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ABSTRACT 
Email access from handheld devices is cumbersome, partly 
because of the considerable effort in entering text using 
pen-based devices. Even though much  research has been 
done on improving text entry speed on handheld  devices, 
little research has been done on text entry for e-mail 
messages. In this paper, we utilize the user knowledge and  
application semantics of email to enable easy and fast email 
entry on  pen-based devices. We introduce several text 
entry techniques that combine Graffiti with a word 
selection interface where the user can complete words by 
choosing from a menu. We report several experiments that 
evaluate these  techniques. These experiments revealed that 
the two most effective methods were personalized text 
entry and message in context. We measured a significant  
improvement in text entry speed, reduction in input effort 
and reduction in input error rate. 
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INTRODUCTION 
Palm Pilot and Windows CE handheld digital information 
appliances are now widely used to fill daily information 
needs, such as calendar and address management. As these 
devices are beginning to be connected to the Internet 
through wireless networks, communication applications are 
being added to the typical personal information 
management facilities. Unfortunately, email, the traditional 
‘killer app’ for networked environments, has been slow to 
spread onto handheld devices. One major obstacle to blame 
for this delay is the inconvenience of text input on 
handhelds. 

Creating an email message on a handheld device includes 
entry of the recipient, a subject line, the message body, and 
a signature. For most handheld devices, users enter these 
text portions with a pen on a pressure-sensitive surface. In 
some cases, specialized character sets, such as Palm Inc.'s 
Graffiti, are used to make character recognition easier, and 
to speed text entry. Even with such optimizations, text 

entry remains slow and error-prone. Our measurements on 
test subjects show a Graffiti input speed of about 0.7 
characters per second. An informal survey of wireless 
email users confirmed the “slow and cumbersome” 
construction of messages as a major source of user 
dissatisfaction. 

Our goal is to make the pen-based entry of email messages 
on handheld devices as easy as possible. We have explored 
several word-completion techniques that allow the user to 
select among likely words from a list, based on what has 
been entered so far and on the message context. We exploit 
application semantics and knowledge about individual 
users in deciding what words to display. A simple tap by 
the user then completes the word. We have implemented 
and tested several alternative designs. 

One question that arises immediately with a text 
completion approach is how many candidate words the 
device should suggest on the screen at a time. Handheld 
screens are very small, scanning a long list of words can 
take longer than entering additional characters. We 
conducted user experiments to find the optimal number of 
candidate words, which we report in this paper. 

The success of our word completion technique further 
hinges on our ability to predict words the user wishes to 
write. The system's prediction method therefore must be 
very accurate. We conducted user experiments to learn, for 
example, whether it is better to base predictions on a user's 
own past email messages, or on a larger pool of messages 
that were created by multiple users, and whether in 
generating a reply we should favor words that appear in the 
incoming message. We were able to achieve a 133% 
increase in text input speed by picking the best prediction 
methods. 

While our implementation includes support for entering 
salutations and subject lines, our focus is on speeding up 
the entry of email message bodies. In the remainder of the 
paper we first introduce our implementation with a 
walkthrough. We then present design alternatives and user 
studies for the word table presentations. This is followed by 
an exploration of the word prediction alternatives, related 
work  and summarizing conclusions. 

COMPOSING AN EMAIL MESSAGE 
We initially implemented a system we call Power Email on 
the Palm operating system. Figure 1 shows a sample 
screenshot. The uppermost area of the screen consists of a 
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toolbar. The toolbar buttons from left-to-right are used for 
looking at the message list, composing a message, reading 
a message, editing the address book, sending and receiving 
messages, setting up the preferences and the account, 
deleting a message, and quitting the application. 

Before we go into more detail about the technical 
challenges and our solutions, we will start with a sample 
walkthrough that will demonstrate how the user interacts 
with the system. Let us assume the user wants to write a 
message to ‘Tyler’ and invite him out for dinner. We will 
separate this task into five phases and examine the user 
interaction in each of the phases. 

a. Entering the recipient: The user taps on the To button 
directly under the toolbar (Figure 1) to go to the Contact 
Selection Form (Figure 2). This form displays the names 
in the contact list. The user taps on the entry ‘Tyler 
Ziemann’ from the list instead of writing out the email 
address. (The button with the arrows is used to navigate 
through the contact list.) 

b. Entering the salutation, closing and signature: The 
application automatically returns to the Compose Form 
and fills in the salutation and the closing of the message 
(See Figure 3). The salutation and closing is contact-
specific and is specified by the user during the entry of 
recipients into the contact list. Power Email also appends 
a personal signature to the message. The signature can be 
changed and customized for each contact as well. The 
cursor is placed between the salutation and closing, at the 
beginning of the first sentence.  At his point, the user can 
start entering the message or entering the subject. 

c. Entering the subject: The user taps on the Subject button. 
This takes the user to the Subject Selection Form (Figure 
4) where the user can enter the subject or choose from a 
list of common subjects that we pre-defined. The user 
taps on ‘Dinner.’ The system sets the subject and returns 
to the Compose Form. 

d. Entering the text: The user starts writing the message, 
entering letters with the pen using Graffiti. As the user 
enters letters, s/he is presented with a menu of words to 
choose from. We call this menu, the Prediction Table. 
For instance, after entering the first letter ‘L’, the menu 

Figure 1: The Compose Form 

Figure 2: Contact Selection Form 

Figure 3: Salutation and Closing 

Figure 4: Subject Selection Form 

Figure 5: Word Selection Menu 



in Figure 5 is presented. Instead of writing the rest of the 
word (i.e., “let’s”), the user simply taps on the 
corresponding entry in the menu. If the desired word is 
not listed in the menu, s/he enters a second character and 
a new prediction table is presented. The process 
continues, and for some ‘rare’ words the user has to 
complete the entry. The user finishes the message by 
entering text and selecting the words on the menus 
presented. This text-entering phase, the most time-
consuming one, will be the main focus of this paper. 

e. Sending the message: Finally, the user taps on the Send 
button to send out the message. 

To illustrate the saving offered by Power Email, let us 
consider one simple example. (Detailed experiments are 
discussed later.) Suppose that the user entered: “Let’s get 
together for dinner sometime. How about tonight? Let me 
know.” as the message in our running example. For this 
case, Table 1 compares the input effort involved in 
composing the same message with Power Email and other 
popular email applications on the same platform. The input 
effort is measured in terms of the number of Graffiti 
characters entered (gf) and the number of taps (tp) on the 
screen. As can be seen from the table, even with the best 
competitor (OmniSky), one has to perform almost three 
times more actions (110) than with Power Email (39 
actions). 

Step: a b c d e Total 

Power 
Email 

2 tp 0 2 tp 16 tp 
18 gf 

1 tp 21 tp 
18 gf 

Palm Mail  
[12] 

5 tp 1 tp 
25 gf 

1 tp  
6 gf 

71 gf 1 tp 8 tp 
104 gf 

OmniSky 
Mail [11] 

2 tp 1 tp 
25 gf 

1 tp  
6 gf 

71 gf 1 tp 6 tp 
104 gf 

Multi Mail 
Pro [10] 

5 tp 1 tp 
25 gf 

1 tp  
6 gf 

71 gf 1 tp 8 tp 
104 gf 

Table 1: Input effort for a sample email message 

There are many challenges involved in coming up with the 
right menus and entries. Email messages are generally very 
short and include many abbreviations. If we look at the 
words used in writing emails, we see a considerable 
difference in the selection of words as compared to other 
kinds of documents. The vocabulary is much smaller and 
some of the words tend to occur more frequently. Power 
Email exploits this knowledge by selecting common email 
words for prediction tables. Furthermore, the selected 
words can also be tailored to a specific user’s vocabulary or 
to the context (e.g., replying to a message). 

In the rest of the paper, we will discuss several approaches 
for building good prediction tables. We also provide a 
detailed user study that shows performance comparisons. 

CONSTRUCTING THE PREDICTION TABLES 
One decision we need to make is how to choose the words 
that may be included in the prediction tables. In order to 
choose our corpus, we analyzed 3105 messages sent by 409 

different people. The messages were all composed on a 
desktop because we wanted to study messages that users 
would really like to send if they had a good email 
application. (Initially we did not analyze emails specific to 
a single user. We present those results in a later section.) 
Since messages written on small devices are generally 
short, we eliminated messages that were longer than 20 
lines when rendered on a regular Palm screen. After 
eliminating the long email messages, we were down to 
1356 messages. Then we ran the words through a spell 
checker and eliminated the words that were misspelled or 
words that were special names, such as names of people 
and places. As we will see, some of the people and place 
names are re-introduced by other portions of the prediction 
process. We computed the word frequencies of all the 
remaining words. The frequencies were used to create the 
prediction tables. All of these computation-intensive 
operations were done on a desktop computer, and they only 
need to be performed once. 

A prediction table contains the high frequency words for a 
given prefix. In particular, PTn,i(p) is a prediction table with 
n entries, for the first i characters of prefix p. We refer to i 
as the level and n as the size of PTn,i(p). For example, 
Figure 6 shows the tables PT12,1(s), PT12,2(sh) and 
PT12,3(sho). (Even though the size of PT12,3(sho) is 12, only 
2 rows are displayed since there are only 7 words in the 
table.) Table PT12,1(s) will be displayed after the user enters 
‘s’, table PT12,2(sh) will be displayed after the user enters 
‘sh’, and so on.  

The processor on a small device, such as the Palm Pilot, 
has the power of a desktop machine in the mid 80's. 
Creating the prediction tables as the user types the 
characters takes too much time if we compute the tables on 
the fly from the corpus. Therefore we pre-computed the 
prediction tables, and for each prefix we created a separate 
table of words. A Lookup Table was generated to get the 
appropriate prediction table for a given prefix. Finally the 
lookup table and the prediction tables were downloaded on 
to the handheld device. For the rest of the paper, we will 
refer to the set of all the prediction tables used as the 
Dictionary. 

There are three important decisions to make regarding 
prediction tables: the number of levels to use, the size and 
the actual entries. We discuss size and entry selection in the 
upcoming sections. In the rest of this section we discuss the 
number of levels. 

Figure 6: Prediction Tables 



We do not wish to provide prediction tables that are too 
sparse, since computing and storing them is too expensive 
given the low benefits. The number of possible words that 
start with two letters can be as many as 80, based on our 
corpus. Thus, unless we use huge prediction tables at level 
2, a third level is needed. On the other hand, if we look at 
three letters, there are only three prefixes (i.e., ‘sta’, ‘com’ 
and ‘pro’) with more than 20 words. Thus, level 4 tables 
would have very few new words to display. Therefore we 
decided to use three levels of prediction tables. If the user 
does not see the desired word after entering three 
characters, s/he will have to enter the full word. 

OPTIMIZING THE TABLE SIZE 
Since a table PTn,i(p) will be displayed as x rows by y 
columns, we have to select the appropriate number of rows 
and columns. The number of columns is determined by our 
display. In our case, the width of the Palm Pilot screen is 
160 pixels, so we will have 160/y pixels per word. If a word 
does not fit in the table cell, only the beginning of the word 
is displayed. 

We analyzed the corpus and computed the number of 
words that fit in a cell for a given number of columns. 
Table 2 shows the results. Even though 3 columns seems to 
be a better option, by inspection, we determined that with 4 
columns most of the truncated words were still identifiable. 
On the other hand, with five columns, many more words 
are not identifiable. Therefore we decided to use four 
columns in the tables (y=4), which gives 40 pixels per cell. 
This means that the choices for the number of entries n = 
4*x will be 4, 8, 12... 

Columns Words that Fit 

6 52.46% 

5 65.77% 

4 82.11% 

3 96.6% 

Table 2: Words that fit for a given number of columns 

The other factor to consider is the number of rows, x. A 
table with too many rows becomes too cumbersome to 
scan. On the other hand, a table with too few rows does not 
help much with the selection either since the user has to 
write additional letters to see the word on the table. In order 
to figure out the optimum number of rows for the 
prediction tables, we performed a user study. 

User Study  1 – Table Size 
We chose 10 subjects with Graffiti experience and asked 
them to enter email messages from our corpus using Power 
Email. In the study the users copied all the messages word 
by word from a paper handout to the handheld devices. We 
experimented with 5 different methods (i.e., table sizes). 
These methods sized the tables respectively at 0 rows, 1 
row, 2 rows, 4 rows and 6 rows. The table size with 0 rows 
translates to plain Graffiti entry with no prediction tables. 
The messages were chosen randomly from the 1356 
messages mentioned earlier. We randomly chose 5 short 

(66-134 words), 5 medium (156-180 words) and 5 long 
(221-300 words) messages among the 1356 messages. Each 
subject was asked to write 3 messages (one of each size) 
with each method for a total of 15 messages. The order of 
the email messages was the same for each user but we 
changed the order in which the users were exposed to the 
methods. The user input consisted of two repeated actions: 
i) entering a character using Graffiti and ii) tapping on the 
prediction table to choose a word. Our Power Email is 
instrumented to record all the actions and the time elapsed 
between these actions. We measured the text entry speed 
for each message as the number of characters in the 
message divided by the time in seconds to enter the 
message. 

The text entry speed is a function of the method, the subject 
and the order of the method. The mathematical model we 
used for the design of the experiment can be written as: 

speedijk = µ + αi + βj + φk + errorijk 

where µ devotes the overall mean, αi  denotes the effect of 
method i (i=1, 2, 3, 4, 5 for rows 0, 1, 2, 4 and 6 
respectively) on the speed, βj denotes the effect of the 
subject (j=1, 2, …10), φk  denotes the effect of the order in 
which the method was presented to the subject (k=1,2, …5) 
and errorijk denotes the random effect on the ith method on 
the jth subject in the kth order.  The order of a method is the 
position of the method in which the method was presented 
to the subject. (For instance, if the subject completed 
Method 3 first, the order of Method 3 would be 1.) We ran 
a univariate analysis of variance (Univariate ANOVA) over 
the resulting data. Figure 7 gives the mean speed for 
methods, statistically adjusted for the effects of order and 
subject. We see in Figure 7 that entering messages with 
Graffiti only yielded an average entry speed of 0.69 
characters per second, while, for example, the help of 
prediction tables with 2 rows improved the speed to 0.89 
characters per second. 

We also performed additional analysis on our data to assure 
that the difference between methods is significant. In order 
to verify whether a method X is significantly different than 
method Y, we need to test the hypothesis: 

H0 = the effect of method X and method Y are the same 

Our regression analysis (Univariate ANOVA) adjusts the 
effect of the subjects and orders and computes the p values. 
Our analysis showed that the differences between the first 
three methods were significant (p at most 0.0382). 
Similarly the difference between 4 and 6 rows was also 
significant (p= 0.0441). Thus changing the number of rows 
has a direct effect on the text entry speed. 

As can be seen in Figure 7, the maximum speed is 
measured when there are 2 rows. However, if we look at 
the graph, we can see that the speed improves as the rows 
increase from 0 to 2 and the speed decreases for more than 
4 rows. This confirms our earlier intuition that, as the 
number of rows increases, the text entry speed increases 
since desired words are more likely to be in the table. 



However, as the number of rows increases beyond some 
point, the table becomes too large and scanning the table 
requires too much effort. By extrapolation from Figure 7, 3 
seems to be the optimum number of rows for maximizing 
entry speed. Unfortunately, our initial experiment did not 
include a 3-row method. 

User Study 2 – 2 Rows vs. 3 Rows 
In order to make sure that 3 was indeed the optimum, we 
ran an additional study with 4 subjects who were asked to 
write messages using 2 rows and 3 rows. The text entry 
speed with 3 rows was 7.2% faster compared to 2 rows. 
This result showed that 3 rows was indeed the optimum 
number of rows for the table. In the rest of the paper, we 
will refer to the method of using three rows as the Twelve 
Method since the prediction tables display up to n=12 
words. 

EVALUATING THE WORD SELECTION OPTIONS 
Based on user studies 1 and 2, we understand that tables 
with 3 rows work best. But is the choice of selecting these 
words by usage frequency ranking optimal as well? In 
order to find out, we experimented with several different 
design alternatives for the prediction tables. 

User Study 3 – Word Prediction 
We performed another user study to explore the effect of 
these different word choice methods on the selection speed. 
We had 12 subjects. Each of them completed 3 messages 
(one short, one medium, and one long) for each method. 
We changed the order in which the users were exposed to 
the methods. 

a. Distinct Method: The tables we used in studies 1 and 2 
had overlapping entries across levels. For instance when 
the user types the letter ‘c’, ‘could’ is one of the words 
given in PT12,1(c). After the user types ‘o’ as the second 
letter, the word ‘could’ was still visible in PT12,2(co). For 
the ‘Distinct’ method, we instead eliminated all words 
the user saw but did not pick at a previous level. The 
eliminated words are replaced by new words further 
down the rank list. This way we can present more options 
to the user. 

b. Short Method: Word completion by selection is not very 
useful for short words. For instance, assume that we wish 
to write ‘car’, and the word does not appear in the table 

until we write both ‘c’ and ‘a’. In that case, it might be 
faster just to write the remaining ‘r’ than to switch 
attention to the table. In order to make it easier to enter 
short words, this method favors the words that are shorter 
in size. In particular, PT12,1� �� shows the most common 
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length. If there are empty cells left in the prediction table, 
these cells are filled with the remaining popular words. 

c. Launch Method: In all the methods so far, the prediction 
table is introduced after the user enters at least one 
character. In this method, the user is presented with a 
prediction table, PT12,0 at the beginning of the message 
and after any punctuation. We call PT12,0 the Launch 
Table. We analyzed the 1356 messages mentioned earlier 
and found the most frequent 12 words that show up at the 
beginning of a sentence or after a punctuation character. 
These words are shown in Figure 8, and constitute the 
Launch Table. We used only one launch table, that is, the 
table that the user sees after entering any punctuation 
character or starting a new sentence is always the same. 
This makes it faster for the user to get accustomed to the 
words and their locations and makes the selection easier. 

We ran a univariate analysis of variance (Univariate 
ANOVA) to compute the adjusted mean speed for each 
method and compared all the methods against Graffiti and 
the Twelve methods since all of them were variations of 
that method. The result is summarized in Figure 9. 

a. Distinct Method: The Distinct Method is 1.17% worse 
than the Twelve Method. The p-value is 0.0691, which 
tells us that the effect of these two methods are 
significantly different. Some of the subjects had a hard 
time with the Distinct Method for two reasons: i) The 
subject failed to notice the word after s/he entered the 
first letter. The subject entered another letter, causing the 
word to disappear. Consequently s/he had to complete 
the whole word without the benefit of selection. ii) The 

Figure 7: Text entry speed for different table sizes 
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Figure 8: The Launch Table 

Figure 9: Text entry speed for word prediction methods 
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subject noticed the word just as s/he finished the first 
letter, but his/her hand ‘kept writing’ before s/he could 
stop him/herself to make the selection. Depending on the 
length of the word, sometimes the subject preferred to 
erase the last letter so that the word would show up again 
in the table for selection. Obviously, in both cases, 
showing distinct words wasted a significant amount of 
time. 

b. Short Method: If we look at the adjusted mean of the 
speed, we see a 3.33% improvement. The effect of this 
method is statistically insignificant in the analysis. 

c. Launch Method: We observed a 7.15% improvement in 
text entry speed using the Launch Method over the 
Twelve Method. Here the difference of these methods is 
statistically insignificant. However, if we look at the data 
set, we notice that only 5 out of 12 people used the 
Launch Table at all. This is probably because users were 
not expecting a prediction table before they entered a 
character. In all other cases, the table appears after a 
character is entered.  Note that the Launch Table may or 
may not improve the text entry speed depending on the 
user. However, launch tables will not make performance 
worse. 

To summarize, the above experiments suggest that 
prediction tables should not erase any matching words and 
that launch tables work well only for some users, but at 
least do no harm for others. 

MESSAGE IN CONTEXT AND 
PERSONALIZED DICTIONARY 
In this section we study how to get further improvements 
by exploiting the context in which the email is created and 
by personalizing the Prediction Tables. 

a. Message in Context: We used an algorithm that 
dynamically changes the tables if the user is responding 
to a message. In this case all the words with the 
appropriate prefix that occur in the message that the user 
is responding to automatically occur in the prediction 
tables. To illustrate, consider the messages in Table 3. 
Under normal circumstances, the words ‘proceeding’ and 
‘citation’ would not occur in the prediction tables since 
they are not among the most frequent 12 words. 
However, since the message we are responding to 
includes these words, in this method these words would 
come up if the user enters ‘p’ or ‘c’ respectively, 
speeding up the response. 

Table 3: Message in context. 

b. Personal Dictionary: Another possible way of improving 
the text entry speed is to create a dictionary personalized 
for the user. To accomplish this, the messages from the 
sent-items folder of the users’ mailboxes are used to pre-
compute the prediction table and the lookup table. 

User Study 4 – Message in Context and Personalized 
Dictionaries 
We conducted another user study in order to test the 
effectiveness of these two additional methods. For message 
in context we randomly chose three email messages (MsgA, 
MsgB and MsgC) and one response for each message 
(ReplyA, ReplyB , and ReplyC respectively) from the 1365 
messages. When a subject entered ReplyA, we added the 
words in MsgA to the appropriate prediction tables, and so 
on. For the personal dictionaries, we obtained the sent-
items folders from three users (UserX, UserY, and UserZ). 
(These users were not used as subjects.) We used 1001 
short messages from each user. We randomly chose one 
message from each user and then created the dictionary 
using the remaining 1000 messages. We will refer to the 
single messages we chose as MsgX, MsgY and MsgZ 
respectively. When the subject writes MsgX, the dictionary 
that was created from the messages of UserX was the basis 
for predictions, and so on. Note that in this experiment the 
dictionary was not personalized to the test subject, but 
rather to the user who originally wrote the test message. 
The experiment is realistic because the subject simply 
copies the messages, and the predictions are personalized to 
the original creator of the test message. 

For our experiment we used 12 subjects. Every subject 
wrote all six messages (ReplyA, ReplyB, ReplyC, MsgX, 
MsgY and MsgZ). Each subject wrote two of ReplyA, 
ReplyB and ReplyC using message in context, and two of 
MsgX, MsgY and MsgZ using the personalized dictionary. 
The subject entered the remaining two messages using the 
Twelve Method without the message in context or the 
personalized dictionary support. We changed the order in 
which the subjects were exposed to the messages and the 
methods. The mathematical model we used for the design 
considered in the experiment is the same as in user studies 
1 and 3. We used a Univariate ANOVA procedure to 
compute the adjusted mean values of the speed for the 
methods. The results are summarized in Figures 10 and 11. 

We ran a regression analysis to test whether the effect of 
any of these methods was significant. In this case we had to 
consider two groups, the methods that have the messages 
ReplyA, ReplyB, and ReplyC, and the methods that have the 
messages MsgX, MsgY , and MsgZ. 

a. Message in Context: The improvement in text entry we 
measured was 18.31% beyond the improvement that the 
Twelve Method gave us over Graffiti. In other words, if 
the user types 100 character using Graffiti, s/he can type 
in the same amount of time 157 characters using the 
Twelve Method, and 176 characters using Message in 
Context. The p-value is 0.0691, which tells us that the 

Message: 
Could I borrow your copy of the ’90 
CHI Proceedings for a day or two? I 
need them for a couple of citations. 

Response: 
Sure, I’ll bring the proceedings 
tomorrow. What citation do you need? 



effect of using a dictionary that is context specific is 
significant. 

b. Personalized Dictionary: The improvement in text entry 
we measured was 12.27% beyond the improvement the 
Twelve Method gave us over Graffiti. In other words, if 
the user types 100 character using Graffiti, s/he can type 
173 characters using the Twelve Method and 186 
characters using a Personalized Dictionary in the same 
amount of time. The p-value is 0.1231, which tells us that 
the effect of using a context sensitive dictionary is 
notable but not quite statistically significant. The effect 
of using a personalized dictionary is not as strong as 
using a message in context. 

LEARNING 
In our experiments we observed that user performance 
improved as they gained experience with Power Email. 
(This improvement is ‘masked out,’ in our previous results 
due to the way we compute average speed-ups.) In our final 
experiment we focused on how users improve over time. 

User Study 5 – Learning Effect 
In this study we had 12 subjects. They were asked to write 
6 messages using the Twelve Method described earlier. We 
changed the order in which the subjects were exposed to 
the tasks, but the methods remained the same. 
Figure 12 shows the adjusted mean speed for the ith task 
(using the same type of statistical analysis as before). The 
improvement of the speed between the tasks is summarized 
in Figure 13. For example the speed on Task 2 was 0.067 
characters per second faster than for Task 1. As can be 
seen, as the subject writes more messages, the change in the 
text entry speed becomes less and less significant. 
One would expect an analogous improvement when users 
learn Graffiti. However, our users were all experienced 
Graffiti users (on the average they had used Graffiti for 22 
months), so we do not expect their performance to improve 
over the length of our experiments. Comparing the text 
entry speed we gain at the final task over the Graffiti speed, 
we measure a 115.16% improvement in text entry speed. 
That is, if the user enters 100 characters using only Graffiti, 
a trained Power Email user can enter 215 characters in the 
same amount of time. 
RELATED WORK 
There have been many techniques proposed to improve text 
entry speed on pen-based devices. One common technique 
uses a virtual keyboard displayed on a tablet (soft 
keyboards) such as the Fitaly [14] and OPTI [7] keyboards. 
The Reactive Keyboard [5] also uses prediction for 
selection, but at the lower level of key presses. POBox [9] 
introduces an input method based on dynamic query of the 
dictionary and word prediction from context. POBox uses a 
soft keyboard instead of Graffiti and is not email specific. 

Another set of related work does address the context of 
email. Most of the work done has been on classifying e-
mail messages[4], filtering email messages and junk email 
[8, 13], email organization [1] and email agents [2,6]. 
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Figure 12: Text entry speed over time 

Figure 13: Improvement in text entry speed over time 
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Figure 11: Text entry speed for personal dictionary 
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There has also been research for replying messages using 
structured response objects instead of text [3]. 

CONCLUSION 
This paper has introduced new techniques for efficiently 
composing email messages on pen-based handheld devices. 
Our hypothesis was that the application semantics of email, 
a user profile and the context of the email message could be 
used to improve performance. We combined Graffiti with a 
menu selection for entering words where we introduced 
prediction tables that predict the word the user is writing. 
We presented experimental results comparing different 
design alternatives. 

Notice that the speed improvement with prediction tables 
varies among our user studies. The subjects were exposed 
to different table sizes in user studies 1 and 2 (i.e., the 
number of table rows changed). This made it harder for the 
subjects to get accustomed to the tables. When the user is 
presented with the same size tables consistently, the 
‘memory affect’ makes him/her recognize the tables, locate 
words within the table more easily and make the selection 
more quickly. In user studies 3 and 4, the table size was 
fixed at 12, so the speed increases (from about 0.69 
characters/sec to between 1.2 and 1.3 characters/sec.).  
Finally, in user study 5, we study how speed improves over 
time, and we see an even higher speed (about 1.48 
characters/sec.) once the user is familiar with the Twelve 
Method. At this point, we measured an improvement of 
115% compared to the Graffiti Method. 

When we experimented with the Message in Context and 
the Personalized Dictionary Methods, we did not evaluate 
them after the user had been ‘trained.’  However, if we 
hypothesize that the gains we observed in studies 3 and 4 
will carry over to the case where the user is trained, then 
we would expect even higher speeds. That is, if user types 
100 characters with Graffiti, in the same amount of time a 
trained user can type 215 characters with the Twelve 
Method, and we would expect a trained user to enter about 
233 characters with Message in Context (and Twelve). 
Thus, a message that takes the user 10 minutes to write in a 
traditional handheld email application would take about 4 
minutes using Power Email.  

Although we did not discuss it in the paper, we also 
compared the input effort and error ratio with and without 
Power Email. For example, if the number of actions 
(characters + taps) with the Graffiti method was 100, then 
the number of actions with the Twelve Method would be on 
the average 46.54, i.e., a reduction of 53.46%.  

The error ratio tells us how many mistakes a user made. In 
particular, if a user types 100 characters, deletes x of them, 
and retypes x characters, then we say the error ratio is x%. 
Without prediction tables, the observed error ratio was 
17.96%, while with the Twelve method, this ratio was 
down to 5.31% which gives a 12.65% improvement. 

After the user studies, the subjects responded to a survey on 
their satisfaction. We asked them if they found our text 

entry approach useful. All of the subjects answered YES. 
We also asked them how much they liked our approach on 
a scale between 0 and 10 (10 very much, 5 indifferent, 0 
not at all). The average was 8.92. The survey also included 
a free text field where subjects were encouraged to enter 
any comments they might have. One interesting comment 
was about the length of the words in the tables. Some 
subjects preferred longer words whereas some subjects 
preferred shorter words to be given in the prediction tables. 
One subject suggested sorting the words in the table by 
length as supposed to alphabetically. We plan to 
experiment with this variation in the future. 
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