
Power Email: Efficient Email Entry
on Pen-Based Handheld Devices

Orkut Buyukkokten, Hector Garcia-Molina, Andreas Paepcke, Terry Winograd
Digital Libraries Lab (InfoLab), Stanford University, Stanford, CA, 94305

{orkut, hector, paepcke, winograd}@cs.stanford.edu

ABSTRACT
Email access from handheld devices is cumbersome, partly
because of the considerable effort in entering text using
pen-based devices. Even though much research has been
done on improving text entry speed on handheld devices,
little research has been done on text entry for e-mail
messages. In this paper, we utilize the user knowledge and
application semantics of email to enable easy and fast email
entry on pen-based devices. We introduce several text
entry techniques that combine Graffiti with a word
selection interface where the user can complete words by
choosing from a menu. We report several experiments that
evaluate these techniques. These experiments revealed that
the two most effective methods were personalized text
entry and message in context. We measured a significant
improvement in text entry speed, reduction in input effort
and reduction in input error rate.

Keywords
Handheld, Email, Graffiti, Palm Pilot, Pen-Based, PDA,
Word Completion

INTRODUCTION
Palm Pilot and Windows CE handheld digital information
appliances are now widely used to fill daily information
needs, such as calendar and address management. As these
devices are beginning to be connected to the Internet
through wireless networks, communication applications are
being added to the typical personal information
management facilities. Unfortunately, email, the traditional
‘killer app’ for networked environments, has been slow to
spread onto handheld devices. One major obstacle to blame
for this delay is the inconvenience of text input on
handhelds.

Creating an email message on a handheld device includes
entry of the recipient, a subject line, the message body, and
a signature. For most handheld devices, users enter these
text portions with a pen on a pressure-sensitive surface. In
some cases, specialized character sets, such as Palm Inc.'s
Graffiti, are used to make character recognition easier, and
to speed text entry. Even with such optimizations, text

entry remains slow and error-prone. Our measurements on
test subjects show a Graffiti input speed of about 0.7
characters per second. An informal survey of wireless
email users confirmed the “slow and cumbersome”
construction of messages as a major source of user
dissatisfaction.

Our goal is to make the pen-based entry of email messages
on handheld devices as easy as possible. We have explored
several word-completion techniques that allow the user to
select among likely words from a list, based on what has
been entered so far and on the message context. We exploit
application semantics and knowledge about individual
users in deciding what words to display. A simple tap by
the user then completes the word. We have implemented
and tested several alternative designs.

One question that arises immediately with a text
completion approach is how many candidate words the
device should suggest on the screen at a time. Handheld
screens are very small, scanning a long list of words can
take longer than entering additional characters. We
conducted user experiments to find the optimal number of
candidate words, which we report in this paper.

The success of our word completion technique further
hinges on our ability to predict words the user wishes to
write. The system's prediction method therefore must be
very accurate. We conducted user experiments to learn, for
example, whether it is better to base predictions on a user's
own past email messages, or on a larger pool of messages
that were created by multiple users, and whether in
generating a reply we should favor words that appear in the
incoming message. We were able to achieve a 133%
increase in text input speed by picking the best prediction
methods.

While our implementation includes support for entering
salutations and subject lines, our focus is on speeding up
the entry of email message bodies. In the remainder of the
paper we first introduce our implementation with a
walkthrough. We then present design alternatives and user
studies for the word table presentations. This is followed by
an exploration of the word prediction alternatives, related
work and summarizing conclusions.

COMPOSING AN EMAIL MESSAGE
We initially implemented a system we call Power Email on
the Palm operating system. Figure 1 shows a sample
screenshot. The uppermost area of the screen consists of a

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

toolbar. The toolbar buttons from left-to-right are used for
looking at the message list, composing a message, reading
a message, editing the address book, sending and receiving
messages, setting up the preferences and the account,
deleting a message, and quitting the application.

Before we go into more detail about the technical
challenges and our solutions, we will start with a sample
walkthrough that will demonstrate how the user interacts
with the system. Let us assume the user wants to write a
message to ‘Tyler’ and invite him out for dinner. We will
separate this task into five phases and examine the user
interaction in each of the phases.

a. Entering the recipient: The user taps on the To button
directly under the toolbar (Figure 1) to go to the Contact
Selection Form (Figure 2). This form displays the names
in the contact list. The user taps on the entry ‘Tyler
Ziemann’ from the list instead of writing out the email
address. (The button with the arrows is used to navigate
through the contact list.)

b. Entering the salutation, closing and signature: The
application automatically returns to the Compose Form
and fills in the salutation and the closing of the message
(See Figure 3). The salutation and closing is contact-
specific and is specified by the user during the entry of
recipients into the contact list. Power Email also appends
a personal signature to the message. The signature can be
changed and customized for each contact as well. The
cursor is placed between the salutation and closing, at the
beginning of the first sentence. At his point, the user can
start entering the message or entering the subject.

c. Entering the subject: The user taps on the Subject button.
This takes the user to the Subject Selection Form (Figure
4) where the user can enter the subject or choose from a
list of common subjects that we pre-defined. The user
taps on ‘Dinner.’ The system sets the subject and returns
to the Compose Form.

d. Entering the text: The user starts writing the message,
entering letters with the pen using Graffiti. As the user
enters letters, s/he is presented with a menu of words to
choose from. We call this menu, the Prediction Table.
For instance, after entering the first letter ‘L’, the menu

Figure 1: The Compose Form

Figure 2: Contact Selection Form

Figure 3: Salutation and Closing

Figure 4: Subject Selection Form

Figure 5: Word Selection Menu

in Figure 5 is presented. Instead of writing the rest of the
word (i.e., “let’s”), the user simply taps on the
corresponding entry in the menu. If the desired word is
not listed in the menu, s/he enters a second character and
a new prediction table is presented. The process
continues, and for some ‘rare’ words the user has to
complete the entry. The user finishes the message by
entering text and selecting the words on the menus
presented. This text-entering phase, the most time-
consuming one, will be the main focus of this paper.

e. Sending the message: Finally, the user taps on the Send
button to send out the message.

To illustrate the saving offered by Power Email, let us
consider one simple example. (Detailed experiments are
discussed later.) Suppose that the user entered: “Let’s get
together for dinner sometime. How about tonight? Let me
know.” as the message in our running example. For this
case, Table 1 compares the input effort involved in
composing the same message with Power Email and other
popular email applications on the same platform. The input
effort is measured in terms of the number of Graffiti
characters entered (gf) and the number of taps (tp) on the
screen. As can be seen from the table, even with the best
competitor (OmniSky), one has to perform almost three
times more actions (110) than with Power Email (39
actions).

Step: a b c d e Total

Power
Email

2 tp 0 2 tp 16 tp
18 gf

1 tp 21 tp
18 gf

Palm Mail
[12]

5 tp 1 tp
25 gf

1 tp
6 gf

71 gf 1 tp 8 tp
104 gf

OmniSky
Mail [11]

2 tp 1 tp
25 gf

1 tp
6 gf

71 gf 1 tp 6 tp
104 gf

Multi Mail
Pro [10]

5 tp 1 tp
25 gf

1 tp
6 gf

71 gf 1 tp 8 tp
104 gf

Table 1: Input effort for a sample email message

There are many challenges involved in coming up with the
right menus and entries. Email messages are generally very
short and include many abbreviations. If we look at the
words used in writing emails, we see a considerable
difference in the selection of words as compared to other
kinds of documents. The vocabulary is much smaller and
some of the words tend to occur more frequently. Power
Email exploits this knowledge by selecting common email
words for prediction tables. Furthermore, the selected
words can also be tailored to a specific user’s vocabulary or
to the context (e.g., replying to a message).

In the rest of the paper, we will discuss several approaches
for building good prediction tables. We also provide a
detailed user study that shows performance comparisons.

CONSTRUCTING THE PREDICTION TABLES
One decision we need to make is how to choose the words
that may be included in the prediction tables. In order to
choose our corpus, we analyzed 3105 messages sent by 409

different people. The messages were all composed on a
desktop because we wanted to study messages that users
would really like to send if they had a good email
application. (Initially we did not analyze emails specific to
a single user. We present those results in a later section.)
Since messages written on small devices are generally
short, we eliminated messages that were longer than 20
lines when rendered on a regular Palm screen. After
eliminating the long email messages, we were down to
1356 messages. Then we ran the words through a spell
checker and eliminated the words that were misspelled or
words that were special names, such as names of people
and places. As we will see, some of the people and place
names are re-introduced by other portions of the prediction
process. We computed the word frequencies of all the
remaining words. The frequencies were used to create the
prediction tables. All of these computation-intensive
operations were done on a desktop computer, and they only
need to be performed once.

A prediction table contains the high frequency words for a
given prefix. In particular, PTn,i(p) is a prediction table with
n entries, for the first i characters of prefix p. We refer to i
as the level and n as the size of PTn,i(p). For example,
Figure 6 shows the tables PT12,1(s), PT12,2(sh) and
PT12,3(sho). (Even though the size of PT12,3(sho) is 12, only
2 rows are displayed since there are only 7 words in the
table.) Table PT12,1(s) will be displayed after the user enters
‘s’, table PT12,2(sh) will be displayed after the user enters
‘sh’, and so on.

The processor on a small device, such as the Palm Pilot,
has the power of a desktop machine in the mid 80's.
Creating the prediction tables as the user types the
characters takes too much time if we compute the tables on
the fly from the corpus. Therefore we pre-computed the
prediction tables, and for each prefix we created a separate
table of words. A Lookup Table was generated to get the
appropriate prediction table for a given prefix. Finally the
lookup table and the prediction tables were downloaded on
to the handheld device. For the rest of the paper, we will
refer to the set of all the prediction tables used as the
Dictionary.

There are three important decisions to make regarding
prediction tables: the number of levels to use, the size and
the actual entries. We discuss size and entry selection in the
upcoming sections. In the rest of this section we discuss the
number of levels.

Figure 6: Prediction Tables

We do not wish to provide prediction tables that are too
sparse, since computing and storing them is too expensive
given the low benefits. The number of possible words that
start with two letters can be as many as 80, based on our
corpus. Thus, unless we use huge prediction tables at level
2, a third level is needed. On the other hand, if we look at
three letters, there are only three prefixes (i.e., ‘sta’, ‘com’
and ‘pro’) with more than 20 words. Thus, level 4 tables
would have very few new words to display. Therefore we
decided to use three levels of prediction tables. If the user
does not see the desired word after entering three
characters, s/he will have to enter the full word.

OPTIMIZING THE TABLE SIZE
Since a table PTn,i(p) will be displayed as x rows by y
columns, we have to select the appropriate number of rows
and columns. The number of columns is determined by our
display. In our case, the width of the Palm Pilot screen is
160 pixels, so we will have 160/y pixels per word. If a word
does not fit in the table cell, only the beginning of the word
is displayed.

We analyzed the corpus and computed the number of
words that fit in a cell for a given number of columns.
Table 2 shows the results. Even though 3 columns seems to
be a better option, by inspection, we determined that with 4
columns most of the truncated words were still identifiable.
On the other hand, with five columns, many more words
are not identifiable. Therefore we decided to use four
columns in the tables (y=4), which gives 40 pixels per cell.
This means that the choices for the number of entries n =
4*x will be 4, 8, 12...

Columns Words that Fit

6 52.46%

5 65.77%

4 82.11%

3 96.6%

Table 2: Words that fit for a given number of columns

The other factor to consider is the number of rows, x. A
table with too many rows becomes too cumbersome to
scan. On the other hand, a table with too few rows does not
help much with the selection either since the user has to
write additional letters to see the word on the table. In order
to figure out the optimum number of rows for the
prediction tables, we performed a user study.

User Study 1 – Table Size
We chose 10 subjects with Graffiti experience and asked
them to enter email messages from our corpus using Power
Email. In the study the users copied all the messages word
by word from a paper handout to the handheld devices. We
experimented with 5 different methods (i.e., table sizes).
These methods sized the tables respectively at 0 rows, 1
row, 2 rows, 4 rows and 6 rows. The table size with 0 rows
translates to plain Graffiti entry with no prediction tables.
The messages were chosen randomly from the 1356
messages mentioned earlier. We randomly chose 5 short

(66-134 words), 5 medium (156-180 words) and 5 long
(221-300 words) messages among the 1356 messages. Each
subject was asked to write 3 messages (one of each size)
with each method for a total of 15 messages. The order of
the email messages was the same for each user but we
changed the order in which the users were exposed to the
methods. The user input consisted of two repeated actions:
i) entering a character using Graffiti and ii) tapping on the
prediction table to choose a word. Our Power Email is
instrumented to record all the actions and the time elapsed
between these actions. We measured the text entry speed
for each message as the number of characters in the
message divided by the time in seconds to enter the
message.

The text entry speed is a function of the method, the subject
and the order of the method. The mathematical model we
used for the design of the experiment can be written as:

speedijk = µ + αi + βj + φk + errorijk

where µ devotes the overall mean, αi denotes the effect of
method i (i=1, 2, 3, 4, 5 for rows 0, 1, 2, 4 and 6
respectively) on the speed, βj denotes the effect of the
subject (j=1, 2, …10), φk denotes the effect of the order in
which the method was presented to the subject (k=1,2, …5)
and errorijk denotes the random effect on the ith method on
the jth subject in the kth order. The order of a method is the
position of the method in which the method was presented
to the subject. (For instance, if the subject completed
Method 3 first, the order of Method 3 would be 1.) We ran
a univariate analysis of variance (Univariate ANOVA) over
the resulting data. Figure 7 gives the mean speed for
methods, statistically adjusted for the effects of order and
subject. We see in Figure 7 that entering messages with
Graffiti only yielded an average entry speed of 0.69
characters per second, while, for example, the help of
prediction tables with 2 rows improved the speed to 0.89
characters per second.

We also performed additional analysis on our data to assure
that the difference between methods is significant. In order
to verify whether a method X is significantly different than
method Y, we need to test the hypothesis:

H0 = the effect of method X and method Y are the same

Our regression analysis (Univariate ANOVA) adjusts the
effect of the subjects and orders and computes the p values.
Our analysis showed that the differences between the first
three methods were significant (p at most 0.0382).
Similarly the difference between 4 and 6 rows was also
significant (p= 0.0441). Thus changing the number of rows
has a direct effect on the text entry speed.

As can be seen in Figure 7, the maximum speed is
measured when there are 2 rows. However, if we look at
the graph, we can see that the speed improves as the rows
increase from 0 to 2 and the speed decreases for more than
4 rows. This confirms our earlier intuition that, as the
number of rows increases, the text entry speed increases
since desired words are more likely to be in the table.

However, as the number of rows increases beyond some
point, the table becomes too large and scanning the table
requires too much effort. By extrapolation from Figure 7, 3
seems to be the optimum number of rows for maximizing
entry speed. Unfortunately, our initial experiment did not
include a 3-row method.

User Study 2 – 2 Rows vs. 3 Rows
In order to make sure that 3 was indeed the optimum, we
ran an additional study with 4 subjects who were asked to
write messages using 2 rows and 3 rows. The text entry
speed with 3 rows was 7.2% faster compared to 2 rows.
This result showed that 3 rows was indeed the optimum
number of rows for the table. In the rest of the paper, we
will refer to the method of using three rows as the Twelve
Method since the prediction tables display up to n=12
words.

EVALUATING THE WORD SELECTION OPTIONS
Based on user studies 1 and 2, we understand that tables
with 3 rows work best. But is the choice of selecting these
words by usage frequency ranking optimal as well? In
order to find out, we experimented with several different
design alternatives for the prediction tables.

User Study 3 – Word Prediction
We performed another user study to explore the effect of
these different word choice methods on the selection speed.
We had 12 subjects. Each of them completed 3 messages
(one short, one medium, and one long) for each method.
We changed the order in which the users were exposed to
the methods.

a. Distinct Method: The tables we used in studies 1 and 2
had overlapping entries across levels. For instance when
the user types the letter ‘c’, ‘could’ is one of the words
given in PT12,1(c). After the user types ‘o’ as the second
letter, the word ‘could’ was still visible in PT12,2(co). For
the ‘Distinct’ method, we instead eliminated all words
the user saw but did not pick at a previous level. The
eliminated words are replaced by new words further
down the rank list. This way we can present more options
to the user.

b. Short Method: Word completion by selection is not very
useful for short words. For instance, assume that we wish
to write ‘car’, and the word does not appear in the table

until we write both ‘c’ and ‘a’. In that case, it might be
faster just to write the remaining ‘r’ than to switch
attention to the table. In order to make it easier to enter
short words, this method favors the words that are shorter
in size. In particular, PT12,1� �� shows the most common
�����	� �
��
�
�� ��
�� 	�
��
� ���� �� ��� �� ������
���� �
�
length. If there are empty cells left in the prediction table,
these cells are filled with the remaining popular words.

c. Launch Method: In all the methods so far, the prediction
table is introduced after the user enters at least one
character. In this method, the user is presented with a
prediction table, PT12,0 at the beginning of the message
and after any punctuation. We call PT12,0 the Launch
Table. We analyzed the 1356 messages mentioned earlier
and found the most frequent 12 words that show up at the
beginning of a sentence or after a punctuation character.
These words are shown in Figure 8, and constitute the
Launch Table. We used only one launch table, that is, the
table that the user sees after entering any punctuation
character or starting a new sentence is always the same.
This makes it faster for the user to get accustomed to the
words and their locations and makes the selection easier.

We ran a univariate analysis of variance (Univariate
ANOVA) to compute the adjusted mean speed for each
method and compared all the methods against Graffiti and
the Twelve methods since all of them were variations of
that method. The result is summarized in Figure 9.

a. Distinct Method: The Distinct Method is 1.17% worse
than the Twelve Method. The p-value is 0.0691, which
tells us that the effect of these two methods are
significantly different. Some of the subjects had a hard
time with the Distinct Method for two reasons: i) The
subject failed to notice the word after s/he entered the
first letter. The subject entered another letter, causing the
word to disappear. Consequently s/he had to complete
the whole word without the benefit of selection. ii) The

Figure 7: Text entry speed for different table sizes

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

Number of Rows

S
p

ee
d

 (
ch

ar
s/

se
c)

Figure 8: The Launch Table

Figure 9: Text entry speed for word prediction methods

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Graff iti Tw elve Distinct Short Launch

Method

S
p

ee
d

 (
ch

ar
s/

se
c)

subject noticed the word just as s/he finished the first
letter, but his/her hand ‘kept writing’ before s/he could
stop him/herself to make the selection. Depending on the
length of the word, sometimes the subject preferred to
erase the last letter so that the word would show up again
in the table for selection. Obviously, in both cases,
showing distinct words wasted a significant amount of
time.

b. Short Method: If we look at the adjusted mean of the
speed, we see a 3.33% improvement. The effect of this
method is statistically insignificant in the analysis.

c. Launch Method: We observed a 7.15% improvement in
text entry speed using the Launch Method over the
Twelve Method. Here the difference of these methods is
statistically insignificant. However, if we look at the data
set, we notice that only 5 out of 12 people used the
Launch Table at all. This is probably because users were
not expecting a prediction table before they entered a
character. In all other cases, the table appears after a
character is entered. Note that the Launch Table may or
may not improve the text entry speed depending on the
user. However, launch tables will not make performance
worse.

To summarize, the above experiments suggest that
prediction tables should not erase any matching words and
that launch tables work well only for some users, but at
least do no harm for others.

MESSAGE IN CONTEXT AND
PERSONALIZED DICTIONARY
In this section we study how to get further improvements
by exploiting the context in which the email is created and
by personalizing the Prediction Tables.

a. Message in Context: We used an algorithm that
dynamically changes the tables if the user is responding
to a message. In this case all the words with the
appropriate prefix that occur in the message that the user
is responding to automatically occur in the prediction
tables. To illustrate, consider the messages in Table 3.
Under normal circumstances, the words ‘proceeding’ and
‘citation’ would not occur in the prediction tables since
they are not among the most frequent 12 words.
However, since the message we are responding to
includes these words, in this method these words would
come up if the user enters ‘p’ or ‘c’ respectively,
speeding up the response.

Table 3: Message in context.

b. Personal Dictionary: Another possible way of improving
the text entry speed is to create a dictionary personalized
for the user. To accomplish this, the messages from the
sent-items folder of the users’ mailboxes are used to pre-
compute the prediction table and the lookup table.

User Study 4 – Message in Context and Personalized
Dictionaries
We conducted another user study in order to test the
effectiveness of these two additional methods. For message
in context we randomly chose three email messages (MsgA,
MsgB and MsgC) and one response for each message
(ReplyA, ReplyB , and ReplyC respectively) from the 1365
messages. When a subject entered ReplyA, we added the
words in MsgA to the appropriate prediction tables, and so
on. For the personal dictionaries, we obtained the sent-
items folders from three users (UserX, UserY, and UserZ).
(These users were not used as subjects.) We used 1001
short messages from each user. We randomly chose one
message from each user and then created the dictionary
using the remaining 1000 messages. We will refer to the
single messages we chose as MsgX, MsgY and MsgZ
respectively. When the subject writes MsgX, the dictionary
that was created from the messages of UserX was the basis
for predictions, and so on. Note that in this experiment the
dictionary was not personalized to the test subject, but
rather to the user who originally wrote the test message.
The experiment is realistic because the subject simply
copies the messages, and the predictions are personalized to
the original creator of the test message.

For our experiment we used 12 subjects. Every subject
wrote all six messages (ReplyA, ReplyB, ReplyC, MsgX,
MsgY and MsgZ). Each subject wrote two of ReplyA,
ReplyB and ReplyC using message in context, and two of
MsgX, MsgY and MsgZ using the personalized dictionary.
The subject entered the remaining two messages using the
Twelve Method without the message in context or the
personalized dictionary support. We changed the order in
which the subjects were exposed to the messages and the
methods. The mathematical model we used for the design
considered in the experiment is the same as in user studies
1 and 3. We used a Univariate ANOVA procedure to
compute the adjusted mean values of the speed for the
methods. The results are summarized in Figures 10 and 11.

We ran a regression analysis to test whether the effect of
any of these methods was significant. In this case we had to
consider two groups, the methods that have the messages
ReplyA, ReplyB, and ReplyC, and the methods that have the
messages MsgX, MsgY , and MsgZ.

a. Message in Context: The improvement in text entry we
measured was 18.31% beyond the improvement that the
Twelve Method gave us over Graffiti. In other words, if
the user types 100 character using Graffiti, s/he can type
in the same amount of time 157 characters using the
Twelve Method, and 176 characters using Message in
Context. The p-value is 0.0691, which tells us that the

Message:
Could I borrow your copy of the ’90
CHI Proceedings for a day or two? I
need them for a couple of citations.

Response:
Sure, I’ll bring the proceedings
tomorrow. What citation do you need?

effect of using a dictionary that is context specific is
significant.

b. Personalized Dictionary: The improvement in text entry
we measured was 12.27% beyond the improvement the
Twelve Method gave us over Graffiti. In other words, if
the user types 100 character using Graffiti, s/he can type
173 characters using the Twelve Method and 186
characters using a Personalized Dictionary in the same
amount of time. The p-value is 0.1231, which tells us that
the effect of using a context sensitive dictionary is
notable but not quite statistically significant. The effect
of using a personalized dictionary is not as strong as
using a message in context.

LEARNING
In our experiments we observed that user performance
improved as they gained experience with Power Email.
(This improvement is ‘masked out,’ in our previous results
due to the way we compute average speed-ups.) In our final
experiment we focused on how users improve over time.

User Study 5 – Learning Effect
In this study we had 12 subjects. They were asked to write
6 messages using the Twelve Method described earlier. We
changed the order in which the subjects were exposed to
the tasks, but the methods remained the same.
Figure 12 shows the adjusted mean speed for the ith task
(using the same type of statistical analysis as before). The
improvement of the speed between the tasks is summarized
in Figure 13. For example the speed on Task 2 was 0.067
characters per second faster than for Task 1. As can be
seen, as the subject writes more messages, the change in the
text entry speed becomes less and less significant.
One would expect an analogous improvement when users
learn Graffiti. However, our users were all experienced
Graffiti users (on the average they had used Graffiti for 22
months), so we do not expect their performance to improve
over the length of our experiments. Comparing the text
entry speed we gain at the final task over the Graffiti speed,
we measure a 115.16% improvement in text entry speed.
That is, if the user enters 100 characters using only Graffiti,
a trained Power Email user can enter 215 characters in the
same amount of time.
RELATED WORK
There have been many techniques proposed to improve text
entry speed on pen-based devices. One common technique
uses a virtual keyboard displayed on a tablet (soft
keyboards) such as the Fitaly [14] and OPTI [7] keyboards.
The Reactive Keyboard [5] also uses prediction for
selection, but at the lower level of key presses. POBox [9]
introduces an input method based on dynamic query of the
dictionary and word prediction from context. POBox uses a
soft keyboard instead of Graffiti and is not email specific.

Another set of related work does address the context of
email. Most of the work done has been on classifying e-
mail messages[4], filtering email messages and junk email
[8, 13], email organization [1] and email agents [2,6].

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6

Task

S
p

ee
d

 (
ch

ar
s/

se
c)

Figure 12: Text entry speed over time

Figure 13: Improvement in text entry speed over time

0

0.02

0.04

0.06

0.08

1-2 2-3 3-4 4-5 5-6

Tasks

S
p

ee
d

 Im
p

ro
ve

m
en

t
(c

h
ar

s/
se

c)

Figure 10: Text entry speed for context specific
dictionary

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Graff iti Tw elve Context
Specif ic

Method

S
p

ee
d

 (
ch

ar
s/

se
c)

Figure 11: Text entry speed for personal dictionary

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Graff iti Tw elve Personal

Method

S
p

ee
d

 (
ch

ar
s/

se
c)

There has also been research for replying messages using
structured response objects instead of text [3].

CONCLUSION
This paper has introduced new techniques for efficiently
composing email messages on pen-based handheld devices.
Our hypothesis was that the application semantics of email,
a user profile and the context of the email message could be
used to improve performance. We combined Graffiti with a
menu selection for entering words where we introduced
prediction tables that predict the word the user is writing.
We presented experimental results comparing different
design alternatives.

Notice that the speed improvement with prediction tables
varies among our user studies. The subjects were exposed
to different table sizes in user studies 1 and 2 (i.e., the
number of table rows changed). This made it harder for the
subjects to get accustomed to the tables. When the user is
presented with the same size tables consistently, the
‘memory affect’ makes him/her recognize the tables, locate
words within the table more easily and make the selection
more quickly. In user studies 3 and 4, the table size was
fixed at 12, so the speed increases (from about 0.69
characters/sec to between 1.2 and 1.3 characters/sec.).
Finally, in user study 5, we study how speed improves over
time, and we see an even higher speed (about 1.48
characters/sec.) once the user is familiar with the Twelve
Method. At this point, we measured an improvement of
115% compared to the Graffiti Method.

When we experimented with the Message in Context and
the Personalized Dictionary Methods, we did not evaluate
them after the user had been ‘trained.’ However, if we
hypothesize that the gains we observed in studies 3 and 4
will carry over to the case where the user is trained, then
we would expect even higher speeds. That is, if user types
100 characters with Graffiti, in the same amount of time a
trained user can type 215 characters with the Twelve
Method, and we would expect a trained user to enter about
233 characters with Message in Context (and Twelve).
Thus, a message that takes the user 10 minutes to write in a
traditional handheld email application would take about 4
minutes using Power Email.

Although we did not discuss it in the paper, we also
compared the input effort and error ratio with and without
Power Email. For example, if the number of actions
(characters + taps) with the Graffiti method was 100, then
the number of actions with the Twelve Method would be on
the average 46.54, i.e., a reduction of 53.46%.

The error ratio tells us how many mistakes a user made. In
particular, if a user types 100 characters, deletes x of them,
and retypes x characters, then we say the error ratio is x%.
Without prediction tables, the observed error ratio was
17.96%, while with the Twelve method, this ratio was
down to 5.31% which gives a 12.65% improvement.

After the user studies, the subjects responded to a survey on
their satisfaction. We asked them if they found our text

entry approach useful. All of the subjects answered YES.
We also asked them how much they liked our approach on
a scale between 0 and 10 (10 very much, 5 indifferent, 0
not at all). The average was 8.92. The survey also included
a free text field where subjects were encouraged to enter
any comments they might have. One interesting comment
was about the length of the words in the tables. Some
subjects preferred longer words whereas some subjects
preferred shorter words to be given in the prediction tables.
One subject suggested sorting the words in the table by
length as supposed to alphabetically. We plan to
experiment with this variation in the future.

REFERENCES
1. Bälter, O. Keystroke Level Analysis of Email Message

Organization, in Proceedings of CHI ‘00, 2000, ACM
Press, 105-112.

2. Boone, G. Concept Features in Re:Agent, an Intelligent
Email Agent, in Proceedings of the Second International
Conference on Autonomous Agents, 1998, ACM Press,
141-148.

3. Camino B.M., Milewski, A.E., Millen, D.R., & Smith,
T.M. Replying to Email with Structured Responses. In
International Journal of Human-Computer Studies, 48,
763-776.

4. Cohen, W.W. Learning rules that classify e-mail, in
Papers from the AAAI Spring Symposium on Machine
Learning in Information Access, 1996, 18–25.

5. Darragh, J.J., Witten, I.H., & James, M.L. The Reactive
Keyboard: A predictive typing aid. IEEE Computer 23,
11 (November 1990), 41-49.

6. Gruen, D, Sidner, C., Boettner, C., & Rich, C. A
Collaborative Assistant for Email, in Proceedings of CHI
’99: Extended Abstracts, 1999, ACM Press, 196-197.

7. MacKenzie, I.S. & Zhang, S.X. The Design and
Evaluation of a High-Performance Soft Keyboard, in
Proceedings of CHI '99, 1999, ACM Press, 25-31.

8. Marx, M. & Schmandt, C., CLUES: Dynamic
Personalized Message Filtering, in Proceedings of ACM
CSCW ’96 , 1996, ACM Press, 113-121.

9. Masui, T. An Efficient Text Input Method for Pen-Based
Computers, in Proceedings of CHI ’98, 1998, ACM
Press, 328-335.

10.MultiMail Pro, ActualSoft: http://www.actualsoft.com/

11.Omnisky, OmniskyMail, http://www.omnisky.com/

12.Palm, Inc., PalmMail, http://www.palm.com/

13.Sahami, M., Dumais, S., Heckerman, D. & Horvitz, E.
A Bayesian Approach to Filtering Junk E-Mail, in
Proceedings of AAAI ‘98 Workshop on Learning for Text
Categorization, Madison, WI, 1998.

14.Textware Solutions, The Fitaly Keyboard,
http://www.twsolutions.com/fitaly/fitaly.htm

