a restricted space for searching globally-minimal rewrit-
ings of a query.

Theorem 3.1. By searching in the space of all LMRs of
a query that use only view tuples in T (Q;V), we guaran-
tee to �nd a globally-minimal rewriting, if the query has a
rewriting. 2

Theorem 3.1 suggests a naive algorithm that �nds a globally-
minimal rewriting of a query Q using views V as follows. We
compute all the view tuples for the query. We start checking
combinations of view tuples. We �rst check all combinations
containing one view tuple, then all combinations containing
two view tuples, and so on. Each combination could be a
rewriting P . We test whether there is a containment map-
ping from Q to P exp. (By the construction of the view
tuples, there is always a containment mapping from P exp to
Q.). If there is, then P is a GMR. It is known [16] that if
there is a rewriting for the query, then there is one with at
most n subgoals, where n is the number of subgoals in the
query. Thus we stop after having considered all combina-
tions of up to n view tuples.

2We assume two rewritings are the same if the only di�er-
ence between them is variable renamings.

4. AN ALGORITHM FOR FINDING GLOBALLY-
MINIMAL REWRITINGS

In this section we develop an e�cient algorithm, called
CoreCover, for �nding optimal rewritings of a query under
the cost modelM1, i.e., globally-minimal rewritings. The al-
gorithm searches in the space of rewritings using view tuples
for GMRs of the query. Intuitively, the algorithm considers
each view tuple to see what query subgoals can be covered
by this view tuple. The set of query subgoals covered by the
view tuple is called tuple-core. The algorithm then uses the
minimum number of view tuples to cover all query subgoals,
and each cover yields a GMR of the query.

4.1 Tuple-core: query subgoals covered by a
view tuple

The algorithm CoreCover �rst �nds the set of query sub-
goals that can be \covered" by a view tuple, called tuple-
core. Before giving the de�nition of tuple-core, we show a
nice property of rewritings using view tuples for a minimal
query. Note that for the rewritings we consider in this sec-
tion, we may think as follows: All the variables of rewriting
P (recall that P is generated out of view tuples) are also
variables of Q, i.e., V ar(P ) � V ar(Q).

Lemma 4.1. For a minimal query Q and a set of views
V, let P be a rewriting of Q that uses only view tuples in
T (Q;V). There is a containmentmapping � from Q to P exp,
such that (1) � is a one-to-one mapping, i.e., di�erent argu-
ments in Q are mapped to di�erent arguments in P exp; (2)
For all arguments in Q that appear in P , they are mapped by
� as is the identity mapping on arguments, i.e., �(X) = X

for all X 2 V ar(P ).3 2

Rewriting P using

view tuples

answer() : � p1(); p2(); : : : ; pn()

answer() : � v1(); v2(); : : : ; vr()

�

answer() : � p11; : : : ; p1k1 ; : : : ; pr1; : : : ; prkr

Minimal query Q

Expansion P exp

Figure 3: A containment mapping from Q to P exp.

Figure 3 shows the intuition of the lemma. For instance,
the rewriting P2 in the car-loc-part example uses view tuples
only. We have a containment mapping from the query Q to
P
exp
2

: fM ! M;a ! a; C ! C;S ! Sg. This containment
mapping maps the arguments fM;a;C; Sg in Q that appear
in P2 on themselves.
In general, there can be di�erent containment mappings

from a minimal query to the expansion of a rewriting using
view tuples. By Lemma 4.1, it turns out that we can just
focus on a containment mapping that has the two properties
in the lemma, and decide what query subgoals are covered
by the expansion of each view tuple under this containment

3The de�nition of rewriting P guarantees a containment
mapping from Q to P exp, but this containment mapping
might not have the two properties.



mapping. The expansion of a view tuple tv, denoted texpv , is
obtained by replacing tv by the base relations in this view
de�nition. Existentially quanti�ed variables in the de�nition
are replaced by fresh variables in texpv . Clearly this expansion
texpv will appear in the expansion of any rewriting using tv.

Definition 4.1. (tuple-core) Let tv be a view tuple of
view v for a minimal query Q. A tuple-core of tv is a max-
imal collection G of subgoals in the query Q, such that there
is a containment mapping � from G to the expansion texpv

of tv, and � has the following properties:

1. � is a one-to-one mapping, and it maps the arguments
in G that appear in tv as is the identity mapping on
arguments.

2. Each distinguished variable X in G is mapped to a
distinguished variable in texpv (moreover, by Property
(1), �(X) = X).

3. If a nondistinguished variable X in G is mapped under
� to an existential variable in tv's expansion, then G

includes all subgoals in Q that use this variable X.

2

The purpose of these properties is to make sure when we
construct a rewriting using view tuples whose tuple-cores
cover all query subgoals, the containment mappings of these
core-tuples can be combined seamlessly to form a contain-
ment mapping from the query to the rewriting's expansion.
In particular, Property (1) is based on Lemma 4.1. Prop-
erties (2) and (3), which are satis�ed by any containment
mapping from the query to a rewriting expansion, are also
used in the MiniCon algorithm. A view tuple can have an
empty tuple-core. As expected:

Lemma 4.2. A view tuple for a minimal query has a unique
tuple-core. 2

The unique tuple-core of a view tuple tv is denoted by
C(vt).

EXAMPLE 4.1. For an example, consider the following
query and views:

Query Q: q(X;Y ) :- a(X;Z); a(Z;Z); b(Z;Y )
Views V1: v1(A;B) :- a(A;B); a(B;B)

V2: v2(C;D) :- a(C;E); b(C;D)

A canonical database DQ of the query includes a(x; z),
a(z; z), and b(z; y). By applying the view de�nitions on DQ,
we have V(DQ) = fv1(x; z); v1(z; z); v2(z; y)g. Thus the set
of view tuples is T (Q;V) = fv1(X;Z); v1(Z;Z); v2(Z;Y )g.
The table shows the tuple-cores for the three view tuples.

view tuple expansion t
exp
v tuple-core C(tv) mapping � from

tv C(tv) to t
exp
v

v1(X;Z) a(X;Z); a(Z;Z) a(X;Z); a(Z;Z) X ! X;Z ! Z

v1(Z;Z) a(Z;Z); a(Z;Z) a(Z;Z) Z ! Z

v2(Z; Y ) a(Z;E); b(Z;Y ) b(Z; Y ) Z ! Z; Y ! Y

Table 2: Tuple-cores for the three view tuples in

Example 4.1.

By using the three tuple-cores, the only minimum cover of
the query subgoals is the union of the tuple-cores of v1(X;Z)
and v2(Z;Y ), which yields the following GMR of the query:

q(X;Y ) :- v1(X;Z); v2(Z;Y )

2

For another example, let us derive the tuple-cores of the
�ve view tuples in the car-loc-part example (we omit the
details that they are view tuples as trivial in this example).
The tuple-cores for v1(M;a; C), v2(S;M;C), v4(M;a; C; S)
and v5(M;a;C) are identical to the body of the correspond-
ing rules, with variable D replaced by constant a. View
tuple v3(S), though, has an empty tuple-core, since the
only possible mapping from a collection of subgoals of Q
to v3(S)

exp that satis�es property (3) of De�nition 4.1, is:
M ! M3; a ! a;C ! C3; S ! S. (To avoid confusion, in
the de�nition of v3, we replace variable M by variable M3,
and variable C by variable C3.) However, this mapping does
not satisfy property (2), since it maps a distinguished vari-
able C in Q to a nondistinguished variable C3 in v3(S)

exp.

4.2 Using tuple-cores to cover query subgoals
The second step of CoreCover �nds a minimum number

of view tuples to cover query subgoals. This problem can
be modeled as a classic set-covering problem [8]. Notice by
the construction of the tuple-cores, a containment-mapping
check is not needed in this step. This step is based on the
following theorem:

Theorem 4.1. For a minimal query Q and a set of views
V, let P be a query that has the head of Q and uses only
view tuples in T (Q;V) in its body. P is a rewriting of Q
if and only if the union of the tuple-cores of its view tuples
includes all the query subgoals in Q. 2

Corollary 4.1. For a minimal query Q and a set of
views V, each GMR of Q using view tuples in T (Q;V) cor-
responds to a minimum cover of the query subgoals using the
tuple-cores of the view tuples. 2

For instance, consider the tuple cores of the view tuples
in car-loc-part example. The minimum cover of the query
subgoals is to use the tuple core of view tuple v4(M;a;C; S),
which yields the GMR P4 of the query. Figure 4 summarizes
the CoreCover algorithm.
The complexity of the algorithm CoreCover is exponential,

since the problem of �nding whether there exists a rewriting
is NP-hard [16]. The running time of the algorithm, though,
depends mostly on the number of view tuples produced in
the second step. Since this number tends to be small in
practice, the algorithm performs e�ciently in the later steps,
as shown by our experimental results in Section 7.

4.3 Comparison with the MiniCon algorithm
CoreCover and MiniCon [20] share the same observation

of the Properties (2) and (3) in De�nition 4.1, which should
be satis�ed by any mapping from query subgoals to a view
subgoal that can be used in a rewriting. Since we want to
�nd equivalent rewritings, rather than contained rewritings,
the di�erent goal gives us the chance to develop a more
e�cient algorithm. In particular, given the fact that there is
a containment mapping from the expansion of an equivalent
rewriting to the query, CoreCover limits the search space
for useful view literals by applying the view de�nitions on
the canonical database of the query. In other words, this
containment mapping helps CoreCover not to consider all
possible head homomorphisms on the views, which could be
a huge set.



Algorithm CoreCover: Find rewritings with minimum
number of subgoals.

Input: � Q: A conjunctive query.
� V : A set of conjunctive views.

Output: A set of rewritings using view tuples with
minimum number of subgoals.

Method:

(1) Minimize Q by removing its redundant subgoals.
Let Qm be the minimal equivalent.

(2) Construct a canonical database DQm for Qm.
Compute the view tuples T (Qm;V) by applying
the view de�nitions Vm on the database.

(3) For each view tuple t 2 T (Qm;V), compute its
tuple-core C(t).

(4) Use the nonempty tuple-cores to cover the query
subgoals in Qm with minimum number of tuple-cores.
For each cover, construct a rewriting by combining
the corresponding view tuples.

Figure 4: The algorithm CoreCover.

Another advantage that the new goal gives CoreCover is
that, each tuple-core of a view tuple includes the maximal
subset of query subgoals that satisfy the three properties in
De�nition 4.1. Correspondingly, the \MCD" concept used
in MiniCon includes a minimal subset of query subgoals.
The reason MCD �nds a minimal subset of query subgoals
is that it tries to �nd maximally-contained rewritings, and
each MCD should be as relaxing as possible, so that all
MCDs can be combined. In our case, since we are �nding
equivalent rewritings, we are more aggressive to cover as
many query subgoals as possible using a view tuple. As a
consequence, in the last step of CoreCover, the tuple-cores of
a set of view tuples that form a rewriting can overlap. That
is, a query subgoal can be covered by two tuple-cores. In the
second step of MiniCon, the MCDs that form a contained
rewriting do not overlap.
Since MiniCon does not aim at generating e�cient rewrit-

ings, it may produce some rewritings with redundant sub-
goals, as shown by the following example.

EXAMPLE 4.2. Consider the following query Q and views
V1; : : : ; Vk�1:

Q: q(X;Y ) :- a1(X;Z1); b1(Z1; Y );
...
ak(X;Zk); bk(Zk; Y ):

V : v(X;Y ) :- same as above
V1: v1(X;Y ) :- a1(X;Z1); b1(Z1; Y )

...
Vk�1: vk�1(X;Y ) :- ak�1(X;Zk�1); bk�1(Zk�1; Y )

For view V , algorithm CoreCover computes only one view
tuple V (X;Y ), whose tuple-core includes all the 2k subgoals
in Q. In addition, CoreCover also computes a view tuple
vi(X;Y ) for each of the rest k � 1 views. Thus CoreCover

creates only one rewriting P with the minimum number of
subgoals:

P : q(X;Y ) :- v(X;Y )

Correspondingly, for view V , MiniCon generates k di�er-
ent MCDs, each MCD covering two query subgoals: ai(X;Zi)
and bi(Zi; Y ). In addition, MiniCon also produces an MCD
for each of the rest k� 1 views. Thus it produces rewritings
with redundant subgoals. Notice that the minimization step
described in [20] after running the MiniCon algorithm still
cannot generate this rewriting P . 2

5. COST MODELM2: COUNTING SIZES
OF RELATIONS

In this section we study cost modelM2 that considers sizes
of view relations and intermediate relations in a physical
plan. We show that the space of all minimal rewritings that
use view tuples is guaranteed to include an optimal rewriting
of a query under M2, if the query has a rewriting.

5.1 A search space for optimal rewritings un-
derM2

The following lemma helps us �nd a search space for op-
timal rewritings under M2.

Lemma 5.1. Under cost model M2, for any rewriting P
of a query Q using views V, there is a minimal rewriting
P 0 that uses only view tuples in T (Q;V), such that P 0 is at
least as e�cient as P . 2

Under cost modelM2, plan P2 in the car-loc-part example
is at least as e�cient as plan P1, since there is a containment
mapping from P1 to P2, such that all the subgoals of P 0

2 are
images under the mapping.

Theorem 5.1. For a query Q and a set of views V, the
space of minimal writings using view tuples in T (Q;V) is
guaranteed to include an optimal rewriting under cost model
M2, if the query has a rewriting. 2

By Theorem 4.1 in Section 4, we can modify the algorithm
CoreCover to get another algorithm CoreCover

� that �nds
all minimal rewritings using view tuples for a query. The
only di�erence between these two algorithms is that in the
last step, CoreCover �nds all minimum sets of view-tuples
whose tuple-cores cover query subgoals, while CoreCover

�

considers all sets of view-tuples to cover the query subgoals.
The view tuples that have an empty tuple-core are also used
by CoreCover

�. By Theorem 5.1, these minimal rewritings
guarantee to include an optimal rewriting under cost model
M2, if the query has a rewriting.
As shown by the minimal rewriting P3 in the car-loc-part

example, subgoal v3(S) can be used to improve the e�ciency
of the plan, although it does not cover any query subgoal.
In general, some view subgoals in a minimal rewriting may
be removed without changing the equivalence to the original
query, but these view subgoals can serve as �ltering subgoals
to reduce the sizes of intermediate relations. The optimizer
can do a cost-based analysis, and decide whether adding
some �ltering subgoals to a rewriting can make the rewriting
more e�cient.

5.2 Concise representation of minimal rewrit-
ings

In the case where there are many views that can be used
to answer a query, the number of view tuples could be large.
For instance, consider the case where we have n views that



are exactly the same as the query. Then there can be n view
tuples, and each has a tuple-core that includes all the query
subgoals. Then there can be 2n � 1 minimal rewritings of
the query.
We propose the following solution to the problem. First,

we partition all views into equivalence classes, such that all
the views in each class are equivalent as queries. When we
run the CoreCover algorithm, we only select a view from each
class as a representative. Second, after the view tuples are
computed, we also partition these view tuples into equiva-
lence classes, such that all the view tuples in each class have
the same tuple-core, i.e., they cover the same set of query
subgoals.
Our solution has several advantages. (1) There is a small

number of groups of rewritings, with each group having spe-
ci�c properties that might facilitate a more e�cient algo-
rithm for the optimizer. (2) The number of view tuples that
need to be considered by CoreCover to cover the query sub-
goals is bounded by the number of query subgoals, thus it
becomes independent from the number of views. (3) The op-
timizer can �nd e�cient physical plans by considering the
\representative rewritings," and then decide whether each
rewriting can become more e�cient by adding view tuples
as �ltering subgoals. The optimizer uses the information
about the sizes of relations and selectivity of joins to make
this decision. (4) The optimizer can replace a view tuple in
a rewriting with another view tuple in the same equivalence
view-tuple class, and yet get a new rewriting to the query.
Our experiments in Section 7 will show that this solution
helps the CoreCover algorithm achieve good performance.

5.3 Generalization of cost modelM2

The key reason that cost model M2 allows us to restrict
the search space in minimal rewritings using view tuples is
that M2 has what we called the property of containment
monotonicity. That is, a cost model M is containment
monotonic if for any two rewritings P1 and P2, if the fol-
lowing two conditions

1. there is a containment mapping from P1 to P2;

2. all subgoals in P2 are images under the mapping;

can imply costM(P2) � costM(P1). Theorem 5.1 can be gen-
eralized to any cost model that is containment monotonic.

6. COST MODEL M3: DROPPING NON-
RELEVANT ATTRIBUTES

Cost model M3 improves M2 by considering the fact that
after computing an intermediate relation in a physical plan,
some attributes can be dropped. In this section, we �rst give
an example to show that if the optimizer uses the traditional
supplementary-relation approach to decide what attributes
to drop, the rewritings using view tuples might not yield
an optimal physical plan under M3. Then we propose a
heuristic that can be taken by the optimizer to drop more
attributes without changing the �nal answer of the evalua-
tion, thus producing a more e�cient physical plan.

6.1 Dropping attributes using the supplementary-
relation approach

Recall that in cost model M3, a physical plan F of a

rewriting P is a list g
�X1

1
; : : : ; g

�Xn
n of the subgoals in P , with

each subgoal gi annotated with a set of attributes �Xi that
can be dropped after subgoal gi is processed in the sequence.
Given a rewriting P , the optimizer considers all possible or-
derings of the subgoals, and decides the dropping strategy
for each ordering. By taking the supplementary-relation ap-
proach, for an order of subgoals g1; : : : ; gn, after subgoal gi
is processed, the optimizer drops the nonrelevant arguments
that are not used in subsequent subgoals or in the head of
P . The corresponding supplementary relation SRi is the
SRi�11gi with the nonrelevant arguments dropped.
The following example shows that by taking this approach,

the optimizer might miss an optimal physical plan under
cost model M3, if the rewriting generator passes to it only
rewritings using view tuples.

EXAMPLE 6.1. Consider the following query, views, and
rewritings:

Query: Q: q(A) :- r(A;A); t(A;B); s(B;B)
Views: V1: v1(A;B) :- r(A;A); s(B;B)

V2: v2(A;B) :- t(A;B); s(B;B)
Rewritings: P1: q(A) :- v1(A;B); v2(A;C)

P2: q(A) :- v1(A;B); v2(A;B)

1 2

r

s

t 3 4

s

t 5 6

s

t 7 8

s

t

Figure 5: Base relations.

Rewriting P2 is the only minimal rewriting of Q using the
two view tuples v1(A;B) and v2(A;B), while rewriting P1
uses a fresh variable C in its second subgoal. Consider the
database shown in Figure 5. The three base relations (r, s,
and t) and two view relations (v1 and v2) are:

r s t v1 v2
h1; 1i h2; 2i h1; 2i h1; 2i h1; 2i

h4; 4i h3; 4i h1; 4i h3; 4i
h6; 6i h5; 6i h1; 6i h5; 6i
h8; 8i h7; 8i h1; 8i h7; 8i

By taking the supplementary-relation approach, the phys-
ical plans of P1 are more e�cient than those of P2. To see
why, consider an order O2 = [v1(A;B); v2(A;B)] of subgoals
in P2, and a corresponding order O1 = [v1(A;B); v2(A;C)]
of P1. Order O2 yields a physical plan

F2 = [v1(A;B)
fg
; v2(A;B)

fBg]

In particular, its �rst supplementary relation needs to keep
attributes A and B, since both will be used later. This sup-
plementary relation includes all the four tuples in v1. Order
O1 yields a physical plan

F1 = [v1(A;B)
fBg

; v2(A;C)
fCg]

Its �rst supplementary relation does not keep attribute B,
since B is not used by the second subgoal or the head. This
supplementary relation has only one tuple h1i. The rest costs
of F1 and F2 are the same. Thus, costM3

(F1) < costM3
(F2).

If we reverse the two subgoals in the two orderings, the new
physical plan of P1 is still more e�cient than that of P2. 2



Aminimal rewriting using view tuples may fail to generate
an optimal physical plan under M3 because the variables in
the rewriting are made as restrictive as possible by only us-
ing the variables in the query. Then view literals in a rewrit-
ing might be removed while obtaining the equivalence to the
query. However, if the optimizer takes the supplementary-
relation approach to decide what attributes to drop, these
restrictive variables might not be dropped, since some may
be used later in a sequence of subgoals.
The reason that P1 is more e�cient than P2 is that a

physical plan of P1 has the freedom to drop the second ar-
gument after processing its �rst subgoal. However, P2 needs
to keep the argument, since this argument will be used later
in the second subgoal to do a comparison. Now we show
that if the optimizer can be \smarter" by using the infor-
mation about the query and views, it can do better than the
supplementary-relation approach.

6.2 A heuristic for an optimizer to drop at-
tributes

We give a heuristic that helps the optimizer drop more
attributes than the supplementary-relation approach. In-
tuitively, given a rewriting P of a query Q, the optimizer
considers all orderings of the subgoals in P . For each or-
dering O = g1; : : : ; gn, it considers what attributes can be
dropped after subgoal gi is processed without changing the
�nal result of the computation.
For a variable Y that appears in the intermediate re-

lation IRi, let us consider in what case we can drop Y

without changing the result of the computation. As in the
supplementary-relation approach, if Y does not appear in
subsequent subgoals or the head, it can be dropped. How-
ever, even if Y appears in a subsequent subgoal, it might
still be dropped, as shown by the variable B in rewriting P2
in Example 6.1. Notice:

Dropping Y will not change the result of the com-
putation if and only if, should we rename Y in
g1; : : : ; gi with a fresh variable, the correspond-
ing new query P 0 is still an equivalent rewriting
of Q.

Therefore, for each variable Y that appears in g1; : : : ; gi,
the optimizer adds Y to the annotation Xi (i.e., the set
of attributes that can be dropped) if one of the following
conditions is satis�ed:

� If Y does not appear in subsequent subgoals or the
head of P (as in the supplementary-relation approach);

� If Y appears in a subsequent subgoal, but after replac-
ing the Y instances in g1; : : : ; gi with a fresh variable
Y 0, the new query P 0 using views is still an equivalent
rewriting of the original query Q. (This equivalence
is done by testing the equivalence between Q and the
expansion of P 0.)

In the second case, dropping a variable Y that appears in
a subsequent subgoal gk(: : : ; Y; : : : ) means we might remove
an equality comparison betweenGSRk�1 and gk(: : : ; Y; : : : ),
which could increase the size of GSRk. Thus the optimizer
needs to make the tradeo� between dropping Y and remov-
ing this comparison by using the information about the sizes
of view relations and generalized supplementary relations.

7. EXPERIMENTAL RESULTS
We did experiments to study the search spaces for optimal

rewritings under cost models M1 and M2, and evaluate the
performance of the CoreCover algorithm. We studied dif-
ferent shapes of queries, such as chain queries, star queries,
and randomly generated queries [23]. We implemented a
query generator that takes as input parameters such as: (1)
number of base relations; (2) number of attributes in a base
relation; (3) number of views; (4) number of subgoals in a
view; (5) number of subgoals in a query; (6) shape of queries
and views. In the experiments, queries and views were set to
have the same parameters, except that they might have dif-
ferent number of subgoals. For the same number of views, we
ran 40 queries and computed their average measures. The
algorithm CoreCover was implemented in Java. The experi-
ments were run on a dual-processor Sun Ultra 2 workstation,
running SunOS 5.6 with 256 MB memory.

7.1 Star queries
We �rst considered star queries. Each query had 8 sub-

goals, and each view randomly had 1, 2, or 3 subgoals. We
ignored queries that did not have rewritings. Figure 6 (a)
shows the running time for CoreCover to get all globally-
minimal rewritings (GMRs) as the number of views increased,
if all variables were distinguished. As the number of views
increased, the time of �nding all GMRs did not increase
steadily. Instead, the time was bound in the range from 0ms
to 1 second. On the average, it took CoreCover about 500ms
to generate all GMRs for a query. Even if there were 1000
views, the time was still less than 1 second. Figure 6 (b)
shows the running time for CoreCover to generate GMRs if
one variable was distinguished.
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(b) 1 variable is nondis-
tinguished

Figure 6: Time for CoreCover to generate all GMRs

for star queries.

The reason CoreCover has good e�ciency and scalability
is that we can group views and view tuples into equivalence
classes, respectively. From each equivalence class of views,
we selected only one representative that was equivalent as
queries to other views in the class. (See [18] for more work
on similar considerations.). Similarly, from each equivalence
class of view tuples, we also selected one representative view
tuple that had the same tuple-core as others. Therefore, the
number of representative view tuples depends on the number
of query subgoals only, and it is independent from the num-
ber of views. Notice that the running time includes the time
of grouping views and view tuples into equivalence classes.



Although in the early stage of CoreCover, we paid extra cost
to test view equivalence by testing query containments, this
extra cost paid o� later when the number of views was more
than 100.
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(a) Views
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(b) View tuples

Figure 7: Number of equivalence classes for star

queries.

For instance, consider the case where all variables were
distinguished. Figure 7 (a) shows that as the number of
views increased, the number of view equivalence classes also
increased, but with a decreasing slope. When there were
1000 views, there were only about 350 equivalent view classes.
Figure 7 (b) shows that the number of equivalence classes
of view tuples was almost a constant (less than 10) as the
number of views increased, while the number of view tuples
increased to more than 200.

7.2 Chain queries
We then considered chain queries, and had the similar

observation. Each query had 8 subgoals, and each view had
1, 2, and 3 subgoals randomly. All relations were binary. If
we only kept the head and tail variables of the chain as the
head arguments of the query and views, then there are very
few rewritings generated. Thus, we ran our experiments by
�rst considering all variables as distinguished, and then let
a few variables be nondistinguished. For the views that had
only one subgoal, both variables were still distinguished. We
ignored queries that did not have rewritings. Figure 8 (a)
shows the running time of CoreCover if all variables were
distinguished, and Figure 8 (b) shows the running time if
one variable was nondistinguished.
Again, the CoreCover algorithm showed good e�ciency

and scalability. For instance, in the case where all variables
were distinguished, it took the algorithm less than 2 seconds
to generate all GMRs for a query when there were 1000
views. In the case where one variable was distinguished,
it took the algorithm less than 1:4 seconds to generate all
GMRs for a query when there were 1000 views. To illus-
trate the reason, Figure 9 (a) shows that as the number of
views increased, the number of equivalence view classes in-
creased with a decreasing slope. Figure 9 (b) shows that as
the number of views increased, the number of representative
view tuples was almost a constant.
In summary, our experiments illustrated two points. (1)

The CoreCover algorithm has good e�ciency and scalabil-
ity. (2) By grouping views and view tuples into equivalence
classes respectively, we can reduce the number of views and
view tuples used in the algorithm, thus the algorithm can
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(b) 1 variable is nondis-
tinguished

Figure 8: Time of generating all GMRs of chain

queries.
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Figure 9: Number of equivalence classes for chain
queries.

perform e�ciently.

8. CONCLUSION AND DISCUSSION
In this paper, we studied the problem of generating e�-

cient rewritings using views to answer a query. That is, how
to generate a search space of rewritings that is guaranteed to
include a rewriting with an optimal physical plan. We stud-
ied three cost models. Under the �rst cost model M1 that
considers the number of subgoals in a plan, we gave a search
space for optimal rewritings for a query. We analyzed the
internal relationship of all rewritings of a query using views,
and developed an e�cient algorithm, CoreCover, for �nding
rewritings with the minimum number of subgoals.
We then considered a cost model M2 that counts the sizes

of relations in a physical plan. We also gave a search space
for �nding optimal rewritings under M2. Surprisingly, we
need to consider the fact that introduction of more view
subgoals might make a rewriting more e�cient. Finally, we
considered a cost modelM3 that allows some nonrelevant at-
tributes to be dropped during the evaluation of a plan with-
out changing the result of the computation. We proposed a
heuristic for an optimizer to drop more attributes than the
traditional supplementary-relation approach. Experiments
showed that the CoreCover algorithm has good e�ciency and
scalability. Among other subtleties, this good result is also
due to the fact that the algorithm (i) considers only a small



number of relevant view tuples for the rewritings, and (ii)
uses a concise representation of these view tuples.
Currently we are investigating how to develop an im-

proved optimizer to optimize rewritings using the informa-
tion of the query and views. The heuristic for M3 is an
example. We are also extending our work to other cases,
such as the case where the query and views have built-in
predicates, and the case where we want to �nd maximally-
contained rewritings of the query. In both cases, it is known
that a rewriting of a query can be a union of conjunctive
queries. Thus the challenge is how to evaluate the perfor-
mance of a union of conjunctive queries, as shown by the
following example borrowed from [16]. Consider the query
and views:

Query Q: q(X;Y;U;W ) :- p(X;Y ); r(U;W ); r(W;U)
Views: v1(A;B;C;D) :- p(A;B); r(C;D); C � D

v2(E;F ) :- r(E; F )

The following rewriting P1 of Q using the two views is
a union of two conjunctive queries, and it uses only the
variables in Q:

P1: q(X;Y; U;W ) :- v1(X;Y;U;W ); v2(W;U)
q(X;Y; U;W ) :- v1(X;Y;W;U); v2(U;W )

However, the following rewriting P2 has only one conjunc-
tive query, and it uses new variables C and D not in the
query.

P2 : q(X;Y; U;W ) :- v1(X;Y;C;D); v2(U;W ); v2(W;U)

Notice that P2 uses fewer conjunctive queries than P1.
However, this fact does not imply that P2 is always more ef-
�cient than P1, since P2 uses three view subgoals, while each
conjunctive query in P1 uses only two view subgoals. Cur-
rently we are investigating how to compare the e�ciency of
two unions of conjunctive queries, and �nd e�cient rewrit-
ings under certain cost models.
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