LINEAGE TRACING IN DATA WAREHOUSES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Yingwei Cui
December 2001
© Copyright by Yingwei Cui 2002
All Rights Reserved
I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Professor Jennifer Widom
(Principal Adviser)

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Professor Hector Garcia-Molina

I certify that I have read this dissertation and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Dr. Philip A. Bernstein

Approved for the University Committee on Graduate Studies:
Abstract

Data warehousing systems collect data from multiple distributed data sources and store integrated and summarized information in local databases for efficient data analysis and mining. Sometimes, when analyzing data at a warehouse, it is useful to “drill down” and investigate the source data from which certain warehouse data was derived. For a given warehouse data item, identifying the exact set of source data items that produced the warehouse data item is termed the data lineage problem.

This thesis presents our research results on tracing data lineage in a warehousing environment:

- Formal definitions of data lineage for data warehouses defined as relational materialized views over relational sources, and for warehouses defined using graphs of general data transformations.

- Algorithms for lineage tracing, again considering both relational and transformational warehouses, along with a suite of optimization techniques.

- Performance evaluations through simulations, and a lineage tracing prototype developed within the WHIPS (WareHousing Information Processing System) project at Stanford.

- Applying data lineage techniques to obtain improved algorithms for the well-known database view update problem.
Acknowledgements

First and foremost, I thank my mother and father for their love, support, and guidance.

I thank my husband, Hui, for being so supportive and for making my life colorful and balanced.

I thank my sister, Wen, who has always been my best friends and teacher.

I am especially grateful to my advisor, Jennifer Widom, for teaching me how to do research, how to write a paper, and how to balance work and family.

I would also like to thank the other members of the Stanford Database Group—especially Kevin Chang, Hector Garcia-Molina, Wilburn Labio, Chen Li, Jeff Ullman, Jun Yang, Yue Zhuge for helping me shape and refine my ideas.

I thank all the WHIPS developers for helping to build a platform on which my research is based: Reza Behforooz, Himanshu Gupta, Joachim Hammer, Wilburn Labio, Janet Wiener, Jun Yang, and Yue Zhuge.

I thank Yujie Cao for helping to implement our initial view update algorithms.

Finally, I thank my co-authors: Donald Cox, Wilburn Labio, Derek Lam, Hector Garcia-Molina, Janet Weiner, Jennifer Widom, and Jun Yang.
Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Data Warehousing 1
1.2 Data Lineage 3
1.3 Lineage Applications 5
1.3.1 Data Analysis and Mining 5
1.3.2 Scientific Databases 5
1.3.3 Data Cleaning 5
1.3.4 Warehouse Load Resumption 6
1.3.5 Materialized View Schema Evolution 6
1.3.6 View Update Problem 7
1.4 Research Challenges and Thesis Contributions 7
1.4.1 Data Lineage for Relational Views 7
1.4.2 Data Lineage for General Transformations 9
1.4.3 Summary of Our Approach 10
1.5 Related Work 10
1.6 Thesis Outline 12

2 Data Lineage for Relational Views 13
2.1 Running Examples 13
2.2 Preliminaries 16
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>View Tuple Derivations</td>
<td>18</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Tuple Derivations for Operators</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Tuple Derivations for Views</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Derivation Tracing for SPJ Views</td>
<td>31</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Derivation Tracing Queries</td>
<td>31</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Tracing Queries for SPJ Views</td>
<td>31</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Tracing Query Optimizations</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Derivation Tracing for ASPJ Views</td>
<td>34</td>
</tr>
<tr>
<td>2.5.1</td>
<td>ASPJ Canonical Form</td>
<td>35</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Derivation Tracing Queries for One-Level ASPJ Views</td>
<td>36</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Derivation Tracing Algorithm for Multi-Level ASPJ Views</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Derivation Tracing for Views with Set Operators</td>
<td>40</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Tuple Derivations for Set Operators</td>
<td>40</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Canonical Form for General Views</td>
<td>41</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Derivation Tracing Algorithm for General Views</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Derivation Tracing with Bag Semantics</td>
<td>47</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Tuple Derivations for Bag Semantics</td>
<td>48</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Tracing Derivation Pools</td>
<td>53</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Tracing Derivation Sets</td>
<td>55</td>
</tr>
<tr>
<td>2.7.4</td>
<td>Using Key Information</td>
<td>58</td>
</tr>
<tr>
<td>2.7.5</td>
<td>Algorithms Summary</td>
<td>61</td>
</tr>
<tr>
<td>2.8</td>
<td>Revisiting Introductory Example</td>
<td>61</td>
</tr>
<tr>
<td>2.9</td>
<td>Related Work</td>
<td>62</td>
</tr>
<tr>
<td>2.10</td>
<td>Chapter Summary</td>
<td>62</td>
</tr>
</tbody>
</table>

3 Storing Auxiliary Views for Efficient Lineage Tracing

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Running Examples</td>
<td>65</td>
</tr>
<tr>
<td>3.2</td>
<td>Auxiliary Views for Tracing SPJ Views</td>
<td>68</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Store Nothing (∅)</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Store Base Tables (BT)</td>
<td>70</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Store Lineage Views (LV)</td>
<td>70</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Base table and view scenarios ... 48

3.1 Scheme self-traceability and self-maintainability 75
3.2 System and data statistics ... 76
3.3 Sample statistics for view HighProfit 88
3.4 Statistics for Q_5 .. 92
3.5 Statistics for Q_{11} ... 93
3.6 Statistics for Q_{17} ... 93
3.7 Statistics for synthetic views v_1-v_5 95
3.8 Statistics for v_6 .. 96
3.9 Statistics for v_7 .. 96
3.10 Statistics for v_8 .. 98
3.11 Statistics for v_9 .. 98

4.1 Example view deletions and translations 116
4.2 Data generation parameters ... 134

5.1 Summary of transformation properties 160
5.2 Properties of $\mathcal{T}_1-\mathcal{T}_9$... 162
List of Figures

1.1 A basic data warehousing architecture ... 2
1.2 Source tables .. 3
1.3 Warehouse table ... 4
1.4 Lineage of ⟨Databases, $84K⟩ .. 4

2.1 store table ... 14
2.2 item table ... 14
2.3 sales table ... 14
2.4 View definition for Calif ... 14
2.5 Contents of Calif view ... 15
2.6 Calif lineage for ⟨Target,pencil,3000⟩ .. 15
2.7 View definition for Clothing .. 16
2.8 Clothing lineage for ⟨5400⟩ .. 16
2.9 Derivation of tuple t .. 19
2.10 Tuple derivation for aggregation .. 22
2.11 Tuple derivation for a view .. 26
2.12 Tracing queries for ⟨Target, pencil, 3000⟩ in view Calif 33
2.13 ASPJ segments and intermediate view for Clothing 38
2.14 Derivation tracing algorithm for ASPJ views 39
2.15 AllClothing table .. 40
2.16 Tuple derivation for set difference .. 41
2.17 Canonicalizing general view definitions .. 43
2.18 Canonical form for a view with set operators 45
2.19 Derivation tracing algorithm for general views 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.23</td>
<td>Running time vs. fan-out</td>
<td>97</td>
</tr>
<tr>
<td>3.24</td>
<td>Running time vs. # levels</td>
<td>97</td>
</tr>
<tr>
<td>3.25</td>
<td>View structure of v_8 and v_9</td>
<td>98</td>
</tr>
<tr>
<td>3.26</td>
<td>Optimality for v_8 and v_9</td>
<td>99</td>
</tr>
<tr>
<td>3.27</td>
<td>The lineage tracing system</td>
<td>100</td>
</tr>
<tr>
<td>3.28</td>
<td>Tracing process</td>
<td>101</td>
</tr>
<tr>
<td>3.29</td>
<td>Data sources</td>
<td>103</td>
</tr>
<tr>
<td>3.30</td>
<td>Source table Portfolio</td>
<td>103</td>
</tr>
<tr>
<td>3.31</td>
<td>User views</td>
<td>104</td>
</tr>
<tr>
<td>3.32</td>
<td>View LowPEGain</td>
<td>105</td>
</tr>
<tr>
<td>3.33</td>
<td>Lineage of $\langle11800\rangle$</td>
<td>106</td>
</tr>
<tr>
<td>3.34</td>
<td>Derivation tree for $\langle11800\rangle$</td>
<td>106</td>
</tr>
<tr>
<td>3.35</td>
<td>Derivation tree for $\langle\text{MSFT, 125, 600, 11800}\rangle$</td>
<td>107</td>
</tr>
<tr>
<td>3.36</td>
<td>Entire derivation tree</td>
<td>108</td>
</tr>
<tr>
<td>3.37</td>
<td>Auxiliary views</td>
<td>109</td>
</tr>
<tr>
<td>4.1</td>
<td>Base tables</td>
<td>115</td>
</tr>
<tr>
<td>4.2</td>
<td>View contents</td>
<td>115</td>
</tr>
<tr>
<td>4.3</td>
<td>Translating the deletion of a view tuple t</td>
<td>122</td>
</tr>
<tr>
<td>4.4</td>
<td>Translating the deletion of a view subset T</td>
<td>130</td>
</tr>
<tr>
<td>4.5</td>
<td>Translating view deletions based on a selection condition C'</td>
<td>132</td>
</tr>
<tr>
<td>4.6</td>
<td>$T = \sigma_{\text{user}='\text{ted}}(V)$, its lineage and exclusive lineage</td>
<td>133</td>
</tr>
<tr>
<td>4.7</td>
<td>Four cases of translations</td>
<td>135</td>
</tr>
<tr>
<td>4.8</td>
<td>Translation time</td>
<td>135</td>
</tr>
<tr>
<td>5.1</td>
<td>Source data set for Product</td>
<td>140</td>
</tr>
<tr>
<td>5.2</td>
<td>Source data set for Order</td>
<td>140</td>
</tr>
<tr>
<td>5.3</td>
<td>Transformations to derive SalesJump</td>
<td>141</td>
</tr>
<tr>
<td>5.4</td>
<td>Transformation summary</td>
<td>141</td>
</tr>
<tr>
<td>5.5</td>
<td>Lineage of $\langle\text{Sony VAIO, 11250, 39600}\rangle$</td>
<td>142</td>
</tr>
<tr>
<td>5.6</td>
<td>A transformation instance</td>
<td>144</td>
</tr>
<tr>
<td>5.7</td>
<td>Transformation classes</td>
<td>146</td>
</tr>
</tbody>
</table>
5.8 Tracing procedure for dispatchers .. 147
5.9 Tracing procedure for aggregators .. 148
5.10 Tracing procedure for context-free aggregators 149
5.11 Tracing procedure for key-preserving aggregators 150
5.12 Tracing procedures using schema mappings 157
5.13 Transformation property hierarchy 161
5.14 $T_1 \circ T_2$.. 164
5.15 Transformation sequence .. 164
5.16 Combining transformations ... 164
5.17 Combining Transformation Pairs 166
5.18 Normalizing a transformation sequence 167
5.19 Before normalization .. 168
5.20 After normalization .. 168
5.21 Tracing sequences (unnormalized and normalized) for SalesJump .. 173
5.22 I_4^* ... 173
5.23 Tracing one transformation .. 175
5.24 Combining vs. not combining 175
5.25 Transformation graph for Q12 in TPC-D 175

xviii
Chapter 1

Introduction

In this thesis, we address the general problem of tracing data lineage in a warehousing environment. Data warehousing systems integrate information from multiple distributed data sources into a central repository called a data warehouse for efficient data analysis and mining. Sometimes it is useful for an analyst to look not only at the information in the warehouse, but also to investigate how certain warehouse information was derived from the sources. Tracing warehouse data items back to the source data items from which they were derived is termed the data lineage problem. Data lineage helps users understand warehouse data better, and can be crucial for in-depth data analysis and decision support.

1.1 Data Warehousing

The amount of relevant data available to enterprises is growing rapidly, and as it grows, using the data effectively becomes more important and more challenging. To make informed business decisions, analysts often need to pose complex ad-hoc queries over data spanning multiple distributed, heterogeneous sources. Answering such queries on demand can be difficult and inefficient: data from different sources must be extracted, integrated, and processed at query time, and the sources may be expensive to access or periodically unavailable.

One popular approach for enabling efficient data analysis and decision support over data spanning multiple sources is data warehousing [CD97, IK93, LW95, Wid95]. Instead of
integrating data from sources on demand at query time, data warehousing systems collect data in advance, “cleanse” and integrate the data, and store the integrated information at a centralized data repository called a data warehouse. Once this initial warehouse load process is completed, users can perform analysis and mining directly over the warehouse data in an efficient and integrated manner. On the other hand, when the source data changes, it is necessary to perform warehouse maintenance to keep the warehouse data up-to-date.

Figure 1.1 shows the basic architecture of a data warehousing system with two major components: the Integration & Maintenance (IM) component, responsible for collecting and maintaining the warehouse data, and the Query & Analysis (QA) component, responsible for fulfilling the information needs of end users. Note that the two components are not independent. For example, what data the IM component should store depends on the expected needs of end users. In this thesis, we focus on extending the traditional capabilities of a QA component to include tracing data lineage, while taking both the QA and IM components into consideration for performance concerns over the source data before loading it into the warehouse.

We consider two warehousing scenarios: relational data warehouses and transformational data warehouses. In the relational scenario, the warehouse data is defined as relational views over relational sources specified using relational algebra. The warehouse
views are *materialized* in the sense that the view contents derived from the source tables are physically stored at the warehouse. In the transformational scenario, the warehouse is constructed through graphs of general *data transformations*, which are arbitrary programs performing data cleansing, integration, and summarization tasks over the source data before loading it into the warehouse.

1.2 Data Lineage

Information stored at data warehouses is usually transformed, integrated, and summarized for easier detection of trends and patterns. For in-depth analysis, however, it is often useful to look not only at the information in the warehouse, but also to investigate how certain warehouse information was derived from the sources. Given a warehouse data item i, finding the exact set of source data items from which i was derived is termed the *data lineage* problem.

As an example, let us consider a university data warehouse constructed from four source tables containing information about academic programs, students, courses, and current course enrollments. Schemas and sample contents of the source tables are shown in Figure 1.2. From these sources, we can derive information about the tuition income of courses
in each academic field, and store the result in a warehouse table `IncomeByField` (Figure 1.3). The warehouse table shows that courses in Databases made over three times as much money as courses in other fields. To figure out why database courses have achieved such financial success, the University Dean decides to trace the lineage of the warehouse data item \langle \text{Databases}, \$84K \rangle. The lineage result is shown in Figure 1.4. It contains all database courses, their enrollments, and the associated student and payment information. We can then see from `Student` that many of the students who take database courses are Web students. These students pay a much higher tuition rate than regular students, as seen in `Program`. Here we see the benefit of tracing a specific warehouse data item back to the source data items from which it was derived.

Although from this example lineage tracing may appear easy, there are a number of significant challenges in semantics, algorithms, efficiency, and implementation, all tackled in this thesis. We outline the challenges and research contributions in Section 1.4, after discussing some further applications of data lineage in Section 1.3.
1.3 Lineage Applications

The primary general motivation for supporting data lineage is to enable further analysis of interesting or potentially erroneous warehouse data, as illustrated by the example in Section 1.2. Here we also discuss how some specific applications can benefit from lineage tracing techniques.

1.3.1 Data Analysis and Mining

Effective data analysis and mining requires facilities for data exploration at different levels [CD97]. The ability to select a portion of relevant warehouse data and “drill through” to its origins can be very useful for in-depth analysis and decision support, as shown in our earlier example. In addition, an analyst may want to check the origins of suspect or anomalous warehouse data, to verify the reliability of the sources or even repair erroneous source data. For example, a warehouse expense summary might show a suspiciously high figure for the purchase of 5 identical computers. Tracing the lineage of the summarized data might reveal from the source data that one of the computers costs 10 times as much as the others, an obvious data entry error (we hope).

1.3.2 Scientific Databases

In scientific environments, individual researchers share some commonly understood and accepted source data, manipulating it using different algorithms and ad-hoc experiments to derive new data, which is then added to the knowledge pool [HQGW93]. When examining other scientist’s derived data, it is frequently useful to trace back to the commonly understood source data from which it originated.

1.3.3 Data Cleaning

Data extracted from sources often is “cleansed” by various transformations before being used to populate a data warehouse [GFS+01]. Data lineage helps locate the origins of cleansed data items, allowing the system to send reports about the cleansing process back to the sources, and debug transformations if anomalous output items are produced.
As a debugging example, suppose a librarian is writing a transformation to cleanse the data from a legacy bibliographic database. The transformation includes converting each author’s first name into an initial (e.g., Jennifer Widom → J. Widom). When testing the transformation on an input data set, it produces:

[8] H. Garcia-Molina and J. D. and J. Widom,

Tracing the lineage of this output data item produces:

[GUW00] Hector Garcia-Molina and Jeffrey D. Ullman and Jennifer Widom,

By comparing the output data item and its lineage, it becomes obvious that the transformation is not properly handling names with middle initials. That is, instead of keeping both the middle initial and the last name, the transformation keeps only the middle initial.

1.3.4 Warehouse Load Resumption

Recovery from crashes during a data warehouse load or maintenance process (recall Section 1.1) can be extremely inefficient and expensive, since typically after a crash the warehouse is simply erased and reloaded from scratch. Data lineage enables the resumption of a warehouse load from where it was interrupted, without reloading or recomputing data that was successfully produced before the crash. Reference [LGMW00] introduces a type of data lineage and explains how it can be used to enable warehouse load resumption.

1.3.5 Materialized View Schema Evolution

When warehouse data is defined as materialized relational views (recall Section 1.1), it may become necessary to modify the view definitions (e.g., add a column) under certain circumstances [GMR95]. Data lineage can help “retrofit” existing view contents to the new view definition, without recomputing the entire view. For example, suppose in our IncomeByField warehouse view of Figure 1.3, we wish to add an additional column students indicating the number of students enrolled in classes for each field. Instead of recomputing the new view from scratch, it may be more efficient to compute values of the new column from the lineage of each tuple in the view. For example, from the lineage of the
original view tuple \langle \text{Databases}, \$84K \rangle \text{ shown in Figure 1.4, we can count the number of students in the Enrollment lineage table to obtain the value for column students.}

1.3.6 View Update Problem

Tracing the origins of a given view data item is related to the well-known view update problem [BS81, DB78, Sto75]. In Chapter 4, we discuss this relationship in detail, and show how lineage tracing can be used to improve upon previous algorithms for certain aspects of view update.

1.4 Research Challenges and Thesis Contributions

We will consider two distinct data warehousing scenarios: warehouses defined by relational views and warehouses defined by general data transformations (Section 1.1). Under each scenario, we define data lineage formally, provide lineage tracing algorithms, and introduce optimization techniques for improved tracing performance. Based on our results for the relational view case, we have implemented a lineage tracing system prototype within the WHIPS [HGMW+95] data warehousing project at Stanford. We also have implemented and experimented with our algorithms for the transformational case, although not in the context of a significant data warehousing prototype.

1.4.1 Data Lineage for Relational Views

We first consider the relational scenario, where the warehouse data is defined as relational views over relational sources specified using relational algebra.

Lineage Definition and Tracing Algorithms

A relational view definition provides a mapping from the source data to the view data. Given a state of the source data, we can compute the corresponding view according to the view definition. However, determining the inverse mapping—from a view data item back to the source data that produced it—is not as straightforward. To determine the inverse
mapping accurately, we not only need the view definition, but we also need the source data and some additional information.

In Chapter 2, we formulate the data lineage problem in this environment by giving a declarative, inductive definition of data lineage for arbitrarily complex relational views defined using select, project, join, aggregation, union, intersection, and difference operators. We develop lineage tracing algorithms that use tracing procedures over source tables to retrieve data lineage for given view data items. The tracing procedures are generated automatically based on the view definition, and all queries in the procedures can be optimized easily by a standard database management system (DBMS). We first consider the problem under set semantics, then extend our results to handle bag (multiset) semantics.

Storing Auxiliary Views for Improved Tracing Performance

To compute the lineage of a view data item, our tracing procedures use the view definition and the source data, as well as possibly auxiliary information representing certain intermediate results in the view definition. In a distributed multi-source data warehousing environment, querying the sources during lineage tracing can be undesirable, difficult, or impossible: sources may be inaccessible, expensive to access, slow or expensive to transfer data from, and/or inconsistent with the views at the warehouse. By storing auxiliary information in the warehouse, we can reduce or entirely avoid source accesses during lineage tracing. There are numerous options for which auxiliary information to store, with significant performance tradeoffs. For example, storing a copy of all source data in the warehouse will improve lineage tracing by avoiding remote source queries altogether, but it also significantly increases warehouse storage cost and may introduce extra maintenance cost.

In Chapter 3, we start by introducing a family of schemes for storing auxiliary views to provide consistent and efficient lineage tracing for select-project-join (SPJ) views in a distributed warehousing environment. Our performance studies show that different schemes offer different advantages and thus are suitable for different settings, depending on system parameters such as network bandwidth and workload parameters such as query/update ratio. We then propose algorithms for selecting auxiliary views for arbitrary SPJ views with aggregation (ASPJ views). We suggest an initial search space of potentially beneficial
auxiliary views based on an *ASPJ view normal form*, and develop exhaustive and heuristic algorithms for exploring the search space and selecting a set of auxiliary views. We compare the optimality and running time of the algorithms using experiments based on the TPC-D benchmark [TPC96], as well as on a variety of synthetic views and statistics.

Applying Lineage to the View Update Problem

As mentioned briefly in Section 1.3.6, data lineage is closely related to the well-studied *view update problem*. The core of the view update problem is the ability to translate arbitrary updates on a view into updates on the relevant base (source) tables that the view is defined on. Many previous approaches, e.g., [Cle78, Kel86, LS91, RS79], can handle only limited types of views and updates, and/or they require participation from the view definer or the view updater in specifying view update translations.

In Chapter 4, we study the relationship between data lineage and the view update problem for deletions. We use techniques based on data lineage to devise a fully automatic algorithm for translating deletions against arbitrary SPJ views into deletions against the underlying database. Our algorithm finds a translation that is guaranteed to be *exact* (side-effect free) whenever an exact translation exists, using only the view definition at compile-time and the base data at view-update time.

1.4.2 Data Lineage for General Transformations

In deployed production data warehouses, instead of using relational views, data imported from the sources may be cleansed, integrated, and summarized through a sequence or graph of *transformations*. Many commercial warehousing systems provide tools for creating and managing such transformations as part of the *extract-transform-load (ETL)* process, e.g., [Inf, Mic, PPD, Sag]. The transformations may vary from simple algebraic operations or aggregations to complex procedural code. The lineage tracing problem for general data transformations is considerably more difficult and open-ended than the problem for relational views, because we no longer have the luxury of a fixed set of operators or the algebraic properties offered by relational views. Furthermore, since transformation graphs in real ETL processes can often be quite complex—containing as many as 60 or more
transformations—the storage requirements and runtime overhead associated with lineage tracing are very important considerations.

In Chapter 5, we formally define data lineage and provide lineage tracing algorithms for data warehouses specified through general transformations. Our algorithms take advantage of known structure or properties of transformations when present, but also work in the absence of such information, and they apply to single transformations, linear sequences of transformations, and arbitrary acyclic transformation graphs. We propose optimization techniques for improving tracing performance in the case of large transformation graphs. Our results can guide the design of data warehouses that enable effective lineage tracing.

1.4.3 Summary of Our Approach

Regardless of whether we are considering warehouses based on relational views or general transformations, our overall approach to lineage tracing can be divided into three major steps. At warehouse definition time, from the views or transformations we generate tracing procedures and determine what auxiliary information needs to be stored for lineage tracing. At warehouse load time, we compute the warehouse data as well as any auxiliary data determined in the first step. At lineage tracing time, tracing procedures are issued to the source and/or auxiliary data to compute the lineage result. All algorithms proposed in the thesis have been implemented, and experimental results are reported.

1.5 Related Work

In this section, we review previous work that is broadly related to the data lineage problem. Work related only to specific portions of the thesis is discussed in each chapter. Surveys on the general research topic of data warehousing appear in [CD97, LW95, Wid95].

Most previous work on data lineage considers coarse-grained (schema-level) lineage tracing based on annotations [BB99, HQGW93, LBM98]. Reference [LBM98] presents a solution for explicitly storing lineage (which they call attribution) of data items in query results based on a mediation architecture. The lineage information identifying which sources the warehouse data items were derived from, along with additional information such as
1.5. RELATED WORK

timestamps and source quality, is stored when queries are computed. In the warehousing context, [BB99] presents a scheme whereby the identifier of each warehouse data transformation is attached to all objects generated by the transformation, so that the user can trace which transformations produced each warehouse data object. This thesis focuses on tracing fine-grained (instance-level) lineage. We believe that using the annotation-based approaches for instance-level lineage tracing is likely to cause performance overhead at warehouse loading and maintenance time. Therefore, we use a “lazy” approach that calls tracing procedures only at lineage tracing time, in order to avoid such overhead. Our approach also imposes no extra requirements on warehouse view computations or data transformations, while annotation-based approaches often assume that these processes are capable of performing lineage annotations or can be modified to do so.

Reference [FJS97] uses a statistical approach to reconstruct base data from summary data and certain knowledge of constraints. This approach does not require access to the base data. However, it provides only estimated lineage information, and does not ensure accuracy. In contrast to all of the previous work discussed so far, we propose a solution that computes exact, fine-grained lineage using tracing procedures generated automatically from the warehouse definition.

In [WS97], a general framework is proposed for computing fine-grained data lineage in a transformational setting. The paper defines and traces data lineage for each transformation based on a weak inverse, which must be specified by the transformation definer. Lineage tracing through a transformation graph proceeds by tracing through each path one transformation at a time. In our approach for the transformational environment, the definition and tracing of data lineage is based on general transformation properties, and we specify an algorithm for combining transformations in a sequence or graph for improved tracing performance.

There has been growing interest in data lineage tracing in industry. Most On-Line Analytical Processing (OLAP) systems support a “drill-down” capability for multidimensional warehouse data, allowing aggregated data to be “unrolled” one level at a time within the warehouse [GBLP96]. A few products further support “drilling through” to the original transactional data, also stored in the warehouse [DB2, Pow]. Some on-line reporting systems allow report-to-report “drilling” based on annotations, e.g., by creating hyperlinks
from data in one report to lineage information in another report [Imp]. All of these products focus on specific types of views in specific settings, and do not enable lineage tracing through general relational views or transformations as we consider in this thesis.

1.6 Thesis Outline

The thesis proceeds as follows. Chapter 2 formulates the data lineage problem for relational views and provides lineage tracing algorithms. Chapter 3 introduces a variety of auxiliary view schemes to improve the performance of lineage tracing, and suggests algorithms for selecting auxiliary views for arbitrary SPJ views with aggregation, based on overall lineage tracing and view maintenance performance. In Chapter 4, we apply techniques based on data lineage to the view update problem, specifically to devise a fully automatic algorithm for translating view tuple deletions into source deletions. A complete treatment of lineage tracing in the presence of general data warehouse transformations is presented in Chapter 5. Chapter 6 concludes the thesis and discusses future work.
Chapter 2

Data Lineage for Relational Views

In this chapter, we formally define data lineage and develop lineage tracing algorithms for relational data warehouses. In particular we consider an environment where warehouse data is specified as relational materialized views over relational sources. Views are specified using relational algebra. We begin the chapter with running examples in Section 2.1 to motivate the data lineage problem. These examples are revisited throughout the chapter. We then present our relational view algebra in Section 2.2 and formally define data lineage in Section 2.3. Section 2.4 presents our lineage tracing algorithms for Select-Project-Join (SPJ) views, Section 2.5 extends the results to SPJ views with aggregation (ASPJ views), and Section 2.6 further handles views with set union and difference operators. In Section 2.7, we adapt our work to bag (multiset) semantics. In Section 2.8 we revisit the introductory example from Section 1.2 of Chapter 1. Finally, Section 2.9 discusses related work, and Section 2.10 concludes the chapter. The work presented in this chapter appeared originally in [CWW00].

2.1 Running Examples

Consider a data warehouse storing retail data derived from three source tables, whose schema and sample contents are shown in Figures 2.1–2.3. The store and item tables are self-explanatory. The sales table contains, for each store and item, the price of the item and number sold at that store.
CHAPTER 2. DATA LINEAGE FOR RELATIONAL VIEWS

<table>
<thead>
<tr>
<th>s_id</th>
<th>s_name</th>
<th>city</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Target</td>
<td>Palo Alto</td>
<td>CA</td>
</tr>
<tr>
<td>002</td>
<td>Target</td>
<td>Albany</td>
<td>NY</td>
</tr>
<tr>
<td>003</td>
<td>Macy's</td>
<td>San Francisco</td>
<td>CA</td>
</tr>
<tr>
<td>004</td>
<td>Macy's</td>
<td>New York City</td>
<td>NY</td>
</tr>
<tr>
<td>005</td>
<td>Safeway</td>
<td>Palo Alto</td>
<td>CA</td>
</tr>
<tr>
<td>006</td>
<td>Safeway</td>
<td>Denver</td>
<td>CO</td>
</tr>
</tbody>
</table>

Figure 2.1: store table

<table>
<thead>
<tr>
<th>i_id</th>
<th>i_name</th>
<th>category</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>binder</td>
<td>stationery</td>
</tr>
<tr>
<td>0002</td>
<td>pencil</td>
<td>stationery</td>
</tr>
<tr>
<td>0003</td>
<td>shirt</td>
<td>clothing</td>
</tr>
<tr>
<td>0004</td>
<td>pants</td>
<td>clothing</td>
</tr>
<tr>
<td>0005</td>
<td>pot</td>
<td>kitchenware</td>
</tr>
<tr>
<td>0006</td>
<td>plate</td>
<td>kitchenware</td>
</tr>
</tbody>
</table>

Figure 2.2: item table

CREATE VIEW Calif AS
SELECT s_name, i_name, num
FROM store, item, sales
WHERE sales.s_id = store.s_id AND
sales.i_id = item.i_id AND
store.state = "CA"

Figure 2.4: View definition for Calif

Example 2.1.1 (Lineage of SPJ View) Let us start with a simple example. Suppose an analyst wants to follow the selling patterns of California stores. A materialized view Calif can be defined in the data warehouse for this purpose. Figure 2.4 shows both SQL and relational algebra definitions of Calif. The materialized view for Calif over our sample data is shown in Figure 2.5.

The analyst browses the view table and is interested in the second tuple \(<\text{Target},\text{pencil},3000>\). He would like to see the relevant detailed information and asks question Q1: “Which base data produced tuple \(<\text{Target},\text{pencil},3000>\) in view Calif?” Using the algorithm presented in Section 2.4, we obtain the answer in Figure 2.6. The answer tells us that the Target store in Palo Alto sold 3000 pencils at a price of 1 dollar each. That
Example 2.1.2 (Lineage of Aggregation View) Now let us consider another warehouse view Clothing, for analyzing the total clothing sales of large stores (those that have sold more than 5000 clothing items). The SQL and relational algebra definitions of the view are shown in Figure 2.7. We extend traditional relational algebra with an aggregation operator, denoted $\alpha G, aggr(B)$, where G is a list of grouping attributes, and $aggr(B)$ represents a list of aggregate functions over attributes. (Details are given in Section 2.2.) Assuming the data of Figures 2.1, 2.2, and 2.3, the materialized view contains one tuple, $\langle 5400 \rangle$.

The analyst may wish to learn more about the origins of this tuple, and asks question Q2: “Which base data produced tuple $\langle 5400 \rangle$ in view Clothing?” Not surprisingly, due to the more complex view definition, this question is more difficult to answer than Q1. We develop the appropriate algorithms in Section 2.5, and Figure 2.8 presents the answer. It lists all the branches of Macy’s, the clothing items they sell (but not other items), and the sales information. All of this information is used to derive the tuple $\langle 5400 \rangle$ in Clothing.

Questions such as Q1 and Q2 ask about the base tuples that derive a given view tuple. We call these base tuples the derivation (or lineage) of the view tuple. In Section 2.3, we formally define the concept of view tuple derivation. Sections 2.4–2.7 then present algorithms to compute tuple derivations for different view scenarios.

CREATE VIEW Clothing AS
SELECT sum(num) as total
FROM item, store, sales
WHERE sales.s_id = store.s_id AND
sales.i_id = item.i_id AND
item.category = "clothing"
GROUP BY s_name
HAVING total > 5000

Figure 2.7: View definition for Clothing

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{s_id} & \textbf{s_name} & \textbf{city} & \textbf{state} \\
\hline
003 & Macy’s & San Francisco & CA \\
004 & Macy’s & New York City & NY \\
\hline
\end{tabular}
\caption{store}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{i_id} & \textbf{i_name} & \textbf{category} \\
\hline
0003 & shirt & clothing \\
0004 & pants & clothing \\
\hline
\end{tabular}
\caption{item}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{s_id} & \textbf{i_id} & \textbf{price} & \textbf{num} \\
\hline
003 & 0003 & 45 & 1500 \\
003 & 0004 & 60 & 600 \\
004 & 0003 & 50 & 2100 \\
004 & 0004 & 70 & 1200 \\
\hline
\end{tabular}
\caption{sales}
\end{table}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{clothing_lineage.png}
\caption{Clothing lineage for \textless 5400\textgreater}
\end{figure}

\section{2.2 Preliminaries}

Throughout the thesis, we assume that a table (relation) R with schema \mathbf{R} contains a set of tuples $\{t_1, \ldots, t_n\}$. A database D contains a list of base (source) tables $\langle R_1, \ldots, R_m \rangle$. A view V is a virtual or materialized result of a query over the base tables in D. The query (or the mapping from the base tables to the view table) is called the \textit{view definition}, denoted as v. We say that R_1, \ldots, R_m \textit{derives} V if $V = v(R_1, \ldots, R_m)$. We consider set semantics (no duplicates) in Sections 2.3–2.6 of this chapter. We adapt our work to bag semantics (duplicates permitted) in Section 2.7.

Under set semantics, we consider a class of views defined over base relations using the relational algebra operators σ \textit{(selection)}, π \textit{(projection)}, \bowtie \textit{(join)}, α \textit{(aggregation)}, \cup \textit{(set union)}, and \setminus \textit{(set difference)}. We use the standard relational semantics, included here for completeness. For an attribute list $A = A_1, \ldots, A_n$, we use the shorthand $t.A$ to denote $\langle t.A_1, \ldots, t.A_n \rangle$.

- \textbf{Base case: } $R = \{t \mid t \in R\}$
2.2. PRELIMINARIES

- **Selection:** $\sigma_C(V_1) = \{ t \mid t \in V_1 \text{ and } t \text{ satisfies condition } C \}$

- **Projection:** $\pi_A(V_1) = \{ t.A \mid t \in V_1 \}$

 Note that we assume that π_A is duplicate-eliminating under set semantics.

- **Join:** $\Join \theta(V_1, \ldots, V_m) = \{ \langle t_1, \ldots, t_m \rangle \mid t_i \in V_i \text{ for } i = 1..m, \text{ and the } t_i \text{'s satisfy condition } \theta \}$

 In the remainder of the thesis, we will use the infix notation \Join generically to indicate natural join (\Join), theta join ($\Join \theta$), and cross-product (\times).

- **Aggregation:** $\alpha_{G,aggr(B)}(V_1) = \{ \langle T.G, aggr(T.B) \rangle \mid T \subseteq V_1, \forall t, t' \in T, \forall t'' \notin T: t'.G = t.G \land t''.G \neq t.G \}$

 G is a grouping attribute list from V_1, and $aggr(B)$ represents a list of aggregation functions applied to attributes of V_1.

 The aggregation operator groups the input table V_1 based on the grouping attribute G, such that each pair of tuples in each group have the same G value, and tuples across groups have different G values. For each group T, the answer contains the grouping value G and the aggregate function results.

- **Set Union:** $V_1 \cup \cdots \cup V_m = \{ t \mid t \in V_i \text{ for some } i \in 1..m \}$

- **Set Difference:** $V_1 - V_2 = \{ t \mid t \in V_1 \text{ and } t \not\in V_2 \}$

For convenience in formulation, when a view references the same relation more than once, we consider each relation instance as a separate relation. For example, we treat the self-join $R \Join R$ as $(R \text{ as } R_1) \Join (R \text{ as } R_2)$, and we consider R_1 and R_2 to be two tables in D. This approach allows view definitions to be expressed using an algebra tree instead of a graph, while not limiting the views we can handle.

Any view definition in our language can be expressed using a query tree, with base tables as the leaf nodes and operators as inner nodes. Figures 2.4 and 2.7 show examples of query trees. If a view definition contains only selection, projection, and join operators,

\footnote{For notational purposes, we always assume that G is nonempty. An empty G (indicating aggregation over all tuples) causes no problems in our framework since it only results in dropped projection attributes and dropped selection conditions. However, we do not handle the special-case semantics of SQL aggregation that produces a single tuple (with value 0, for example) in the case of aggregating over an empty set.}
we call it an SPJ view. If the view contains aggregation operators, we call it an ASPJ view. Finally, view definitions that also contain the other relational operators specified above are called general views, which encompass all conventional relational views, excluding recursion or SQL-specific constructs.

2.3 View Tuple Derivations

In this section, we define the notion of a tuple derivation, which is the set of base relation tuples that produce a given view tuple. To define the concept of derivation, we assume logically that the view contents are computed by evaluating the view definition query tree bottom-up. Each operator in the tree logically generates an intermediate result table based on the results of its children nodes, and passes its result table upwards. We begin by focusing on individual relational operators, defining derivations of the operator’s result tuples based on its input tuples. We then define tuple derivations for relational views inductively based on tuple derivations for relational operators.

2.3.1 Tuple Derivations for Operators

According to relational semantics, each operator can generate its result tuple-by-tuple based on its operand tables. Intuitively, given a tuple \(t \) in the result of operator \(Op \), some subset of the input tuples produced \(t \). We say that tuples in this subset contribute to \(t \), and we call the entire subset the derivation of \(t \). Input tuples not in \(t \)’s derivation either contribute to nothing, or only contribute to result tuples other than \(t \). Figure 2.9 illustrates the derivation of a result tuple. In the figure, operator \(Op \) is applied to tables \(T_1 \) and \(T_2 \), which may be base tables or temporary results from other operators. (In general, we use \(R \)’s to denote base tables and \(T \)’s to denote tables that may be base or derived.) Table \(T \) is the operation result. Given tuple \(t \) in \(T \), only subsets \(T_1^* \) and \(T_2^* \) of \(T_1 \) and \(T_2 \) contribute to \(t \). \(\langle T_1^*, T_2^* \rangle \) is called \(t \)’s derivation. The formal definition of tuple derivation for an operator is given next, followed by additional explanation.

Definition 2.3.1 (Tuple Derivation for an Operator) Let \(Op \) be any relational operator over tables \(T_1, \ldots, T_m \), and let \(T = Op(T_1, \ldots, T_m) \) be the table that results from applying
2.3. VIEW TUPLE DERIVATIONS

Given a tuple \(t \in T \), we define \(t \)'s derivation in \(T_1, \ldots, T_m \) according to \(Op \) to be \(Op^{-1}(T_1, \ldots, T_m)(t) = \langle T_1^*, \ldots, T_m^* \rangle \), where \(T_1^*, \ldots, T_m^* \) are maximal subsets of \(T_1, \ldots, T_m \) such that:

(a) \(Op(T_1^*, \ldots, T_m^*) = \{t\} \)

(b) \(\forall T_i^*: \forall t^* \in T_i^*: Op(T_1^*, \ldots, \{t^*\}, \ldots, T_m^*) \neq \emptyset \)

Also, we say that \(Op^{-1}_{T_i}(t) = T_i^* \) is \(t \)'s derivation in \(T_i \), and each tuple \(t^* \) in \(T_i^* \) contributes to \(t \), for \(i = 1..m \).

In Definition 2.3.1, requirement (a) says that the derivation tuple sets (the \(T_i^* \)'s) derive exactly \(t \). From relational semantics, we know that for any result tuple \(t \), there must exist such tuple sets. Requirement (b) says that each tuple in the derivation does in fact contribute something to \(t \). For example, with requirement (b) and given \(Op = \sigma_C \), base tuples that do not satisfy the selection condition \(C \) and therefore make no contribution to any result tuple will not appear in any result tuple’s derivation. By defining the \(T_i^* \)'s to be the maximal subsets that satisfy requirements (a) and (b), we make sure that the derivation contains exactly all the tuples that contribute to \(t \). Thus, the derivation fully explains why a tuple exists in the result.\(^2\)

\(^2\)By Definition 2.3.1, if \(V = R - S \), then \(t \)'s derivation not only includes \(t \) from \(R \), but also includes all tuples \(t' \neq t \) in \(S \). We discuss this definition of derivation for set difference in more detail in Section 2.6.
\(O p^{-1}\) can be extended to represent the derivation of a set of tuples:

\[
O p^{-1}(T_1, \ldots, T_m)(T) = \bigcup_{t \in T} O p^{-1}(T_1, \ldots, T_m)(t)
\]

where \(\bigcup\) represents the multi-way union of relation lists, i.e., \(\langle R_1, \ldots, R_m \rangle \cup \langle S_1, \ldots, S_m \rangle = \langle (R_1 \cup S_1), \ldots, (R_m \cup S_m) \rangle\). Theorem 2.3.2 shows that there is a unique derivation for any operator and result tuple.

Theorem 2.3.2 (Derivation Uniqueness) Given \(t \in O p(T_1, \ldots, T_m)\) where \(t\) is a tuple in the result of applying operator \(O p\) to tables \(T_1, \ldots, T_m\), there exists a unique derivation of \(t\) in \(T_1, \ldots, T_m\) according to \(O p\).

Proof: Recall that we are assuming set semantics at this point. Suppose that \(t\) has two derivations in \(T_1, \ldots, T_m\): \(D' = \langle T_1', \ldots, T_m' \rangle\) and \(D'' = \langle T_1'', \ldots, T_m'' \rangle\). We prove that the two derivations must be the same.

If \(O p\) is \(\alpha\): \(m = 1\). \(T_1'\) is a maximal set that satisfies \(O p(T_1') = \{t\}\) and \(\forall t' \in T_1': O p(\{t'\}) \neq \emptyset\). From the semantics of the aggregation operator, we know that \(T_1'\) contains exactly all tuples in \(T_1\) that have the same grouping attributes as \(t\). So does \(T_1''\). Therefore \(T_1' = T_1''\).

For the remaining operators, \(\sigma, \pi, \bowtie, \cup\), and \(-\), we first prove that \(D^* = \langle T_1^*, \ldots, T_m^* \rangle\) and \(D'^* = \langle T_1'^*, \ldots, T_m'^* \rangle\) also satisfies requirements (a) \(O p(T_1^*, \ldots, T_m^*) = \{t\}\) and (b) \(\forall i = 1..m: \forall t^* \in T_i^* : O p(T_1^*, \ldots, \{t^*\}, \ldots, T_m^*) \neq \emptyset\) in Definition 2.3.1.

If \(O p\) is \(\sigma, \pi, \cup\), or \(-\):

(a) Since \(D'\) and \(D''\) satisfy (a), \(O p(D^*) = O p(D' \cup D'') = O p(D') \cup O p(D'') = \{t\}\)

(b) \(\forall t^* \in T_i^* : t^* \in T_i'\) or \(t^* \in T_i''\). Suppose \(t^* \in T_i'\). Since \(D'\) and \(D''\) satisfy (b)

\[O p(T_1^*, \{t^*\}, \ldots, T_m^*) \supseteq O p(T_1', \{t^*\}, \ldots, T_m') \neq \emptyset\]

If \(O p\) is \(-\):

(a) \(\langle T_1', T_2' \rangle\) satisfies (a): \(T_1' - T_2' = \{t\}\).

\[\Rightarrow t\) is the only tuple that is in \(T_1'\), but not in \(T_2'\).

Also, \(\langle T_1', T_2' \rangle\) satisfies (b): \(\forall t^* \in T_1' : \{t^*\} - T_2' \neq \emptyset, t^* \notin T_2'\)

\[\Rightarrow T_1' = \{t\}\). Similarly, \(T_1'' = \{t\}\)

\[\Rightarrow T_1^* - T_2^* = \{t\}\]
(a) From (a), we know \(\forall t^* \in T_1^* : t^* = t \Rightarrow \{ t^* \} - T_2^* = \{ t \} \neq \emptyset \).

Also, \(\forall t^* \in T_2^* : \exists t \Rightarrow T_1^* - \{ t^* \} = \{ t \} \neq \emptyset \).

If \(Op \) is \(\bowtie \):

(b) Consider an arbitrary \(T^*_i \in D' \) and \(t^* \in T^*_i \)

\[t^* \in T^*_i \) or \(t^* \in T^*_i
\]

Similarly, we can prove \(\forall T^* \subseteq D^* : \forall t^* \in T^*_i : t^* = t \cdot T^* \)

Above, we have shown that \(D^* = D' \cup D'' \) also satisfies requirements (a) and (b) in Definition 2.3.1. According to the maximality of tuple derivations, \(D' \) is a maximal subset of \(D \) that satisfies the requirements. Thus, we know that \(D' = D^* \). Similarly, we can prove \(D'' = D^* \). Therefore \(D' = D'' \), and there is a unique derivation for every view tuple.

Example 2.3.3 (Tuple Derivation for Aggregation) Given table \(R \) in Figure 2.10(a), and tuple \(t = (2, 8) \in \alpha_{X,sum(Y)}(R) \) in Figure 2.10(b), the derivation of \(t \) is

\[\alpha_{X,sum(Y)}^{-1}_R((2, 8)) = \{ (2, 0), (2, 3), (2, 5) \} \]

shown in Figure 2.10(c). Notice that \(R \)'s subset \(\{ (2, 3), (2, 5) \} \) also satisfies requirements
(a) \(R \)
\[
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
\]

(b) \(\alpha_{X, \text{sum}(Y)}(R) \)
\[
<table>
<thead>
<tr>
<th>X</th>
<th>\text{sum}(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>
\]

(c) \(\tilde{\alpha}_R^{-1}(2, 8) \)
\[
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
\]

Figure 2.10: Tuple derivation for aggregation

(a) and (b) in Definition 2.3.1, but it is not maximal. Intuitively, \(\langle 2, 0 \rangle \) also contributes to the result tuple, since \(t = \langle 2, 8 \rangle \in \alpha_{X, \text{sum}(Y)}(R) \) is computed by adding the \(Y \) attributes of \(\langle 2, 3 \rangle \), \(\langle 2, 5 \rangle \), and \(\langle 2, 0 \rangle \) in \(R \).

From Definition 2.3.1 and the semantics of the operators introduced in Section 2.2, we now specify the actual tuple derivations for each operator. We prove that these specific derivations indeed capture the general definition of tuple derivations from Definition 2.3.1. The derivations for selection, projection, join, aggregation, and set union are fairly easy to understand. For the set difference operator, given \(t \in T_1 - T_2 \), the tuple \(t \) from \(T_1 \) and all tuples in \(T_2 \) contribute to \(t \). Recall that a tuple’s derivation fully explains why the tuple appears in the operation result. In particular, a tuple \(t \) appears in \(T_1 - T_2 \) not only because \(\exists \ t \in T_1 \), but also because \(\neg \exists \ t \in T_2 \). Therefore, all tuples in \(T_2 \) contribute to \(t \in T_1 - T_2 \) in the sense that they ensure \(\neg \exists \ t \in T_2 \). Further discussion and examples can be found in Section 2.6.

Theorem 2.3.4 (Tuple Derivations for Operators) Let \(T, T_1, \ldots, T_m \) be tables. Recall that \(T_i \) denotes the schema of \(T_i \).

\[
\begin{align*}
\sigma_C^{-1}_{(T)}(t) &= \langle \{t\} \rangle, \text{ for } t \in \sigma_C(T) \\
\pi_A^{-1}_{(T)}(t) &= \langle \sigma_{A=t}(T) \rangle, \text{ for } t \in \pi_A(T) \\
\bowtie_{(T_1, \ldots, T_m)}^{-1}(t) &= \langle \{t.T_1\}, \ldots, \{t.T_m\} \rangle, \text{ for } t \in T_1 \bowtie \cdots \bowtie T_m \\
\alpha_{G, \text{aggr}(B)}^{-1}_{(T)}(t) &= \langle \sigma_{G=t.G}(T) \rangle, \text{ for } t \in \alpha_{G, \text{aggr}(B)}(T) \\
\cup_{(T_1, \ldots, T_m)}^{-1}(t) &= \langle \sigma_{T_1=t}.(T_1), \ldots, \sigma_{T_m=t}.(T_m) \rangle, \text{ for } t \in T_1 \cup \cdots \cup T_m \\
\cap_{(T_1, T_2)}^{-1}(t) &= \langle \{t\}, T_2 \rangle, \text{ for } t \in T_1 - T_2
\end{align*}
\]
2.3. VIEW TUPLE DERIVATIONS

Proof: We formally prove that the theorem follows our general lineage definition for relational operators in Definition 2.3.1. To prove $Op^{-1}_{\langle T_1,\ldots,T_m \rangle}(t) = \langle T'_1,\ldots,T'_m \rangle$, we need to prove:

1. $T'_i \subseteq T_i$, $i = 1..m$.
2. $Op(T'_1,\ldots,T'_m) = \{t\}$.
3. $\forall t' \in T'_i : Op(T'_1,\ldots,\{t'\},\ldots,T'_m) \neq \emptyset$.
4. $\forall \langle T''_1,\ldots,T''_m \rangle$ that satisfy 1, 2, 3: $\langle T''_1,\ldots,T''_m \rangle \subseteq \langle T'_1,\ldots,T'_m \rangle$.

Here, we show the proofs for \bowtie, α, and \neg. Proofs for the other operators are very similar.

1. **Join:** $\bowtie^{-1}_{\langle T_1,\ldots,T_m \rangle}(t) = \{\{t.T_1\},\ldots,\{t.T_m\}\}$, for $t \in T_1 \bowtie \cdots \bowtie T_m$.

 Let $T'_i = \{t.T_i\}$, $i = 1..m$.

 1. $t \in T_1 \bowtie \cdots \bowtie T_m \Rightarrow t.T_i \in T_i$, $i = 1..m \Rightarrow T'_i \subseteq T_i$, $i = 1..m$

 2. $\{t.T_1\} \bowtie \cdots \bowtie \{t.T_m\} = \{t\}$ according to the definition of \bowtie

 3. Consider an arbitrary t' in an arbitrary T'_i.

 $t' = t.T_i \Rightarrow T'_i \bowtie \cdots \bowtie \{t'\} \bowtie \cdots T'_i = \{t\} \neq \emptyset$

 4. Consider an arbitrary $\langle T''_1,\ldots,T''_m \rangle$ that satisfies 1, 2, 3.

 $\Rightarrow T''_1 \bowtie \cdots \bowtie T''_m = \{t\}$

 $\Rightarrow \forall t'' \in T''_i : T'_i \bowtie \cdots \bowtie \{t''\} \bowtie \emptyset \subseteq \{t\}$ because of the monotonicity of \bowtie

 Since $\forall t'' \in T''_i : T''_i \bowtie \cdots \bowtie \{t''\} \bowtie \emptyset \neq \emptyset$

 $\Rightarrow \forall t'' \in T''_i : T'_i \bowtie \cdots \bowtie \{t''\} \bowtie T''_i = \{t\}$

 $\Rightarrow \forall t'' \in T''_i : t'' = t.T_i \in T'_i \Rightarrow T''_i \subseteq T'_i$

2. **Aggregation:** $\alpha^{-1}_{G,aggr(B)}(T) = \langle \sigma_{G=t.G}(T) \rangle$, for $t \in \alpha_{G,aggr(B)}(T)$.

 Let $T' = \sigma_{G=t.G}(T)$.

 1. $T' \subseteq T$ according to the definition of σ

 2. $\forall t' \in T' : t'.G = t.G$ and $\forall t''$ such that $t'' \in T$ and $t'' \notin T' : t''.G \neq t.G$

 $\Rightarrow t = \langle T'.G, aggr(T'.B) \rangle$

 (In other words, T' is the group from which t is computed.)

 $\Rightarrow \alpha_{G,aggr(B)}(T') = \{t\}$

 3. Consider an arbitrary $t' \in T'$

 $t'.G = t.G \Rightarrow \alpha_{G,aggr(B)}(\{t'\}) = \langle \{t.G, aggr(\{t'.B\})\} \rangle \neq \emptyset$
4. Consider an arbitrary T'' that satisfies 1, 2, 3.

$$\alpha_{G, aggr(B)}(T'') = \{t\}$$

$$\Rightarrow \forall t'' \in T'': t''.G = t.G$$

$$\Rightarrow \forall t'' \in T'': t'' \in T' \Rightarrow T'' \subseteq T'$$

(3) Difference: \(\langle T_1, T_2 \rangle(t) = \langle \{t\}, T_2 \rangle\), for \(t \in T_1 - T_2\)

Let \(T'_1 = \{t\}, T'_2 = T_2\).

1. It is obvious that \(T'_1 \subseteq T_1\).

2. \(t \in T_1 - T_2 \Rightarrow t \not\in T_2 \Rightarrow T'_1 - T'_2 = \{t\} - T_2 = \{t\}\)

 Thus, \(\langle T'_1, T'_2 \rangle\) satisfies condition (a)

3. \(\forall t' \in T'_1, t' = t \Rightarrow \{t'\} - T'_2 = \{t\} \neq \emptyset\)

 \(\forall t' \in T'_2, t' \neq t \Rightarrow T'_1 - \{t'\} = \{t\} \neq \emptyset\)

 Thus, \(\langle T'_1, T'_2 \rangle\) satisfies condition (b)

4. Consider an arbitrary \(\langle T'_1, T'_2 \rangle\) that satisfies 1, 2, 3.

 \(\Rightarrow T'_1 - T'_2 = \{t\} \text{ and } \forall t'' \in T'_1: \{t''\} - T'_2 \neq \emptyset\)

 \(\Rightarrow \forall t'' \in T'_1: t'' = t, \text{ because otherwise}\)

 \(\text{either } \{t''\} \subseteq T'_1 - T'_2 \neq \{t\} \text{ given } t'' \not\in T'_2, \text{ or } \{t''\} - T'_2 = \emptyset \text{ given } t'' \in T'_2\)

 \(\Rightarrow T'_1 \subseteq T'_1\)

 Also, \(T'_2 \subseteq T'_2 = T_2\)

\[\square\]

2.3.2 Tuple Derivations for Views

As mentioned earlier, a view definition can be thought of as an operator tree that is evaluated bottom-up. Thus, in this section we proceed to define tuple derivations for views inductively based on tuple derivations for the operators comprising the view definition tree. Intuitively, if a base tuple \(t^*\) contributes to a tuple \(t'\) in the intermediate result of a view evaluation, and \(t'\) further contributes to a view tuple \(t\), then \(t^*\) contributes to \(t\). We define a view tuple’s derivation to be the set of all base tuples that contribute to the view tuple. The specific process through which the view tuple is derived can be illustrated by applying the view definition tree to the derivation tuple sets, and presenting the intermediate results for each operator in the evaluation.
Definition 2.3.5 (Tuple Derivation for a View) Let D be a database with base tables \(R_1, \ldots, R_m \), and let \(V = v(D) \) be a view over D. Consider a tuple \(t \in V \).

1. \(v = R_i \), \(i = 1..m \): Tuple \(t \in R_i \) contributes to itself in \(V \).

2. \(v = \text{Op}(v_1, \ldots, v_k) \), where \(v_j \) is a view definition over \(D \), \(j = 1..k \): Suppose \(t' \in v_j(D) \) contributes to \(t \) according to the operator \(\text{Op} \) (by Definition 2.3.1), and \(t^* \in R_i \) contributes to \(t' \) according to the view \(v_j \) (by this definition recursively). Then \(t^* \) contributes to \(t \) according to \(v \).

We define \(t \)'s derivation in \(D \) according to \(v \) to be \(v^{-1}_D(t) = \langle R^*_1, \ldots, R^*_m \rangle \), where \(R^*_1, \ldots, R^*_m \) are subsets of \(R_1, \ldots, R_m \) such that \(t^* \in R^*_i \) iff \(t^* \in R_i \) contributes to \(t \) according to \(v \), for \(i = 1..m \). Also, we call \(R^*_i \) \(t \)'s derivation in \(R_i \) according to \(v \), denoted as \(v^{-1}_{R_i}(t) \).

The derivation of a view tuple set \(T \) contains all base tuples that contribute to any view tuple in the set \(T \):

\[
v^{-1}_D(T) = \bigcup_{t \in T} v^{-1}_D(t)
\]

Theorem 2.3.2 can be applied inductively in the obvious way to show that view tuple derivations are always unique.

Example 2.3.6 (Tuple Derivation for a View) Given base table \(R \) in Figure 2.11(a), view \(V = \alpha_{X,s\sum(Y)}(\sigma_{Y \neq 0}(R)) \) in Figure 2.11(c), and tuple \(t = \langle 2, 8 \rangle \in V \), it is easy to see that tuples \(\langle 2, 3 \rangle \) and \(\langle 2, 5 \rangle \) in \(R \) contribute to \(\langle 2, 3 \rangle \) and \(\langle 2, 5 \rangle \) in \(\sigma_{Y \neq 0}(R) \) in Figure 2.11(b), and further contribute to \(\langle 2, 8 \rangle \) in \(V \). The derivation of \(t \) is \(v^{-1}_R(\langle 2, 8 \rangle) = \{ \langle 2, 3 \rangle, \langle 2, 5 \rangle \} \) as shown in Figure 2.11(d).

We now state some properties of view tuple derivations to provide the groundwork for our derivation tracing algorithms.

Lemma 2.3.7 (Contribution Transitivity) Let \(D \) be a database with base tables \(R_1, \ldots, R_m \). Given view \(V = v(D) = v'(V_1, \ldots, V_k) \), where \(V_j = v_j(D) \) for \(j = 1..k \), \(\forall t \in V \): \(\forall t^* \in R_i \in D : t^* \) contributes to \(t \) according to \(v \) iff \(\exists j \in 1..k \), \(t' \in V_j \) such that \(t^* \) contributes to \(t' \) according to \(v_j \) and \(t' \) contributes to \(t \) according to \(v' \).
Proof: We use induction on the height of the query tree for \(v' \), denoted \(h(v') \), where the \(v_i \)'s are the leaves.

Base case: For \(h(v') = 0 \), \(v = v_1 \). The Lemma holds trivially.

Induction hypothesis: Suppose for \(0 \leq h(v') \leq n - 1 \), the Lemma also holds.

Induction step: For \(h(v') = n \), \(v' = \text{Op}(v_1', \ldots, v_q') \), \(V_p' = v_p'(V_1, \ldots, V_k) \), and \(h(v_p') \leq n - 1 \), \(p = 1..q \).

1. If \(t^* \) contributes to \(t \)
 \[\Rightarrow \] According to Definition 2.3.5, \(\exists p \in 1..q, \exists t'' \in V_p' \) such that \(t^* \) contributes to \(t'' \) and \(t'' \) contributes to \(t \)
 \[\Rightarrow \] Since \(h(v_p') \leq n - 1 \), according to the induction hypothesis,
 \(\exists j \in 1..k, t' \in V_j \) such that \(t^* \) contributes to \(t' \) and \(t' \) contributes to \(t'' \)
 \[\Rightarrow \] According to Definition 2.3.5, \(t' \) contributes to \(t \)
 \[\Rightarrow \] \(\exists j \in 1..k, t' \in V_j, t^* \) contributes to \(t' \) and \(t' \) contributes to \(t \).

2. If \(\exists j \in 1..k, t' \in V_j \): \(t^* \) contributes to \(t' \) and \(t' \) contributes to \(t \)
 \[\Rightarrow \] According to Definition 2.3.5, \(\exists p \in 1..q, \exists t'' \in V_p' \) such that \(t' \) contributes to \(t'' \) and \(t'' \) contributes to \(t \)
 \[\Rightarrow \] Since \(h(v_p') \leq n - 1 \), according to the induction hypothesis, \(t^* \) contributes to \(t'' \)
 \[\Rightarrow \] According to Definition 2.3.1, \(t^* \) contributes to \(t \).

By induction, the Lemma holds for \(v' \) of height \(n \), and therefore for any \(v' \) and \(v \). \(\Box \)

Theorem 2.3.8 (Derivation Transitivity) Let \(D \) be a database with base tables \(R_1, \ldots, R_m \),
and let \(V = v(D) \) be a view over \(D \). Suppose that \(v \) can also be represented as \(V = v'(V_1, \ldots, V_k) \), where \(V_j = v_j(D) \) is an intermediate view over \(D \), for \(j = 1..k \). Given tuple \(t \in V \), let \(V_j^* \) be \(t \)'s derivation in \(V_j \) according to \(v' \). Then \(t \)'s derivation in \(D \) according to \(v \) is the concatenation of all \(V_j^* \)'s derivations in \(D \) according to \(v_j \), \(j = 1..k \):

\[
v^{-1}_D(t) = \bigodot_{j=1..k} v^{-1}_j(D)(V_j^*)
\]

where \(\bigodot \) represents the multi-way concatenation of relation lists.\(^3\)

\[\text{Proof:}\] We prove Theorem 2.3.8 using Lemma 2.3.7. We need to prove that \(\forall i = 1..m: \) all tuples in the \(R_i \) component\(^4\) of \(v^{-1}_D(t) \) are also in the \(R_i \) component of \(\bigodot_{j=1..k} v^{-1}_j(D)(V_j^*) \), and vice-versa.

1. Consider an arbitrary \(R_i \) and \(t^* \in v^{-1}_R_i(t) \)
 \(\Rightarrow \) According to Definition 2.3.5, \(t^* \) contributes to \(t \)
 \(\Rightarrow \) According to Lemma 2.3.7, \(\exists j \in 1..k, t' \in V_j \) such that
 \(t' \) contributes to \(t \) according to \(v' \), and \(t^* \) contributes to \(t' \) according to \(v_j \)
 \(\Rightarrow \) \(t' \in V_j^* \) and \(t^* \in v^{-1}_{R_i}(t') \)
 \(\Rightarrow \) \(t^* \in v^{-1}_{R_i}(V_j^*) \), where \(v^{-1}_{R_i}(V_j^*) \) is the \(R_i \) component of \(\bigodot_{j=1..k} v^{-1}_j(D)(V_j^*) \)

2. Consider an arbitrary \(R_i \) and \(t^* \) in the \(R_i \) component of \(\bigodot_{j=1..k} v^{-1}_j(D)(V_j^*) \)
 \(\Rightarrow \) \(\exists j \in 1..k, \) such that \(v_j \) is defined over \(R_i \)
 \(\Rightarrow \) \(t^* \in v^{-1}_{R_i}(V_j^*) \)
 \(\Rightarrow \) \(\exists t' \in V_j^*, \) such that \(t^* \in v^{-1}_{R_i}(t') \)
 \(\Rightarrow \) \(t' \) contributes to \(t \) according to \(v' \), and \(t^* \) contributes to \(t' \) according to \(v_j \)
 \(\Rightarrow \) According to Lemma 2.3.7, \(t^* \) contributes to \(t \)

\(\Rightarrow \) According to Definition 2.3.5, \(t^* \in v^{-1}_{R_i}(t) \) \(\square \)

\(^3\)The concatenation of two relation lists \((R_1, \ldots, R_m) \circ (S_1, \ldots, S_n) \) is \((R_1, \ldots, R_m, S_1, \ldots, S_n) \). Recall that relations are renamed so that the same relation never appears twice.

\(^4\)The derivation of a tuple consists of a list of subsets of base tables. The \(R_i \) component of the derivation is the subset of base table \(R_i \) in the list. Here specifically, the \(R_i \) component of \(v^{-1}_D(t) \) is \(v^{-1}_{R_i}(t) \).
Theorem 2.3.8 follows from Definition 2.3.5. It shows that given a view \(V \) with a complex definition tree, we can compute a tuple’s derivation by recursively tracing through the hierarchy of intermediate views that comprise the tree.

Since we define tuple derivations inductively based on the view query tree, an interesting question arises: Are the derivations of tuples in two equivalent views also equivalent? Two view definitions (or query trees) \(v_1 \) and \(v_2 \) are equivalent iff \(\forall D: v_1(D) = v_2(D) \) [Ull89b]. We prove in Theorem 2.3.11 that given any two equivalent Select-Project-Join (SPJ) views, their tuple derivations also are equivalent. In order to prove Theorem 2.3.11, we first give a definition of tuple derivations specific to SPJ views and prove that it is equivalent to Definition 2.3.5 for SPJ views.

Definition 2.3.9 (Tuple Derivation for an SPJ View) Let \(D \) be a database with base tables \(R_1, \ldots, R_m \), and let \(V = v(D) \) be an SPJ view over \(D \). Given tuple \(t \in V \), \(\forall R_i \), \(t^* \in R_i \) contributes to \(t \) iff \(t \in v(R_1, \ldots, R_{i-1}, \{t^*\}, R_{i+1}, \ldots, R_m) \). t’s derivation according to \(v \) is \(v^{-1}_D(t) = \langle R_1^*, \ldots, R_m^* \rangle \), where each \(R_i^* \) contains all the tuples in \(R_i \) that contribute to \(t \).

Definition 2.3.9 says that a base tuple \(t^* \in R_i \) contributes to \(t \) in the view if it produces \(t \) together with other base tables \(R_1, \ldots, R_{i-1}, R_{i+1}, \ldots, R_m \). For SPJ views, this definition is equivalent to Definition 2.3.5, as shown in Lemma 2.3.10. However, it does not apply to views with aggregation.

Lemma 2.3.10 (Definition Equivalence) Definition 2.3.9 is equivalent to Definition 2.3.5 for SPJ views. In other words, the derivation of \(t \) defined by Definition 2.3.5 is the same as that defined by Definition 2.3.9 for every SPJ view and every traced tuple.

Proof: We first prove the equivalence of the two definitions for views with a single SPJ operator. For \(V = \sigma_C(R) \) or \(\pi_A(R) \), \(\forall t \in V \), let \(\langle R^* \rangle \) and \(\langle R^{**} \rangle \) be \(t \)’s derivations defined by Definition 2.3.5 and Definition 2.3.9.

1. Consider an arbitrary \(t^* \in R^* \)
 \[\Rightarrow \] According to Definition 2.3.5 and the monotonicity of \(V \),
 \[\emptyset \subsetneq v(\{t^*\}) \subseteq v(R^*) = \{t\} \rightarrow v(\{t^*\}) = \{t\} \]
 \[\Rightarrow \] \(t^* \) contributes to \(t \) according to Definition 2.3.9
 \[\Rightarrow \] \(t^* \in R^{**} \)
2.3. VIEW TUPLE DERIVATIONS

2. Consider an arbitrary \(t^* \in R^{**} \)
\[\Rightarrow \]
According to Definition 2.3.9, \(v(\{t^*\}) = \{t\} \)
\[\Rightarrow \]
\(v(R^* \cup \{t^*\}) = v(R^*) \cup v(\{t^*\}) = \{t\} \) and \(\forall t_1 \in R^* \cup \{t^*\} : v(\{t_1\}) \neq \emptyset \)
\[\Rightarrow \]
\(R^* \cup \{t^*\} \) also satisfies (a) and (b) in Definition 2.3.5
\[\Rightarrow \]
From the maximality of \(R^* \), we know that \(t^* \in R^* \)

Therefore, \(R^* = R^{**} \).

For \(V = R \Join S \), \(\forall t \in V \), let \(\langle R^*, S^* \rangle \) and \(\langle R^{**}, S^{**} \rangle \) be \(t \)'s derivations defined by Definition 2.3.5 and Definition 2.3.9.

1. Consider an arbitrary \(t^* \in R^* \)
\[\Rightarrow \]
According to Definition 2.3.5 and the monotonicity of \(V \),
\(\emptyset \subset \{t^*\} \Join S^* \subseteq R^* \Join S^* = \{t\} \Rightarrow \{t^*\} \Join S^* = \{t\} \)
\[\Rightarrow \]
\(t^* \) contributes to \(t \) according to Definition 2.3.9
\[\Rightarrow \]
\(t^* \in R^{**} \)

2. Consider an arbitrary \(t^* \in R^{**} \)
\[\Rightarrow \]
According to Definition 2.3.9, \(\{t^*\} \Join S = \{t\} \)
\[\Rightarrow \]
\(\exists t' \in S \) such that \(\{t^*\} \Join \{t'\} = \{t\} \)
\[\Rightarrow \]
\((R^* \cup \{t^*\}) \Join (S^* \cup \{t'\}) = \{t\} \). Also,
\(\forall t_1 \in R^* \cup \{t^*\} : \{t_1\} \Join (S^* \cup \{t'\}) \neq \emptyset \) and
\(\forall t_2 \in S^* \cup \{t'\} : (R^* \cup \{t^*\}) \Join \{t_2\} \neq \emptyset \)
\[\Rightarrow \]
\(\langle R^* \cup \{t^*\}, S^* \cup \{t'\} \rangle \) also satisfies (a) and (b) in Definition 2.3.5.
\[\Rightarrow \]
From the maximality of \(\langle R^*, S^* \rangle \), we know that \(t^* \in R^* \).

Therefore, \(R^* = R^{**} \). Similarly, we can prove \(S^* = S^{**} \).

We already know from Theorem 2.3.8 that tuple derivation as defined by Definition 2.3.5 is transitive. We can also prove this property for derivation as defined by Definition 2.3.9. After proving that Definition 2.3.5 and Definition 2.3.9 are equivalent for views with a single SPJ operator, due to the transitive property of tuple derivation, we can easily prove that Definition 2.3.5 and Definition 2.3.9 are equivalent for any SPJ view by induction.

Theorem 2.3.11 (Derivation Equivalence for SPJ Views) Tuple derivations of equivalent SPJ views are equivalent. That is, given two equivalent SPJ views \(v_1 \) and \(v_2 \), \(\forall D: \forall t \in v_1(D) = v_2(D): v_1^{-1}_D(t) = v_2^{-1}_D(t) \).
Proof: Having proved that Definition 2.3.9 is equivalent to Definition 2.3.5 for SPJ views, we now prove Theorem 2.3.11 based on Definition 2.3.9.

Given two equivalent SPJ views v_1 and v_2, we know that $\forall D = \langle T_1, \ldots, T_m \rangle: v_1(D) = v_2(D)$. Given $t \in v_1(D) = v_2(D)$, $\forall t^* \in v_1^{-1}_D(t)$: According to Definition 2.3.9, $v_1(R_1, \ldots, \{t^*\}, R_m) = \{t\}$. Since $v_1 \equiv v_2$, we know that $v_2(R_1, \ldots, \{t^*\}, R_m) = \{t\}$. Thus, $t^* \in v_2^{-1}_D(t)$. Therefore, $v_1^{-1}_D(t) \subseteq v_2^{-1}_D(t)$. We can similarly prove that $v_2^{-1}_D(t) \subseteq v_1^{-1}_D(t)$. Therefore, $v_1^{-1}_D(t) = v_2^{-1}_D(t)$. \(\square\)

According to Theorem 2.3.11, we can transform any SPJ view to a simple canonical form before tracing tuple derivations, and we will exploit this property in our algorithms. Unfortunately, views with aggregation do not have this nice property, as shown in the following example.

Example 2.3.12 (Derivation Inequivalence for Views with Aggregation) Let $V_1 = v_1(R) = \alpha_{X,\text{sum}(Y)}(R))$ and $V_2 = v_2(R) = \alpha_{X,\text{sum}(Y)}(\sigma_{Y \neq 0}(R))$. v_1 and v_2 are equivalent, since $\forall R, v_1(R) = v_2(R)$. Given base table R in Figures 2.10(a) and 2.11(a), Figures 2.10(b) and 2.11(c) show that the contents of the two views are the same. However, the derivation of tuple $t = \langle 2, 8 \rangle \in V_1$ according to v_1 (shown in Figure 2.10(c)) is different from that according to v_2 (shown in Figure 2.11(d)). \(\square\)

Given Definition 2.3.5, a straightforward way to compute a view tuple’s derivation is to compute the intermediate results for all operators in the view definition tree, store the results as temporary tables, then trace the tuple’s derivation in the temporary tables recursively until reaching the base tables. Obviously, this approach is impractical due to the computation and storage required for all the intermediate results. In the following sections, we separately consider SPJ views, ASPJ views, and more general views with set operators. We will show that one relational query over the base tables suffices to compute tuple derivations for simple views such as SPJ views. Recursive derivation tracing algorithms that require a modest amount of auxiliary information are needed for ASPJ and more general view derivation tracing.
2.4 Derivation Tracing for SPJ Views

Derivations of tuples in SPJ views can be computed using a single relational query over the base data. In this section, we specify derivation tracing queries for SPJ views, and briefly discuss some optimization issues for these queries.

2.4.1 Derivation Tracing Queries

Sometimes, we can write a query for a specific view definition \(v \) and view tuple \(t \), such that if we apply the query to the database \(D \) it returns \(t \)'s derivation in \(D \) (based on Definition 2.3.5). We call such a query a derivative tracing query (or tracing query) for \(t \) and \(v \).

More formally, we have:

Definition 2.4.1 (Derivation Tracing Query) Let \(D \) be a database, and let \(v \) be a view over \(D \). Given tuple \(t \in v(D) \), \(TQ_{t,v} \) is a derivation tracing query for \(t \) and \(v \) iff \(TQ_{t,v}(D) = v^{-1}_D(t) \), where \(v^{-1}_D(t) \) is \(t \)'s derivation in \(D \) according to \(v \), and \(TQ_{t,v} \) is independent of database instance \(D \). We can similarly define the tracing query for a view tuple set \(T \), and denote it as \(TQ_{T,v}(D) \).

2.4.2 Tracing Queries for SPJ Views

All SPJ views can be transformed into the form \(\pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_m)) \) using a sequence of algebraic transformations [Ull89b]. We call this form the SPJ canonical form. From Theorem 2.3.11, we know that SPJ transformations do not affect view tuple derivations. Thus, given an SPJ view, we first transform it into SPJ canonical form, then compute its tuple derivations systematically using a single tracing query based on the canonical form.

We first introduce an additional operator used in tracing queries for SPJ views.

Definition 2.4.2 (Split Operator) Let \(T \) be a table with schema \(T \). The operator \(\text{Split} \) breaks \(T \) into a list of tables; each table in the list is a projection of \(T \) onto a set of attributes \(A_i \subseteq T, i = 1..m. \)

\[
\text{Split}_{A_1,\ldots,A_m}(T) = \langle \pi_{A_1}(T), \ldots, \pi_{A_m}(T) \rangle
\]
Theorem 2.4.3 (Tracing Query for an SPJ View) Let \(D \) be a database with base tables \(R_1, \ldots, R_m \), and let \(V = v(D) = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_m)) \) be an SPJ view over \(D \). Given tuple \(t \in V \), \(t \)'s derivation in \(D \) according to \(v \) can be computed by applying the following query to the base tables:

\[
TQ_{t,v} = \text{Split}_{R_1, \ldots, R_m}(\sigma_{C \land A = t}(R_1 \bowtie \cdots \bowtie R_m))
\]

Given a tuple set \(T \subseteq V \), \(T \)'s derivation tracing query is:

\[
TQ_{T,v} = \text{Split}_{R_1, \ldots, R_m}(\sigma_C(R_1 \bowtie \cdots \bowtie R_m) \bowtie T)
\]

where \(\bowtie \) represents the relational semijoin operator [Ull89a]. \(\square \)

Proof: We need to prove:

\[
v^{-1}_D(t) = \text{Split}_{R_1, \ldots, R_m}(\sigma_{A = t \land C}(R_1 \bowtie \cdots \bowtie R_m))
\]

\[
v^{-1}_D(T) = \text{Split}_{R_1, \ldots, R_m}(\sigma_C(R_1 \bowtie \cdots \bowtie R_m) \bowtie T)
\]

Let \(V_2 = R_1 \bowtie \cdots \bowtie R_m, V_1 = \sigma_C(V_2), \) and \(V = \pi_A(V_1) \). According to Theorem 2.3.8:

\[
v^{-1}_D(t) = v_1^{-1}_D(\pi_{A^{-1}}\{t\})(V_1) = v_1^{-1}_D(\sigma_{A=t}(V_1))
\]

\[
= v_2^{-1}_D(\sigma_{C^{-1}}\{t\})(V_1) = v_2^{-1}_D(\sigma_{A=t}(V_1))
\]

\[
= \text{Split}_{R_1, \ldots, R_m}(\sigma_{A=t}(V_1))
\]

\[
= \text{Split}_{R_1, \ldots, R_m}(\sigma_{A=t}(\sigma_C(R_1 \bowtie \cdots \bowtie R_m)))
\]

\[
= \text{Split}_{R_1, \ldots, R_m}(\sigma_{A=t \land C}(R_1 \bowtie \cdots \bowtie R_m))
\]

\[
v^{-1}_D(T) = \bigcup_{t \in T} \text{Split}_{R_1, \ldots, R_m}(\sigma_{A=t \land C}(R_1 \bowtie \cdots \bowtie R_m))
\]

\[
= \text{Split}_{R_1, \ldots, R_m}(\bigcup_{t \in T} \sigma_{A=t \land C}(R_1 \bowtie \cdots \bowtie R_m))
\]

\[
= \text{Split}_{R_1, \ldots, R_m}(\sigma_{A \in T}(\sigma_C(R_1 \bowtie \cdots \bowtie R_m)))
\]

\[
= \text{Split}_{R_1, \ldots, R_m}(\sigma_C(R_1 \bowtie \cdots \bowtie R_m) \bowtie T)
\]
Example 2.4.4 (Tracing Query for Calif) Recall Q1 over view Calif in Example 2.1.1, where we asked about the derivation of tuple \(\langle \text{Target}, \text{pencil}, 3000 \rangle\). Figure 2.12(a) shows the tracing query for \(\langle \text{Target}, \text{pencil}, 3000 \rangle\) in Calif according to Theorem 2.4.3. The reader may verify that by applying the tracing query to the source tables in Figures 2.1, 2.2, and 2.3, we obtain the derivation result in Figure 2.6.

2.4.3 Tracing Query Optimizations

The derivation tracing queries in Section 2.4.2 clearly can be optimized for better performance. For example, the simple technique of pushing selection conditions below the join operator is especially applicable in tracing queries, and can significantly reduce query cost. Figure 2.12(b) shows the optimized tracing query for the Calif tuple. If the view contains the key attributes of each base table, the tracing query can be even simpler, as shown in the following theorem.

Theorem 2.4.5 (Derivation Tracing using Key Information) Let \(R_i\) be a base table with key attributes \(K_i, i = 1..m\), and suppose view \(V = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_m))\) include all base table keys (i.e., \(K_i \in A, i = 1..m\)). Then view tuple \(t\)'s derivation is \(\langle \sigma_{K_1=t.K_1}(R_1), \ldots, \sigma_{K_m=t.K_m}(R_m) \rangle\).
Proof: Assuming $\langle R_1^*, \ldots, R_m^* \rangle$ is the derivation of t, we need to prove that $R_i^* = \sigma_{K_i=t.K_i}(R_i)$, for $i = 1..m$. From Theorem 2.5.2, we know that

$$\langle R_1^*, \ldots, R_m^* \rangle = \text{Split}_{R_1 \ldots R_m}(\sigma_{A=t \land C}(R_1 \bowtie \ldots \bowtie R_m)).$$

1. $\forall t \in R_i^* \in \pi_{R_i}(\sigma_{A=t \land C}(R_1 \bowtie \ldots \bowtie R_m))$: Since $K_i \in A$ and $K_i \in R_i$, $t.K_i = t.K_i$. Therefore, $t \in \sigma_{K_i=t.K_i}(R_i)$.

2. $\forall t \in \sigma_{K_i=t.K_i}(R_i)$: $t.K_i = t.K_i$, and therefore $t \in R_i^*$. Because otherwise, $\exists t' \in R_i^*$, such that $t'.K_i = t.K_i$. Then there exist two tuples $t \neq t'$ in R_i with the same K_i value, which conflicts with the key constraint.

Therefore $R_i^* = \sigma_{K_i=t.K_i}(R_i)$, for $i = 1..m$. \qed

According to Theorem 2.4.5, we can use key information to fetch the derivation of a tuple directly from the base tables, without performing a join. The worst-case query complexity is reduced from $O(n^m)$ to $O(mn)$, where n is the maximum size of the base tables, and m is the number of base tables on which v is defined.

We have shown that tuple derivations for SPJ views can be traced in a simple manner. For more complex views with aggregations or set operators, we cannot compute tuple derivations using a single query over the base tables. In the next two sections, we present recursive tracing algorithms for these views.

2.5 Derivation Tracing for ASPJ Views

In this section, we consider SPJ views with aggregation (ASPJ views). Although we have shown that no intermediate results are required for SPJ view derivation tracing, some ASPJ views are not traceable without storing or recomputing certain intermediate results. For example, Q2 in Example 2.1.2 asks for the derivation of tuple $t = \langle 5400 \rangle$ in the view Clothing. It is not possible to compute t's derivation directly from store, item, and sales, because total is the only column of view Clothing, and it is not contained in the base tables at all. Therefore, we cannot find t's derivation by knowing only that t.total = 5400. In order to trace t's derivation in the base tables correctly, we need its
2.5. DERIVATION TRACING FOR ASPJ VIEWS

A derivation \(\langle \text{Macy's}, 5400 \rangle\) in the intermediate aggregation result, whose grouping attribute \texttt{s_name} serves as a “bridge” that connects the base tables and the final view table.

We introduce a canonical form for ASPJ views in Section 2.5.1. In Section 2.5.2, we specify a derivation tracing query for “one-level” ASPJ views. We then develop a recursive tracing algorithm for complex ASPJ views and justify its correctness in Section 2.5.3. As mentioned above, intermediate (aggregation) results in the view evaluation are needed for derivation tracing. Relevant portions of the intermediate results can be recomputed from the base tables when needed, or the entire results can be stored as materialized auxiliary views in the warehouse; this issue is explored in depth in Chapter 3. In the remainder of this chapter we simply assume that all intermediate aggregation results are available.

2.5.1 ASPJ Canonical Form

Unlike SPJ views, ASPJ views do not have a simple canonical form, because in an ASPJ view definition some selection, projection, and join operators cannot be pushed above or below the aggregation operators [GHQ95]. View Clothing in Figure 2.7 is such an example, where the selection \texttt{total > 5000} cannot be pushed below the aggregation, and the selection \texttt{category = "clothing"} cannot be pulled above the aggregation. However, by commuting and combining some SPJ operators [Ull89b], it is possible to transform any ASPJ view query tree into a form composed of \(\alpha\)-\(\pi\)-\(\sigma\)-\(\bowtie\) operator sequences that we call ASPJ segments. We call this segmented form the ASPJ canonical form. An ASPJ segment may omit operators, although each segment in the ASPJ canonical form except the outermost must include an aggregation operator (otherwise the segment would be merged with an adjacent segment). For definition purposes, when a unary operator is missing we assume there is a corresponding trivial operator to take its place. The trivial aggregation on table \(T\) is \(\alpha_T\), the trivial projection is \(\pi_T\), and the trivial selection is \(\sigma_{\text{true}}\).

Definition 2.5.1 (ASPJ Canonical Form) Let \(v\) be an ASPJ view over database \(D\).

1. \(v = R\), where \(R\) is a base table in \(D\), is in ASPJ canonical form.
2. \(v = \alpha_{G,aggr(B)}(\pi_A(\sigma_C(v_1 \bowtie \cdots \bowtie v_k)))\) is in ASPJ canonical form if \(v_j\) is an ASPJ view in ASPJ canonical form with a nontrivial topmost aggregation operator, \(j = 1..k\). □
Both of our example views Calif and Clothing as defined in Section 2.1 are in canonical form, while view \(V = \sigma_C(R) \bowtie \pi_A(S) \) is not in canonical form.

As mentioned in Section 2.3, although we can trace any view’s derivation by tracing through one operator at a time based on the original view definition, that approach requires us to store or recompute the intermediate results of every operator, which can be extremely expensive. Transforming an ASPJ view definition into canonical form allows us to store or recompute fewer intermediate results, by tracing through all operators in each segment together, as we will see in the next section.

2.5.2 Derivation Tracing Queries for One-Level ASPJ Views

A view defined by one ASPJ segment is called a one-level ASPJ view. Similar to SPJ views, we can use one query to trace tuple derivations for a one-level ASPJ view.

Theorem 2.5.2 (Tracing Query for a One-Level ASPJ View) Given one-level ASPJ view \(V = \pi_A(\sigma_C(T_1 \bowtie \cdots \bowtie T_m)) = \alpha_{G,aggr}(B, \pi_A(\sigma_C(T_1 \bowtie \cdots \bowtie T_m))) \) and tuple \(t \in V \), t’s derivation in \(T_1, \ldots, T_m \) according to \(V \) can be computed using the following tracing query:

\[
TQ_{t,v} = \text{Split}_{T_1, \ldots, T_m}(\sigma_{t,G = t,G}(\sigma_{C}(T_1 \bowtie \cdots \bowtie T_m)))
\]

Given tuple set \(T \subseteq V \), \(T \)’s derivation tracing query is:

\[
TQ_{T,v} = \text{Split}_{T_1, \ldots, T_m}(\sigma_{G}(T_1 \bowtie \cdots \bowtie T_m) \bowtie T)
\]

Proof: Let \(V_1 = \pi_A(\sigma_{C}(T_1 \bowtie \cdots \bowtie T_m)) \) and let \(V = \alpha_{G,aggr}(B)(V_1) \).

\[
v_1^{-1}_D(t) = v_1^{-1}_D(\alpha_{G,aggr}(B)^{-1} \sigma_C(T_1 \bowtie \cdots \bowtie T_m)) = v_1^{-1}_D(\alpha_{G,aggr}(V_1)) = \text{Split}_{T_1, \ldots, T_m}(\sigma_{C}(T_1 \bowtie \cdots \bowtie T_m) \bowtie \sigma_{G}(\pi_A(\sigma_{C}(T_1 \bowtie \cdots \bowtie T_m))))
\]

\[
= \text{Split}_{T_1, \ldots, T_m}(\sigma_{G}(T_1 \bowtie \cdots \bowtie T_m))
\]
2.5. DERIVATION TRACING FOR ASPJ VIEWS

\[v^{-1}_D(T) = \bigcup_{t \in T} v^{-1}_D(t) = \bigcup_{t \in T} \text{Split}_{R_1,\ldots,R_m}(\sigma_{G=t,G \land C}(R_1 \bowtie \ldots \bowtie R_m)) = \text{Split}_{R_1,\ldots,R_m}\left(\bigcup_{t \in T} \sigma_{G=t,G \land C}(R_1 \bowtie \ldots \bowtie R_m) \right) = \text{Split}_{R_1,\ldots,R_m}(\sigma_C(R_1 \bowtie \ldots \bowtie R_m) \bowtie T) \]

Here too, evaluation of the tracing query can be optimized in various ways as discussed in Section 2.4.3.

We note that previous work [KLM+97] also defines a notion of tuple derivations, and the views they consider correspond to our one-level ASPJ views. In [KLM+97] the derivation set of \(t \in V \) is defined as \(\langle R'_1, \ldots, R'_m \rangle \), where \(R'_i = \sigma_{C_i \land G_i=t,G_i}(R_i) \) such that \(C_i \subseteq C \) and \(G_i \subseteq G \) are the selection conditions and grouping attributes local to \(R_i \). Although this approach localizes derivation tracing to a single base table at a time, derivation sets as defined in [KLM+97] are not as accurate as our tuple derivations: those tuples in \(R'_i \) that do not join with the other tables could not have participated in the derivation of \(t \).

2.5.3 Derivation Tracing Algorithm for Multi-Level ASPJ Views

Given a general ASPJ view definition, we first transform the view into ASPJ canonical form, divide it into a set of ASPJ segments, and define an intermediate view for each segment.

Example 2.5.3 (ASPJ Segments and Intermediate Views for Clothing) Recall the view *Clothing* in Example 2.1.2. We can rewrite its definition in ASPJ canonical form with two segments, and introduce an intermediate view *AllClothing* as shown in Figure 2.13.

We then trace a tuple’s derivation by recursively tracing through the hierarchy of intermediate views top-down. At each level, we use the tracing query for a one-level ASPJ view to compute derivations for the current tracing tuples with respect to the views or base tables at the next level below.

Figure 2.14 presents our recursive derivation tracing algorithm for a general ASPJ view. Given a view definition \(v \) in ASPJ canonical form, and tuple \(t \in v(D) \), procedure
TupleDerivation\((t, v, D)\) computes the derivation of tuple \(t\) according to \(v\) over \(D\). The main algorithm, procedure TableDerivation\((T, v, D)\), computes the derivation of a tuple set \(T \subseteq v(D)\) according to \(v\) over \(D\). As discussed earlier, we assume that \(v = v'(V_1, \ldots, V_k)\) where \(v'\) is a one-level ASPJ view, and \(V_j = v_j(D)\) is available as a base table or an intermediate view, \(j = 1..k\). The procedure first computes \(T\)'s derivation \(\langle V_1^*, \ldots, V_k^* \rangle\) in \(\langle V_1, \ldots, V_k \rangle\) using the one-level ASPJ view tracing query \(TQ(T, v', \langle V_1, \ldots, V_m \rangle)\) from Theorem 2.5.2. It then calls procedure TableListDeriv\((\{V_1^*, \ldots, V_k^*\}, \{v_1, \ldots, v_k\}, D)\), which computes (recursively) the derivation of each tuple set \(V_j^*\) according to \(v_j\), \(j = 1..k\), and concatenates the results to form the derivation of the entire list of view tuple sets.

Example 2.5.4 (Recursive Derivation Tracing) We divided the view \texttt{Clothing} into two segments in Example 2.5.3. We assume that the contents of the intermediate view \texttt{AllClothing} are available (shown in Figure 2.15). According to our algorithm, we first compute the derivation \(T_1^*\) of \(\langle 5400 \rangle\) in \texttt{AllClothing} to obtain \(T_1^* = \{\langle \text{Macy's}, 5400 \rangle\}\), then trace \(T_1^*\)'s derivation to the base tables to obtain the derivation result in Figure 2.8. □

Note that we do not necessarily materialize complete intermediate aggregation views such as \texttt{AllClothing}. In fact, there are many choices of what (if anything) to store. The issue of storing versus recomputing the intermediate information needed for derivation tracing is covered in Chapter 3.
To justify the correctness of our algorithm, we claim the following:

1. Transforming a view into ASPJ canonical form does not affect its derivations. We can “canonicalize” an ASPJ view by transforming each segment between adjacent aggregation operators into its SPJ canonical form. The process consists only of SPJ transformations [Ull89b]. Theorem 2.3.11 shows that derivations are unchanged by SPJ transformations.

2. It is correct to trace derivations recursively down the view definition tree. From Theorem 2.3.8, we know that derivations are transitive through levels of the view definition tree. Thus, when tracing tuple derivations for a canonicalized ASPJ view, we can first divide its definition into one-level ASPJ views, and then compute derivations for the intermediate views in a top-down manner.
We have so far introduced a simple tracing query for SPJ and one-level ASPJ views, and a recursive tracing algorithm for general ASPJ views. In the next section, we consider derivation tracing for even more general views that include the set operators union and difference.

2.6 Derivation Tracing for Views with Set Operators

In this section, we extend our derivation tracing algorithm for general ASPJ views that allow arbitrary use of set union and difference operators in the view definition. In Section 2.6.1, we briefly review tuple derivations for set operators, and provide an example justifying the lineage definition for the difference operator. In Section 2.6.2, we incorporate set operators into our view definition canonical form, and we present a procedure to transform any ASPJ view with set operators (referred to as a general view) into canonical form. Finally, in Section 2.6.3 we present a recursive algorithm that traces tuple derivations for general views.

2.6.1 Tuple Derivations for Set Operators

Recall from Theorem 2.3.4 that the tuple derivations for set operators are:

\[
\begin{align*}
\cup^{-1}_{(T_1, \ldots, T_m)}(t) &= \{\sigma_{T_1=t}(T_1), \ldots, \sigma_{T_m=t}(T_m)\}, \text{ for } t \in T_1 \cup \cdots \cup T_m \\
-1_{(T_1, T_2)}(t) &= \{t\}, \text{ for } t \in T_1 - T_2
\end{align*}
\]

For the union operator, given \(t \in T_1 \cup \cdots \cup T_m \), each tuple \(t \) from any input table \(T_1, \ldots, T_m \) contributes to \(t \). For the difference operator, given \(t \in T_1 - T_2 \), the tuple \(t \) from \(T_1 \) and all tuples in \(T_2 \) contribute to \(t \). Recall from Definition 2.3.1 that a tuple’s derivation fully explains why the tuple appears in the operation result. In particular, a tuple \(t \) appears in

<table>
<thead>
<tr>
<th>s_name</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
<td>1400</td>
</tr>
<tr>
<td>Macy’s</td>
<td>5400</td>
</tr>
</tbody>
</table>

Figure 2.15: AllClothing table
2.6. DERIVATION TRACING FOR VIEWS WITH SET OPERATORS

Figure 2.16: Tuple derivation for set difference

$T_1 - T_2$ not only because $\exists t \in T_1$, but also because $\neg \exists t \in T_2$. Therefore, all tuples in T_2 contribute to $t \in T_1 - T_2$ in the sense that they ensure $\neg \exists t \in T_2$. Example 2.6.1 further explains the necessity of including T_2 in the derivation of $t \in T_1 - T_2$.

Example 2.6.1 (Tuple Derivation for Difference) Consider tables R, S, T in Figure 2.16(a), and view $V = R - (S - T)$ in Figure 2.16(b). Although we have not yet given our tracing algorithm for general views, the derivation of tuple $t = \langle 2 \rangle \in V$ using our algorithm (and consistent with the tuple derivation definitions given above) is as shown in Figure 2.16(c). Notice that tuple $\langle 2 \rangle$ would not have appeared in V without tuple $\langle 2 \rangle$ in T. So $\langle 2 \rangle \in T$ obviously contributes in a significant way to $\langle 2 \rangle \in V$. In general, contributions of this sort are not exhibited in derivation tracing for a tuple t unless we include in t’s derivation all tuples in (or contributing to) the second operand of the set difference operator.\(^5\)

2.6.2 Canonical Form for General Views

We now define an extended canonical form that accommodates views with union and difference operators, as well as aggregation, selection, projection, and join operators. The extended canonical form is composed of two types of segments: \textit{AUSPJ-segments}, which are operator sequences in the form $\alpha-\cup-\pi-\sigma-\bowtie$, and \textit{D-segments}, which contain a single

\(^5\)By including all tuples in the second operand, we also include tuples that do not contribute directly to the view tuple, e.g., tuples $\langle 4 \rangle$ and $\langle 6 \rangle$ in T of Figure 2.16(c). However, no intuitive lineage definition we know of can include, for example, tuple $\langle 2 \rangle$ in T without tuples $\langle 4 \rangle$ and $\langle 6 \rangle$, in the general case.
difference operator. An AUSPJ-segment may omit any of the operators in the operator sequence $\alpha \cup \pi - \sigma - \triangleright$, but it must satisfy one of the following:

1. It has an aggregation operator on the top.
2. It is directly below a D-segment.
3. It is below a join operator, and has a union operator on the top.
4. It is the top segment in the view definition, which means that no more segments lie above this segment.

When a α, π, or σ operator is missing from an AUSPJ-segment, for definition purposes we assume a trivial operator is present, as in Section 2.5.1. In Figure 2.17, we provide a procedure Canonicalize that transforms a general view definition tree into canonical form, divides the transformed view definition into segments, and associates an intermediate view with each segment. We perform canonicalizing transformations based on the following equivalences:

1. pulling up \cup: $\pi_A(R \cup S) \equiv \pi_A(R) \cup \pi_A(S)$ and $\sigma_C(R \cup S) \equiv \sigma_C(R) \cup \sigma_C(S)$
2. pulling up π: $\sigma_C(\pi_A(R)) \equiv \pi_A(\sigma_C(R))$ and $\pi_A(R) \bowtie \pi_B(S) \equiv \pi_{A\cup B}(R \bowtie S)$
3. pulling up σ: $\sigma_C(R) \bowtie \sigma_C(S) \equiv \sigma_{C\bowtie C}(R \bowtie S)$

As in Figure 2.17, we first pull up the union operators in the view definition tree as far as possible. We then pull up projection and selection operators, and finally merge the same algebra operators when they appear adjacent to each other. Notice that in the canonicalizing procedure, we pull projection and selection operators above join operators, so that we can compress the operator tree into as few segments as possible. This helps to reduce the total tracing cost, and possibly the number of intermediate views that are stored. However, when we actually apply the tracing query for each segment to obtain a derivation, we can

6Recall that we use \bowtie throughout the thesis to represent natural join, theta join, and cross-product (Section 2.2). For this equivalence to hold in general, it is necessary to make the theta explicit: it does not apply for natural join.
procedure Canonicalize(v_0)

in: a general view definition tree v_0

out: a canonicalized view definition v with an intermediate view
 associated with each segment in v

1. copy v_0 to v;
2. pull union operators above selections and projections in v;
3. pull projection operators above joins and selections in v;
4. pull selection operators above joins in v;
5. merge the same algebra operators adjacent to each other in v;
6. divide v into segments;
7. define an intermediate view over each segment in v;
8. return (v);

Figure 2.17: Canonicalizing general view definitions

sometimes push selection and projection operators back below the join to reduce the cost
of the tracing query, as discussed in Section 2.5.2.

Having obtained the canonicalized definition tree, we divide it into AUSPJ-segments
and D-segments, based on the following rules:

1. Every aggregation and difference operator begins a segment.

2. Every non-leaf child of a difference or join operator begins a segment.

3. The topmost node begins a segment.

Finally, we define an intermediate view for each segment. As with multi-level ASPJ views,
when tracing tuple derivations for a general view, each segment (intermediate view) be-
comes a “tracing unit”. That is, we recursively trace tuple derivations down the view defi-
nition tree, through one segment at a time, until we reach the base tables.

Theorem 2.6.2 (Extended Canonical Form) Procedure Canonicalize in Figure 2.17
returns a view v in canonical form. v is equivalent to the given view v_0, and the two views
have equivalent tuple derivations.

Proof: If an operator o is the parent of another operator o' in a view definition tree, we say
$o \rightarrow o'$. We first prove that procedure Canonicalize(v_0) returns the canonical form.
In Canonicalize, after we pull up the union operators in a top-down manner, there are
only the following possibilities for a union node (∪) and the node right above it: −→∪, α −→∪, △◁→∪, ∪−→∪, or nothing above ∪. For any other possibility, we can always pull the union operator further up. Pulling up the projections afterwards does not affect the above patterns. At the same time, there are only the following patterns for projections: −→π, α −→π, ∪−→π, π−→π, or nothing above π. Similarly, pulling up selections does not affect any of the above patterns, and there are only the following patterns for selections: −→σ, α −→σ, ∪−→σ, π−→σ, σ−→σ, or nothing above σ. For join, any operator could be its parent: −→△◁, α −→△◁, △◁→△◁, π−→△◁, σ−→△◁, △◁→△◁, or nothing above △◁. After merging the same-type operators, we are left with 18 possible two-operator sequences out of 36 total possibilities in the definition tree after applying Canonicalize. With the given 18 sequences, any two adjacent operators either belong to different segments, or are in the order consistent with the sequence order in an AUSPJ-segment. Therefore, procedure Canonicalize(ν0) returns a canonical form.

We now prove the view equivalence after view transformations in Canonicalize. We know from [Ull89b] that projection can be pushed above selections and joins while keeping a query (or view) equivalent. Here, we prove that union operators can be also pushed above selections and projections while keeping the transformed view equivalent to the original view. In other words, we need to prove (1) πA(R ∪ S) = πA(R) ∪ πA(S); (2) σA(R ∪ S) = σA(R) ∪ σA(S). For (1), ∀t: t ∈ πA(R ∪ S) ⇔ ∃t′ ∈ R ∪ S such that t′.A = t ⇔ ∃t′ ∈ R or t′ ∈ S such that t′.A = t ⇔ t ∈ πA(R) or πA(S) ⇔ t ∈ πA(R) ∪ πA(S). We can similarly prove (2).

Finally, we can easily extend Lemma 2.3.10 to prove that equivalent SPJ views with set unions have equivalent derivations, which proves the derivation equivalence after applying Canonicalize.

Example 2.6.3 (Canonical Form for a View with Set Operators) Consider the general view definition in Figure 2.18(a). Figure 2.18(b) shows the canonical form and its segments. Notice that σ11 is pulled up and merged with σ1 to obtain σ1∧11, π8 is subsumed by π5, and ∪6 is merged into ∪4.
2.6. DERIVATION TRACING FOR VIEWS WITH SET OPERATORS

2.6.3 Derivation Tracing Algorithm for General Views

Once we have obtained a canonicalized view definition, we can trace its tuple derivations through one segment at a time. Theorem 2.6.4 presents the derivation tracing query for a one-level AUSPJ view (or an AUSPJ segment). Tuple derivations for a D-segment are traced based on Theorem 2.3.4.

Theorem 2.6.4 (Tracing Query for a One-level AUSPJ View) Consider a one-level AUSPJ view \(V = v(R_1^1, \ldots, R_k^l) = \alpha_{G,aggr}(B) \left(\bigcup_{j=1..k} \pi_A(\sigma_C(R_1^j \bowtie \cdots \bowtie R_k^j)) \right) \). Given tuple \(t \in V \), \(t \)'s derivation according to \(v \) can be computed by applying the following query to the base tables:

\[
TQ_t,v = \bigcap_{j=1..k} Split_{R_j^1,\ldots,R_j^l}(\sigma_{G\land G}(R_1^j \bowtie \cdots \bowtie R_k^j))
\]

Given tuple set \(T \subseteq V \), \(T \)'s derivation tracing query is:

\[
TQ_{T,v} = \bigcap_{j=1..k} Split_{R_j^1,\ldots,R_j^l}(\sigma_C(R_1^j \bowtie \cdots \bowtie R_k^j) \bowtie T)
\]

For the special case where the traced tuple set is the entire view table \(V \) (which will appear
later in our recursive tracing algorithm for general views), we use a flag “ALL” to specify that the entire view table is to be traced, and the tracing query can be simplified by removing the semijoin:

\[
TQ_{\text{ALL},v} = \bigotimes_{j=1..k} \text{Split}_{R_{j,1},...,R_{j,k}}(\sigma_C(R_{j,1} \bowtie \cdots \bowtie R_{j,k}))
\]

Proof: Let:

\[
V_j = \pi_A(\sigma_C(T_{j,1} \bowtie \cdots \bowtie T_{j,k}))
\]

\[
V' = \bigcup_{j=1..k} (V_j)
\]

\[
V = \alpha_{G,\text{aggr}}(B)(V')
\]

According to Theorem 2.3.8 and the derivation for set union operator, we have:

\[
v^{-1}_D(t) = v'^{-1}_D(\alpha_{G,\text{aggr}}(B)^{-1}V'(t))
\]

\[
= v'^{-1}_D(\sigma_{G=t,G}(V'))
\]

\[
= \bigotimes_{j=1..k} v_j^{-1}_D(\sigma_{G=t,G}(V'))
\]

\[
= \bigotimes_{j=1..k} \text{Split}_{T_{j,1},...,T_{j,k}}(\sigma_{G=t,G \land C}(T_{j,1} \bowtie \cdots \bowtie T_{j,k}))
\]

\[
v^{-1}_D(T)\] can be computed from \(v^{-1}_D(t)\) similarly as in the proof of Theorem 2.5.2. We now prove \(v^{-1}_D(V)\) based on \(v^{-1}_D(T)\).

\[
v^{-1}_D(V) = \bigotimes_{j=1..k} \text{Split}_{T_{j,1},...,T_{j,k}}(\sigma_C(T_{j,1} \bowtie \cdots \bowtie T_{j,k}) \bowtie V)
\]

\[
= \bigotimes_{j=1..k} \text{Split}_{T_{j,1},...,T_{j,k}}(\sigma_C(T_{j,1} \bowtie \cdots \bowtie T_{j,k}))
\]

The recursive tracing algorithm for ASPJ views (Figure 2.14) can now be extended to handle general views by modifying the procedure TableDerivation. The new specification for TableDerivation \((T, v, D)\) is given in Figure 2.19. As we recursively trace down a canonicalized view definition tree, at each level we are tracing a view (or a base table) \(v\) that has one of three forms: (1) \(v = R\) where \(R\) is a base table; (2) \(v = v'(v_1, \ldots, v_k)\) where \(v'\) is an AUSPJ-segment and \(v_i\) is an intermediate view or a base table, \(i = 1..k;\)
2.7. DERIVATION TRACING WITH BAG SEMANTICS

Figure 2.19: Derivation tracing algorithm for general views

(3) $v = v_1 - v_2$ where v_i is an intermediate view or a base table, $i = 1, 2$. These three cases map to the case statement in Figure 2.19. For derivation tracing, we may need to store or recompute the contents of some intermediate views, including the contents of the v_i's in case (2) and v in case (3). For case (2), to trace the derivation of T according to v, we first apply the AUSPJ tracing query TQ from Theorem 2.6.4 to V_1, \ldots, V_k in order to obtain t's derivation V_i^* in V_i, $i = 1..k$. We then recursively trace the derivations of the V_i^*'s through lower segments. For case (3), we trace the derivation of T according to v_1 and the derivation of all tuples in $v_2(D)$ according to v_2, as discussed in Section 2.6.1. Recall from Theorem 2.6.4 that we do not need to store or recompute the actual view table $v_2(D)$. Instead, we use a flag “ALL” to specify that the entire view table is to be traced.

2.7 Derivation Tracing with Bag Semantics

So far we have addressed the derivation tracing problem using set semantics: the base tables are assumed to be sets, and the view is defined using operators with set semantics so that all operation results, including the final view table, are also sets. In this section, we extend our
definition for tuple derivations as well as our tracing algorithms to consider bag semantics. That is, we treat base tables and the results of \(\sigma, \pi, \) and \(\bowtie \) operations as bags, and we use bag union (\(\uplus \)) and bag difference (\(\setminus \)). Duplicate elimination, if desired, can be achieved using our aggregation (\(\alpha \)) operator.

Duplicates can occur in base tables and/or in views. Consider the four scenarios in Table 2.1. Case (1) represents the scenario we have considered so far. Case (4) represents the most general scenario to be addressed in this section, and case (2) will use the same algorithms as (4). Case (3), in which views may have duplicates but base tables are known to have keys, allows us to perform certain optimizations, related to the key-based example we gave earlier in Section 2.5.2. In fact, we may choose to transform a case (4) scenario into case (3) by attaching system-generated tuple IDs to the base data, in order to apply a more efficient tracing procedure.

In general, the derivation tracing problem for set semantics considered so far is subsumed by the problem we are about to address for bag semantics. However, as we will see, the solutions we gave for set semantics are simpler and more efficient than those for bag semantics, so the separate treatment is worthwhile.

2.7.1 Tuple Derivations for Bag Semantics

Consider an operator \(Op \) with bag semantics. Given \(N \) copies of a tuple \(t \) in \(Op(T_1, \ldots, T_m) \), there are at least \(N \) ways to derive \(t \) from the \(T_i \)'s. Consider the following examples.

1. Let \(R = \{ \langle a \rangle, \langle a \rangle \}, S = \{ \langle b \rangle \}, \) and \(V = R \times S = \{ \langle a, b \rangle, \langle a, b \rangle \}. \) A tuple \(\langle a, b \rangle \) in

<table>
<thead>
<tr>
<th>view</th>
<th>base tables</th>
<th>no duplicates</th>
<th>duplicates possible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no duplicates</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td></td>
<td>duplicates possible</td>
<td>(3)</td>
<td>(4)</td>
</tr>
</tbody>
</table>

Table 2.1: Base table and view scenarios

\(^7\)Bag operators do not eliminate duplicates. For example, \(\{a, b\} \uplus \{a, c\} = \{a, a, b, c\}, \) and \(\{a, a, b\} \setminus \{a, b, c\} = \{a\}. \) Bag operator \(\uplus \) corresponds to SQL’s \texttt{UNION ALL} (as opposed to \texttt{UNION}); bag operator \(\setminus \) is not supported by SQL.
V may be derived from the first $\langle a \rangle$ in R and the $\langle b \rangle$ in S, or from the second $\langle a \rangle$ in R and the $\langle b \rangle$ in S.

2. Let $R(A, B) = \{(a, b), (a, c)\}$ and $V = \pi_A(R) = \{\langle a \rangle, \langle a \rangle\}$ where π preserves duplicates. A tuple $\langle a \rangle$ in V may be derived from $\langle a, b \rangle$ or $\langle a, c \rangle$ in R.

3. Let $R = \{\langle a \rangle\}$, $S = \{\langle a \rangle\}$, and $V = R \sqcup S = \{\langle a \rangle, \langle a \rangle\}$. A tuple $\langle a \rangle$ in V may be derived from the $\langle a \rangle$ in R or the $\langle a \rangle$ in S.

4. Let $R = \{\langle a \rangle, \langle a \rangle\}$, $S = \{\langle a \rangle\}$, and $V = R \setminus S = \{\langle a \rangle\}$. The (single) tuple $\langle a \rangle$ in V may be derived from the first or the second $\langle a \rangle$ in R.

Thus, often there is no longer a unique derivation of t according to Definition 2.3.1. Given any operator other than bag difference, if there are N copies of t in the result then there are exactly N derivations of t, each of which derives one copy of t as in examples 1–3 above. Given a bag difference operator, the number of derivations of t may exceed the number of t’s in the result, as in example 4 above.

More generally, given a view v, a tuple $t \in v(D)$ may have multiple derivations according to v. Sometimes, we may want to retrieve the derivations of a tuple one by one. Other times, we may prefer a complete set of contributing tuples, without distinguishing individual derivations. We introduce the concepts of derivation set and derivation pool in Definitions 2.7.2 and 2.7.3 to cover both cases. First, we redefine tuple derivations for a view under bag semantics, because our previous definition (Definition 2.3.5), although clearer, produces only derivation pools under bag semantics and not individual derivations. Definition 2.7.1 subsumes Definition 2.3.5.

Definition 2.7.1 (Tuple Derivations for a View) Let D be a database with base tables R_1, \ldots, R_m, and let $V = v(D)$ be a view over D. Consider a tuple $t \in V$.

1. $v = R_i$: $\{t\}$ is a derivation of t according to v.

2. $v = Op(v_1, \ldots, v_k)$, where v_j is a view definition over D, $j = 1..k$: Suppose $\langle T_1^*, \ldots, T_k^* \rangle$ is a derivation of t according to Op (by Definition 2.3.1), and $\langle R_1^*, \ldots, R_j^* \rangle$ is a derivation of T_j^* according to v_j over D (by this definition recursively), $j = 1..k$.

Then $\langle R_1^1*, \ldots, R_i^1*, \ldots, R_k^1*, \ldots, R_k^k* \rangle$ is a derivation of t according to v.

Derivations for a tuple set T are constructed from all possible combinations of derivations for the tuples in T such that the derivations selected for any $t_1 = t_2 \in T$ are different. □

As we can see, the number of derivations for a tuple set T may be exponential in the number of tuples in T: if T contains n tuples, and each tuple has up to m derivations, then T may have as many as m^n derivations. Thus, enumerating all derivations for a tuple set (Definition 2.7.2) can be impractical, and we may prefer to trace the tuple set’s derivation pool (Definition 2.7.3).

Definition 2.7.2 (Derivation Set) Let D be a database with base tables R_1, \ldots, R_m, and let $V = v(D)$ be a view over D. Given a tuple $t \in V$, the set of all of t’s derivations according to v is called the *derivation set of t according to v*, denoted $v^{-S}_D(t)$.

The derivation set of a tuple set $T \subseteq Op(T_1, \ldots, T_m)$ is the set of all derivations of T, denoted $v^{-S}_D(T)$.

Definition 2.7.3 (Derivation Pool) Let D be a database with base tables R_1, \ldots, R_m, and let $V = v(D)$ be a view over D. Given a tuple $t \in V$, let $\langle R_1^*, \ldots, R_m^* \rangle$ contain all tuples in any of t’s derivations (based on Definition 2.3.5). $\langle R_1^*, \ldots, R_m^* \rangle$ is called the *derivation pool of t according to v*, denoted $v^{-P}_D(t)$. The derivation pool of a tuple set $T \subseteq V$ contains all tuples in the derivation pool of any tuple in T, and is denoted by $v^{-P}_D(T)$.

Notice that a view tuple’s derivation set and derivation pool contain exactly the same collection of base tuples, but organized in different ways. As we will see, their tracing procedures will differ considerably.

Example 2.7.4 (Multiple Derivations, Derivation Set, Derivation Pool) Consider a view **Stationery** defined over our original tables **store**, **item**, and **sales** from Figures 2.1–2.3: Stationery = $\pi_{s_name, i_name}(\sigma_{\text{category}=“stationery”}(\text{store} \bowtie \text{item} \bowtie \text{sales}))$, where π now does not eliminate duplicates. Figure 2.20 shows Stationery’s contents. A single tuple $t = \langle \text{Target}, \text{pencil} \rangle$ in Stationery has two derivations, but the derivation sets of its two occurrences are distinct:

\[
\begin{align*}
\text{Derivation 1:} & \quad \langle \text{Target}, \text{pencil} \rangle, \quad \langle \text{Target}, \text{pencil} \rangle, \\
\text{Derivation 2:} & \quad \langle \text{Target}, \text{pencil} \rangle, \quad \langle \text{Target}, \text{pencil} \rangle.
\end{align*}
\]

Although called a *set*, a derivation set may well have duplicates; that is, two derivations of t may have the same value.
We are now considering two modes of derivation tracing: tracing individual derivations, and tracing derivation pools. We can prove that the property of view and derivation equivalence after our canonicalizing transformations (Theorem 2.6.2) still holds for bag semantics, derivation sets, and derivation pools. Thus, we can still transform a view into canonical form before tracing derivation sets or pools. The transitive property (Theorem 2.3.8) also applies to derivation sets and pools under bag semantics, which allows us to trace derivations down the view definition tree recursively. In addition, we prove the following theorems, which provide the groundwork for our later tracing algorithms.
Theorem 2.7.5 (Derivation Uniqueness for Unique View Tuples) Let v be a general view over database D with bag semantics and no difference operators. If a tuple $t \in v(D)$ has no duplicates, then t has a unique derivation in v. As a result, in this case $v^{-1}_{D}(t) = v^{-P}_{D}(t)$.

Proof: According to Definition 2.7.1, given a tuple t in view $v(D)$, a derivation of t is a group of base tuples that can produce t by themselves. Given a monotonic view, each of t’s derivations derives a tuple with value t in the view table. These derived tuples cannot be removed by other base tuples due to monotonicity. Therefore, if tuple $t \in v(D)$ has no duplicates, it has a unique derivation $v^{-1}_{D}(t)$. (Otherwise, if t has multiple derivations, there must be multiple tuples in $v(D)$ with the same value as t. This conflicts with the fact that t has no duplicates in $v(D)$.) Furthermore, t’s derivation pool contains exactly all tuples in t’s unique derivation; in other words, $v^{-P}_{D}(t) = v^{-1}_{D}(t)$.

Theorem 2.7.6 (Derivation Pool of a Set of Same-Valued Tuples) Let v be any general view over database D. If all tuples in a tuple set $T \subseteq v(D)$ have the same value t, then $v^{-P}_{D}(T) = v^{-P}_{D}(t)$. This also implies that $v^{-P}_{D}(\sigma_{V=t}(v(D))) = v^{-P}_{D}(t)$.

Proof: $\forall t^* \in v^{-P}_{D}(T): \exists t' \in T$ such that $t^* \in v^{-P}_{D}(t')$. Because T contains only tuples with value t, $t' = t$. So, $t^* \in v^{-P}_{D}(t)$. Therefore, $v^{-P}_{D}(T) \subseteq v^{-P}_{D}(t)$. Also, since $t \in T$, $v^{-P}_{D}(T) \supseteq v^{-P}_{D}(t)$. Therefore, $v^{-P}_{D}(T) = v^{-P}_{D}(t)$.

Theorem 2.7.7 (Derivation Pool of Selected Portion in View Table) Let v be any general view over database D. To trace the derivation pool of a selected portion $\sigma_{C}(v(D))$ of the view table, we can define another view $v' = \sigma_{C}(v)$, and trace the derivation of the entire view table $v'(D)$ according to v'. In other words:

$$v^{-P}_{D}(\sigma_{C}(v(D))) = v'^{-P}_{D}(v'(D)) = v'^{-P}_{D}(ALL)$$

where $v' = \sigma_{C}(v)$.

Proof: Let $v' = \sigma_{C}(v)$, $v'^{-1}_{D}(v'(D)) = v^{-1}_{D}(\sigma_{C}^{-1}(\sigma_{C}(v(D)))) = v^{-1}_{D}(V \times \sigma_{C}(v(D))) = v^{-1}_{D}(\sigma_{C}(v(D)))$.
In Sections 2.7.2, 2.7.3, and 2.7.4, we develop techniques for: (1) tracing derivation pools, (2) tracing derivation sets, and (3) associating a unique derivation with each view tuple using existing or system-generated base table keys.

2.7.2 Tracing Derivation Pools

Tracing derivation pools for views with bag semantics is similar to tracing derivations for views with set semantics as specified in Sections 2.5 and 2.6. We begin by specifying the derivation pools for all of the relational operators, using bag semantics.

Theorem 2.7.8 (Derivation Pools for Operators with Bag Semantics) Let T and T_1, \ldots, T_m be tables. Recall that T_i denotes the schema of T_i. The derivation pools Op^{-P} for σ, π, \bowtie, and α are the same as their derivations Op^{-1} as specified in Theorem 2.3.4, except that $\{t\}$ is replaced by $\sigma_{T=t}(T)$, and $t.T_i$ is replaced by $\sigma_{T=t,T_i}(T_i)$.

\[
\bowtie^{-P}(T_1, \ldots, T_m)(t) = \langle \sigma_{T_1=t}(T_1), \ldots, \sigma_{T_m=t}(T_m) \rangle \text{ for } t \in T_1 \bowtie \cdots \bowtie T_m.
\]

\[
\alpha^{-P}(T_1, T_2)(t) = \langle \sigma_{T_1=t}(T_1), \sigma_{T_2 \neq t}(T_2) \rangle \text{ for } t \in T_1 \alpha T_2.
\]

Proof: We prove the theorem for \bowtie and α. Others can be proved similarly.

- $\bowtie^{-1}(T_1, \ldots, T_m)(t) = \langle \sigma_{T_1=t,T_1}(T_1), \ldots, \sigma_{T_m=t,T_m}(T_m) \rangle \text{ for } t \in T_1 \bowtie \cdots \bowtie T_m.$

D^* is a derivation of $t \in T_1 \bowtie \cdots \bowtie T_m$ iff $D^* = \langle \{t.T_1\}, \ldots, \{t.T_m\} \rangle$, since D^* satisfies Theorem 2.3.4. Therefore, in T_i, only tuples with value $t.T_i$ contributes to $t \in T_1 \bowtie \cdots \bowtie T_m$, for $i = 1..m$. According to the definition of derivation pool, $\bowtie^{-1}_{T_i}(t)$ contains all tuples that contribute to t. Therefore, $\bowtie^{-1}_{T_i}(t) = \sigma_{T_i=t}(T_i)$, for $i = 1..m$.

- $\alpha^{-1}(T_1, T_2)(t) = \langle \sigma_{T_1=t}(T_1), \sigma_{T_2 \neq t}(T_2) \rangle \text{ for } t \in T_1 - T_2.$

D^* is a derivation of $t \in T_1 - T_2$ iff $D^* = \langle \{t\}, \sigma_{T_2 \neq t}(T_2) \rangle$, since D^* satisfies Theorem 2.3.4. Therefore, tuples in T_1 with value t and tuples in T_2 with value different from t contribute to $t \in T_1 - T_2$. Therefore, $\alpha^{-1}(T_1, T_2)(t) = \langle \sigma_{T_1=t}(T_1), \sigma_{T_2 \neq t}(T_2) \rangle$, for $t \in T_1 - T_2$.

\[\square\]
procedure TableDerivation(T, v, D)
 in: a tracing tuple set T, a view definition v, and a database D
 out: T’s derivation pool in D according to v
 1 case v = R ∈ D:
 2 if T = ALL then return ⟨⟨R⟩⟩;
 3 else return ⟨⟨R × T⟩⟩;
 4 case v = v′(v₁,...,vₖ):
 5 // v′ is a one-level AUSPJ view
 6 // Vᵢ = vᵢ(D) is an intermediate view or a base table, j = 1..k
 7 ⟨V₁*,...,Vₖ*⟩ ← TQ(T, v′, {V₁,...,Vₖ});
 8 return (TableListDeriv(⟨V₁*,...,Vₖ*⟩, {v₁,...,vₖ}, D));
 9 case v = v₁−·v₂:
 10 // V = v(D)
 11 // Vⱼ = vⱼ(D) is an intermediate view or a base table, j = 1,2
 12 if T = ALL then T ← V;
 13 if T contains only tuples with value t
 14 then return (TableListDeriv(⟨T, ALL⟩, ⟨v₁,σ̂V₂≠t(v₂)⟩, D));
 15 else return (TableListDeriv(⟨T, ALL⟩, ⟨v₁,v₂⟩, D));

Figure 2.23: Derivation pool tracing algorithm

The derivation pool tracing query for one-level AUSPJ views with bag semantics is obtained by replacing the Split operator in Theorem 2.6.4 with a targeted split (TSplit) operator.

Definition 2.7.9 (TSplit Operator) Let T be a table with schema T, and let Tᵢ be a table with schema Tᵢ ⊆ T, i = 1..m. We define the targeted split of T by T₁,...,Tₘ to be:

\[
TSplit_{T₁,...,Tₘ}(T) = \langle T₁ ⊗ T,...,Tₘ ⊗ T \rangle
\]

Note that we need to use semijoins with the data in T₁,...,Tₘ instead of simple projections based on schema (which we used in the original Split operator), because semijoin is the only way to produce the correct number of duplicates in the derivation result. However, since TSplit is less efficient than Split, we recommend using the original tracing query when the base tables are known to have no duplicates.

The general derivation pool tracing procedure is obtained by making only small modifications to procedure TableDerivation from Figure 2.19, shown as the underlined portions in Figure 2.23. We replace T with R × T in the return value for the case v = R
to retrieve all tuples in R that are also in T, including duplicates. The tracing query TQ is now using $TSplit$ in Definition 2.7.9 instead of using $Split$ from Theorem 2.6.4. Finally, for D-segments ($v = v_1 \bowtie v_2$), we separate the case where T contains only tuples with the same value t. When all tuples have the same value, the recursive procedure call directly follows the derivation pool equation in Theorem 2.7.8. However, if two tuples in T have distinct values, t_1 and t_2 say, then we still need to include any copies of t_1 that might appear in v_2 (or derivations of such tuples), since any t_1’s in v_2 are part of t_2’s derivation pool in v. A similar argument holds with t_1 and t_2 reversed.

2.7.3 Tracing Derivation Sets

Unlike the derivation pool for a tuple t, t’s derivation set separates its distinct derivations. In this section we present a derivation enumeration technique that produces t’s derivations one by one, thus generating t’s entire derivation set.

Procedure DerivationEnum(t, v, D) in Figure 2.24 traces the derivation set of tuple t according to view v. We assume that v is already in canonical form (Section 2.6.2). However, when recursively tracing down the view definition tree, we treat AUSPJ segments with an omitted (i.e., trivial) aggregation operator separately. We also separate the bag union node from the SPJ subtree in these segments for presentation clarity. Thus, each (intermediate) view v we trace through during the derivation enumeration procedure has one of the following five forms: (1) $v = R$; (2) $v = \pi_A(\sigma_C(v_1 \bowtie \cdots \bowtie v_k))$; (3) $v = v_1 \cup \cdots \cup v_k$; (4) $v = v'(v_1, \ldots, v_k)$; (5) $v = v_1 \bowtie v_2$, where R is a base table in database D, v_i is an intermediate view or a base table, $i = 1..k$, and v' is an AUSPJ segment with a nontrivial aggregation node. These cases map to the five cases in Figure 2.24, in order.

For case (1), according to Definition 2.3.5 each copy of t in R forms a derivation $\{t\}$ of t in V. For case (2), we first compute t’s derivations in $v_1(D), \ldots, v_k(D)$ based on Theorem 2.7.10:

Theorem 2.7.10 (Derivation Set for an SPJ View) Given SPJ view $V = v(T_1, \ldots, T_m) = \pi_A(\sigma_C(T_1 \bowtie \cdots \bowtie T_m))$ and tuple $t \in V$, t’s derivation set according to v is $v^{-S}_{T_1,\ldots,T_m}(t) = \{\{(t'.T_1), \ldots, (t'.T_m)\} \mid t' \in \sigma_{C\land A=t}(T_1 \bowtie \cdots \bowtie T_m)\}$. □
procedure DerivationEnum(t, v, D)
in: a tracing tuple t, a view definition v, and a database D
out: the set of all t’s derivations in D according to v
1 DS ← ∅;
2 case v = R ∈ D:
3 for each tuple in \(\sigma_R = t \) do insert \(\langle \{ t \} \rangle \) into DS;
4 case v = \(\pi_A(\sigma_C(v_1 \bowtie \cdots \bowtie v_k)) \):
5 Pending ← \(\sigma_C \land A = t(v_1(D) \bowtie \cdots \bowtie v_k(D)) \);
6 while Pending ≠ ∅ do
7 begin
8 pick a tuple t’ in Pending;
9 for j ← 1 to k do DS_j ← DerivationEnum(t’, V_j, v_j, D);
10 insert all elements of DS_1 × ·· · × DS_k into DS;
11 remove t’ and all its duplicates from Pending;
12 end
13 case v = v_1 ⊎ ·· · ⊎ v_k:
14 for j ← 1 to k do insert all elements of DerivationEnum(t, v_j, D) into DS;
15 case v = v'(v_1, ..., v_k); // v' is an AUSPJ view with aggregation:
16 \(\langle V_1^*, ..., V_k^* \rangle = TQ(\{ t \}, v', (V_1, ..., V_k)) \);
17 for j ← 1 to k do DS_j ← TableDerivEnum(V_j^*, v_j, D);
18 DS ← DS_1 × ·· · × DS_k;
19 case v = v_1 - v_2:
20 DS ← DerivationEnum(t, v_1, D) × TableDerivEnum(ALL, \(\sigma_{v_2 \neq t}(v_2) \), D);
21 return (DS);

procedure TableDerivEnum(T, v, D)
in: a tracing tuple set T, a view definition v, and a database D
out: the set of all T’s derivations in D according to v
1 let T = \{ t_1, ..., t_n \};
2 for i ← 1 to n do DS_i ← DerivationEnum(t_i, v, D);
3 DS ← ∅;
4 for each element D_1, ..., D_n in DS_1 × ·· · × DS_n do
5 if \(\forall i \neq j : D_i \neq D_j \) then insert \(D_1 \cup \cdots \cup D_n \) into DS;
6 return (DS);

Figure 2.24: Derivation enumeration algorithm
2.7. DERIVATION TRACING WITH BAG SEMANTICS

Proof:

\(D^* \) is a derivation of \(t \in V \) according to \(v \)

\[\iff \exists T' \subseteq V' = \sigma_C(R_1 \bowtie \ldots \bowtie R_m) \text{ such that } T' \text{ is a derivation of } t \text{ according to } v_1 = \pi_A(V'), \text{ and } D^* \text{ is a derivation of } T' \text{ according to } v' \]

\[\iff \exists t' \in \sigma_{A=t\cup C}(R_1 \bowtie \ldots \bowtie R_m) \text{ such that } T' = \{t'\} \]

\[\iff \exists T'' \subseteq V'' = R_1 \bowtie \ldots \bowtie R_m \text{ such that } T'' \text{ is a derivation of } \{t'\} \text{ according to } v_2 = \sigma_C(V''), \text{ and } D^* \text{ is a derivation of } T'' \text{ according to } v'' \]

\[\iff T'' = t', \text{ and } D^* = \langle \{t'.V_1\}, \ldots, \{t'.V_m\} \rangle \]

\[\iff D^* \in DS_v(t) \]

We initialize a \textit{Pending} set to be \(\sigma_{C\land A=t}(v_1(D) \bowtie \ldots \bowtie v_k(D)) \). According to Theorem 2.7.10, \(\forall t' \in \text{Pending}: D^* = \langle \{t'.V_1\}, \ldots, \{t'.V_k\} \rangle \) forms a derivation of \(t \) in \(v_1(D), \ldots, v_k(D) \). We then further trace the derivation set \(DS_j \) of \(t'.V_j \) according to \(v_j \), for \(j = 1..k \). Based on Definition 2.3.5, we then append the cross-product of the \(DS_j \)’s to \(t \)’s derivation set, where \(DS_1 \times DS_2 = \{D_1^* \circ D_2^* \mid D_1^* \in DS_1, D_2^* \in DS_2\} \). We remove \(t' \) and its duplicates from the \textit{Pending} set, and repeat the above process until the \textit{Pending} set becomes empty.

For case (3), where \(v \) is a bag union of \(v_1, \ldots, v_k \), each \(t \) in any \(v_i(D) \) is a derivation of \(t \in v(D) \) according to the bag union operator, so each derivation of \(t \) according to \(v_i \) forms a derivation of \(t \) according to \(v \). Therefore, we simply enumerate through \(t \)’s derivations according to each \(v_i \), adding them to the derivation set.

Consider case (4), where \(v \) is defined by an AUSPJ segment \(v' \) over \(v_1, \ldots, v_k \) with a nontrivial aggregation operator. Since \(v \) has no duplicates due to the aggregation, by Theorem 2.7.5 \(t \) has a unique derivation in \(V_1, \ldots, V_k \) according to \(v' \). This derivation \(\langle V_1^*, \ldots, V_k^* \rangle \) is obtained by tracing \(t \) in \(V_1, \ldots, V_k \) according to \(v' \). Then we trace the derivation set \(DS_j \) for each \(V_j^* \) according to \(v_j \). (More on this step below.) The cross-product of the \(DS_j \)’s forms the derivation set of \(t \) according to \(v \).

For case (5), where \(v \) is a bag difference of \(v_1 \) and \(v_2 \), each derivation of \(t \) according to \(v_1 \) and each derivation of \(T_2 = \sigma_{v_2 \neq t}(v_2(D)) \) according to \(v_2 \) together form a derivation of \(t \) according to \(v \). Thus, \(t \)’s derivation set is the cross-product of \(t \)’s derivation set according to \(v_1 \) and \(T_2 \)’s derivation set according to \(v_2 \).

Procedure TableDerivEnum \((T, v, D)\) in Figure 2.24 is called to trace the derivation.
set of a tuple set T according to a view v. Recall from Definition 2.7.1 that derivations for a tuple set T are constructed from all possible combinations of derivations for the tuples in T such that the derivations selected for any $t_1 = t_2 \in T$ are different. Let T have n tuples. We first trace the derivation set DS_i for each tuple $t_i \in T$, $i = 1..n$. Then, for every combination of distinct derivations D_1, \ldots, D_n from DS_1, \ldots, DS_n, we add $D_1 \cup \cdots \cup D_n$ to the derivation set for T. Note that this procedure can be extremely expensive if T is large. While calling TableDerivEnum is necessary in the general case, in many cases we can replace it with the much cheaper TableDerivation (Figure 2.23). In case (4), if v does not contain any difference operators, then by Theorem 2.7.5 t has a unique derivation in D according to v. Hence, we can use t‘s derivation pool obtained by calling TableDerivation, since in this case the derivation pool is the same as the derivation set. Likewise, in case (5), if v_2 does not contain any difference operators, we can replace TableDerivEnum with TableDerivation to obtain the single derivation for ALL.

2.7.4 Using Key Information

We now propose an alternative approach to tracing view tuple derivations in the presence of duplicates for multilevel ASPJ views. Suppose for now that view v’s base tables all have keys, i.e., case (3) in Figure 2.1. We can extend v’s definition using the key information to obtain a supporting view v' such that v', as well as all of its intermediate results, has no duplicates. Then, after mapping each tuple $t \in v(D)$ to a distinct tuple $t' \in v'(D)$, we can retrieve a unique derivation for t by tracing the derivation of t' according to v' using the tracing algorithm for set semantics. In other words, we use base table keys to assign a unique derivation to each copy of each view tuple. If we are not interested in individual unique derivations, this technique is still useful for tracing derivation sets and pools as in previous sections in a more efficient manner.

Theorem 2.7.11 (SPJ View Definition with Keys) Let D be a database with tables R_1, \ldots, R_m, and let $V = v(D) = \pi_A(\sigma_C(R_1 \Join \cdots \Join R_m))$ be an SPJ view over D. Suppose each R_i has a set of attributes K_i that are a key for R_i, $i = 1..m$. Then we can define a view $V' = v'(D) = \pi_{A \cup K_1 \cup \cdots \cup K_m}(\sigma_C(R_1 \Join \cdots \Join R_m))$ that contains no duplicates. If V contains n copies of a tuple t, then there are n tuples t_1, \ldots, t_n in V' such
that \(t_j.A = t, j = 1..n \). The derivation of each \(t_j \) according to \(v' \) is also a derivation of \(t \) according to \(v \), and \(v^-S_D(t) = \{v'^{-1}_D(t_j), j = 1..n\}. \)

Proof: We first prove that \(V' \) contains no duplicates. Suppose there exist two tuples \(t = t' \in V' \), then \(t.K_i = t'.K_i \) for \(i = 1..m \). Since \(K_i \) is the key of table \(R_i \), there exists a unique tuple \(t_i \in R_i \) such that \(t_i.K_i = t.K_i = t'.K_i \). According to Definition 2.7.1, we know that \(t \) has a unique derivation \(D^* = \langle \{\langle t_1 \rangle\}, \ldots, \{\langle t_m \rangle\} \rangle \). So has \(t' \). Both \(t \) and \(t' \) are derived uniquely from \(D^* \), which conflicts with the fact that \(v'(D^*) \) contains a single tuple.

According to Theorem 2.3.11, we can rewrite \(v \) as \(v = \pi_A(v') \) while not affecting its tuple derivations. Given \(n \) copies of a tuple \(t \) in \(V' \), there are \(n \) derivations of \(t \) in \(V' \) according to \(\pi_A: \langle \{\langle t_j \rangle\} \rangle \) such that \(t_j.A = t, \) for \(j = 1..n \). Since \(V' \) contains no duplicates, each \(t_j \) has a unique derivation \(v'^{-1}_D(t_j) \) in \(D \) according to \(v' \). According to Theorem 2.3.8, \(v'^{-1}_D(t_j) \) is a derivation of \(t \) according to \(v \), and \(\{v'^{-1}_D(t_j) \mid j = 1..n\} \) is the set of all derivations (the derivation set) of \(t \) according to \(v \).

According to Theorem 2.7.11, we can map each copy of a tuple \(t \in V \) to a distinct tuple \(t_j \in V' \) such that \(t_j.A = t \). Then we can associate a unique derivation with each copy of \(t \) by tracing the corresponding \(t_j \)'s derivation. We can also retrieve the entire derivation set (or pool) for \(t \) by tracing the derivations for all the \(t_j \)'s. Recall from Theorem 2.4.5 that derivation tracing for views that include base table keys (e.g., view \(v' \)) takes time at most linear in the size of \(R_1, \ldots, R_m \), which is generally much more efficient than the derivation enumeration algorithm in Section 2.7.3.

**Example 2.7.12 (SPJ View Extended with Keys) ** Consider again the problem of tracing the derivation of \(\langle \text{Target}, \text{pencil} \rangle \in \text{Stationery} \) in Example 2.7.4. Suppose table \(\text{store} \) has key \(\text{s_id} \), \(\text{item} \) has key \(\text{i_id} \), and \(\text{sales} \) has key \(\langle \text{s_id}, \text{i_id} \rangle \). We first define a view \(\text{ExtStationery} = \pi_{\text{s_name}, \text{i_name}, \text{s_id}, \text{i_id}}(\sigma_{\text{category}=\text{stationery}}(\text{Stationery} \join \text{store} \join \text{item} \join \text{sales})) \).
Given a multilevel ASPJ view \(V = v(D) \), if \(v \)'s top segment contains an aggregation operator, then \(V \) has no duplicates, and each tuple in \(V \) has a unique derivation (Theorem 2.7.5). If \(v \)'s top segment contains no aggregation operator, i.e., \(V = \pi_A(\sigma_C(T_1 \bowtie \cdots \bowtie T_m)) \) where \(T_i \) is a base table or an intermediate aggregation view, we can first rewrite the top segment to include \(T_i \)'s key attributes, as in Theorem 2.7.11. (For the cases where \(T_i \) is an intermediate aggregation view, its key is the grouping attributes. Otherwise we use base table keys.) Then, each tuple in the extended view has a unique derivation which can be traced using the recursive algorithm in Figure 2.14.

For base tables without keys, we can still apply the techniques introduced in this section by first attaching a system-generated key (e.g., the tuple ID or a surrogate) to each base tuple. We then extend the view definition to include these keys as described earlier. After tracing tuple derivations for the extended view, we project out the system-generated key attributes from the derivation results to obtain the correct derivation according to the
original view.

Extending the techniques of this section to general views including the bag operators union and difference is somewhat complex, due in part to the requirement of uniform schemas in operands, and is beyond the scope of this thesis.

2.7.5 Algorithms Summary

We have presented four major derivation tracing algorithms:

1. The **basic tracing algorithm** (Sections 2.4–2.6) traces view tuple derivations under set semantics for general views.

2. The **pool tracing algorithm** (Section 2.7.2) traces view tuple derivation pools under bag semantics for general views. It retrieves all contributing tuples for the traced tuple without distinguishing individual derivations. The algorithm itself is similar to the basic tracing algorithm, although it incurs some overhead for handling duplicates in base tables and intermediate views during the tracing process.

3. The **enumerating algorithm** (Section 2.7.3) traces view tuple derivation sets under bag semantics for general views. It lists each derivation of the traced tuple separately. This algorithm is the most expensive of the four algorithms we propose.

4. The **key-based algorithm** (Section 2.7.4) traces view tuple derivations in the presence of duplicates in the view by using key information to associate a unique derivation with each view tuple. In general, this algorithm is more efficient than the other three algorithms, but it can only be used easily for multilevel ASPJ views (not general views with union and difference operators) and may require additional machinery to generate tuple IDs.

2.8 Revisiting Introductory Example

For continuity, let us revisit our original motivating example from Chapter 1, presented in Section 1.2. Recall that we considered a university data warehouse constructed from four
source tables, Program, Student, Course, and Enrollment, depicted with sample data in Figure 1.2. From these sources, we defined a materialized view IncomeByField. The view was not specified formally in Section 1.2, but it can be written in relational algebra as:

\[\alpha_{\text{field}, \text{sum}(\text{unit_tuition} \times \text{units})}(\text{Program} \bowtie \text{Student} \bowtie \text{Course} \bowtie \text{Enrollment}) \]

The view and its contents for our sample source data are depicted in Figure 1.3.

Assuming set semantics, we are dealing with a one-level ASPJ view as covered in Section 2.5 of this chapter. Thus, our general tracing query for a tuple \(t \) is:

\[TQ_{t,v} = \text{Split}_{\text{Program}, \text{Student}, \text{Course}, \text{Enrollment}}(\sigma_{\text{field}=\text{t.field}}(\text{Program} \bowtie \text{Student} \bowtie \text{Course} \bowtie \text{Enrollment})) \]

When tracing the lineage of example view tuple \(\langle \text{Databases}, \$84K \rangle \), the instantiated tracing query is:

\[\text{Split}_{\text{Program}, \text{Student}, \text{Course}, \text{Enrollment}}(\sigma_{\text{field}=\text{Databases}}(\text{Program} \bowtie \text{Student} \bowtie \text{Course} \bowtie \text{Enrollment})) \]

The result of this query over the sample data is exactly the lineage result provided for the original example in Figure 1.4.

2.9 Related Work

Most previous work related to this chapter was covered in the general related work section of Chapter 1 (Section 1.5). One reference, [KLM+97], also introduces derivation sets, in the context of concurrency control for materialized views. Their definition of a derivation set and our lineage definition are related, in the sense that both definitions attempt to isolate the base tuples that affect specific view tuples. However, [KLM+97] defines derivation sets in a database-independent way, so their definition is much looser than ours. Furthermore, [KLM+97] considers a more restricted class of views than we consider. The two approaches were compared in more detail in Section 2.5.2.

2.10 Chapter Summary

In this chapter, we formalized the data lineage problem for warehouses defined as relational views over relational sources. We presented lineage tracing algorithms for a very general class of views under both set and bag semantics. Using our algorithms, the system converts the view definition into a segmented normal form when the view is defined. At tracing time, the system recursively traces data lineage through each segment in the view definition,
usually using one tracing query per segment, until reaching the source tables. Our tracing queries are generated automatically based on the view definition and are parameterized by the traced tuples, and they can be optimized easily by a conventional database management system (DBMS). Implementation of several of the algorithms in this chapter in the context of the WHIPS data warehousing prototype will be described in Section 3.8 of the next chapter.
Chapter 3

Storing Auxiliary Views for Efficient Lineage Tracing

In this chapter, we introduce techniques for storing auxiliary views to improve the performance of lineage tracing in relational data warehouses. Using our approach presented in Chapter 2, to compute the lineage of a warehouse data item, we need the definition of the view containing the item, the original source data, and depending on the view’s complexity possibly some auxiliary information representing intermediate results in the view definition (recall Section 2.5). In a distributed multi-source data warehousing environment, querying the sources during lineage tracing may be difficult or impossible: sources may periodically be inaccessible, they may be expensive to access, expensive or slow to transfer data from, and/or inconsistent with the views at the warehouse. By storing additional auxiliary information (auxiliary views) in the warehouse, we can reduce or entirely avoid querying the sources. Furthermore, auxiliary views may reduce or eliminate the cost of recomputing intermediate results for lineage tracing. However, computing and maintaining auxiliary views may significantly increase warehouse maintenance cost.

There are numerous options for which auxiliary information to store, with significant performance tradeoffs. For Select-Project-Join (SPJ) views, we propose a variety of auxiliary view schemes and study overall warehouse tracing and maintenance performance for the different schemes through simulations. For arbitrary views with aggregation (the ASPJ
views introduced in Section 2.2), we suggest an initial search space of possible beneficial auxiliary views based on the ASPJ view normal form from Section 2.5.1, we propose several algorithms for selecting auxiliary views within this search space, and we compare empirically the running time of our selection algorithms and the optimality of the auxiliary view sets they select. We use the TPC-D benchmark [TPC96], as well as a suite of synthetic view definitions and statistics.

Section 3.1 introduces several running examples and motivates the technique of storing auxiliary views for improved lineage tracing performance. Section 3.2 introduces a variety of auxiliary view schemes for the restricted case of SPJ views. Section 3.3 presents a performance study of the proposed auxiliary view schemes, considering lineage tracing cost as well as overall warehouse view maintenance and storage costs. Section 3.4 specifies the auxiliary view selection problem for ASPJ views, and Section 3.5 describes the detailed cost model we use to estimate lineage tracing and view maintenance costs for a given ASPJ view and a set of auxiliary views for it. Section 3.6 then presents our auxiliary view selection algorithms based on the cost model, and Section 3.7 compares their performance using experiments. Section 3.8 introduces a lineage tracing system prototype we implemented based on the results presented thus far in the thesis. Finally, Section 3.9 surveys related work, and Section 3.10 concludes the chapter. The work presented in this chapter appeared originally in [CW00a, CW00b, CW00c].

3.1 Running Examples

For this chapter’s running examples, let us again consider the retail data warehouse from Section 2.1, where views Calif (Figure 2.4) and Clothing (Figure 2.7) are defined over three source tables store, item, and sales (Figures 2.1–2.3). Again, suppose we select a tuple in Calif (or Clothing) and want to trace its data lineage. Recall that we used the terms derivation set and derivation pool in Chapter 2 to formalize the concept of data lineage under set and bag semantics, respectively. In this chapter and all later chapters, we consider only set semantics, where there is always a unique derivation for any given view data item (Theorem 2.3.2). Thus, we use the term lineage generically throughout the rest of the thesis to indicate the unique derivations of Theorem 2.3.2.
To trace the lineage of view tuple \(t = \langle \text{Target}, \text{pencil}, 3000 \rangle \) in Calif, using our tracing algorithms presented in Section 2.4, we can apply either of the tracing queries in Figure 2.12 to the source tables. However, as mentioned at the outset of this chapter, querying the source tables during lineage tracing may be inefficient, difficult, or impossible. To reduce or avoid source accesses during lineage tracing, we may choose to store at the warehouse auxiliary materialized views over the source tables. For the simple view Calif, we could store a copy of all source tables in the warehouse and apply the tracing query directly to the local copies to avoid remote source queries altogether during lineage tracing. There are several alternative auxiliary views we could store to reduce source accesses during lineage tracing, which we will introduce later in Section 3.2.

Recall that for lineage tracing in a complex ASPJ view like Clothing in Figure 2.7, we first divide the view definition tree into two ASPJ segments and define an intermediate view AllClothing over the bottom segment, as shown in Figure 2.13. As discussed in Section 2.5.3, the contents of the intermediate view AllClothing are needed in the tracing query for the top segment of view Clothing. We can recompute the relevant portion of the aggregate when tracing a tuple’s lineage, or we can materialize AllClothing as an auxiliary view at the warehouse specifically for lineage tracing.

All materialized views at the warehouse, including the primary view being traced and any auxiliary views to support lineage tracing, must be maintained when the sources change, as discussed in Section 1.1. Throughout this chapter, we assume a standard incremental view maintenance approach is used, e.g., [GMS93, ZGMHW95]. In this approach, changes to each source table are recorded in a delta table. During view maintenance, changes to the view are computed using a predefined query called a maintenance expression. In our example, when tuples are inserted into \(\text{sales} \), the insertions are recorded in a delta table \(\text{sales-ins} \). Insertions to the view Calif can then be computed using a query (maintenance expression) that is the same as the view definition in Figure 2.4, except that \(\text{sales} \) is replaced by \(\text{sales-ins} \). Deletions to the view are computed similarly. We then refresh the view table by applying the changes, and the view becomes up-to-date. To evaluate the maintenance expressions, it is usually necessary to query the source tables, which can be problematic as discussed earlier. Prior work has addressed this problem by adding auxiliary views to ensure self-maintainability: a set of views is self-maintainable if
it can be maintained using only the source changes and the view data, without querying the sources [QGMW96].

As we introduce auxiliary views in the warehouse to support lineage tracing, overall warehouse maintenance cost may increase since more views need to be maintained. However, the same auxiliary views that help lineage tracing often can help maintain the primary view, sometimes even making the entire set of views self-maintainable. For example, the auxiliary view AllClothing that we defined for lineage tracing can also help the maintenance of primary view Clothing, because we can avoid recomputing the intermediate aggregation results during each view maintenance process.

To take the interaction of auxiliary views for lineage tracing and view maintenance into consideration, we decided to study auxiliary view schemes for lineage tracing and view maintenance together. We also consider warehouse storage cost, because some auxiliary view schemes that can improve both lineage tracing and view maintenance performance may incur very high storage space requirements. (Storing an entire copy of all source data might be such an example.)

In general, given an arbitrary ASPJ view, finding a set of auxiliary views that minimizes the overall lineage tracing and view maintenance cost is a hard optimization problem. To illustrate the general auxiliary view selection problem, we will use a somewhat more complicated example. First, we extend our source tables by adding an extra attribute cost to the source table item, and we add a fourth source table employee(e_id, s_id, salary). The complete source schema is now:

- store(s_id, s_name, city, state), as earlier

- item(i_id, i_name, category, cost), which includes the wholesale cost of each item

- sales(s_id, i_id, price, num), where num now represents the expected number sold each month

- employee(e_id, s_id, salary), which includes the monthly salary of each employee at each store
CREATE VIEW HighProfit AS
SELECT s.name
FROM store as S,
(SELECT s.id, SUM(num*(price-cost)) AS profit
FROM sales, item
WHERE sales.i_id = item.i_id
GROUP BY s.id) AS P,
(SELECT s.id, SUM(salary) AS salaries
FROM employee
GROUP BY s.id) AS E
WHERE S.s_id = E.s_id
AND E.s_id = P.s_id
AND P.profit - E.salaries > 100000

Figure 3.1: View definition for HighProfit

Consider a materialized view HighProfit that keeps track of stores with high profits, i.e., stores whose expected monthly sales income exceeds its total salary expenses by at least $100,000. An SQL definition for HighProfit and its view definition tree in segmented ASPJ normal form (Section 2.5) are shown in Figure 3.1.

For view HighProfit, there are numerous ways of storing auxiliary views to help lineage tracing or view maintenance. For example, we could store the result of the two lower-level aggregations, we could store the join result, we could store copies of most or all of the source tables, etc. In Sections 3.4–3.6, we will introduce techniques for selecting a good set of auxiliary views without exploring the entire combinatorial space.

3.2 Auxiliary Views for Tracing SPJ Views

In this section, we introduce a variety of auxiliary view schemes for the restricted case of SPJ views, and we study their relative performance in Section 3.3. In Sections 3.4–3.7, we will extend our auxiliary view schemes to consider arbitrary multilevel ASPJ views.

Given an SPJ view $V = v(D) = \pi_A(\sigma_{C}(T_1 \bowtie \cdots \bowtie T_m))$ and a tuple set $T \subseteq V$ to be traced, Figure 3.2(a) shows the generic form of its tracing query from Theorem 2.5.2.1

1We consider tracing a tuple set T rather than a single tuple t for generality: it sets the stage for generalizing our results to multilevel views, and in practice we expect that a warehouse tracing package might permit multiple tuples to be traced together for convenience and efficiency.
3.2. AUXILIARY VIEWS FOR TRACING SPJ VIEWS

We assume that all local selection conditions in the view—conditions that involve a single base table—are pushed down to the T_i’s, so σ_C contains join conditions only. Since the size of T tends to be small, in some cases we also push down the semijoin and rewrite the tracing query as in Figure 3.2(b). The auxiliary views we consider are based on the forms of these two query trees. (Of course since the traced tuple set T is not available until tracing time, we cannot define or maintain auxiliary views on subqueries involving T.) We propose seven schemes for storing auxiliary views to support tracing the lineage of T according to v. For each scheme we specify the new lineage tracing procedure that takes advantage of auxiliary views, as well as the maintenance procedures for the auxiliary views and the original view, since they are all factors in overall performance.

In the maintenance procedures, we use δ to denote the delta tables (as discussed in Section 3.1), but with insertions and deletions combined, and we use \lor to denote application of the delta tables [GMS93].

3.2.1 Store Nothing (\(\emptyset\))

The extreme case is to store no auxiliary views for lineage tracing.

1. Auxiliary views: None
2. Lineage tracing: $TQ_{T,v} = Split_{T_1,\ldots,T_m}(\sigma_C((T_1 \bowtie T) \bowtie \cdots \bowtie (T_m \bowtie T)) \bowtie T)$
3. Maintenance of auxiliary views: None

![Figure 3.2: Tracing queries](image)
4. Maintenance of \(v\) [GMS93]:
\[
\delta V = \pi_A(\sigma_C(\delta T_1 \bowtie (T_2 \uplus \delta T_2) \bowtie \cdots \bowtie (T_m \uplus \delta T_m) \uplus T_1 \bowtie \delta T_2 \bowtie (T_3 \uplus \delta T_3) \bowtie \cdots \bowtie (T_m \uplus \delta T_m) \uplus \cdots \uplus T_1 \bowtie \cdots \bowtie T_{m-1} \bowtie \delta T_m))
\]

This scheme retrieves all necessary information from source tables every time a user poses a lineage tracing query. It incurs no extra storage or maintenance cost, but leads to poor tracing performance. This scheme is included primarily as a baseline to compare with other, more attractive, schemes.

3.2.2 Store Base Tables (BT)

If we can trace the lineage of any tuple in a view without querying the sources, then we say that the view is *self-traceable*. Self-traceable views can be traced correctly even if source tables are inaccessible or inconsistent with the warehouse views. One easy way to make a view self-traceable is to store in the warehouse a copy of each source table that the view is defined on (after local selections), and issue the tracing queries to the local copies instead of to the source tables during lineage tracing. We refer to these source copies as the *Base Tables (BTs)* for \(v\).

1. Auxiliary views: \(BT_i = T_i, i = 1..m\)
2. Lineage tracing: \(TQ_{T,v} = \text{Split}_{T_1,...,T_m}(\sigma_C((BT_1 \bowtie T) \bowtie \cdots \bowtie (BT_m \bowtie T)) \bowtie T)\)
3. Maintenance of BTs: \(\delta BT_i = \delta T_i, i = 1..m\)
4. Maintenance of \(v\): Same scheme \(\varnothing\) replacing \(T_i\) with \(BT_i, i = 1..m\)

Storing base tables can improve primary view maintenance as well as lineage tracing, and maintaining them is fairly easy. However, base tables can be large, even after applying local selections, and much of the source data may be irrelevant to any view tuple’s lineage if joins are selective. For the SPJ view \(\text{Calif}\) from our running example, the base tables are simply copies of tables \(\text{store}, \text{item}, \text{and sales}\).

3.2.3 Store Lineage Views (LV)

An alternative way of improving tracing query performance is to store an auxiliary view based on the left subtree in Figure 3.2(a), which we call the *Lineage View (LV)* for \(v\), since it contains all lineage information for all tuples in the primary view.
3.2. AUXILIARY VIEWS FOR TRACING SPJ VIEWS

<table>
<thead>
<tr>
<th>id</th>
<th>s_name</th>
<th>city</th>
<th>state</th>
<th>i_id</th>
<th>i_name</th>
<th>category</th>
<th>price</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Target</td>
<td>Palo Alto</td>
<td>CA</td>
<td>0001</td>
<td>binder</td>
<td>stationery</td>
<td>$4</td>
<td>1000</td>
</tr>
<tr>
<td>001</td>
<td>Target</td>
<td>Palo Alto</td>
<td>CA</td>
<td>0002</td>
<td>pencil</td>
<td>stationery</td>
<td>$1</td>
<td>3000</td>
</tr>
<tr>
<td>001</td>
<td>Target</td>
<td>Palo Alto</td>
<td>CA</td>
<td>0004</td>
<td>pants</td>
<td>clothing</td>
<td>$30</td>
<td>600</td>
</tr>
<tr>
<td>003</td>
<td>Macy’s</td>
<td>San Francisco</td>
<td>CA</td>
<td>0003</td>
<td>shirt</td>
<td>clothing</td>
<td>$45</td>
<td>1500</td>
</tr>
<tr>
<td>003</td>
<td>Macy’s</td>
<td>San Francisco</td>
<td>CA</td>
<td>0004</td>
<td>pants</td>
<td>clothing</td>
<td>$60</td>
<td>600</td>
</tr>
</tbody>
</table>

Figure 3.3: Lineage View (LV)

1. Auxiliary views: \(LV = \sigma_C(T_1 \bowtie \cdots \bowtie T_m) \)
2. Lineage tracing: \(TQ_{t,v} = Split_{T_1,\ldots,T_m}(LV \bowtie T) \)
3. Maintenance of \(LV \): \(\delta LV = \sigma_C(\delta T_1 \bowtie (T_2 \bowtie \delta T_2) \bowtie \cdots \bowtie (T_m \bowtie \delta T_m) \bowtie T_1 \bowtie \delta T_2 \bowtie (T_3 \bowtie \delta T_3) \bowtie \cdots \bowtie (T_m \bowtie \delta T_m) \bowtie \cdots \bowtie T_1 \bowtie \cdots \bowtie T_{m-1} \bowtie \delta T_m) \)
4. Maintenance of \(v \): \(\delta V = \pi_A(\delta LV) \)

The LV scheme significantly simplifies the tracing query and thus reduces tracing query cost. In addition, like base tables, lineage views can be helpful in maintaining the primary view. However, lineage views can be large and are usually expensive to maintain themselves. The contents of the lineage view for Calif are shown in Figure 3.3.

3.2.4 Store Split Lineage Tables (SLT)

For views whose joins are many-to-many, lineage views as defined in Section 3.2.3 can be very large, and thus not efficient when performing the semijoin with \(T \) during lineage tracing. One solution is to split the lineage view and store a set of tables instead, which we call the Split Lineage Tables (SLTs). Note that we use lineage view \(LV \) as defined in Section 3.2.3 in the following definitions.

1. Auxiliary views: \(SLT_i = \pi_{T_i}(LV), i = 1..m \)
2. Lineage tracing: \(TQ_{t,v} = Split_{T_1,\ldots,T_m}(\sigma_C((SLT_1 \bowtie T) \bowtie \cdots \bowtie (SLT_m \bowtie T)) \bowtie T) \)
3. Maintenance of \(SLTs \): \(\delta SLT_i = \pi_{T_i}(\delta LV), i = 1..m \)
4. Maintenance of \(v \): \(\delta V = \pi_A(\delta LV) \)

Split lineage tables contain no irrelevant source data, since every tuple in \(SLT_i, i = 1..m \), contributes to some view tuples. Furthermore, the size of the split lineage tables can be
CHAPTER 3. STORING AUXILIARY VIEWS

Figure 3.4: Split Lineage Tables (SLTs)

much smaller than the lineage view. Their maintenance cost is similar to that of the lineage view. Note that although we do not materialize the lineage view LV in the SLT scheme, we still compute δLV, in order to maintain the primary view V and auxiliary views SLT_i, $i = 1..m$. The disadvantage of SLT is that lineage tracing queries may be more expensive. The contents of the split lineage tables for view Calif are shown in Figure 3.4.

3.2.5 Store Partial Base Tables (PBT)

Reconsidering the BT scheme (Section 3.2.2), another way to reduce the size of the base tables is to materialize the semijoin of each source table T_i with the primary view V; we call this semijoin result the Partial Base Table (PBT) for T_i according to v.

1. Auxiliary views: $PBT_i = T_i \bowtie V$, $i = 1..m$
2. Lineage tracing: $TQ_{T,v} = Split_{T_1,..,T_m}(\sigma_C((PBT_1 \bowtie T) \bowtie \cdots \bowtie (PBT_m \bowtie T)) \bowtie T)$
3. Maintenance of PBTs: $\delta PBT_i = \delta T_i \bowtie (V \cup \delta V) \cup T_i \bowtie \delta V$, $i = 1..m$
4. Maintenance of v: Same as scheme \emptyset

For views with selective join conditions, the PBT scheme replicates much less source data than the BT scheme, with several benefits: It reduces the storage requirement, as well as the cost of refreshing the auxiliary views. It also reduces the tracing cost, because the tracing query operates on a much smaller table. However, partial base tables do not help with the maintenance of the primary view. Instead, the primary view needs to be maintained first. The partial base tables are then relatively cheap to maintain based on the primary view’s contents and changes. The contents of the partial base tables for Calif are shown in Figure 3.5.
3.2.2 Auxiliary Views for Tracing SPJ Views

<table>
<thead>
<tr>
<th>s_id</th>
<th>s_name</th>
<th>city</th>
<th>state</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Target</td>
<td>Palo Alto</td>
<td>CA</td>
</tr>
<tr>
<td>002</td>
<td>Target</td>
<td>Albany</td>
<td>NY</td>
</tr>
<tr>
<td>003</td>
<td>Macy’s</td>
<td>San Francisco</td>
<td>CA</td>
</tr>
<tr>
<td>004</td>
<td>Macy’s</td>
<td>New York City</td>
<td>NY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i_id</th>
<th>i_name</th>
<th>category</th>
</tr>
</thead>
<tbody>
<tr>
<td>0001</td>
<td>binder</td>
<td>stationery</td>
</tr>
<tr>
<td>0002</td>
<td>pencil</td>
<td>stationery</td>
</tr>
<tr>
<td>0003</td>
<td>shirt</td>
<td>clothing</td>
</tr>
<tr>
<td>0004</td>
<td>pants</td>
<td>clothing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>s_id</th>
<th>i_id</th>
<th>price</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>0001</td>
<td>4</td>
<td>1000</td>
</tr>
<tr>
<td>001</td>
<td>0002</td>
<td>1</td>
<td>3000</td>
</tr>
<tr>
<td>001</td>
<td>0004</td>
<td>30</td>
<td>600</td>
</tr>
<tr>
<td>003</td>
<td>0003</td>
<td>45</td>
<td>1500</td>
</tr>
<tr>
<td>003</td>
<td>0004</td>
<td>60</td>
<td>600</td>
</tr>
</tbody>
</table>

Figure 3.5: Partial Base Tables (PBTs)

3.2.6 Store Base Table Projections (BP)

When source tables have known keys, we can store in our auxiliary views key attributes from the source tables together with other necessary attributes, which we call the Base Table Projections (BPs). This scheme improves tracing query performance (over storing nothing) while reducing view maintenance and storage costs (over storing full source replicas).

1. Auxiliary views: \(BP_i = \pi_{A_i}(T_i) \), where \(A_i \) includes the key attributes \(K_i \), attributes that are projected into \(V (T_i \cap V) \), and attributes involved in \(v \)'s join conditions \((T_i \cap C) \)

2. Lineage tracing: \(T_i^* = T_i \bowtie (\sigma_C((BP_1 \bowtie T) \bowtie \cdots \bowtie (BP_m \bowtie T)) \bowtie T), v^{-1}_D(T) = \langle T_1^*, \ldots, T_m^* \rangle \)

3. Maintenance of BPs: \(\delta BP_i = \pi_{A_i}(\delta T_i), i = 1..m \)

4. Maintenance of \(v \): Same as scheme \(\emptyset \) replacing \(T_i \) with \(BP_i, i = 1..m \)

Note that the semijoins in the tracing procedure are key-based. This scheme can be especially useful when a source table has wide tuples but the view projects only a small fraction. During lineage tracing, the stored information identifies by key which source tuples really contribute to a given view tuple, then the detailed source information is fetched from the source using the key information. Maintenance of the primary view is easy. However, in the BP scheme we do need to query the sources, which has its drawbacks as discussed earlier. The contents of the base table projections for Calif are shown in Figure 3.6.
3.2.7 Store Lineage View Projections (LP)

Again assuming source tables with known keys, we can store a projection over the lineage view (Section 3.2.3) that includes only source table keys and primary view attributes. We call this view the Lineage View Projection (LP). Note that we use lineage view LV as defined in Section 3.2.3 in the following definitions.

1. Auxiliary views: $LP = \pi_{A \cup K_1 \cup \ldots \cup K_m}(LV)$, where A is the set of attributes in V, and K_i is the set of key attributes of table T_i, $i = 1..m$

2. Lineage tracing: $T_i^* = T_i \bowtie (LP \bowtie T)$, $v^{-1}_D(T) = \langle T_1^*, \ldots, T_m^* \rangle$

3. Maintenance of LP: $\delta LP = \pi_{A \cup K_1 \cup \ldots \cup K_m}(\delta LV)$, $i = 1..m$

4. Maintenance of v: $\delta V = \pi_A(\delta LP)$

Compared with the BP scheme, the LP scheme further simplifies the tracing query and improves tracing performance. However, the maintenance cost for the lineage view projection is higher than for the base table projections. LP also requires a source query as the last step of the tracing process, with the disadvantages previously discussed. The contents of the lineage view projection for Calif are shown in Figure 3.7.
3.3 PERFORMANCE OF AUXILIARY VIEW SCHEMES FOR SPJ VIEWS

<table>
<thead>
<tr>
<th>s_id</th>
<th>s_name</th>
<th>i_id</th>
<th>i_name</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>Target</td>
<td>0001</td>
<td>binder</td>
<td>1000</td>
</tr>
<tr>
<td>001</td>
<td>Target</td>
<td>0002</td>
<td>pencil</td>
<td>3000</td>
</tr>
<tr>
<td>001</td>
<td>Target</td>
<td>0004</td>
<td>pants</td>
<td>600</td>
</tr>
<tr>
<td>003</td>
<td>Macy's</td>
<td>0003</td>
<td>shirt</td>
<td>1500</td>
</tr>
<tr>
<td>003</td>
<td>Macy's</td>
<td>0004</td>
<td>pants</td>
<td>600</td>
</tr>
</tbody>
</table>

Figure 3.7: Lineage View Projection (LP)

Table 3.1: Scheme self-traceability and self-maintainability

<table>
<thead>
<tr>
<th>scheme</th>
<th>∅</th>
<th>BT</th>
<th>LV</th>
<th>SLT</th>
<th>PBT</th>
<th>BP</th>
<th>LP</th>
<th>LV-S</th>
<th>SLT-S</th>
<th>PBT-S</th>
</tr>
</thead>
<tbody>
<tr>
<td>self-traceable?</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>self-maintainable?</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

3.2.8 Self-Maintainability and Self-Traceability

As mentioned in Section 3.2.2, self-traceable views can be traced correctly even if the sources are inaccessible or inconsistent with the warehouse views. Analogously, view self-maintainability as introduced in Section 3.1 ensures that views can be maintained without querying the sources [QGMW96]. In cases where the sources are inaccessible, we must ensure that the primary view together with our auxiliary views are both self-traceable and self-maintainable. Table 3.1 summarizes these properties with respect to the seven schemes introduced so far. We also consider self-maintainable extensions of three of the schemes, LV, SLT, and PBT, calling the extensions LV-S, SLT-S, and PBT-S.

3.3 Performance of Auxiliary View Schemes for SPJ Views

This section presents a simulation-based performance evaluation of our proposed auxiliary view schemes in Section 3.2. We address several questions, including: What is the tracing/maintenance cost distribution and the storage requirement using each scheme? What is the impact of parameters such as the source table size, the number of source tables, the view selectivity, and the tracing-query/update ratio? Finally, which scheme performs the best, in terms of tracing time and maintenance cost, in different settings?
Table 3.2: System and data statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Base value</th>
</tr>
</thead>
<tbody>
<tr>
<td>view query load statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>query_rate</td>
<td># of tracing queries per unit time</td>
<td>80</td>
</tr>
<tr>
<td>query_size</td>
<td># of tuples traced per query</td>
<td>10</td>
</tr>
<tr>
<td>source update load statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>update_ratio</td>
<td># of source table updates per unit time</td>
<td>20</td>
</tr>
<tr>
<td>update_size</td>
<td># of changed tuples per source table update</td>
<td>10</td>
</tr>
<tr>
<td>view (segment) data statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rel_num (fan out)</td>
<td># of tables in the view (segment)</td>
<td>3</td>
</tr>
<tr>
<td>join_ratio</td>
<td># of joining tuples / cross-product size</td>
<td>0.000125</td>
</tr>
<tr>
<td>select_ratio</td>
<td># of tuples after selection / before selection</td>
<td>0.1</td>
</tr>
<tr>
<td>proj_ratio</td>
<td># of bytes in projection / tuple size in bytes</td>
<td>0.2</td>
</tr>
<tr>
<td>aggr_ratio</td>
<td># of tuples in aggregate / # of tuples before aggregation</td>
<td>1</td>
</tr>
<tr>
<td>source data statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuple_num</td>
<td># of tuples in source tables</td>
<td>10,000</td>
</tr>
<tr>
<td>tuple_size</td>
<td>tuple size of source tables (in bytes)</td>
<td>1000</td>
</tr>
<tr>
<td>system statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>block_size</td>
<td>block size in bytes at warehouse and source</td>
<td>8000</td>
</tr>
<tr>
<td>disk_cost</td>
<td>cost to read/write a disk block in ms/block</td>
<td>10</td>
</tr>
<tr>
<td>trans_cost</td>
<td>network transmission cost (in ms/byte)</td>
<td>0.2</td>
</tr>
<tr>
<td>msg_cost</td>
<td>network setup cost (in ms/message)</td>
<td>100</td>
</tr>
</tbody>
</table>

3.3.1 System Model and Cost Metrics

We consider a simple warehousing system as depicted in Figure 1.1 of Chapter 1. Table 3.2 summarizes the configuration parameters. Recall that we study only SPJ views in this section, and we consider two types of operations on the view: lineage tracing queries and view maintenance. Most entries in the table are self-explanatory. We assume all local selection conditions are pushed down to corresponding source tables and have been incorporated in the source table size. For simplicity, we do not model cache behavior, and we assume that all source tables in the view have the same statistics. We also assume that the warehouse and the source databases have the same data block size and the same disk access cost. Finally, we assume that all sources can perform simple SPJ operations, and all join operations are nested-loop index joins. We consider table scans as well as key-based index lookups. We use the base values in Table 3.2 as the baseline setting for our experiments, varying relevant parameters one at a time.
3.3. PERFORMANCE OF AUXILIARY VIEW SCHEMES FOR SPJ VIEWS

In our performance analysis we consider several performance metrics. The first is lineage tracing query performance, where we use the average tuple lineage tracing time as the metric. The second metric measures view maintenance cost, including total time spent maintaining auxiliary views as well as the primary view. We consider total view maintenance cost since, as discussed earlier, certain auxiliary view schemes for lineage tracing also improve the performance of primary view maintenance. For both lineage query and view maintenance costs, we consider database access and network cost. More specifically:

lineage tracing (resp. view maintenance) cost
= disk_cost * # of disk I/Os in lineage tracing (resp. in view maintenance)
+ trans_cost * # of bytes transmitted in lineage tracing (resp. in view maintenance)
+ msg_cost * # of network messages in lineage tracing (resp. in view maintenance)

To estimate the number of disk I/Os, bytes transmitted, and network messages in lineage tracing and view maintenance, we use a fairly conventional cost model for relational queries in a distributed database setting, similar to, e.g., [LQA97, Ull89b, ZGMHW95]. The cost formulas rely on all of the statistics from Table 3.2 and the assumptions we made earlier. We also consider total tracing query and view maintenance time based on the query/update ratio. Finally, we consider the size of the primary view and auxiliary views, which compares the schemes’ storage requirements.

3.3.2 Experiments and Results

We present a sample of five experiments addressing the questions raised at the beginning of this section. For each experiment we simulated a total of 1000 operations and estimate the tracing query and view maintenance costs based on the system and cost model introduced in Section 3.3.1. Each operation is either a lineage tracing query (tracing a set of view tuples) or view maintenance, which computes and applies changes to the primary view and auxiliary views based on a set of source changes. We look at the overall performance of our schemes using the base settings of Table 3.2, investigating their storage requirement and how their cost distributes among the relevant cost components. We then study the impact
on the various schemes of source table size, number of source tables, view selectivity, and query/update ratio. Because we measure all ten schemes in our experiments, some graphs are admittedly difficult to decipher, so we highlight the most important aspects of our results in text.

Cost Distribution and Storage. Our first experiment compares the performance of our ten proposed schemes under the base settings. Figure 3.8 shows the cost distributions divided into two parts: the tracing query cost on the right and the view maintenance cost on the left. Figure 3.9 shows the storage requirement of each scheme, including the primary and auxiliary views. (The primary view is fairly selective under our base settings, resulting in the high variance in storage requirement.) From Figure 3.8 we see that under our base settings, LV-S and SLT-S achieve low lineage tracing cost as well as fairly low total cost. \(\emptyset \) (NOTH) has the highest tracing cost but low maintenance cost as expected, while conversely LV and SLT have low tracing cost but high maintenance cost. BT and PBT are reasonable compromises between the two extremes. The self-maintainable extensions (LV-S, SLT-S, and PBT-S) significantly reduce the network cost for maintenance, at the expense of higher refresh I/O cost and higher storage requirements (Figure 3.9). The projection-based schemes
3.3. PERFORMANCE OF AUXILIARY VIEW SCHEMES FOR SPJ VIEWS

(BP and LP) achieve low tracing and maintenance I/O cost, but since they require queries to the sources the network cost remains high. Figure 3.9 shows that \(\varnothing, \text{LV, SLT, BP, and LP} \) have the lowest storage requirements.

Impact of Source Table Size. Next, we look at how our schemes are affected by source table size scale-up. In Figure 3.10, we vary the size of each source table from 1000 to 50,000 tuples and study the impact on tracing query cost (per traced tuple) and maintenance cost (per updated tuple). The results tell us that as the source table size increases, SLT and SLT-S provide the lowest tracing cost (the cost is identical for the two schemes), because they filter out all base tuples that are irrelevant to the lineage of any view tuple. BP and BT, on the other hand, incur the lowest maintenance costs, because of the simplicity of their definition.

Impact of Source Table Number. We now consider scale-up in the number of source tables. From the results in Figure 3.11, we observe that LV and LV-S, which performed poorly in lineage tracing when scaling up source table size, present the best tracing performance in source number scale-up: tracing queries using lineage views do not involve any join operations. BP, BT, and PBT-S incur the lowest maintenance cost as the number of source tables increases, because maintaining these auxiliary views does not require joining multiple source tables.
Impact of View Join Selectivity. This experiment studies how the join selectivity of the primary view affects the schemes. Figure 3.12 shows the results, where we vary the view join ratio from 0.0001 to 0.0005. We can see that the tracing performance of LV, LV-S, and LP degrades substantially as the view join ratio increases, while other schemes are much less sensitive. This behavior is because the size of the lineage view grows exponentially with the join ratio, unlike the other auxiliary views. In summary, SLT and SLT-S provide the lowest tracing cost, while BP and BT again incur the lowest maintenance cost.
3.3. PERFORMANCE OF AUXILIARY VIEW SCHEMES FOR SPJ VIEWS

Impact of Workload Pattern. Our final experiment studies the impact of the query ratio on total tracing and maintenance cost. In Figure 3.13, the x-axis varies the ratio from one extreme where the query ratio = 0 (no tracing queries) to the other extreme where the query ratio = 1 (no view maintenance). According to the total cost shown in the figure, auxiliary view schemes that lead to low tracing cost, such as LV-S and SLT-S, are preferred for high query ratios. BT, a simple scheme that benefits both lineage tracing and view maintenance, is preferred for medium query ratios. Finally, BP, which incurs the lowest overall view maintenance cost, is preferred for low query ratios.
3.4 Auxiliary View Selection for General ASPJ Views

So far we have considered auxiliary view schemes for improved lineage tracing and view maintenance performance for SPJ views only. In this section, we consider the problem of selecting auxiliary views for arbitrary complex multilevel ASPJ primary views. We first specify several types of potentially useful auxiliary views for an arbitrary ASPJ primary view, based on our SPJ auxiliary views from Section 3.2, and discuss how view maintenance procedures and lineage tracing queries can take advantage of these auxiliary views in the more general setting of this section. We then formally define the auxiliary view selection problem and estimate the size of our search space. In Sections 3.5 and 3.6, we will discuss our detailed cost model and view selection algorithms. We use our example view HighProfit from Section 3.1 throughout these sections.

3.4.1 The Auxiliary Views We Consider

Given an ASPJ view, we divide its normalized view definition into three types of components, and for each type of component we consider certain choices of possible auxiliary views to materialize:

1. **Topmost Segment**: the segment at the root of the view definition tree. Recall from the definition of ASPJ normal form (Section 2.5.1) that the \(\alpha, \pi, \sigma \), and/or \(\bowtie \) operators (but not all of them) may be omitted in this segment. Also note that the topmost node corresponds to the primary view itself, so its contents are always materialized. For topmost segments we also consider materializing the lineage view (LV) or the split lineage tables (SLTs) for this segment as defined in Section 3.2, but not both. (If we store one, then storing the other will not further reduce the lineage tracing or overall maintenance cost.)

2. **Intermediate Segment**: a non-root segment that is defined over the source tables and/or other segments. Recall again from the definition of ASPJ normal form that the \(\pi, \sigma \), and/or \(\bowtie \) operators may be omitted in this segment, but the \(\alpha \) operator is always present. For an intermediate segment, we consider materializing the following auxiliary views:
3. Source Table: We continue to assume that all local selection conditions in the view are pushed down to the source tables. For each source table R, we decide whether to store a base table (BT) copy of R, as defined in Section 3.2. If BT is not materialized, we may need to issue queries directly to source table R for view maintenance and lineage tracing.

Example 3.4.1 (Auxiliary Views) Recall view HighProfit from Figure 3.1. Figure 3.14 shows the three ASPJ segments in the view definition, among which segment 1 is the top segment, segments 2 and 3 are intermediate segments, and there are four source tables. Figure 3.14 also shows all of the possible auxiliary views we consider materializing for HighProfit.

Notice that we are not considering all of the auxiliary view schemes introduced for SPJ views earlier in this chapter. Instead, we restrict our search space to only three auxiliary view choices for each ASPJ segment, BT, LV, and SLT, because these three auxiliary view choices are the most representative and interesting ones for the multilevel ASPJ view scenario. (Note that an intermediate aggregate view (AG) for the top of an ASPJ segment

2Most existing production data warehousing systems automatically store a copy of each source table in the warehouse. However, as we will see in Section 3.6, sometimes it is not beneficial to store a copy.
serves as a base table (BT) for the next higher segment.) We could extend our auxiliary view search space to include all 11 choices for each ASPJ segment as proposed in Section 3.2, dramatically increasing an already very large search space. Also notice that we are not considering different join combinations in the case of a many-way join. This special case is considered in detail in previous work [LQA97], and we could extend our search space accordingly.

3.4.2 Lineage Tracing and View Maintenance Using Auxiliary Views

In Section 3.2 we specified how to rewrite queries for lineage tracing and view maintenance using the different auxiliary view schemes suggested for SPJ views. In general, when we have a set of auxiliary views available, there may be more than one way to rewrite a query to take advantage of auxiliary views. We assume that the “best” rewriting is selected, and this assumption is reflected in the cost model to be presented in Section 3.5. For example, we can rewrite the tracing query \(TQ \) for a tuple \(t \) according to the topmost segment in the definition of \(\text{HighProfit} \) using different auxiliary views in Figure 3.14 as follows.

\[
TQ_1 = \text{Split}_{R1,R2,R3}(\sigma_{\text{profit} - \text{expenses} > 100000 \land s_name = t.s_name}(AG_1 \bowtie AG_2 \bowtie BT_4))
\]

\[
TQ_2 = \text{Split}_{R1,R2,R3}(\sigma_{s_name = t.s_name}(LV_2))
\]

\[
TQ_3 = \text{Split}_{R1,R2,R3}(\sigma_{s_name = t.s_name}(SLT_2^{R1} \bowtie SLT_2^{R2} \bowtie SLT_2^{R3}))
\]

\(R1, R2, R3 \) in the tracing queries above represent the schemas of the three leaf nodes of the topmost segment. Suppose that \(LV_2, AG_1, \) and \(BT_4 \) are materialized. Then we could use query \(TQ_2 \), or (among other options) we could use a tracing query similar to \(TQ_1 \) that recomputes the contents of \(AG_2 \). In this case it is likely that \(TQ_2 \) would be chosen as the best query rewriting based on the available auxiliary views.

3.4.3 The View Selection Problem and the Search Space

We have shown various auxiliary views that can be used in the view maintenance and lineage tracing processes for general ASPJ views, and obviously they will lead to different
warehouse performance. Our goal is to select among the choices of auxiliary views described in Section 3.4.1 a set that minimizes overall cost: the cost of lineage tracing plus the cost of maintaining the primary and auxiliary views. Our detailed cost model is described in Section 3.5. Here let us consider the size of our search space.

Given an ASPJ view v, we say that v is an n-level ASPJ view if traversing from the root to any leaf in its normalized definition tree crosses at most n segments. The fan-out of a segment is the number of operands of the segment’s join operator, or 1 if there is no join. For instance, our example view HighProfit from Section 3.1 is a 2-level ASPJ view containing three segments: the topmost π-σ-\Join segment with fan-out 3, the leftmost α segment with fan-out 1, and the middle α-\Join segment with fan-out 2.

Suppose we have an n-level ASPJ view in normal form, and consider a balanced view definition tree with a fan-out of m in each segment. There is one topmost segment, and for that segment we have 3 auxiliary view options: LV, SLTs, or nothing (case 1 in Section 3.4.1). There are $m^1 + m^2 + \cdots + m^{n-1} = O(m^{n-1})$ intermediate segments, each having 2 options for case 2(a) in Section 3.4.1 (AG or nothing) and 3 options for case 2(b) (LV, SLTs, or nothing). Finally, there are m^n source tables, each having 2 options: BT or nothing. Therefore, the size of the entire search space is

$$3^1 \cdot (2 \cdot 3)^{O(m^{n-1})} \cdot 2^{(m^n)} = O(2^{m^n})$$

If k is the total number of components in the view definition, where a component is a segment or a source table, then $k = O(m^n)$ and the search space size is $O(2^k)$.

Example 3.4.2 (Search Space Size) Consider our example view HighProfit (Figure 3.14). The number of possible auxiliary view sets for HighProfit is $2^6 \cdot 3^2 = 384$.

The number of choices for HighProfit is quite manageable. However, real warehouse views tend to have much higher fan-outs, as well as possibly more levels. As we will see in Section 3.7, even for a view with only 2 levels and average fan-out of 5, we cannot consider all possible auxiliary view sets due to the large search space.

3 A tree is balanced if each leaf node in the tree has the same depth. We consider this view definition shape since it represents the largest search space size for an n-level view.
3.5 Cost Model

In this section we extend the cost model we introduced in Section 3.3 for SPJ views to estimate the total view maintenance and lineage tracing costs for an arbitrary ASPJ primary view given a set of auxiliary views. We also define a metric for measuring how close a given auxiliary view set is to the optimal one.

Let \(\text{cost}(Q, s) \) denote the estimated cost of evaluating a query \(Q \) at the warehouse given a set of statistics \(s \). \(Q \) could be a lineage tracing query, or a query or update in a view maintenance procedure. \(\text{cost}(Q, s) \) is computed based on the statistics from Table 3.2 as described in Section 3.3.1.

Suppose we have a primary ASPJ view \(v \) and a set of materialized auxiliary views \(A = \{v_1, ..., v_n\} \). To trace the lineage of tuples in the primary view given the auxiliary views in \(A \), there are various possible rewritings of the lineage tracing queries using the auxiliary views (recall Section 3.4.2). Our cost model selects the sequence of lineage tracing queries with the lowest estimated cost. Let \(q(v, A, s) \) denote the estimated lineage tracing cost for primary view \(v \), auxiliary views \(A \), and statistics \(s \):

\[
q(v, A, s) = \sum_{1..m} \text{cost}(Q_i, s)
\]

where \(Q_1, \ldots, Q_m \) is the set of tracing queries selected for \(v \) given auxiliary view set \(A \). We assume that the lineage query rate and the average number of tuples traced in a lineage query (part of our usage statistics in Table 3.2) are included in the input statistics \(s \), and thus are incorporated into the lineage cost estimated by \(q(v, A, s) \).

Maintenance costs are incurred both for the primary view \(v \) and for the auxiliary views in \(A = \{v_1, ..., v_n\} \). As with lineage tracing, when there are multiple possible rewritings for the view maintenance queries and updates using the auxiliary views in \(A \), our cost model selects the ones with the lowest estimated cost. Let \(m(v, A, s) \) denote the estimated maintenance cost for primary view \(v \), auxiliary views \(A \), and statistics \(s \):

\[
m(v, A, s) = \sum_{1..n} \text{cost}(M_i, s)
\]
where \(M_1, \ldots, M_n \) is the set of maintenance queries and updates selected to maintain primary view \(v \) and the auxiliary views in \(\mathcal{A} \). We assume that the source table update rate and average number of source tuples changed in each update (part of our usage statistics in Table 3.2) are included in the input statistics \(s \), and thus are incorporated into the maintenance cost estimated by \(m(v, \mathcal{A}, s) \).

Finally, the total cost is the combination of lineage tracing cost and view maintenance cost:

\[
\text{total cost}(v, \mathcal{A}, s) = q(v, \mathcal{A}, s) + m(v, \mathcal{A}, s)
\]

The optimality of a set of auxiliary views represents how close the set is to the auxiliary view set that yields the lowest estimated cost. For a given primary view \(v \) and statistics \(s \), let \(\mathcal{A}_{\text{opt}} \) denote the set of auxiliary views within our search space (Section 3.4) with the lowest total cost \(\text{total cost}(v, \mathcal{A}_{\text{opt}}, s) \). For a set of auxiliary views \(\mathcal{A} \), we define the optimality of \(\mathcal{A} \) as:

\[
\text{optimality}(\mathcal{A}) = \frac{\text{total cost}(v, \mathcal{A}_{\text{opt}}, s)}{\text{total cost}(v, \mathcal{A}, s)}
\]

For example, if the total cost for auxiliary view set \(\mathcal{A} \) is three times the total cost for \(\mathcal{A}_{\text{opt}} \), then the optimality of \(\mathcal{A} \) is \(1/3 \), or 33%. The optimality of \(\mathcal{A}_{\text{opt}} \) is 1, or 100%.

3.6 Algorithms for Selecting Auxiliary Views

Having defined our search space for the optimization problem and the cost model that we use, we now introduce four different algorithms for selecting a set of auxiliary views within the search space. The input to each algorithm is the primary view definition \(v \) in ASPJ normal form, and a set of statistics \(s \) as specified in Table 3.2. The output is a set of auxiliary views \(\mathcal{A} \).
3.6.1 Exhaustive Algorithm

The exhaustive algorithm enumerates all choices in the search space, estimates the cost of each choice, and picks the cheapest one. For our example view HighProfit, the exhaustive algorithm considers all 384 possible combinations of auxiliary views (recall Example 3.4.2). We set a sample set of statistics \(s \) as shown in Table 3.3, including statistics for view HighProfit, source tables employee, sales, item, and store, as well as each ASPJ segment in the view definition (Figure 3.14). Over this set of statistics, the exhaustive algorithm selects \(A = \{ BT_4, AG_1, AG_2, SLT_1, LV_2 \} \). The exhaustive algorithm always finds the optimal auxiliary view set according to our cost model. However, the complexity of the algorithm is the same as the search space size: \(O(2^k) \) where \(k \) is the number of components in the view definition (recall Section 3.4.3).

3.6.2 Naive Algorithm

At the other end of the spectrum, we consider a naive algorithm that selects a fixed set of auxiliary views: LVs for the topmost and all intermediate segments, AGs for all intermediate segments, and all BTs. For example view HighProfit, the naive algorithm selects \(A = \{ BT_1, BT_2, BT_3, BT_4, AG_1, AG_2, LV_1, LV_2 \} \) (Figure 3.14). Even though this naive
fixed set of auxiliary views may not be optimal—in fact it can be arbitrarily bad compared to the optimal set—our experimental results in Section 3.7 show that the naive algorithm selects reasonably good view sets in many cases, especially considering its simplicity. The complexity of the naive algorithm is $O(1)$.

3.6.3 Greedy Algorithm

We also consider a conventional greedy algorithm. This algorithm initializes the auxiliary view set A to be empty. In each iteration, it adds into A the auxiliary view (not yet in A) that brings the most benefit, i.e., reduces the total cost the most given the current set of views in A. Iteration continues until there are no more auxiliary views outside A that can further reduce the total cost. For our example view $HighProfit$ and the same sample statistics used in the exhaustive algorithm (Section 3.6.1), the greedy algorithm selects the optimal set of auxiliary views in the following order: AG_2, SLT_1, AG_1, LV_2, BT_4.

The greedy algorithm has complexity $O(k^2)$ instead of $O(2^k)$ as in the exhaustive algorithm, and it selects the optimal auxiliary view set in most cases (see Section 3.7). However, the greedy algorithm cannot guarantee an optimal answer, nor even an answer within some percentage of optimal. In Section 3.7.3, we will see a scenario where the greedy algorithm performs poorly.

3.6.4 Three-Step Algorithm

Our last algorithm divides the auxiliary view selection process into three phases. See Figure 3.15. In the first phase, we use a greedy approach to add auxiliary views of the AG and BT types only. In the second phase, we decide for the topmost and each intermediate segment whether to add LV or SLTs. At this point, it may turn out that some of the AG or BT views selected in the first phase are no longer beneficial given the LV or SLT views selected in the second phase, and they incur maintenance cost. Thus, in third phase we remove AG and BT views that are not beneficial, and we do so in a greedy manner.

For example view $HighProfit$ and the same sample statistics from Table 3.3, the three-step algorithm also selects the optimal set of auxiliary views. In phase 1, it selects AG and BT views in the following order: AG_2, AG_1, BT_2, BT_3, BT_4. In phase 2, it selects SLT_1
input: primary view \(v \), statistics \(s \)
output: auxiliary view set \(\mathcal{A} \)
begin
\(\mathcal{A} \leftarrow \emptyset \);

// phase 1: use greedy algorithm on AG and BT nodes
\(\mathcal{A}_{\text{all}} \leftarrow \) all possible auxiliary views for \(v \);
while true do
 for each \(v_i \in \mathcal{A}_{\text{all}} \) of type AG or BT such that \(v_i \not\in \mathcal{A} \) do
 \(\text{benefit}_i \leftarrow \text{total cost}(v, \mathcal{A}, s) - \text{total cost}(v, \mathcal{A} \cup \{v_i\}, s) \);
 pick \(v_i \) with the highest \(\text{benefit}_i \);
 if \(\text{benefit}_i \leq 0 \) then break else \(\mathcal{A} \leftarrow \mathcal{A} \cup \{v_i\} \);
 endwhile;

// phase 2: decide LV and SLTs
for the topmost and each intermediate segment do
 // Let LV and SLT be the Lineage View and Split Lineage Tables for the segment
 \(\text{cost}_1 \leftarrow \text{cost}(v, \mathcal{A} \cup \{LV\}, s) \);
 \(\text{cost}_2 \leftarrow \text{cost}(v, \mathcal{A} \cup \{SLT\}, s) \);
 if \(\text{cost}_1 \geq \text{cost}_2 > \text{cost}(v, \mathcal{A}, s) \) then \(\mathcal{A} \leftarrow \mathcal{A} \cup \{LV\} \)
 else if \(\text{cost}_2 > \text{cost}_1 > \text{cost}(v, \mathcal{A}, s) \) then \(\mathcal{A} \leftarrow \mathcal{A} \cup \{SLT\} \);
endfor;

// phase 3: remove useless AGs and BTs
while true do
 for each \(v_i \in \mathcal{A} \) of type AG or BT do
 \(\text{benefit}_i \leftarrow \text{total cost}(v, \mathcal{A} - \{v_i\}, s) - \text{total cost}(v, \mathcal{A}, s) \);
 pick \(v_i \) with the lowest \(\text{benefit}_i \);
 if \(\text{benefit}_i > 0 \) then break else \(\mathcal{A} \leftarrow \mathcal{A} - \{v_i\} \);
 endwhile;
return \(\mathcal{A} \);
end

Figure 3.15: The three-step algorithm

and LV\(_2\). In phase 3, it removes BT\(_2\) and BT\(_3\) (in that order) because they are no longer beneficial given the views selected in phase 2.

The three-step algorithm has complexity \(O(k^2) \), which is the same as the greedy algorithm, but its actual running time is less than the greedy algorithm by a linear factor.
3.7. Performance of Auxiliary View Selection Algorithms

The first phase of the three-step algorithm is faster than the greedy algorithm since it only selects from the AG and BT views, instead of from all auxiliary views. The second phase is linear in the number of segments. The third phase only examines the AG and BT views selected in the first phase, which is a small number in most cases.

Like the greedy algorithm, the three-step algorithm usually selects the optimal set of auxiliary views (see Section 3.7). However, also like the greedy algorithm, the three-step algorithm cannot make any guarantees about the optimality of its answers. In Section 3.7.3 we will see a scenario where the three-step algorithm performs poorly. Interestingly, in the case we show where the three-step algorithm performs poorly, the greedy algorithm performs well, and vice-versa. Thus, one practical option is to combine the two algorithms: run both algorithms and select whichever answer has lower estimated cost. The running time of the combined algorithm remains $O(k^2)$.

3.7 Performance of Auxiliary View Selection Algorithms

In this section, we study the performance of our four auxiliary view selection algorithms specified in Section 3.6, comparing their running times and the optimality of the answers they produce. We also compare the cost of the answers produced by these algorithms against the cost of storing no auxiliary views. In Section 3.7.1, we present results of experiments using the schema, statistics, and some views from the TPC-D benchmark. In Section 3.7.2, we present results of experiments using more complex synthetic view definitions. Since the greedy and three-step algorithms perform quite well in all of the experiments in Sections 3.7.1 and 3.7.2, in Section 3.7.3 we show experiments illustrating that greedy and three-step can perform poorly.

3.7.1 TPC-D Experiments

Our first set of experiments is based on the TPC-D benchmark [TPC96]. We use the schema of tables Customer, Order, Lineitem, Supplier, Nation, Region, PartSupp, and Part from the benchmark for our experiments. The table statistics we use correspond to a scaling factor of 1. The remaining statistics from Table 3.2 are set according to the benchmark and
commonly used database and network system settings. For example, we set the update rate for the Lineitem and Order tables to be much higher than other tables, since Lineitem and Order are the fact tables according to the benchmark specification. For views, we select queries Q_5, Q_{11}, and Q_{17} from the benchmark, since they are relatively complex and differ somewhat from each other. In each case, we treat the benchmark query as the definition of our primary materialized view to be stored at the warehouse. The general structure of each of the three views is shown in Figure 3.16. The complete list of statistical settings (recall Table 3.2) for our three TPC-D experiments is shown in Tables 3.4–3.6.

Recall that we are comparing five algorithms—the four algorithms from Section 3.6,
as well as the “algorithm” that selects no auxiliary views (which we call algorithm none).

Figure 3.17 plots the optimality of the five algorithms for each of the TPC-D views we consider. Recall from Section 3.5 that optimality is defined as the cost of the optimal auxiliary view set divided by the cost of the chosen view set. The rightmost bar for Q17 in Figure 3.17 is barely visible, meaning that the scheme of storing no auxiliary views has extremely low optimality (i.e., high cost). Figure 3.18 plots the running time of the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_{11}</td>
</tr>
<tr>
<td>query_rate</td>
<td>100</td>
</tr>
<tr>
<td>query_size</td>
<td>1</td>
</tr>
<tr>
<td>update_rate</td>
<td>10</td>
</tr>
<tr>
<td>update_size</td>
<td>1</td>
</tr>
<tr>
<td>tuple_num</td>
<td>800000</td>
</tr>
<tr>
<td>tuple_size</td>
<td>1</td>
</tr>
<tr>
<td>fan-out</td>
<td>1</td>
</tr>
<tr>
<td>join_ratio</td>
<td></td>
</tr>
<tr>
<td>select_ratio</td>
<td></td>
</tr>
<tr>
<td>proj_ratio</td>
<td></td>
</tr>
<tr>
<td>aggr_ratio</td>
<td></td>
</tr>
<tr>
<td>block_size</td>
<td>8K</td>
</tr>
<tr>
<td>disk_cost</td>
<td>1</td>
</tr>
<tr>
<td>net_cost</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.5: Statistics for Q_{11}

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_{17}</td>
</tr>
<tr>
<td>query_rate</td>
<td>100</td>
</tr>
<tr>
<td>query_size</td>
<td>1</td>
</tr>
<tr>
<td>update_rate</td>
<td>10</td>
</tr>
<tr>
<td>update_size</td>
<td>1</td>
</tr>
<tr>
<td>tuple_num</td>
<td>200000</td>
</tr>
<tr>
<td>tuple_size</td>
<td>200</td>
</tr>
<tr>
<td>fan-out</td>
<td></td>
</tr>
<tr>
<td>join_ratio</td>
<td></td>
</tr>
<tr>
<td>select_ratio</td>
<td></td>
</tr>
<tr>
<td>proj_ratio</td>
<td></td>
</tr>
<tr>
<td>aggr_ratio</td>
<td></td>
</tr>
<tr>
<td>block_size</td>
<td>8K</td>
</tr>
<tr>
<td>disk_cost</td>
<td>1</td>
</tr>
<tr>
<td>net_cost</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.6: Statistics for Q_{17}
algorithms. Note that algorithms naive and none do incur a small running time, which is the time required to compute the cost of their one solution.

We can see from Figure 3.17 that storing no auxiliary views can be dramatically worse than storing some, even those selected by the naive algorithm. We also see from Figure 3.17 that the greedy and three-step algorithms select the optimal auxiliary view set for all three views, and from Figure 3.18 we see that they do so in a small fraction of the running time required by the exhaustive algorithm. We also note that the three-step algorithm runs considerably faster than the greedy algorithm.

3.7.2 Synthetic Experiments

Our next set of experiments is conducted using synthetic views and data statistics. The views we consider all have a regular tree definition, as illustrated by view v_1 in Figure 3.19. We consider seven different views. Figure 3.20 summarizes the “shape” of each view definition tree (number of levels and fan-out of each segment), along with the query/update ratio, which represents the ratio of the average number of tracing queries per unit time to
3.7. PERFORMANCE OF AUXILIARY VIEW SELECTION ALGORITHMS

Figure 3.19: Structure of view \(v_1 \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
<th>(v_5)</th>
<th>each source table</th>
<th>each segment</th>
</tr>
</thead>
<tbody>
<tr>
<td>query_rate</td>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>query_size</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>update_rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>update_size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuple_num</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuple_size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>levels</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fan-out</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>join_ratio</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>select_ratio</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>proj_ratio</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aggr_ratio</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>block_size</td>
<td>8K</td>
<td>8K</td>
<td>8K</td>
<td>8K</td>
<td>8K</td>
<td>8K</td>
<td></td>
</tr>
<tr>
<td>disk_cost</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>net_cost</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.7: Statistics for synthetic views \(v_1 \)–\(v_5 \)

the average number of source updates (recall Table 3.2). The complete set of statistical settings for the seven experiments is summarized in Tables 3.7–3.9.

Figure 3.21 plots the optimality of our five algorithms for each of the seven synthetic views we consider. Figure 3.22 plots the running time of the algorithms. The greedy and three-step algorithms always select the optimal auxiliary view set or, in the one case of the three-step algorithm on \(v_1 \), very near to optimal. (Actually, for view \(v_7 \) the exhaustive algorithm never finished, so optimality is measured against the auxiliary view set selected by the greedy algorithm.) The greedy and three-step algorithms find their answer in a small
fraction of the running time required by the exhaustive algorithm, and three-step is much faster than greedy. Another interesting result is that algorithm none performs better when the query/update ratio is lower (experiments v_3–v_5). However, we should not infer that the benefit of auxiliary views is primarily for lineage tracing. In fact, in experiment v_5 the query/update ratio is set to 0 (indicating view maintenance only), and we still see significant benefit to using auxiliary views.

Next, we consider in more detail how the running times of the exhaustive, greedy, and
3.7. PERFORMANCE OF AUXILIARY VIEW SELECTION ALGORITHMS

<table>
<thead>
<tr>
<th></th>
<th>exhaustive</th>
<th>greedy</th>
<th>three-step</th>
<th>naive</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>2411.68</td>
<td>3.18</td>
<td>0.67</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>v_2</td>
<td>2414.86</td>
<td>3.18</td>
<td>0.99</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>v_3</td>
<td>2455.74</td>
<td>3.28</td>
<td>0.71</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>v_4</td>
<td>2493.06</td>
<td>3.17</td>
<td>0.63</td>
<td>0.03</td>
<td>0.05</td>
</tr>
<tr>
<td>v_5</td>
<td>2376.53</td>
<td>3.93</td>
<td>0.64</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>v_6</td>
<td>757.49</td>
<td>0.99</td>
<td>0.17</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>v_7</td>
<td>156.36</td>
<td>35.29</td>
<td>0.33</td>
<td>0.21</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.22: Running time for synthetic views (sec)

three-step algorithms are affected by view complexity. In Figure 3.23, we consider views where we fix the number of levels at 2 and increase the fan-out from 1 to 9. The exhaustive, greedy, and three-step algorithms become prohibitive when the fan-out exceeds 3, 7, and 8, respectively. We see similar behavior in Figure 3.24, where we fix the fan-out at 2 and increase the number of levels from 1 to 8.

3.7.3 When Greedy and Three-Step Fail

The greedy and three-step algorithms select the optimal (or in one case very near to optimal) auxiliary view set in all of the experiments reported in Sections 3.7.1 and 3.7.2. However, there are cases in which these algorithms fail to pick an optimal or even near-optimal answer.

Consider a simple view definition \(v \) and the auxiliary views that are considered for \(v \) in
CHAPTER 3. STORING AUXILIARY VIEWS

Figure 3.25: View structure of \(v_8 \) and \(v_9 \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>(v_8)</th>
<th>(R)</th>
<th>(S)</th>
<th>segment 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>query_rate</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>query_size</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>update_rate</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>update_size</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuple_num</td>
<td></td>
<td>100000</td>
<td>100000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuple_size</td>
<td></td>
<td>1000</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fan-out</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>join_ratio</td>
<td></td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>select_ratio</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proj_ratio</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aggr_ratio</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>block_size</td>
<td></td>
<td>8K</td>
<td>8K</td>
<td>8K</td>
<td></td>
</tr>
<tr>
<td>disk_cost</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>net_cost</td>
<td></td>
<td>0</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.10: Statistics for \(v_8 \)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
<th>(v_9)</th>
<th>(R)</th>
<th>(S)</th>
<th>segment 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>query_rate</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>query_size</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>update_rate</td>
<td></td>
<td>0</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>update_size</td>
<td></td>
<td>0</td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>tuple_num</td>
<td></td>
<td>10000</td>
<td></td>
<td>100000</td>
<td></td>
</tr>
<tr>
<td>tuple_size</td>
<td></td>
<td>1000</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>fan-out</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>join_ratio</td>
<td></td>
<td>0.00003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>select_ratio</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proj_ratio</td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aggr_ratio</td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>block_size</td>
<td></td>
<td>8K</td>
<td>8K</td>
<td>8K</td>
<td></td>
</tr>
<tr>
<td>disk_cost</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>net_cost</td>
<td></td>
<td>0</td>
<td>0.0001</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.11: Statistics for \(v_9 \)

Figure 3.25. By setting the data statistics (Table 3.2) to different values, we can vary the costs and benefits of the four different auxiliary views. We have set two different configurations, which we call \(v_8 \) and \(v_9 \), both based on the view in Figure 3.25. The complete set of statistical settings for these two experiments is summarized in Tables 3.10 and 3.11. In particular, we set the source table network costs for \(v_8 \) to be much higher than for \(v_9 \), and we set the join ratio of \(v_8 \) higher (less selective) than \(v_9 \). The optimal set of auxiliary views for \(v_8 \) is \(\{ BT_R, BT_S \} \), and the optimal set for \(v_9 \) is \(\{ LV \} \).

Figure 3.26 plots the optimality of all five algorithms on views \(v_8 \) and \(v_9 \). In particular, the greedy algorithm performs extremely poorly on \(v_8 \) (selecting \(\{ LV \} \) instead of \(\{ BT_R, BT_S \} \)), while the three-step algorithm misses the optimal solution for \(v_9 \) (selecting \(\{ BT_R, BT_S \} \) instead of \(\{ LV \} \)). However, as suggested in Section 3.6, if we use a
3.8 Lineage Tracing System Implementation

Based on the techniques introduced so far in this thesis, we implemented a prototype lineage tracing system within the WHIPS [HGMW95] data warehousing prototype at Stanford. In this section, we first describe the architecture of our lineage tracing system, then introduce the system’s Web user interface by walking through a lineage tracing demonstration.

3.8.1 System Architecture

We have shown the basic architecture of WHIPS in Figure 1.1 of Chapter 1. Figure 3.27 illustrates how our lineage tracing system extends this architecture. When a view is defined through the View Specifier, the view definition is transformed into its normal form (Section 2.5.1). If the view specification indicates that the view should be traceable, the Auxiliary View Generator (AVGen) automatically generates auxiliary view definitions based on the user view definition. In our implementation, we store a lineage view (LV) for each ASPJ segment directly defined on a source table, and an aggregate view (AG) for each intermediate aggregate node in the view definition tree. The Maintenance Procedure Generator
(MPGen) and the Tracing Procedure Generator (TPGen) then generate the maintenance procedures (see [HGMW+95]) and lineage tracing queries (Section 3.2) for the user view as well as its auxiliary views, and store them as part of the Metadata.

When the warehouse is loaded, the Data Integrator also populates the auxiliary view tables in the warehouse based on their definitions in the metadata store. In addition, each time a source table is changed, the data integrator calls the corresponding maintenance procedures to compute the changes to the user view and the auxiliary views. As mentioned earlier in the Chapter, the auxiliary views we store for lineage tracing can also be used in the maintenance procedure for the user view as shown in Section 3.2.

Finally, when a user issues a lineage request through the Tracing Interface, the Lineage Tracer is activated and calls the appropriate sequence of tracing queries recursively (Section 2.5). Because the auxiliary views we store ensure self-tracability, we never need to query the source tables for lineage tracing. The lineage results are returned to the user as a list of tables. If the user further requests to see the derivation process, the lineage tracer combines the lineage results and the view definition to generate a derivation tree for the user, showing how the traced view tuple is derived from its lineage tuples step-by-step along the view definition tree. We discuss and illustrate the tracing interface in detail in Section 3.8.2.
3.8. LINEAGE TRACING SYSTEM IMPLEMENTATION

Figure 3.28 shows the auxiliary views and the tracing process for our example view Clothing from Section 3.1. The query tree on the left side of Figure 3.28 is the original definition of view Clothing. One auxiliary view AllClothing maintains intermediate aggregation results. Furthermore, to trace tuples in AllClothing, a second auxiliary view, the lineage view LV_AllClothing, is maintained. The final set of materialized views are:

\[
\begin{align*}
\text{Clothing} &= \pi_{\text{total}}(\sigma_{\text{total}>5000}(\text{AllClothing})) \\
\text{AllClothing} &= \alpha_{s_name, \text{sum(num) as total}}(\text{LV_AllClothing}) \\
\text{LV_AllClothing} &= \sigma_{\text{category}='clothing'}(\text{store} \bowtie item \bowtie sales)
\end{align*}
\]

Each view is computed and maintained based on the views (or source tables) directly
beneath it using pregenerated incremental view maintenance procedures. Bold arrows on the right side of Figure 3.28 show the query and answer data flows. Ordinary view queries are sent to the view Clothing, while lineage queries are sent to the Lineage Tracer. When receiving a request for the lineage of a tuple \(t \) in Clothing, the Lineage Tracer first issues a lineage tracing query to auxiliary view AllClothing to obtain \(t \)'s derivation \(T_1 \) in AllClothing as specified in Theorem 2.4.3. It then queries \(\text{LV}_\text{AllClothing} \) for the lineage \(T_2 \) of \(T_1 \) in \(D \) as specified in Section 3.2. \(T_2 \) is \(t \)'s lineage in \(D \), and is returned to the user through the Lineage Tracer.

3.8.2 Lineage Tracing User Interface

In addition to core support for lineage tracing, we developed a Web-based user interface to our lineage tracing system on top of WHIPS. We demonstrated our lineage tracing system in [CW00a]. The demonstration was based on a synthetic financial data warehouse derived from three tables at three different sources:

- \(s1.\text{portfolio}(\text{tickerS1, date1, price, bought, owned}) \)
- \(s2.\text{daily}(\text{tickerS2, date2, high, low, closep, volume}) \)
- \(s3.\text{earnings}(\text{tickerS3, earnings}) \)

Table \text{portfolio} at source 1 contains all customer stock purchases including the buying date, price, shares bought, and shares owned (in the case of a split). Table \text{daily} at source 2 contains the daily price information of each stock, including the high, low, closing prices. Table \text{earnings} at source 3 contains the latest monthly earnings per share of each stock. Figure 3.29 shows a screen-shot with the three source tables reported to the data warehouse. (Once a source table is reported to the data warehouse, we can define materialized views over that source table at the warehouse. WHIPS will populate the warehouse view contents based on the source table contents, and will maintain the warehouse views when the source tables change.) Figure 3.30 shows sample contents of source table \(s1.\text{portfolio} \). Note that we use a small data set for illustration purposes.

Over the three source tables, we define three warehouse views as indicated in Figure 3.31. View \text{Gaining} is defined over source tables \(s1.\text{portfolio} \) and \(s2.\text{daily} \), returning all the stocks that are gaining money for the customer. View \text{PriceEarnings} computes the
3.8. LINEAGE TRACING SYSTEM IMPLEMENTATION

Figure 3.29: Data sources

Figure 3.30: Source table Portfolio
latest price-earnings ratio for each stock. View LowPEGain is defined over views Gaining and PriceEarnings in the warehouse, and returns the gaining stocks with a price-earnings ratio lower than 100. The SQL definitions of the three views are as follows, where “trace remote” indicates that the view should enable lineage tracing.

```sql
CREATE VIEW Gaining TRACE REMOTE AS
SELECT P.tickerS1 AS tickerS1, D.closep AS closep,
    SUM(P.owned) AS totalShares,
    SUM(D.closep * P.owned - P.price * P.bought) AS gain
FROM s2.daily D, s1.portfolio P
WHERE D.tickerS2 = P.tickerS1 AND D.date2 = '10/17/97'
GROUP BY P.tickerS1, D.closep
HAVING SUM(D.closep * P.owned - P.price * P.bought) > 0;

CREATE VIEW PriceEarnings TRACE REMOTE AS
SELECT D.tickerS2 AS tickerS2,
    (D.closep / E.earnings) AS pe
FROM s2.daily D, s3.earnings E
WHERE D.tickerS2 = E.tickerS3 AND D.date2 = '10/17/97';
```
3.8. LINEAGE TRACING SYSTEM IMPLEMENTATION

Figure 3.32: View LowPEGain

CREATE VIEW LowPEGain TRACE REMOTE AS
SELECT G.tickerS1 AS tickerS, G.gain
WHERE G.tickerS1 = P.tickerS2 AND P.pe < 100;

Figure 3.32 shows the contents of view LowPEGain. Through this interface, we can select any tuple in the view table, choose to trace its data lineage one level down the view hierarchy, or trace its data lineage to the source tables.

Suppose we want to trace the lineage of view tuple \((\text{MSFT}, 11800)\) to learn why MSFT stock is so profitable, and we decide to trace lineage one level at a time. After pressing “Trace One Level”, the system applies the tracing procedure for LowPEGain to views Gaining and PriceEarnings over which LowPEGain is defined, and returns the lineage results in these view tables, as shown in Figure 3.33. We can further inspect the detailed process through which the selected view tuple is derived from its lineage tuples. Figure 3.34 shows the derivation tree. We can then trace the lineage of tuple \((\text{MSFT}, 125, 600, 11800)\) in view Gaining to the next level below; in this case, to the source tables. The result including the derivation tree is shown in Figure 3.35.
CHAPTER 3. STORING AUXILIARY VIEWS

Figure 3.33: Lineage of \(\langle 11800 \rangle \)

Figure 3.34: Derivation tree for \(\langle 11800 \rangle \)
We could instead choose to trace the lineage of tuple \((\text{MSFT}, 11800)\) in view LowPEGain immediately all the way to the source tables. The system then recursively applies tracing procedures down the view hierarchy until it reaches the source tables. Figure 3.36 shows the result, including the entire derivation tree.

For the three user views in our example, the system stores three additional auxiliary views: an intermediate aggregate view (AuxView0) and a lineage view (AuxView1) for Gaining, and a lineage view (AuxView2) for PriceEarnings. See Figure 3.37. When the source tables change, these auxiliary views are maintained in a consistent fashion with the user views in order to guarantee consistent lineage results. All three auxiliary views we store to improve lineage tracing also help the maintenance of the user views.

3.8.3 Implementation Experience

Our lineage tracing system was built as part of the WHIPS data warehousing prototype, on top of a commercial database management system (DBMS) that does not provide any lineage tracing functionality. WHIPS, and our lineage tracing system, operate as middleware
between applications and the backend DBMS, instead of as an extension to any specific DBMS. As a result, the implemented system is almost independent of the backend DBMS. The lineage tracing system does, however, require that the backend DBMS supports stored procedures, since both lineage tracing and view maintenance are implemented using stored procedures.
Figure 3.37: Auxiliary views

3.9 Related Work

Previous work most closely related to the auxiliary view problem discussed in this chapter falls into two categories: selecting views to materialize in order to minimize query costs, e.g., [HRU96, Gup97], and selecting auxiliary views to materialize in order to minimize the cost of maintaining given primary views, e.g., [LQA97, RSS96].

[HRU96] proposes a greedy algorithm for selecting auxiliary views to materialize, with the goal of minimizing the cost of queries over aggregate views given certain constraints such as the maximum number of views that can be materialized. The work considers data-cube views only, and can make certain simplifying assumptions based on this restriction. [Gup97] extends the work in [HRU96] to general relational views, and proves that the auxiliary view selection problem under maintenance cost constraints is NP-hard.

[RSS96] proposes an exhaustive algorithm for selecting auxiliary views to optimize view maintenance, and suggests simple search space pruning strategies when the view is too complex for exhaustive search. [LQA97] presents an A* algorithm for selecting auxiliary views and indexes on different join combinations for SPJ view maintenance. Both [RSS96]
and [LQA97] consider a single algorithm for selecting auxiliary views (and indexes in the case of [LQA97]), designed specifically for optimizing view maintenance. They consider as potential auxiliary views all nodes in all possible relevant query plans, making the search space doubly exponential in the view definition size.

Our work differs from the previous work discussed above in several ways:

- Unlike all previous work, we consider lineage tracing as well as view maintenance costs when selecting auxiliary views to materialize.

- Instead of considering a doubly exponential search space of auxiliary views (as in [HRU96, Gup97, LQA97, RSS96]), we consider a fixed set of auxiliary view schemes for SPJ views, then explore a relatively small (although still exponential) search space for ASPJ views based on our view definition normal form.

- For ASPJ views we propose several different auxiliary view selection algorithms, as opposed to a single algorithm, and we compare the performance of our algorithms (both running time and quality of solution) through experiments.

As discussed in Section 3.1, the previously studied problem of self-maintainability [QGMW96] determines which auxiliary views need to be added so that sources never need to be accessed for view maintenance. This problem differs from ours since we consider lineage tracing as well, and we do not prohibit accessing sources. However, we do use techniques from self-maintainability, as discussed in Sections 3.1 and 3.2. Also, we use existing incremental view maintenance techniques [GMS93, ZGMHW95] to estimate the cost of different auxiliary schemes and to maintain views in the WHIPS system.

3.10 Chapter Summary

In this chapter, we first introduced a family of schemes for storing auxiliary views for SPJ primary views that enable and improve the performance of lineage tracing and view maintenance in a distributed multi-source warehousing environment. We compared the lineage tracing and warehouse maintenance performance of the schemes through simulations. Our
performance studies show that different schemes offer different advantages and thus are suitable for different settings.

We then examined the problem of selecting auxiliary views to materialize in a data warehouse in order to reduce the overall lineage tracing and view maintenance cost for complex ASPJ views. We used our ASPJ normal form from Chapter 2 to define an initial search space of potentially beneficial auxiliary views, and presented four algorithms for exploring the search space and selecting a set of auxiliary views: exhaustive, greedy, three-step, and naive. We compared the optimality and running time of the algorithms using experiments based on the TPC-D benchmark, as well as on a variety of synthetic views and statistics. Our experiments indicate that in terms of running time and optimality, the three-step algorithm appears to be the best, although the running time of the greedy algorithm probably also is fast enough in practice for most complex warehouse views. (The exhaustive algorithm, on the other hand, becomes intractable quite quickly.) Both the greedy and three-step algorithms find the optimal auxiliary view set in most cases, although we have shown (complementary) situations in which either one algorithm or the other performs poorly. Our experiments also illustrate that even a naive selection of auxiliary views reduces overall cost dramatically in most cases, underscoring the importance of materializing auxiliary views for the dual purposes of view maintenance and lineage tracing in a warehousing environment.

Although we have presented our work in the context of selecting an auxiliary view set for a single primary warehouse view, our approach extends easily to considering multiple primary views together. Then the cost of an auxiliary view may be “shared” if the auxiliary view is beneficial to view maintenance or lineage tracing for more than one primary view. Furthermore, although we have studied an environment in which both view maintenance and lineage tracing are important, if only one type of activity is present our algorithms remain applicable.

Finally, we described our implementation of a lineage tracing system within the WHIPS [HGMW+95] data warehousing prototype at Stanford, based on the results presented in this chapter and Chapter 2.
Chapter 4

View Update Using Data Lineage

In Chapters 1–3 we discussed relational views as a technique for specifying and maintaining the contents of data warehouses. Even in the context of conventional relational database systems, data management through user-defined views is a standard and important feature [Sto75]. However, to make views truly first class, we must not only allow users to query and browse the database through views, as is typically supported in most DBMSs today, but we should also allow database updates through views. Note again we are now referring to standard database management systems. Data warehouses typically do not support user updates [CD97, LW95]. A number of problems arise when updating a database through views, yielding the well-known and well-studied view update problem [BS81, Cle78, DB82, KU84, LS91, Mas84, Shu96, Sto75, Tom94]. The core of the view update problem is to translate updates against views to updates against the base tables that the view is defined on.

As mentioned in Chapter 1, data lineage when considered independently of data warehouses is closely related to the view update problem for deletions. In this chapter, we study this relationship and use techniques based on data lineage for translating deletions against view tuples (referred to as view deletions) into deletions against base tables (referred to as base deletions), in a conventional database setting. Specifically, we provide a fully automatic algorithm that uses only the view definition at compile-time and the base data at view-update time to find a translation that is guaranteed to be exact (side-effect free) whenever an exact translation exists.
4.1. INTRODUCTION AND RUNNING EXAMPLE

In Chapters 2 and 3, we considered warehouses consisting of materialized relational views. A view is materialized if a table is created for it, its contents are computed from the base tables over which it is defined, and it is kept up to date (maintained) as the base tables change. Conventional DBMSs more commonly support virtual views. A virtual view consists solely of the view definition. When a query references a virtual view, before processing the query is rewritten based on the view definition into an equivalent query that references base tables only. The work in this chapter applies to both kinds of views since actual view contents are never needed by our algorithms.

The remainder of the chapter proceeds as follows. Section 4.1 introduces the view update problem and gives a running example that will be used throughout the chapter. Section 4.2 then formalizes the view update problem for deletions. In Section 4.3, we explore the relationship between data lineage and view deletions, which is used as the basis for our translation algorithm for single-tuple deletions presented in Section 4.4. Sections 4.5 and 4.6 extend our algorithm to handle sets of deletions and deletions specified by a selection condition. We have implemented our translation algorithms, and empirical results are presented in Section 4.7. Section 4.8 surveys related work, and Section 4.9 concludes the chapter. The work presented in this chapter appeared originally in [CW01].

4.1 Introduction and Running Example

Let us assume a base relational database D and a view V defined over tables in D. In this chapter we focus our attention to SPJ views as defined originally in Chapter 2 (Section 2.2). The typical steps involved in a view update are:

1. The user requests an update U_V to view V.
2. Some process, referred to as view update translation, takes U_V and produces an update U_D to the underlying base data D.
3. U_D is applied to the base database. If the view is materialized (as opposed to virtual), then the view is modified to reflect the base data update U_D.

Many previous approaches, e.g., [Cle78, Kel86, LS91, RS79], require participation from the view definer and/or the view updater in specifying view update translations. In this
chapter, we use techniques based on data lineage to devise a fully automatic algorithm that translates view deletions using only the view definition at compile-time and the base data at view-update time.

Referring back to the steps outlined above for view update, when the base data update U_D is applied in step (3), the view is modified, either logically or physically, as a result. Let U'_V denote the view modifications induced by database update U_D. U'_V should certainly contain the user’s requested view update U_V from step (1), in which case U_D is called a correct view update translation. Even better, U'_V should be identical to U_V, in which case U_D is called an exact view update translation. Surprisingly, most previous work on the view update problem does not consider exactness, e.g., [Mas84, LS91], or guarantees exactness only for a restricted class of select-project-join (SPJ) views, e.g., [DB82, Kel85]. Unlike these algorithms, our run-time translation algorithm finds a translation for any view deletion against any SPJ view that is guaranteed to be exact whenever an exact translation exists. Data lineage helps us achieve this result.

There may be more than one translation for a view update—even more than one exact translation—leading to an inherent ambiguity in the view update translation process that has been the focus of much previous work, e.g., [BS81, Kel86, LS91]. We do not explore the ambiguity issue in our work. Instead, our goal is to find, as fast as possible and without view definer or user intervention, an exact translation that updates a small number of base tuples. Also we do not consider constraints on the base tables in our work: we assume that all deletions on base tables are valid. Some discussion on how base table constraints can affect the view update translation process can be found in [DB82, Kel85]. Finally, we do not consider insertions or modifications to views. After some exploratory work it is our belief that our work in data lineage is applicable only to view deletions, and by extension to a portion of the view modification problem (complemented by a solution to the insertion “half” of the problem). For a complete view update translation package, our deletion algorithm could be combined with any previous algorithm for translating view insertions, e.g., [DB82], although as noted earlier these algorithms do not guarantee exactness.

In summary, we focus on the automation and exactness aspects of the view update translation process, and present a fully automatic algorithm that uses techniques based on data lineage for translating deletions against SPJ views into deletions against the underlying
database. Our algorithm yields translations that are guaranteed to be exact whenever an exact translation exists.

4.1.1 Running Example

Consider a simple user access control database with two tables: \(\text{UserGroup}(\text{user, group}) \) and \(\text{GroupAccess}(\text{group, file}) \). The UserGroup table contains the groups that each user belongs to, and the GroupAccess table lists the files accessible by each group. Figure 4.1 shows a small example database.

Consider an SPJ view \(V \) defined in relational algebra as follows:

\[V = \pi_{\text{user, file}}(\sigma_{\text{group}=\text{'eng'}}((\text{UserGroup} \bowtie \text{GroupAccess}))) \]

\(V \) contains information about all files accessible by users in the “eng” (engineering) groups; its contents over our sample base data are shown in Figure 4.2. We consider six example view deletions, listed in Table 4.1. All translations shown in the table are exact except for Example 4, which has no exact translation. The remainder of this chapter will show how we can use data lineage techniques to find the translations shown in this example, and more generally to translate any deletions against any SPJ view.
Table 4.1: Example view deletions and translations

<table>
<thead>
<tr>
<th>Example #</th>
<th>View deletions</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>delete (ted,f5) from V</td>
<td>delete (ted,eng4) from UserGroup delete (eng5,f5) from GroupAccess</td>
</tr>
<tr>
<td>2</td>
<td>delete (lisa,f3) from V</td>
<td>delete (lisa,eng6) from UserGroup delete (eng1,f3) from GroupAccess</td>
</tr>
<tr>
<td>3</td>
<td>delete (joe,f3) from V</td>
<td>delete (joe,eng2) from UserGroup delete (eng1,f3) from GroupAccess</td>
</tr>
<tr>
<td>4</td>
<td>delete (joe,f4) from V</td>
<td>delete (joe,eng2) from UserGroup delete (eng1,f3) from GroupAccess</td>
</tr>
<tr>
<td>5</td>
<td>delete (lisa,f4), (joe,f4) from V</td>
<td>delete (joe,eng1), (joe,eng2) from UserGroup</td>
</tr>
<tr>
<td>6</td>
<td>delete from V where user = 'ted'</td>
<td>delete (ted,eng4), (ted,eng5) from UserGroup delete (eng5,f5), (eng5,f6) from GroupAccess</td>
</tr>
</tbody>
</table>

4.2 The View Update Problem for Deletions

We now formally define the view update translation problem for deletions. In this chapter we consider only select-project-join (SPJ) views, as defined originally in Section 2.2. As discussed in Section 2.4, every SPJ view \(V \) can be written as

\[
V = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_n))
\]

where \(R_1, \ldots, R_n \) are base tables, \(C \) is a boolean condition, and \(A \) is a list of projected attributes. We represent deletions on a base table \(R \) as \(V R \) and deletions on a database \(D = R_1, \ldots, R_n \) as \(V D = V R_1, \ldots, V R_n \). We assume set semantics (no duplicates) and no base table constraints throughout the chapter.

Given a view \(V \), we use \(-t\) to denote a request to delete a single view tuple \(t \in V \). (In Section 4.5 we generalize to view update requests that are sets of deleted tuples, as in Example 5 of Table 4.1, and in Section 4.6 we handle view update requests specified by a selection condition, as in Example 6 of Table 4.1.) Note that in this chapter we will use “\(V \)” generically to represent the name of a view, its definition, and sometimes its (virtual or actual) contents. We now formalize the concept of a view deletion translation. Concrete examples will be seen in Section 4.3.

Definition 4.2.1 (View Deletion Translation) Given a view \(V \) and a deletion request \(-t\) where \(t \in V \), we say that database deletion \(V D \) is a translation for \(-t\) if \(V D \) causes the deletion of \(t \) from \(V \) when applied to database \(D \). More formally, let \(V' \) be the new view.
4.3. RELATIONSHIP BETWEEN DATA LINEAGE AND VIEW DELETIONS

Based on the updated database \(D - \nabla D \), and let \(\nabla V = V - V' \) be the actual deleted view tuples, which we call the view deletions induced by \(\nabla D \). We say that \(\nabla D \) is a translation for \(-t\) if \(\{t\} \subseteq \nabla V \). If \(\nabla V = \{t\} \) then \(\nabla D \) is an exact translation for \(-t\). Otherwise, \(\nabla D \) is inexact and causes side-effect (or extra deletions) \(E = \nabla V - \{t\} \).

For SPJ views, when we perform a deletion \(\nabla D \) on the base data, the changes to the view induced by \(\nabla D \) are always deletions, never insertions or modifications. However, when we translate a deletion request \(-t\) into updates on the base data, it is not necessary to produce only deletions. For example, in translating \(-t\) we might choose to delete some existing base tuples, then insert some new ones to compensate for view side-effects caused by the deletions. We do not consider the compensation approach in our work, focusing only on the pure deletions-to-deletions translation problem. In considering the more general problem we found that cases where view deletions benefit from translations encompassing all types of base data updates are very rare, although such cases do exist.

4.3 Relationship Between Data Lineage and View Deletions

In this section, we formalize the relationship between data lineage and view deletions, to lay the groundwork for our deletion translation algorithm to be specified in Section 4.4. We continue to focus on single-tuple deletions, and we will extend our results to deletions of a view tuple set and deletions specified by a selection condition in Sections 4.5 and 4.6, respectively.

First, let us briefly review the lineage definition for SPJ views and introduce a new concept of exclusive lineage for view update. Consider an SPJ view \(V = \pi_A (\sigma_C (R_1 \bowtie \cdots \bowtie R_n)) \) over database \(D \) and a tuple \(t \in V \). From Definition 2.3.9 in Chapter 2, a tuple \(t_i \in R_i \) belongs to \(t \)'s lineage \(R_i^* \) in \(R_i \), which we also refer to as \(t \)'s \(i \)th lineage branch, if and only if:

\[
\{t\} \subseteq \pi_A (\sigma_C (R_1 \bowtie \cdots \bowtie R_{i-1} \bowtie \{t_i\} \bowtie R_{i+1} \bowtie \cdots \bowtie R_n))
\]
Example 4.3.1 Recall view V from Section 4.1, containing user file access control information. Given tuple $t = \langle \text{ted}, f5 \rangle$ in V, based on Definition 2.3.9 t’s lineage is:

$$\text{lineage}(t, V, D) = \langle \text{UserGroup}^* = \{\langle \text{ted}, \text{eng4} \rangle, \langle \text{ted}, \text{eng5} \rangle\}, \text{GroupAccess}^* = \{\langle \text{eng4}, f5 \rangle, \langle \text{eng5}, f5 \rangle\} \rangle$$

In this chapter, we modify our formal lineage notation $v_D^{-1}(t)$ from Chapter 2 to the more procedural appearing $\text{lineage}(t, V, D)$, representing t’s lineage $\langle R_1^*, \ldots, R_n^* \rangle$ in D according to V. $$\Box$$

The exclusive lineage of a view tuple t is the set of base tuples that contribute to t and only to t. Formally:

Definition 4.3.2 (Exclusive Lineage) Consider an SPJ view $V = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_n))$ and a view tuple $t \in V$. A tuple $t_i \in R_i$ belongs to t’s exclusive lineage branch R_i^{**} if and only if:

$$\{t\} = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_{i-1} \bowtie \{t_i\} \bowtie R_{i+1} \bowtie \cdots \bowtie R_n))$$

(The difference from Definition 2.3.9 is simply $=$ instead of \subseteq.) We denote t’s entire exclusive lineage in D as $\text{elineage}(t, V, D) = \langle R_1^{**}, \ldots, R_n^{**} \rangle$. Note that $R_i^{**} \subseteq R_i^*$, $i = 1..n$. $$\Box$$

Example 4.3.3 Again, consider view V from Section 4.1 and tuple $t = \langle \text{ted}, f5 \rangle$ in V. Based on Definition 4.3.2, t’s exclusive lineage is:

$$\text{elineage}(t, V, D) = \langle \text{UserGroup}^{**} = \{\langle \text{ted}, \text{eng4} \rangle\}, \text{GroupAccess}^{**} = \{\langle \text{eng5}, f5 \rangle\} \rangle$$

Tuples $\langle \text{ted}, \text{eng5} \rangle$ and $\langle \text{eng4}, f5 \rangle$ from t’s lineage (Example 4.3.1) are not in t’s exclusive lineage, because $\langle \text{ted}, \text{eng5} \rangle$ also is in the lineage of view tuple $\langle \text{ted}, f6 \rangle$, and $\langle \text{eng4}, f5 \rangle$ also is in the lineage of view tuple $\langle \text{bob}, f5 \rangle$. $$\Box$$

Now consider a view deletion request $-t$ against V. Ideally, deleting t’s exclusive lineage (Definition 4.3.2) from D induces the deletion of t from V, as in the following example.
Example 4.3.4 Consider Example 1 from Table 4.1, which deletes tuple $t = \langle \text{ted}, f5 \rangle$ from V. Example 4.3.3 showed that t’s exclusive lineage is:

$$\text{elineage}(t, V, D) = \langle \text{UserGroup}^* = \{\langle \text{ted}, \text{eng4} \rangle\}, \text{GroupAccess}^* = \{}\langle \text{eng5}, f5 \rangle\} \rangle$$

If we delete these tuples from the base tables, t will be deleted from V. Therefore, $\nabla\text{elineage}(t, V, D)$ is a translation for $-t$.

An important property of a translation that deletes the exclusive lineage of the deleted view tuple, as in Example 4.3.4, is that the translation is guaranteed to be exact. By Definition 4.3.2 of exclusive lineage, none of the tuples in $R_1^{**}, \ldots, R_n^{**}$ contribute to any view tuples other than t, so translation $\nabla D^{**} = \nabla R_1^{**}, \ldots, \nabla R_n^{**}$ can induce only the deletion of t. Unfortunately, ∇D^{**} is not always a translation, even if $-t$ has an exact translation, as shown by the following example.

Example 4.3.5 Consider Example 2 from Table 4.1, which deletes tuple $t = \langle \text{lisa}, f3 \rangle$ from V. Based on Definition 4.3.2, t’s exclusive lineage is:

$$\text{elineage}(t, V, D) = \langle \text{UserGroup}^* = \{\langle \text{lisa}, \text{eng6} \rangle\}, \text{GroupAccess}^* = \emptyset \rangle$$

Deleting $\text{elineage}(t, V, D)$ does not induce the deletion of t. Thus, $\nabla\text{elineage}(t, V, D)$ is not a translation for $-t$. However, $-t$ does have an exact translation, namely, delete tuple $\langle \text{lisa}, \text{eng6} \rangle$ from UserGroup and $\langle \text{eng1}, f3 \rangle$ from GroupAccess.

When the exclusive lineage does not provide us with a translation, we can instead consider deleting one branch R_i^* of t’s lineage. (We also could consider deleting all branches, but each branch individually always is sufficient to induce the deletion of t.) Unlike ∇D^{**}, any ∇R_i^* is a translation, but it may not be exact even when there is an exact translation, as shown by the following example.

Example 4.3.6 Consider again Example 1 from Table 4.1, which deletes tuple $t = \langle \text{ted}, f5 \rangle$ from view V. Example 4.3.1 showed that t’s lineage is:

$$\text{lineage}(t, V, D) = \langle \text{UserGroup}^* = \{\langle \text{ted}, \text{eng4}\rangle, \langle \text{ted}, \text{eng5}\rangle\}, \text{GroupAccess}^* = \{\langle \text{eng4}, f5\rangle, \langle \text{eng5}, f5\rangle\} \rangle$$

Deleting either lineage branch is a translation for $-t$, but neither translation is exact: $\nabla\text{UserGroup}^*$ also induces the deletion of view tuple $\langle \text{ted}, f6 \rangle$, while $\nabla\text{GroupAccess}^*$
also induces the deletion of view tuple \(\langle \text{mary}, f5 \rangle \). Example 4.3.4 illustrated an exact translation for \(-t\).

So far we have seen that \(\nabla D^{**} \) may provide an exact translation or may not be a translation at all, and \(\nabla R_i^* \) (for any \(i \in 1..n \)) provides a translation but it may not be exact. In neither case are we guaranteed to be provided with an exact translation even if one exists. Nor is it the case that when \(\nabla D^{**} \) fails \(\nabla R_i^* \) succeeds, or vice-versa. Thus, if neither \(\nabla D^{**} \) nor \(\nabla R_i^* \) \((i = 1..n)\) provides an exact translation, the brute-force approach is to enumerate all possible subsets of all base relations, checking if deleting those subsets is an exact translation. Fortunately we can reduce the search space considerably using the following theorem, which tells us that if there is an exact translation for \(-t\), then there is an exact translation that is contained in \(-t\)'s lineage. We will further reduce the search space with pruning techniques in our algorithm presented in Section 4.4.

Theorem 4.3.7 Consider an SPJ view \(V \) over database \(D \) and a tuple \(t \in V \). If deletion \(-t\) has an exact translation, then \(-t\) has an exact translation \(\nabla D \) such that \(\nabla D \subseteq \text{lineage}(t,V,D) \).\(^1\)

Proof: The proof relies on the following two facts, which are obvious enough that we omit detailed justification:

- Let \(\langle R_1^*, \ldots, R_n^* \rangle = \text{lineage}(t,V,D) \). \(R_i^* \neq \emptyset \) for \(i = 1..n \).
- There exist \(t_1 \in R_1^*, \ldots, t_n \in R_n^* \) such that \(\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\} \).

Suppose \(-t\) has an exact translation \(\nabla D = \nabla R_1^*, \ldots, \nabla R_n^* \) where \(\nabla R_i \subseteq R_i, i = 1..n \). We prove that \(\nabla D' = \nabla R_1', \ldots, \nabla R_n' \) where \(\nabla R_i' = \nabla R_i \cap R_i^* \), \(i = 1..n \), also is an exact translation. First, we prove that \(\nabla D' \) is a translation, i.e., \(t \not\in V' \) where \(V' \) is the new view based on the updated database \(D - \nabla D' \). Suppose for the sake of contradiction that \(t \in V' \). Then, we know there exist \(t_i \in R_i - \nabla R_i' \) for \(i = 1..n \) such that \(\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\} \). Based on Definition 2.3.9 of lineage, \(t_i \in R_i^* \), \(i = 1..n \). Since \(t_i \in R_i - \nabla R_i' \), we know that \(t_i \not\in \nabla R_i' = \nabla R_i \cap R_i^* \). Therefore since \(t_i \in R_i^* \), \(t_i \not\in \nabla R_i \).

\(^1\)Note that we abuse the subset symbol “\(\subseteq \)” to operate on lists of tables: \(\nabla D \subseteq \text{lineage}(t,V,D) \) is shorthand for \(\nabla R_1 \subseteq R_1^*, \ldots, \nabla R_n \subseteq R_n^* \).
and thus \(t_i \in R_i - \nabla R_i \). Therefore \(t \in \pi_A(\sigma_C((R_1 - \nabla R_1) \bowtie \cdots \bowtie (R_n - \nabla R_n))) \), which contradicts the fact that \(\nabla D \) is a translation for \(-t \). Thus, \(t \notin V' \) and \(\nabla D' \) is a translation for \(-t \). Because \(\nabla D \) is an exact translation and \(\nabla D' \subseteq \nabla D \), by the definition of an exact translation \(\nabla D' \) also is exact.

4.4 View Tuple Deletion Algorithm

Based on our observations in Section 4.3, we specify an algorithm \(\text{DELETE}(t, V, D) \) in Figure 4.3 that translates deletion \(-t \) on view \(V \) into deletions \(\nabla D \) on base database \(D \).

The algorithm performs the deletions \(\nabla D \) on the base database. We assume that if \(V \) is materialized (or if there are other materialized views over \(D \)), then a view maintenance algorithm will detect the deletions and modify any materialized views accordingly. Our algorithm can be modified easily to return \(\nabla D \) and/or \(\nabla V \) (the deletions on \(V \) induced by \(\nabla D \); note \(\nabla V = \{t\} \) in the case of an exact translation) if desired. \(\text{DELETE} \) finds an exact translation for \(-t \) whenever one exists. In cases when \(-t \) has no exact translation, \(\text{DELETE} \) uses an inexact translation, with some attempt to minimize the side-effect. The algorithm proceeds as follows.

In line 1 of Figure 4.3, we compute \(t \)'s lineage using the tracing query from Section 2.4. We then compute \(t \)'s exclusive lineage \(D^{**} \) based on Definition 4.3.2 (lines 2–5), and delete it from \(D \) (line 6). Computing the exclusive lineage requires one \(n \)-way join for each tuple in \(t \)'s lineage, but lineage is typically very small, and each join is expected to be cheap since one branch of the join is simply the lineage tuple \(\{t_i\} \). If deleting \(t \)'s exclusive lineage induces the deletion of \(t \) from \(V \) (line 7), then we are done, as in Example 4.3.4.

We know that \(t \) has not been deleted if it is still derivable from its remaining lineage: \(t \in \pi_A(\sigma_C((R^*_1 - R^{**}_1) \bowtie \cdots \bowtie (R^*_n - R^{**}_n))) \).

If deleting the exclusive lineage did not successfully delete \(t \), then we try the next step discussed in Section 4.3, which is to consider deleting the remainder of some lineage branch \(R^*_i \). Before exploring this option, we recompute \(t \)'s lineage in our smaller \(D \), i.e., in the \(D \) that remains after deleting \(D^{**} \) (line 8). Any tuple \(t_i \) that is eliminated from \(R^*_i \) in the recomputed lineage no longer contributes to \(t \): the tuples it formerly joined with to
produce t must have been deleted as part of the exclusive lineage.

In lines 9–14 we consider each remaining lineage branch R_i^* in turn. If ∇R_i^* is an exact
translating, then we are done. During the iteration, we keep track of the lineage branch with smallest side-effect, in case we eventually fail to find an exact translation at all. To determine the side-effect of \(\nabla R_i^* \), we first compute all potential extra deletions \(E \) using the query \(\pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_i^* \bowtie \cdots \bowtie R_n)) - \{t\} \) (line 11). We then remove from \(E \) tuples that are still derivable after deleting \(R_i^* \) (line 12). The remaining \(E \) is the actual side-effect induced by \(\nabla R_i^* \). In terms of efficiency, line 11 performs a join where one branch \((R_i^*) \) is expected to be very small. Line 12 appears to be expensive—nearly a recomputation of the entire view—however a good optimizer can effectively introduce a semijoin with \(E \) into the right-hand operand of the difference to keep the join small. If we find a translation with no side-effect, i.e., \(E = \emptyset \), then we are done (line 13). Otherwise, line 14 determines if we are seeing the smallest side-effect so far and, if so, records the side-effect size and current branch in \(\text{minE} \) and \(m \), respectively.

Example 4.4.1 Consider Example 2 from Table 4.1, which deletes tuple \(t = \langle \text{lisa}, \text{f3} \rangle \) from \(V \). In procedure DELETE, we compute \(t \)'s lineage and exclusive lineage, and obtain:

\[
\begin{align*}
\text{lineage}(t, V, D) &= \langle \text{UserGroup}^* = \{\langle \text{lisa}, \text{eng1} \rangle, \langle \text{lisa}, \text{eng6} \rangle\}, \\
\text{GroupAccess}^* &= \{\langle \text{eng1}, \text{f3} \rangle, \langle \text{eng6}, \text{f3} \rangle\} \rangle \\
\text{elineage}(t, V, D) &= \langle \text{UserGroup}^{**} = \{\langle \text{lisa}, \text{eng6} \rangle\}, \text{GroupAccess}^{**} = \emptyset \rangle
\end{align*}
\]

We first delete \(t \)'s exclusive lineage from the base database \(D \) (lines 1–6), which does not induce the deletion of \(t \) (line 7). We then recomputes \(t \)'s lineage in the updated \(D \) (line 8) and obtain:

\[
\begin{align*}
\text{lineage}(t, V, D) &= \langle \text{UserGroup}^* = \{\langle \text{lisa}, \text{eng1} \rangle\}, \text{GroupAccess}^* = \{\langle \text{eng1}, \text{f3} \rangle\} \rangle \\
\end{align*}
\]

Deleting the lineage branch \(\text{UserGroup}^* \) has the side-effect of deleting \(\langle \text{lisa}, \text{f4} \rangle \) as well as \(\langle \text{lisa}, \text{f3} \rangle \). However, deleting the lineage branch \(\text{GroupAccess}^* \) has no side-effect, so we further delete \(\text{GroupAccess}^* \). The entire exact translation is to delete tuple \(\langle \text{lisa}, \text{eng6} \rangle \) from \(\text{UserGroup} \) and \(\langle \text{eng1}, \text{f3} \rangle \) from \(\text{GroupAccess} \).

If \(t \) does not have a lineage branch whose deletion is side-effect free, we next look for a combination of tuples from different lineage branches whose deletion forms an exact translation for \(-t \) (lines 15–23). We look for an exact translation by enumerating subsets of \(t \)'s lineage, based on Theorem 4.3.7. Letting \(x = |R_1^*| + |R_2^*| + \ldots + |R_n^*| \), we
must enumerate and check up to 2^x possible translations. Although x tends to be relatively small, in some cases we can further bound the size of the search space based on the number of different ways of deriving t as shown in Theorem 4.4.2. Recall that we consider set semantics in this chapter, and by Theorem 2.3.2 there is always a unique derivation for any given view tuple under set semantics. However, had the view been duplicate-preserving, t may have multiple derivations (Section 2.7), which effectively represent different ways of deriving t through the view. Here and later in this chapter, we use the term “derivation of t” to mean one of t’s derivations had the view been duplicate-preserving.

Theorem 4.4.2 Consider an SPJ view $V = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_n))$ over database D and a tuple $t \in V$. Let $\text{lineage}(t, V, D) = \langle R_1^*, \ldots, R_n^* \rangle$, and let $k = |\sigma_C(R_1^* \bowtie \cdots \bowtie R_n^*)|$. k is the number of different ways of deriving tuple t. If t has an exact translation, then it has an exact translation $\nabla D' = \nabla R_1', \ldots, \nabla R_n'$ such that $R_i' \subseteq R_i^*$ for $i = 1..n$, and $|R_1'| + \cdots + |R_n'| \leq k$. \hfill \Box

Proof: Informally, to delete t we need only delete one tuple from each of t’s k derivations. If we have an exact translation for t, it must delete at least one tuple from each of t’s derivations. We can eliminate from the exact translation all but one tuple from each derivation, and we still have an exact translation.\footnote{This proof might lead us to consider an alternate approach: Instead of considering all lineage subsets up to size k, we compute the derivations of t and then consider all combinations of one tuple from each derivation. It turns out that this enumeration can actually be more expensive than the one we are using, because without expensive bookkeeping it might end up considering the same subset multiple times.}

Let the following list enumerate the k distinct combinations of $t_1 \in R_1^*, \ldots, t_n \in R_n^*$ such that $\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\}$.

- For any $t_1 \in R_1^*, \ldots, t_n \in R_n^*$, $\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\}$ or $\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \emptyset$. The number of distinct combinations such that $\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\}$ is k.

Let the following list enumerate the k distinct combinations of $t_1 \in R_1^*, \ldots, t_n \in R_n^*$ such that $\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\}$.

1. $t_1^1, t_1^2, \ldots, t_1^n$
4.4. VIEW TUPLE DELETION ALGORITHM

(2) \(t_1^2, t_2^2, \ldots, t_n^2 \)

...

(k) \(t_1^k, t_2^k, \ldots, t_n^k \)

We know \(-t\) has an exact translation \(\nabla D'' = \nabla R'_1, \ldots, \nabla R'_n \). Without loss of generality (by Theorem 4.3.7), assume \(R'_i \subseteq R'_i, i = 1..n \). We need to prove that there is an exact translation \(\nabla D' = \nabla R'_1, \ldots, \nabla R'_n \) such that \(|R'_1| + \cdots + |R'_n| \leq k \). For each combination \(j = 1..k \) in the list above, there exists at least one \(t^j_i, i \in 1..n \), such that \(t^j_i \in \nabla R''_i \), because otherwise \(t \) would remain in the view after deleting \(D'' \). Let \(D' = \bigcup_{j=1..k} \{ t^j_i \} \) which is of size \(k \). \(\nabla D' \) is a translation, because it deletes one tuple from each of the \(k \) combinations that produce \(t \). Furthermore, it is an exact translation because it is a subset of \(\nabla D'' \), which is an exact translation. \(\Box \)

Lines 15–17 compute the bound \(k \) from Theorem 4.4.2 and initiate the subset enumeration. For each candidate translation \(\nabla D' \), line 18 checks if \(\nabla D' \) is indeed a translation, by checking if \(t \) is still derivable after deleting \(D' \). If so, then \(\nabla D' \) is not a translation, but it does give us information that we can use to further prune the search space: If deleting \(D' \) does not delete \(t \), then nor can deleting any subset of \(D' \) (line 19). (This pruning technique seems to suggest we should enumerate larger subsets first, but in the other branch of the if statement we introduce a pruning technique that eliminates supersets.)

Lines 20–22 check if the candidate translation \(\nabla D' \) is an exact translation, by checking if it has any side-effect. The procedure is similar but not identical to lines 11–13. We first compute all potential extra deletions \(E \) by joining each \(R'_i \) to the remaining relations (line 20). We then remove from \(E \) tuples that are still derivable after deleting \(D' \) (line 21). The remaining \(E \) is the actual side-effect induced by \(\nabla D' \).\(^3\) If \(E \) is empty, then we have found an exact translation, so we perform the deletion and are done (line 22). Otherwise, line 23 performs additional pruning: If deleting \(D' \) introduces a side-effect, then so will deleting any superset of \(D' \).

Example 4.4.3 Consider Example 3 from Table 4.1, which deletes tuple \(t = \langle \text{joe, f3} \rangle \) from \(V \). In DELETE, we compute:

\(^3\)Note that this computation is similar to incremental view maintenance [GMS93], which we used in Chapter 3.
We first delete t’s exclusive lineage, which does not induce the deletion of t, and then we recompute t’s lineage. (Obviously we can add an if statement in the algorithm to skip these deletion and recomputation steps when the exclusive lineage is empty, as in this example.) Deleting either remaining lineage branch of t will cause a side-effect, so we proceed to enumerate subsets of t’s lineage. The number of t’s derivations is $k = |\sigma_{\text{group} = \text{eng}}(\text{UserGroup} \bowtie \text{GroupAccess})| = 2$, so we only need to consider lineage subsets containing one or two tuples. Enumerating these subsets, we find an exact translation $\nabla D'$ for $-t$ where $D' = \langle \text{UserGroup}' = \{\langle \text{joe}, \text{eng2} \rangle \}, \text{GroupAccess}' = \{\langle \text{eng1}, \text{f3} \rangle \} \rangle$.

Let us consider the complexity of lines 15–23. The number of iterations in the for loop is bounded by $|D^*|^k$, where k is the number of derivations of t. In general, both $|D^*|$ and k are small, and we use pruning techniques to further reduce the number of iterations. Within each iteration, the complexity of line 18 is similar to that of line 7, the complexity of line 20 is n times the complexity of line 11 (recall our view is an n-way join), and the complexity of line 21 is similar to line 12. Empirical results are reported in Section 4.7.

As the final step of the algorithm (line 24), if we cannot find a lineage subset D' whose deletion causes exactly the deletion of t, then by Theorem 4.3.7 $-t$ has no exact translation. In this case, we delete the lineage branch R^*_m with the smallest side-effect of all lineage branches, which we saved in line 14.

Example 4.4.4 Consider Example 4 from Table 4.1, which deletes tuple $t = \langle \text{joe}, \text{f4} \rangle$ from V. In DELETE, we compute:

\[
\text{lineage}(t, V, D) = \langle \text{UserGroup}^* = \{\langle \text{joe}, \text{eng1} \rangle, \langle \text{joe}, \text{eng2} \rangle \}, \\
\text{GroupAccess}^* = \{\langle \text{eng1}, \text{f3} \rangle, \langle \text{eng2}, \text{f3} \rangle \}\rangle
\]

\[
\text{elineage}(t, V, D) = \langle \text{UserGroup}^{**} = \emptyset, \text{GroupAccess}^{**} = \emptyset \rangle
\]

Through lines 1–23 in the DELETE algorithm, we discover that $-t$ has no exact translation: The number of t’s derivations is $k = 2$, and deleting any subset of t’s lineage with no more
than two tuples either does not cause the deletion of \(t \) or causes deletions in addition to \(t \). Thus, we delete \(\text{UserGroup}\^*, \) which has the smaller side-effect of the two lineage branches. □

To our knowledge, all previous view update algorithms either do not guarantee exact translations for deletions even when they exist, e.g., [Mas84, LS91], or they guarantee exactness for a restricted class of views satisfying certain functional dependencies or foreign key constraints, e.g., [DB82, Kel86]. Algorithm \text{DELETE} is the first to guarantee exact deletion translations whenever they exist for general SPJ views.

4.5 Deleting Sets of View Tuples

So far we have considered translating the deletion of a single tuple \(t \) from view \(V \). In general, users may want to request the deletion of a set of tuples \(T \subseteq V \), specified either by value or by a selection condition. In this section we extend our algorithm to translate a view deletion request \(-T \), while in the next section we consider condition-based deletions.

We might be tempted to translate view deletion \(-T \) (\(T \subseteq V \)) by translating deletion \(-t \) for each \(t \in T \) using algorithm \text{DELETE} from Section 4.4. In addition to being inefficient, this approach is too conservative: it is possible that there is an exact translation for \(-T \) even when there is no exact translation for some tuples \(t \in T \). This case occurs when extra deletions from an inexact translation for \(-t \), \(t \in T \), are not actually a side-effect, because the extra deletions are contained in \(T \). Thus, we must translate \(-T \) as a unit.

First let us generalize Definition 4.2.1 of a view deletion translation:

Definition 4.5.1 (View Deletion Translation for \(-T \)) Consider a view \(V \), a deletion request \(-T \) where \(T \subseteq V \), and a database deletion \(\nabla D \). Let \(V' \) be the new view based on the updated database \(D - \nabla D \), and let \(\nabla V = V - V' \) be the actual deleted view tuples. We say that \(\nabla D \) is a *translation* for \(-T \) if \(T \subseteq \nabla V \). If \(T = \nabla V \) then \(\nabla D \) is an *exact* translation, otherwise \(\nabla D \) causes *side-effect* \(E = \nabla V - T \). □

Recall from Section 2.4 that we can compute \(T \)'s lineage according to \(V \) using one query \(\langle R_1^*, \ldots, R_n^* \rangle = \text{Split}_{R_1, \ldots, R_n}(\sigma_{C(R_1 \bowtie \cdots \bowtie R_n) \bowtie T}), \) and recall from Section
4.3 that a tuple $t_i \in R_i^*$ belongs to T’s exclusive lineage R_i^{**} if and only if:

$$\pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_i \bowtie \cdots \bowtie R_n)) \subseteq T$$

Thus, the observations we made on the relationship between data lineage and single-tuple deletions in Section 4.3 all carry over directly to the deletion of a view tuple set. Furthermore, Theorem 4.4.2 in Section 4.4 can be extended to cover $-T$ as follows.

Theorem 4.5.2 Consider an SPJ view $V = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_n))$ over database D and a tuple set $T \subseteq V$. Let $\text{lineage}(T, V, D) = \langle R_1^*, \ldots, R_n^* \rangle$. If $-T$ has an exact translation, then it has an exact translation that deletes at most k tuples in T’s lineage, where $k = |\sigma_C(R_1^* \bowtie \cdots \bowtie R_n^*) \times T|$ is the total number of derivations of all tuples $t \in T$.

Proof: The proof is very similar to the proof of Theorem 4.4.2, with the only notable difference being the computation of k. Here, we reduce the size of k after joining all lineage branches by performing a semijoin with T, because joining lineage tuples that result from two different view tuples t_1 and t_2 in T may result in view tuples t_3 outside of T. We do not want to accidentally count derivations of t_3 in our bound k.

The proof relies on the following fact, which is obvious enough that we omit detailed justification:

- Consider all combinations $t_1 \in R_1^*, \ldots, t_n \in R_n^*$. The number of distinct combinations such that $\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\}$ and $t \in T$ is k.

Let the following list enumerate the k distinct combinations of $t_1 \in R_1^*, \ldots, t_n \in R_n^*$ such that $\pi_A(\sigma_C(\{t_1\} \bowtie \cdots \bowtie \{t_n\})) = \{t\}$ and $t \in T$:

$$
(1) \quad t_1^1, t_2^1, \ldots, t_n^1 \\
(2) \quad t_1^2, t_2^2, \ldots, t_n^2 \\
\cdots \\
(k) \quad t_1^k, t_2^k, \ldots, t_n^k
$$

We know T has an exact translation $\nabla D'' = \nabla R_1'', \ldots, \nabla R_n''$. Without loss of generality (by the obvious set generalization of Theorem 4.3.7), assume $R_i'' \subseteq R_i^*$, $i = 1..n$. We need to prove that there is an exact translation $\nabla D' = \nabla R_1', \ldots, \nabla R_n'$ such that
4.5. DELETING SETS OF VIEW TUPLES

\[|R'_1| + \cdots + |R'_n| \leq k. \] For each combination \(j = 1..k \) in the list above, there exists at least one \(t'_i, i \in 1..n \), such that \(t'_i \in \nabla R''_i \), because otherwise some \(t \in T \) would remain in the view after deleting \(D'' \). Let \(D' = \bigcup_{j=1..k}\{t'_i\} \) which is of size \(k \). \(\nabla D' \) is a translation, because it deletes one tuple from each of the \(k \) combinations that produce all of the \(t \)'s in \(T \). Furthermore, it is an exact translation because it is a subset of \(\nabla D'' \), which is an exact translation.

Thus, we need only small modifications to our DELETE algorithm from Section 4.4 to translate the deletion of a view subset \(T \). Figure 4.4 shows the modified algorithm DELETE-SET with all changes underlined. DELETE-SET finds a translation for \(\neg T \) that is guaranteed to be exact whenever an exact translation exists.

Example 4.5.3 Consider Example 5 from Table 4.1, which deletes a tuple set \(T = \{\langle \text{joe}, f4 \rangle, \langle \text{lisa}, f4 \rangle \} \) from \(V \). In DELETE-SET, we compute \(T \)'s lineage and exclusive lineage as:

\[
\text{lineage}(T, V, D) = \langle \text{UserGroup}^* = \{\langle \text{joe}, \text{eng1} \rangle, \langle \text{lisa}, \text{eng1} \rangle \}, \\
\text{GroupAccess}^* = \{\langle \text{eng1}, f4 \rangle \} \rangle \\
\text{elineage}(T, V, D) = \langle \text{UserGroup}^{**} = \emptyset, \text{GroupAccess}^{**} = \{\langle \text{eng1}, \text{eng4} \rangle \} \rangle
\]

Deleting \(T \)'s exclusive lineage induces the deletion of \(T \). Thus, we find an exact translation \(\nabla \text{elineage}(T, V, D) \) for \(\neg T \).

Now consider what would have happened had we translated the deletion of the two tuples \(\langle \text{joe}, f4 \rangle \) and \(\langle \text{lisa}, f4 \rangle \) separately, using our original algorithm DELETE. Suppose we translate deletion \(t = \langle \text{joe}, f4 \rangle \) first. In Example 4.4.4 we showed that deleting \(\langle \text{joe}, f4 \rangle \) has no exact translation, so the algorithm chooses to delete lineage branch \(\text{UserGroup}^* = \{\langle \text{joe}, \text{eng1} \rangle, \langle \text{joe}, \text{eng2} \rangle \} \). The side-effect \(E = \{\langle \text{joe}, f3 \rangle \} \) of this translation is not contained in the original view request \(T = \{\langle \text{joe}, f4 \rangle, \langle \text{lisa}, f4 \rangle \} \), so regardless of the translation chosen for tuple deletion \(t = \langle \text{lisa}, f4 \rangle \), the final translation for \(\neg T \) will be inexact. \(\square \)
procedure DELETE-SET(T; V = π_A(σ_C(R_1 ⋈ ⋯ ⋈ R_n), D)

// Compute T's lineage:
(1) D^* = \langle R_1^*, \ldots, R_n^* \rangle \leftarrow Split_{R_1, \ldots, R_n}(σ_C(R_1 ⋈ ⋯ ⋈ R_n) \times T);

// Compute and delete T's exclusive lineage:
(2) D^{**} = \langle R_1^{**}, \ldots, R_n^{**} \rangle \leftarrow \langle \emptyset, \ldots, \emptyset \rangle;
(3) for i = 1..n do
(4) for each t_i ∈ R_i^* do
(5) if π_A(σ_C(R_1 ⋈ ⋯ ⋈ {t_i} ⋈ ⋯ ⋈ R_n)) ⊆ T then R_i^{**} ← R_i^{**} ∪ \{t_i\};
(6) D ← D - D^{**};

// Check if T is deleted:
(7) if T ∩ π_A(σ_C((R_1^* - R_1^{**}) ⋈ ⋯ ⋈ (R_n^* - R_n^{**}))) = ∅ then return;

// Recompute T's lineage in smaller D:
(8) D^* = \langle R_1^*, \ldots, R_n^* \rangle \leftarrow Split_{R_1, \ldots, R_n}(σ_C(R_1 ⋈ ⋯ ⋈ R_n) \times T);

// Find a lineage branch with zero or smallest side-effect:
(9) minE ← ∞;
(10) for i = 1..n do
(11) E ← π_A(σ_C(R_1 ⋈ ⋯ ⋈ R_i^* ⋈ ⋯ ⋈ R_n)) - T;
(12) E ← E - π_A(σ_C(R_1 ⋈ ⋯ ⋈ (R_i - R_i^*) ⋈ ⋯ ⋈ R_n));
(13) if E = ∅ then R_i ← R_i - R_i^*; return;
(14) if |E| < minE then m ← i; minE ← |E|;

// Enumerate subsets of T's lineage with limited size:
(15) k ← |σ_C(R_1^* ⋈ ⋯ ⋈ R_n^*) \times T|;
(16) S ← all subsets of D^* that contain at most k tuples;
(17) for each D' = (R_1', \ldots, R_n') ∈ S do
(18) if T ∩ π_A(σ_C((R_1^* - R_1') ⋈ ⋯ ⋈ (R_n^* - R_n'))) ≠ ∅ then prune all subsets of D' from S;
(19) else E ← \bigcup_{i=1..n} π_A(σ_C(R_1 ⋈ ⋯ ⋈ R_i' ⋈ ⋯ ⋈ R_n)) - T;
(20) if E = ∅ then D ← D - D'; return;
(21) else prune all supersets of D' from S;

// Delete the lineage branch R_m^* with smallest side-effect:
(24) R_m ← R_m - R_m^*; return;

Figure 4.4: Translating the deletion of a view subset T
4.6 Deleting View Tuples Specified by Selection Conditions

Consider as usual our SPJ view \(V = \pi_A(\sigma_C(R_1 \bowtie \ldots \bowtie R_n)) \). Suppose that instead of specifying an actual view tuple or set of tuples to be deleted, the user performs a condition-based deletion as in SQL: “DELETE FROM \(V \) WHERE \(C' \)” where \(C' \) can be any selection condition, similar to the conditions \(C \) used in view definitions. A naive approach is to first compute the tuple set \(T = \sigma_{C'}(V) \), then translate \(-T \) using algorithm DELETE-SET from Section 4.5. However, the computation of \(T = \sigma_{C'}(V) \) can be expensive, particularly if \(V \) is a virtual view. Fortunately, instead of computing \(T \), we can incorporate the selection condition \(C' \) into our translation algorithm. The new algorithm DELETE-COND is specified in Figure 4.5, with the changes from DELETE-SET underlined.

In lines 1 and 8, to compute the lineage of \(T = \sigma_{C'}(V) \) according to \(V \), we use query \(\text{Split}_{R_1, \ldots, R_n}(\sigma_{CA}(R_1 \bowtie \ldots \bowtie R_n)) \), instead of performing a semijoin with \(T \) as in DELETE-SET. In line 5, we test whether a tuple \(t_i \in R_i^* \) belongs to the exclusive lineage of \(T = \sigma_{C'}(V) \) by testing whether \(\pi_A(\sigma_{CA \land C'}(R_1 \bowtie \ldots \bowtie R_i^* \bowtie \ldots \bowtie R_n)) = \emptyset \), because this condition is satisfied if and only if \(t_i \) does not contribute to any view tuple that fails condition \(C' \). We can similarly compute the potential side-effect of a base deletion \(\nabla R_i^* \) using \(\pi_A(\sigma_{CA \land C'}(R_1 \bowtie \ldots \bowtie R_i^* \bowtie \ldots \bowtie R_n)) \) in lines 11 and 20. Finally, in lines 7 and 18, we test whether deleting base tuples \(D' = \langle R_1', \ldots, R_n' \rangle \) is a translation by testing whether \(\pi_A(\sigma_{CA}(R_1^* - R_1') \bowtie \ldots \bowtie (R_n^* - R_n')) = \emptyset \).

Example 4.6.1 Consider Example 6 from Table 4.1, which deletes all tuples with \(\text{user} = 'ted' \) from view \(V \). Let \(U \) and \(G \) denote the schemas of base tables UserGroup and GroupAccess, respectively. In DELETE-COND, we compute the lineage of \(T = \sigma_{\text{user}='ted'}(V) \) as follows:

\[
\langle \text{UserGroup}^*, \text{GroupAccess}^* \rangle = \text{Split}_{U,G}(\sigma_{\text{group}='eng' \land \text{user}='ted'}(\text{UserGroup} \bowtie \text{GroupAccess}))
\]

The result is shown in Figure 4.6. We then compute \(T \)'s exclusive lineage and obtain \(D^{**} = \langle \text{UserGroup}^{**}, \text{GroupAccess}^{**} \rangle \) in Figure 4.6. \(\nabla D^{**} \) is a translation, and therefore is an exact translation for the condition-based view deletion. \(\square \)
procedure DELETE-COND(C', V = \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie R_n)), D)
// Compute T = \sigma_C(V)'s lineage:
(1) D^* = \langle R_1^* \cdots R_n^* \rangle \leftarrow \text{Split}_{R_1, \ldots, R_n}(\sigma_{C \land C'}(R_1 \bowtie \cdots \bowtie R_n));

// Compute and delete T's exclusive lineage:
(2) D^{**} = \langle R_1^{**}, \ldots, R_n^{**} \rangle \leftarrow \langle \emptyset, \ldots, \emptyset \rangle;
(3) for i = 1..n do
 (4) for each t_i in R_i^* do
 (5) if \pi_A(\sigma_{C \land C'}(R_1 \bowtie \cdots \bowtie \{t_i\} \bowtie \cdots \bowtie R_n)) = \emptyset then R_i^{**} \leftarrow R_i^{**} \cup \{t_i\};
 (6) D \leftarrow D - D^{**};
// Check if T is deleted:
(7) if \pi_A(\sigma_{C \land C'}((R_1^* - R_1^{**}) \bowtie \cdots \bowtie (R_n^* - R_n^{**}))) = \emptyset then return;

// Recompute T's lineage in smaller D:
(8) D^* = \langle R_1^* \cdots R_n^* \rangle \leftarrow \text{Split}_{R_1, \ldots, R_n}(\sigma_{C \land C'}(R_1 \bowtie \cdots \bowtie R_n));

// Find a lineage branch with zero or smallest side-effect:
(9) minE \leftarrow \infty;
(10) for i = 1..n do
 (11) E \leftarrow \pi_A(\sigma_{C \land C'}(R_1 \bowtie \cdots \bowtie R_i^* \bowtie \cdots \bowtie R_n));
 (12) E \leftarrow E - \pi_A(\sigma_C(R_1 \bowtie \cdots \bowtie (R_i - R_i^*) \bowtie \cdots \bowtie R_n))
 (13) if E = \emptyset then R_i \leftarrow R_i - R_i^*; return;
 (14) if |E| < minE then m \leftarrow i; minE \leftarrow |E|;

// Enumerate subsets of T's lineage with limited size:
(15) k \leftarrow |\sigma_{C \land C'}(R_1^* \bowtie \cdots \bowtie R_n^*)|;
(16) S \leftarrow all subsets of D^* that contain at most k tuples;
(17) for each D' = \langle R_1', \ldots, R_n' \rangle \in S do
 (18) if \pi_A(\sigma_{C \land C'}((R_1^* - R_1') \bowtie \cdots \bowtie (R_n^* - R_n'))) \neq \emptyset
 then prune all subsets of D' from S;
 (19) else E \leftarrow \bigcup_{i=1..n} \pi_A(\sigma_{C \land C'}(R_1 \bowtie \cdots \bowtie R_i^* \bowtie \cdots \bowtie R_n));
 (20) E \leftarrow E - \pi_A(\sigma_C((R_1 - R_1') \bowtie \cdots \bowtie (R_n - R_n')));
 (21) if E = \emptyset then D \leftarrow D - D'; return;
 (22) else prune all supersets of D' from S;

// Delete the lineage branch R_m^* with smallest side-effect:
(24) R_m \leftarrow R_m - R_m^*; return;

Figure 4.5: Translating view deletions based on a selection condition C'
4.7 Empirical Results

We have implemented our view deletion translation algorithm using stored procedures in a standard commercial relational DBMS. In this section, we present some preliminary performance results that explore the following two questions:

1. Roughly how often is there an exact translation for a view deletion $-t$ that deletes the exclusive lineage of t? That deletes a lineage branch of t? That deletes a subset of t’s lineage? How often is there no exact translation at all?

2. How does our algorithm perform as we scale up the size of the base data?

We use synthetic data for the experiments based on the user access control database in our example from Section 4.1. Recall that the two base tables are $\text{UserGroup}(\text{user, group})$ and $\text{GroupAccess}(\text{group, file})$. The view we consider is $V = \pi_{\text{user, file}}(\text{UserGroup} \bowtie \text{GroupAccess})$. (We omit the selection condition from our original example view.) Contents of the base tables are generated using the parameters listed in Table 4.2. There are $\#groups$ groups. The users in each group and the files that each group has access to are picked randomly from a fixed set of users and files with sizes $\#users$ and $\#files$, respectively. The base data size depends on $\#groups$, as well as parameters users-per-group (UG for short) and files-per-group (FG for short). The actual number of users for a given group is selected from a Gaussian distribution centered at UG with a standard deviation of $\text{UG}/2$, and similarly for the number of files each group has access to. For our experiments we always set $\text{UG} = \text{FG}$, and we refer to this parameter as density. When this number is low, the join is very selective, while when it is high, the join is heavily intertwined. Our experiments focus on the single-tuple deletion case, i.e., each request is to delete a single view tuple.
4.7.1 Four Cases of Translations

Given a view deletion request $-t$, there are four possible outcomes for the translation according to algorithm DELETE:

1. $-t$ has an exact translation ∇D^{**} that deletes t’s exclusive lineage D^{**}. In this case, our algorithm finds the exact translation ∇D^{**} and returns at line 7 of Figure 4.3.

2. Case (1) fails, but $-t$ has an exact translation ∇R_{i}^{*} that deletes a lineage branch R_{i}^{*} of $-t$. In this case, our algorithm finds an exact translation ∇R_{i}^{*} and returns at line 13. The number of iterations of lines 10–14 will vary from deletion to deletion.

3. Cases (1) and (2) both fail, but $-t$ has an exact translation. In this case, our algorithm finds an exact translation ∇D by deleting a subset of t’s lineage. It returns at line 22, and the number of iterations of lines 17–23 will vary from deletion to deletion.

4. $-t$ has no exact translations, so the algorithm returns at line 24.

In our experiment, we study how often each of the above four cases occurs under different base data scenarios. Specifically, when generating the base data, we fix $\#\text{groups}$, $\#\text{users}$, and $\#\text{files}$ at 50, and we increase the density (UG and FG) from 1 to 30. For each base data scenario, we issue a deletion request $-t$ for each tuple $t \in V$, and count the number of translations that belong to each of the four cases. Figure 4.7 presents the percentage of each case among all four cases.

The result shows that for very sparse base data, case (1) happens frequently: most deletions $-t$ have an exact translation that deletes t’s exclusive lineage. At the extreme, when the density is 1, each group g has exactly one user u and one file f, so all lineage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$#\text{groups}$</td>
<td>total number of groups</td>
</tr>
<tr>
<td>$#\text{users}$</td>
<td>maximum number of users</td>
</tr>
<tr>
<td>$#\text{files}$</td>
<td>maximum number of files</td>
</tr>
<tr>
<td>users-per-group (UG)</td>
<td>average number of users that belong to each group</td>
</tr>
<tr>
<td>files-per-group (FG)</td>
<td>average number of files that each group has access to</td>
</tr>
</tbody>
</table>

Table 4.2: Data generation parameters
4.7. EMPIRICAL RESULTS

tuples of any view tuple \(t = \langle u, f \rangle \) are exclusive. Therefore deleting the entire exclusive lineage is always an exact translation. As the density increases, case (4) occurs more often. The intuition is that as more tuples are joined with each other, deleting any lineage tuple of \(t \) is likely to affect other view tuples, so \(-t\) often does not have an exact translation. However, as the density further increases, cases (2) and (3) start to occur more frequently. Now, because each view tuple often has several derivations, although deleting a branch or subset of \(t \)'s lineage may affect some derivations of another view tuple \(t' \), \(t' \) often can be derived in another way, so \(-t\) still has an exact translation. Finally, when the base data is very dense, case (2) completely takes over.

4.7.2 Algorithm Scalability

In this experiment, we study the scalability of our algorithm to the size of the base data. Specifically, we fix the density at 8 and increase \#groups from 10 to 100,000. (We also set \#users = \#files = \#groups, but these values do not affect the base data size.) We continue to consider the four translation cases from Section 4.7.1 separately, and we delete view tuples one at a time until we have several representative instances of each case. Figure 4.8 shows the average time for the translation in each case (in seconds) as the total size of the base data increases. From the results plotted on log-scale x and y axes, we see that the translation time for each case grows at worst approximately linearly in the size of the base data.
4.8 Related Work

One of the biggest differences between our approach to the view update problem and most previous approaches is that we determine view update translations at view-update time instead of at view-definition time. Consequently, other approaches may miss exact view update translations when they exist, because those approaches cannot take all data-dependent information into account. Of course, there is a cost for this extra accuracy, namely examining the database state at run-time to compute the exact translation. However, in certain cases it is a cost that applications may want to pay.

Some previous approaches ask the view definer to specify, as part of a view definition, the set of permitted view update operations together with their translations, e.g., [Cle78, RS79]. A somewhat more automated approach is for the system to enumerate different view update translations at view definition time and let the view definer choose the preferable ones, e.g., [Kel86]. Another approach, proposed in [LS91], translates view updates using user-provided information at view-definition time as well as at view-update time. All of these approaches require input from the view definer or view updater, unlike our approach which can be fully automatic, allowing exact view update translations without any additional effort at view definition or update time.

A fully automatic approach is suggested in [Mas84], which provides ten general rules for translating view deletions and insertions on select, project, and join views. The concept of view complements is introduced in [BS81] to supply extra semantic information for selecting a view update translation. Neither of these approaches guarantees translation exactness.

An algorithm proposed in [DB82] guarantees exact translations in restricted cases by requiring certain functional dependencies on the base data. A concept of source-tuple is defined in [DB82], similar in spirit but with a different definition than data lineage. [Kel85] also proposed an algorithm that guarantees exact translations for a very restricted classes of SPJ views: to be updatable a view must include all key and join attributes of the base tables, and the base tables must join on the key attributes and satisfy foreign key constraints. Our approach makes no restrictions on the SPJ views we consider.
4.9 Chapter Summary

In this chapter we considered the view update problem in a conventional database (not data warehousing) environment. Exploiting the data lineage techniques developed in Chapter 2, we developed a fully automatic algorithm for translating deletions against any relational SPJ view into deletions against the underlying database. Deletions can be specified as a single tuple, a set of tuples, or as a selection condition over the view. Our algorithm can be parameterized by the view definition at compile-time, and by the view update request (and base data) at run-time. By taking data-dependent information into account at run-time and using techniques based on data lineage, our algorithm finds translations that are guaranteed to be exact whenever such translations exist. No previous algorithms we know of can make the same claim. Empirical results show that our algorithm often finds exact translations very quickly, and that it scales at worst linearly in the database size.
Chapter 5

Data Lineage for General Data Transformations

In Chapters 2–3 we studied the data lineage problem for warehouse data defined as relational views over relational sources, i.e., views specified using SQL or relational algebra. In many deployed production data warehouses, however, data imported from the sources may be “cleansed”, integrated, and summarized through a sequence or graph of transformations. Many commercial warehousing systems provide tools for creating and managing such transformations as part of the extract-transform-load (ETL) process, e.g., [Inf, Mic, PPD, Sag]. The transformations may vary from simple algebraic operations or aggregations to complex procedural code.

In this chapter we consider the problem of lineage tracing in data warehouses created by general transformations. In this environment, the lineage tracing problem becomes considerably more difficult and open-ended, because we no longer have the luxury of a fixed set of operators or the algebraic properties offered by relational views. Furthermore, since transformation graphs in real ETL processes can often be quite complex—containing as many as 60 or more transformations—the storage requirements and runtime overhead associated with lineage tracing are very important considerations.

To define data lineage and provide lineage tracing algorithms for general transformations, we take advantage of known structure or properties of transformations when present.
5.1. RUNNING EXAMPLE

Our lineage tracing algorithms apply to single transformations, to linear sequences of transformations, and to arbitrary acyclic transformation graphs. We also propose optimization techniques for improving tracing performance in the case of large transformation graphs. Our results can guide the design of transformational data warehouses that enable effective lineage tracing.

The chapter proceeds as follows. Section 5.1 introduces our running example for lineage tracing in the presence of general data transformations, and Section 5.2 formalizes the problem. In Section 5.3 we identify a set of relevant transformation properties. We then provide formal definitions of lineage and tracing algorithms for general warehouse transformations based on these properties. Section 5.4 presents an algorithm for combining transformations in a transformation sequence to improve tracing performance. Section 5.5 extends the algorithms to handle transformations with multiple inputs and outputs, and Section 5.6 presents our overall approach for tracing lineage through an arbitrary transformation graph. We have studied the performance of our algorithms empirically and we present the results in Section 5.7. Section 5.8 surveys related work and Section 5.9 concludes the chapter.

5.1 Running Example

We now present a running example to be used throughout the chapter. Consider a data warehouse with retail store data derived from two source tables:

Product\((prod-id, prod-name, category, price, valid)\)
Order\((order-id, cust-id, date, prod-list)\)

The Product table is mostly self-explanatory. Attribute valid specifies the time period during which a price is effective,\(^1\) and is part of the key because a given product may have different prices over time, and thus multiple tuples in Product. The Order table also is mostly self-explanatory. Attribute prod-list specifies the list of ordered products with product ID and (parenthesized) quantity for each. Sample contents of small source tables

\(^1\)We assume that valid is a simple string, which unfortunately is a typical ad-hoc treatment of time.
Figure 5.1: Source data set for Product

<table>
<thead>
<tr>
<th>prod-id</th>
<th>prod-name</th>
<th>category</th>
<th>price</th>
<th>valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Apple IMAC</td>
<td>computer</td>
<td>1200</td>
<td>10/1/1998–</td>
</tr>
<tr>
<td>222</td>
<td>Sony V AIO</td>
<td>computer</td>
<td>2250</td>
<td>12/1/1998–9/30/1999</td>
</tr>
<tr>
<td>222</td>
<td>Sony V AIO</td>
<td>computer</td>
<td>1950</td>
<td>10/1/1999–</td>
</tr>
<tr>
<td>333</td>
<td>Canon A5</td>
<td>electronics</td>
<td>400</td>
<td>4/2/1999–</td>
</tr>
<tr>
<td>444</td>
<td>Sony V AIO</td>
<td>computer</td>
<td>2750</td>
<td>12/1/1998–</td>
</tr>
</tbody>
</table>

Figure 5.2: Source data set for Order

are shown in Figures 5.1 and 5.2.

Suppose an analyst wants to build a warehouse table listing computer products that had a significant sales jump in the last quarter: the last quarter sales were more than twice the average sales for the preceding three quarters. A table SalesJump is defined in the data warehouse for this purpose. Figure 5.3 shows how the contents of table SalesJump can be specified using a transformation graph \(G \) with inputs Order and Product. \(G \) is a directed acyclic graph composed of the following seven transformations:

- \(T_1 \) splits each input order according to its product list into multiple orders, each with a single ordered product and quantity. The output has schema \(\langle \text{order-id}, \text{cust-id}, \text{date}, \text{prod-id}, \text{quantity} \rangle \).

- \(T_2 \) filters out products not in the computer category.

- \(T_3 \) effectively performs a relational join on the outputs from \(T_1 \) and \(T_2 \), with \(T_1.\text{prod-id} = T_2.\text{prod-id} \) and \(T_1.\text{date} \) occurring in the period of \(T_2.\text{valid} \). \(T_3 \) also drops attributes cust-id and category, so the output has schema \(\langle \text{order-id}, \text{date}, \text{prod-id}, \text{quantity}, \text{prod-name}, \text{price}, \text{valid} \rangle \).
5.1. RUNNING EXAMPLE

Figure 5.3: Transformations to derive SalesJump

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>split orders</td>
</tr>
<tr>
<td>T_2</td>
<td>select on product category</td>
</tr>
<tr>
<td>T_3</td>
<td>join products and orders</td>
</tr>
<tr>
<td>T_4</td>
<td>aggregate and pivot quarterly sales</td>
</tr>
<tr>
<td>T_5</td>
<td>add a column avg3</td>
</tr>
<tr>
<td>T_6</td>
<td>select on avg3</td>
</tr>
<tr>
<td>T_7</td>
<td>remove columns</td>
</tr>
</tbody>
</table>

Figure 5.4: Transformation summary

- T_4 computes the quarterly sales for each product. It groups the output from T_3 by prod-name, computes the total sales for each product for the four previous quarters, and pivots the results to output a table with schema \langleprod-name, q1, q2, q3, q4\rangle, where q1–q4 are the quarterly sales.

- T_5 computes from the output of T_4 the average sales of each product in the first three quarters. The output schema is \langleprod-name, q1, q2, q3, avg3, q4\rangle, where avg3 is the average sales $(q_1 + q_2 + q_3)/3$.

- T_6 selects those products whose last quarter’s sales were greater than twice the average of the preceding three quarters.

- T_7 performs a final projection to output SalesJump with schema \langleprod-name, avg3, q4\rangle.

Figure 5.4 summarizes the transformations in G. Note that some of these transformations (T_2, T_5, T_6, and T_7) could be expressed as standard relational operations, while others (T_1, T_3, and T_4) could not.

As a simple lineage example, for the data in Figures 5.1 and 5.2 the warehouse table SalesJump contains tuple $t = \langle$Sony VAIO, 11250, 39600\rangle, indicating that the sales of VAIO computers jumped from an average of 11250 in the first three quarters to 39600 in the last quarter. An analyst may want to see the relevant detailed information by tracing the
lineage of tuple t, that is, by inspecting the original input data items that produced t. Using the techniques to be developed in this chapter, from the source data in Figures 5.1 and 5.2 the analyst will be presented with the lineage result in Figure 5.5.

5.2 Transformations and Their Data Lineage

In this section, we formalize general data transformations and data lineage for transformations. We then briefly motivate why transformation properties can help us with lineage tracing.

5.2.1 Transformations

In this chapter we generally consider a data set to be any set of data items—tuples, values, complex objects—with no duplicates in the set. (The effect duplicates have on lineage tracing has been addressed in some detail earlier in Section 2.7, and the issues do not change fundamentally in the presence of transformations.) A transformation \mathcal{T} is any procedure that takes data sets as input and produces data sets as output. For now, we will consider only transformations that take a single data set as input and produce a single output set. We will extend our results to transformations with multiple input sets and output sets in Section 5.5. For any input data set I, we say that the application of \mathcal{T} to I resulting in an output set O, denoted $\mathcal{T}(I) = O$, is an instance of \mathcal{T}.
Given transformations \(T_1 \) and \(T_2 \), their composition \(T = T_1 \circ T_2 \) is the transformation that first applies \(T_1 \) to \(I \) to obtain \(I' \), then applies \(T_2 \) to \(I' \) to obtain \(O \). \(T_1 \) and \(T_2 \) are called \(T \)'s component transformations. We assume the composition operation is associative: \((T_1 \circ T_2) \circ T_3 = T_1 \circ (T_2 \circ T_3)\). Thus, given transformations \(T_1, T_2, \ldots, T_n \), we represent the composition \((T_1 \circ T_2) \circ \cdots \circ T_n\) as a transformation sequence \(T_1 \circ \cdots \circ T_n \). A transformation that is not defined as a composition of other transformations is atomic.

For now we will assume that all of our transformations are stable and deterministic. A transformation \(T \) is stable if it never produces spurious output items, i.e., \(T(\emptyset) = \emptyset \). A transformation is deterministic if it always produces the same output set given the same input set. All of the example transformations we have seen so far are stable and deterministic. An example of an unstable transformation is one that appends a fixed data item or set of items to every output set, regardless of the input. An example of a nondeterministic transformation is one that transforms a random sample of the input set. In practice we usually require transformations to be stable but often do not require them to be deterministic. We will defer our discussion of when the deterministic assumption can be dropped to Section 5.3.5, after we have formalized data lineage for transformations and presented our lineage tracing algorithms.

5.2.2 Data Lineage

In the general case a transformation may inspect the entire input data set to produce each item in the output data set, but in most cases there is a much more fine-grained relationship between the input and output data items: a data item \(o \) in the output set may have been derived from a small subset of the input data items (maybe only one), as opposed to the entire input data set. Given a transformation instance \(T(I) = O \) and an output item \(o \in O \), the lineage of \(o \) is the actual set \(I^* \subseteq I \) of input data items that contributed to \(o \)'s derivation. We denote \(o \)'s lineage as \(I^* = T^*(o, I) \). The lineage of a set of output data items \(O^* \subseteq O \) is the union of the lineage of each item in the set: \(T^*(O^*, I) = \bigcup_{o \in O^*} T^*(o, I) \). A detailed definition of data lineage for different types of transformations will be given in Section 5.3.

Knowing something about the workings of a transformation is important for tracing data lineage—if we know nothing, any input data item may have participated in the derivation
of an output item. Let us consider an example. Given a transformation \(T \) and its instance \(T(I) = O \) in Figure 5.6, the lineage of the output item \(\langle a, 2 \rangle \) depends on \(T \)'s definition, as we will illustrate. Suppose \(T \) is a transformation that filters out input items with a negative \(Y \) value (i.e., \(T = \sigma_{Y \geq 0} \) in relational algebra). Then the lineage of output item \(o = \langle a, 2 \rangle \) should include only input item \(\langle a, 2 \rangle \). Now, suppose instead that \(T \) groups the input data items based on their \(X \) values and computes the sum of their \(Y \) values multiplied by 2 (i.e., \(T = \alpha_{X,2*sum(Y)} \) as \(Y \) in relational algebra, where \(\alpha \) performs grouping and aggregation). Then the lineage of output item \(o = \langle a, 2 \rangle \) should include input items \(\langle a, -1 \rangle \) and \(\langle a, 2 \rangle \), because \(o \) is computed from both of them. We will refer back to these two transformations later (along with our earlier examples from Section 5.1), so let us call the first one \(T_8 \) and the second one \(T_9 \).

Given a transformation specified as a standard relational operator or view, we can define and retrieve the exact data lineage for any output data item using the techniques introduced in Chapter 2. On the other hand, if we know nothing at all about a transformation, then the lineage of an output item must be defined as the entire input set. In reality transformations often lie between these two extremes—they are not standard relational operators, but they have some known structure or properties that can help us identify and trace data lineage.

The transformation properties we will consider often can be specified easily by the transformation author, or they can be inferred from the transformation definition (as relational operators, for example), or possibly even “learned” from the transformation’s behavior. We do not focus on how properties are specified or discovered, but rather on how they are exploited for lineage tracing.
5.3 Lineage Tracing Using Transformation Properties

We consider three overall kinds of properties and provide algorithms that trace data lineage using these properties. First, each transformation is in a certain transformation class based on how it maps input data items to output items (Section 5.3.1). Second, we may have one or more schema mappings for a transformation, specifying how certain output attributes relate to input attributes (Section 5.3.2). Third, a transformation may be accompanied by a tracing procedure or inverse transformation, which is the best case for lineage tracing (Section 5.3.3). When a transformation exhibits many properties, we determine the best one to exploit for lineage tracing based on a property hierarchy (Section 5.3.4). We also discuss nondeterministic transformations (Section 5.3.5), and how indexes can be used to further improve tracing performance (Section 5.3.6).

5.3.1 Transformation Classes

In this section, we define three transformation classes: dispatchers, aggregators, and black-boxes. For each class, we give a formal definition of data lineage and specify a lineage tracing procedure. We also consider several subclasses for which we specify more efficient tracing procedures. Our informal studies have shown that about 95% of the transformations used in real data warehouses are dispatchers, aggregators, or their compositions (covered in Sections 5.4–5.6), and a large majority fall into the more efficient subclasses.

Dispatchers

A transformation T is a dispatcher if, for each individual data item in an input set, T produces zero or more of the output data items: $\forall I, T(I) = \bigcup_{i \in I} T(\{i\})$. Figure 5.7(a) illustrates a dispatcher, in which input item 1 produces output items 1–4, input item 3 produces output items 3–6, and input item 2 produces no output items. The lineage of an output item o according to a dispatcher T is defined as $T^*(o, I) = \{ i \in I \mid o \in T(\{i\}) \}$. As an example, a relational selection or projection operator is a typical dispatcher, while a transformation that computes the sum of a list of input numbers is not a dispatcher, because it computes an output data item based on two or more input data items.
A simple procedure $\text{TraceDS} (\mathcal{T}, O^*, I)$ in Figure 5.8 can be used to trace the lineage of a set of output items $O^* \subseteq O$ according to a dispatcher \mathcal{T}. The procedure applies \mathcal{T} to the input data items one at a time and returns those items that produce one or more items in O^*.\(^2\) Note that all of our tracing procedures are specified to take a set of output items as a parameter instead of a single output item, for generality and also so tracing procedures can be composed when we consider transformation sequences (Section 5.4) and graphs (Section 5.6).

Example 5.3.1 (Lineage Tracing for Dispatchers) Transformation \mathcal{T}_1 in Section 5.1 is a dispatcher, because each input order produces one or more output orders via \mathcal{T}_1. Given an output item $o = ⟨0101, AAA, 2/1/1999, 222, 10⟩$ based on the sample data of Figure 5.2, we can trace o’s lineage according to \mathcal{T}_1 using procedure $\text{TraceDS} (\mathcal{T}_1, \{o\}, \text{Order})$ to obtain $\mathcal{T}_1^*(o, \text{Order}) = \{⟨0101, AAA, 2/1/1999, “333(10), 222(10)”⟩\}$. Transformations \mathcal{T}_2, \mathcal{T}_5, \mathcal{T}_6, and \mathcal{T}_7 in Section 5.1 and \mathcal{T}_8 in Section 5.2.2 all are dispatchers, and we can similarly trace data lineage for them.

TraceDS requires a complete scan of the input data set. For each input item i, it calls transformation \mathcal{T} over $\{i\}$, which can be very expensive if \mathcal{T} has significant overhead (e.g., startup time). In Section 5.3.6 we will discuss how indexes can be used to improve the performance of TraceDS. However, next we introduce a common subclass of dispatchers, filters, for which lineage tracing is trivial.

\(^2\)For now we are assuming that the input set is readily available. Cases where the input set is unavailable or unnecessary will be considered later.
5.3. LINEAGE TRACING USING TRANSFORMATION PROPERTIES

procedure TraceDS(T, O*, I)
 I* ← ∅;
 for each i ∈ I do
 if T({i}) ∩ O* ≠ ∅ then I* ← I* ⊔ {i};
 return I*;

Figure 5.8: Tracing procedure for dispatchers

Filters. A dispatcher T is a filter if each input item produces either itself or nothing: ∀i ∈ I, T({i}) = {i} or T({i}) = ∅. Thus, the lineage of any output data item is the same item in the input set: ∀o ∈ O, T*(o) = {o}. The tracing procedure for a filter T simply returns the traced item set O* as its own lineage. It does not need to call the transformation T or scan the input data set, which can be a significant advantage in many cases (see Section 5.4). Transformation T_8 in Section 5.2.2 is a filter, and the lineage of output item o = ⟨a, 2⟩ is the same item ⟨a, 2⟩ in the input set. Other examples of filters are T_2 and T_6 in Section 5.1.

Aggregators

A transformation T is complete if each input data item always contributes to some output data item: ∀I ≠ ∅, T(I) ≠ ∅. A transformation T is an aggregator if T is complete, and for all I and T(I) = O = {o_1, ..., o_n}, there exists a unique disjoint partition I_1, ..., I_n of I such that T(I_k) = {o_k} for k = 1..n. I_1, ..., I_n is called the input partition, and I_k is o_k’s lineage according to T: T*(o_k, I) = I_k. Figure 5.7(b) illustrates an aggregator, where the lineage of output item 1 is input items {1, 2}, the lineage of output item 2 is {3}, and the lineage of output item 3 is {4, 5, 6}.

Transformation T_9 in Section 5.2.2 is an aggregator. The input partition is I_1 = {⟨a, −1⟩, ⟨a, 2⟩}, I_2 = {⟨b, 0⟩}, and the lineage of output item o = ⟨a, 2⟩ is I_1. Among the transformations in Section 5.1, T_4, T_5, and T_7 are aggregators. Note that transformations can be both aggregators and dispatchers (e.g., T_5 and T_7 in Section 5.1). We will address how overlapping properties affect lineage tracing in Section 5.3.4.

To trace the lineage of an output subset O* according to an aggregator T, we can use the procedure TraceAG(T, O*, I) in Figure 5.9 that enumerates subsets of input I.
returns the unique subset \(I^* \) such that \(I^* \) produces exactly \(O^* \), i.e., \(T(I^*) = O^* \), and the rest of the input set produces the rest of the output set, i.e., \(T(I - I^*) = O - O^* \). During the enumeration, we examine the subsets in increasing size. If we find a subset \(I' \) such that \(T(I') = O^* \) but \(T(I - I') \neq O - O^* \), we then need to examine only supersets of \(I' \), which can reduce the work significantly.

\(\text{TraceAG} \) may call \(T \) as many as \(2^{|I|} \) times in the worst case, which can be prohibitive. We introduce two common subclasses of aggregators, \textit{context-free aggregators} and \textit{key-preserving aggregators}, which allow us to apply much more efficient tracing procedures.

Context-Free Aggregators. An aggregator \(T \) is \textit{context-free} if any two input data items either always belong to the same input partition, or they always do not, regardless of the other items in the input set. In other words, a context-free aggregator determines the partition that an input item belongs to based on its own value, and not on the values of any other input items. All example aggregators we have seen are context-free. As an example of a non-context-free aggregator, consider a transformation \(T \) that clusters input data points based on their x-y coordinates and outputs some aggregate value of items in each cluster. Suppose \(T \) specifies that any two points within distance \(d \) from each other must belong to the same cluster. \(T \) is an aggregator, but it is not context-free, since whether two items belong to the same cluster or not may depend on the existence of a third item near to both.

We specify lineage tracing procedure \(\text{TraceCF}(T, O^*, I) \) in Figure 5.10 for context-free aggregators. This procedure first scans the input data set to create the partitions (which we could not do linearly if the aggregator were not context-free). Then it checks each
procedure TraceCF(\(T, O^*, I\))
\[I^* \leftarrow \emptyset; \]
\[pnum \leftarrow 0; \]
for each \(i \in I\) do
\[\text{if } pnum = 0 \text{ then } I_1 \leftarrow \{i\}; pnum \leftarrow 1; \text{ continue;} \]
\[\text{for } (k \leftarrow 1; k \leq pnum; k++) \text{ do} \]
\[\text{if } |T(I_k \cup \{i\})| = 1 \text{ then } I_k \leftarrow I_k \cup \{i\}; \text{ break;} \]
\[\text{if } k > pnum \text{ then } pnum \leftarrow pnum + 1; I_{pnum} \leftarrow \{i\}; \]
\[\text{for } k \leftarrow 1..pnum \text{ do} \]
\[\text{if } T(I_k) \subseteq O^* \text{ then } I^* \leftarrow I^* \cup I_k; \]
return \(I^*\);

Figure 5.10: Tracing procedure for context-free aggregators

The lineage-tracing procedure for context-free aggregators, TraceCF, is defined as follows: For each input item \(i\) in the input set \(I\), it checks if it belongs to the first input partition \(I_1\) or to a subsequent partition \(I_k\) where \(k > 1\). If \(i\) belongs to \(I_1\), it is added to the first partition \(I_1\) and the procedure continues. If \(i\) belongs to a later partition \(I_k\), it is added to \(I_k\). If the current partition \(I_k\) produces a single output item, it is added to the output set \(I^*\). This process continues until all input items are processed.

Key-Preserving Aggregators. Suppose each input item and output item contains a unique key value in the relational sense, denoted \(i.key\) for item \(i\). An aggregator \(T\) is key-preserving if given any input set \(I\) and its input partition \(I_1, \ldots, I_n\) for output \(T(I) = \{o_1, \ldots, o_n\}\), all subsets of \(I_k\) produce a single output item with the same key value as \(o_k\), for \(k = 1..n\). That is, \(\forall I' \subseteq I_k: T(I') = \{o'_k\} \text{ and } o'_k.key = o_k.key\).

Theorem 5.3.2 All key-preserving aggregators are context-free. \(\square\)

Proof: Given a key-preserving aggregator \(T\), we want to prove that \(T\) is context-free, i.e., \(\forall i\) and \(i'\), they either always belong to the same input partition or they always do not. Suppose for the sake of a contradiction that \(T\) is not context-free. Then there exist input sets \(I\) and \(I'\) and items \(i\) and \(i'\) in both \(I\) and \(I'\) such that

1. \(i\) and \(i'\) belong to the same input partition \(I_j\) in transformation instance \(T(I) = O\). Let \(T(I_j) = o_j\). According to the definition of key-preserving aggregator, \(T(\{i\})\) and \(T(\{i'\})\) produce output items with the same key value as \(o_j.key\).

2. \(i\) and \(i'\) belong to different input partitions \(I_j\) and \(I_k\) respectively in \(T(I') = O'\). Let \(T(I_j) = o_j\) and \(T(I_k) = o_k\). According to the definition of key-preserving
procedure TraceKP(T, O*, I)
 I* ← ∅;
 for each i ∈ I do
 if π_{key}(T({i})) ⊆ π_{key}(O*) then I* ← I* ⊎ {i};
 return I*;

Figure 5.11: Tracing procedure for key-preserving aggregators

aggregator, T({i}) produces an item with key value o_k.key, while T({i'}) produces an item with key value o_j.key.

Since o_j.key ≠ o_k.key by the definition of a key, we obtain our contradiction.

All example aggregators we have seen are key-preserving. As an example of a context-free but non-key-preserving aggregator, consider a relational groupby-aggregation that does not retain the grouping attribute.

TraceKP (T, O*, I) in Figure 5.11 traces the lineage of O* according to a key-preserving aggregator T. It scans the input data set once and returns all input items that produce output items with the same key as items in O*. TraceKP reduces the number of transformation calls to |I|, with each call operating on a single input data item. We can further improve performance of TraceKP using an index, as discussed in Section 5.3.6.

Black-box Transformations

An atomic transformation is called a black-box transformation if it is neither a dispatcher nor an aggregator, and it does not have a provided lineage tracing procedure (Section 5.3.3). In general, any subset of the input items may have been used to produce a given output item through a black-box transformation, as illustrated in Figure 5.7(c), so all we can say is that the entire input data set is the lineage of each output item: ∀o ∈ O, T*(o, I) = I. Thus, the tracing procedure for a black-box transformation simply returns the entire input I.

As an example of a true black-box, consider a transformation T that sorts the input data items and attaches a serial number to each output item according to its sorted position. For instance, given input data set I = {⟨f, 10⟩, ⟨b, 20⟩, ⟨c, 5⟩} and sorting by the first attribute, the output is T(I) = {⟨1, b, 20⟩, ⟨2, c, 5⟩, ⟨3, f, 10⟩}, and the lineage of each output data
5.3. LINEAGE TRACING USING TRANSFORMATION PROPERTIES

item is the entire input set I. Note that in this case each output item, in particular its serial number, is indeed derived from all input data items.

5.3.2 Schema Mappings

Schema information can be very useful in the ETL process, and many data warehousing systems require transformation programmers to provide some schema information. In this section, we discuss how we can use schema information to improve lineage tracing for dispatchers and aggregators. Sometimes schema information also can improve lineage tracing for a black-box transformation T, specifically when T can be combined with another non-black-box transformation based on T’s schema information (Section 5.4). A schema specification may include:

- input schema $\mathbf{A} = \langle A_1, \ldots, A_p \rangle$, and input key $A_{key} \subseteq \mathbf{A}$
- output schema $\mathbf{B} = \langle B_1, \ldots, B_q \rangle$, and output key $B_{key} \subseteq \mathbf{B}$

The specification also may include schema mappings, defined as follows.

Definition 5.3.3 (Schema Mappings) Consider a transformation T with input schema \mathbf{A} and output schema \mathbf{B}. Let $A \subseteq \mathbf{A}$ and $B \subseteq \mathbf{B}$ be lists of input and output attributes. Let $i.A$ denote the A attribute values of i, and similarly for $o.B$. Let f and g be functions from tuples of attribute values to tuples of attribute values. We say that T has a forward schema mapping $f(A) \xrightarrow{T} B$ if we can partition any input set I into I_1, \ldots, I_m based on equality of $f(A)$ values, and partition the output set $O = T(I)$ into O_1, \ldots, O_n based on equality of B values, such that $m \geq n$ and:

1. for $k = 1..n$, $T(I_k) = O_k$ and $I_k = \{i \in I \mid f(i.A) = o.B \text{ for some } o \in O_k\}$.
2. for $k = (n + 1)..m$, $T(I_k) = \emptyset$.

Similarly, we say that T has a backward schema mapping $A \xleftarrow{T} g(B)$ if we can partition any input set I into I_1, \ldots, I_m based on equality of A values, and partition the output set $O = T(I)$ into O_1, \ldots, O_n based on equality of $g(B)$ values, such that $m \geq n$ and:

1. for $k = 1..n$, $T(I_k) = O_k$ and $I_k = \{i \in I \mid i.A = g(o.B) \text{ for some } o \in O_k\}$.

3That is, two input items $i_1 \in I$ and $i_2 \in I$ are in the same partition I_k iff $f(i_1.A) = f(i_2.A)$.
2. For \(k = (n+1) \ldots m \), \(T(I_k) = \emptyset \).

When \(f \) (or \(g \)) is the identity function, we simply write \(A \xrightarrow{T} B \) (or \(A \xleftarrow{T} B \)). If \(A \xrightarrow{T} B \) and \(A \xleftarrow{T} B \) we write \(A \xleftrightarrow{T} B \).

Although Definition 5.3.3 may seem cumbersome, it formally and accurately captures the intuitive notion of schema mappings (certain input attributes producing certain output attributes) that transformations do frequently exhibit.

Example 5.3.4 Schema information for transformation \(T_5 \) in Section 5.1 can be specified as:

Input schema and key: \(A = \langle \text{prod-name}, q_1, q_2, q_3, q_4 \rangle \), \(A_{\text{key}} = \langle \text{prod-name} \rangle \)

Output schema and key: \(B = \langle \text{prod-name}, q_1, q_2, q_3, \text{avg}3, q_4 \rangle \), \(B_{\text{key}} = \langle \text{prod-name} \rangle \)

Schema mappings: \(\langle \text{prod-name}, q_1, q_2, q_3, q_4 \rangle \xrightarrow{T_5} \langle \text{prod-name}, q_1, q_2, q_3, q_4 \rangle \)

\(f(\langle q_1, q_2, q_3 \rangle) \xrightarrow{T_5} \langle \text{avg}3 \rangle \), where \(f(\langle a, b, c \rangle) = (a + b + c)/3 \)

Theorem 5.3.5 Consider a transformation \(T \) that is a dispatcher or an aggregator, and consider any instance \(T(I) = O \). Given any output item \(o \in O \), let \(I^* \) be \(o \)'s lineage according to \(T \). If \(T \) has a forward schema mapping \(f(A) \xrightarrow{T} B \), then \(I^* \subseteq \{ i \in I \mid f(i.A) = o.B \} \).

If \(T \) has a backward schema mapping \(A \xleftarrow{T} g(B) \), then \(I^* \subseteq \{ i \in I \mid i.A = g(o.B) \} \).

Proof: Consider a dispatcher or aggregator \(T \) and an instance \(T(I) = O \). We prove that if \(T \) has a forward schema mapping \(f(A) \xrightarrow{T} B \), then the lineage of any output item \(o \in O \) is a subset of \(\{ i \in I \mid f(i.A) = o.B \} \). The case for \(T \) with backward schema mapping \(A \xleftarrow{T} g(B) \) can be proved in the same manner.

If \(T \) is a dispatcher, \(o \)'s lineage is \(\{ i \} \) such that \(o \in T(\{ i \}) \), according to the lineage definition for dispatchers in Section 5.3.1. Thus, we just need to prove \(f(i.A) = o.B \). Consider transformation instance \(T(\{ i \}) = O' \). By Definition 5.3.3 of schema mappings, this transformation instance has a single input partition, i.e., \(m = 1 \), because \(\{ i \} \) contains a single item. Furthermore, \(n \geq 1 \) because \(O' \) is nonempty. Since \(m \geq n \), we have \(m = n = 1 \). Thus, according to Definition 5.3.3, \(f(i.A) = o.B \).

Now suppose \(T \) is an aggregator. From Definition 5.3.3 we can partition instance \(T(I) = O \) according to the schema mapping to obtain input and output partitions \(I_1, \ldots, I_m \).
and O_1, \ldots, O_n. Since aggregators are complete, we know $m = n$. For $k = 1..n$, the pair of partitions I_k and O_k generate a transformation instance $T(I_k) = O_k = \{o_1^k, \ldots, o_m^k\}$. From the definition of aggregator, given transformation instance $T(I_k) = O_k$, there exists a unique partition I_1^k, \ldots, I_n^k of I_k such that $T(I_1^k) = \{o_1^k\}$ for $j = 1..n$, and $f(i.A) = o_i^k.B$ for all $i \in I_k^j$. Considering the entire input set I and $T(I) = O = \{o_1^1, \ldots, o_n^n\}$, I_1^1, \ldots, I_n^n is a partition of I such that $T(I_1^j) = \{o_1^j\}$, so it is the unique such partition. According to the lineage definition for aggregators in Section 5.3.1, given an output data item $o = o_j^k \in O$, o_j^k’s lineage is I_1^j. Since $f(i.A) = o_i^j.B$ for all $i \in I_1^j$, and $o = o_j^k$, we conclude $I_1^j \subseteq \{i \in I \mid f(i.A) = o.B\}$.

Based on Theorem 5.3.5, when tracing lineage for a dispatcher or aggregator, we can narrow down the lineage of any output data item to a (possibly very small) subset of the input data set based on a schema mapping. We can then retrieve the exact lineage within that subset using the algorithms in Section 5.3.1. For example, consider an aggregator T with a backward schema mapping $A \xleftarrow{T} g(B)$. When tracing the lineage of an output item $o \in O$ according to T, we can first find the input subset $I' = \{i \in I \mid i.A = g(o.B)\}$, then enumerate subsets of I' using $\text{TraceAG}(T, o, I')$ to find o’s lineage $I^* \subseteq I'$. If we have multiple schema mappings for T, we can use the intersection of the subsets for improved tracing efficiency.

The narrowing technique of the previous paragraph is an improvement over the tracing procedures based on lineage definition (Section 5.3.1). However, when schema mappings satisfy certain additional conditions, we can do even better.

Definition 5.3.6 (Schema Mapping Properties) Consider a transformation T with input schema A, input key A_{key}, output schema B, and output key B_{key}.

1. T is a **forward key-map (fkmap)** if it is complete ($\forall I \neq \emptyset, T(I) \neq \emptyset$) and it has a forward schema mapping to the output key: $f(A) \xrightarrow{T} B_{key}$.

2. T is a **backward key-map (bkmap)** if it has a backward schema mapping to the input key: $A_{key} \xleftarrow{T} g(B)$.

3. T is a **backward total-map (btmap)** if it has a backward schema mapping to all input attributes: $A \xleftarrow{T} g(B)$.

Suppose that schema information and mappings are given for all transformations in Section 5.1. Then all of the transformations except T_4 are backward key-maps; T_2, T_5, and T_6 are backward total-maps; T_4, T_5, and T_7 are forward key-maps.

Theorem 5.3.7 (1) All filters are backward total-maps. (2) All backward total-maps are backward key-maps. (3) All backward key-maps are dispatchers. (4) All forward key-maps are key-preserving aggregators.

Proof:

1. Given a filter \mathcal{T}, each input item either produces itself or nothing, i.e., $\forall i \in I: \mathcal{T}(\{i\}) = \{i\}$ or \emptyset. Thus, I and O always have the same schema, call it A, and we can partition any input I and output $O = \mathcal{T}(I)$ into singleton sets I_1, \ldots, I_m and O_1, \ldots, O_n such that $m \geq n$ and:

 (a) for $k = 1..n$, $\mathcal{T}(I_k) = O_k$, and I_k and O_k both contain the same single item, so $I_k = \{i \in I \mid i = o$ for some $o \in O_k\}$.

 (b) for $k = (n + 1)..m$, $\mathcal{T}(I_k) = \emptyset$.

 Therefore, we have a backward schema mapping $A \xleftarrow{\mathcal{T}} A$ to all input attributes, so \mathcal{T} is a backward total-map.

2. Consider a backward total-map \mathcal{T} where the input has schema A, so we have $A \xleftarrow{\mathcal{T}} g(B)$. Since A is an input key (we are assuming set semantics), \mathcal{T} is a backward key-map.

3. Let \mathcal{T} be a backward key-map with $A_{\text{key}} \xleftarrow{\mathcal{T}} g(B)$. We want to prove that \mathcal{T} is a dispatcher, i.e., $\forall I: \mathcal{T}(I) = \bigcup_{i \in I} \mathcal{T}(\{i\})$. Given any instance $\mathcal{T}(I) = O$, according to Definition 5.3.3 of schema mapping, we can partition I into I_1, \ldots, I_m based on A_{key} equality and partition O into O_1, \ldots, O_n based on $g(B)$ equality such that $\mathcal{T}(I_k) = O_k$ for $k = 1..n$ and $\mathcal{T}(I_k) = \emptyset$ for $k = (n + 1)..m$. Thus, $\mathcal{T}(I) = \bigcup_{k=1..n} O_k = \bigcup_{k=1..m} \mathcal{T}(I_k)$. Since each I_k contains items with the same A_{key} value, it contains a single item by the definition of key. Therefore, $\mathcal{T}(I) = \bigcup_{i \in I} \mathcal{T}(\{i\})$, and \mathcal{T} is a dispatcher.
4. Let \mathcal{T} be a forward key-map with schema mapping $f(A) \xrightarrow{\mathcal{T}} B_{\text{key}}$. We want to prove that \mathcal{T} is a key-preserving aggregator. We first prove that \mathcal{T} is an aggregator, i.e., \mathcal{T} is complete and given any instance $\mathcal{T}(I) = O = \{o_1, \ldots, o_n\}$, there exists a unique partition I_1, \ldots, I_n of I such that $\mathcal{T}(I_k) = \{o_k\}$. By Definition 5.3.6 of forward key-map, \mathcal{T} is complete. Consider any $\mathcal{T}(I) = O$. From Definition 5.3.3 of schema mapping we obtain input and output partitions I_1, \ldots, I_m and O_1, \ldots, O_n, where $m = n$ since \mathcal{T} is complete. We will prove that I_1, \ldots, I_n is the unique input partition for $\mathcal{T}(I) = O$ as specified in the aggregator definition (Section 5.3.1). Since each O_k, $k = 1..n$, contains items with the same B_{key} value, it contains a single item; let it be o_k. Then, I_1, \ldots, I_n is an input partition such that $\mathcal{T}(I_k) = \{o_k\}$, and by Definition 5.3.3 $I_k = \{i \in I \mid f(i.A) = o_k.B_{\text{key}}\}$. We now prove that this input partition is unique. Suppose there exists another input partition I'_1, \ldots, I'_n such that $\mathcal{T}(I'_k) = \{o_k\}$ for $k = 1..n$. Consider transformation instance $\mathcal{T}(I'_k) = \{o_k\}$ for any given k. Because its output contains a single item and \mathcal{T} is complete, this transformation instance has a single input partition and a single output partition based on \mathcal{T}’s schema mapping. From Definition 5.3.3, we know that $\forall i \in I'_k: f(i.A) = o_k.B_{\text{key}}$. Thus, $I'_k \subseteq I_k$, for $k = 1..n$. Since $I_1 \cup \cdots \cup I_n = I'_1 \cup \cdots \cup I'_n = I$ and the partitions are disjoint, we know that $I_k = I'_k$ for $k = 1..n$. Therefore, I_1, \ldots, I_n is unique, and \mathcal{T} is an aggregator.

We now prove that \mathcal{T} is key-preserving. Consider instance $\mathcal{T}(I) = O$ with aggregator partition I_1, \ldots, I_n for output $\{o_1, \ldots, o_n\}$. $\forall I'_k \subseteq I_k$: $\mathcal{T}(I'_k) = \{o'_k\}$ where $o'_k.B_{\text{key}} = o_k.B_{\text{key}}$, $k = 1..n$. Consider any $k = 1..n$ and any $I'_k \subseteq I_k$ and let $O'_k = \mathcal{T}(I'_k)$. Since all items in I'_k have the same $f(i.A)$, according to Definition 5.3.3, we can partition this instance based on the schema mapping to obtain a single input partition and a single output partition. Thus, O'_k contains items with the same $o.B_{\text{key}}$, which means O'_k contains a single item; let it be o'_k. Then, $\forall i \in I'_k$: $f(i.A) = o'_k.B_{\text{key}}$. Since $I'_k \subseteq I_k$, $\forall i \in I'_k$: $i \in I_k$. Further because $\forall i \in I_k$: $f(i.A) = o_k.B_{\text{key}}$, we know that $o'_k.B_{\text{key}} = o_k.B_{\text{key}}$. Therefore, \mathcal{T} is key-preserving. □

Theorem 5.3.8 Consider a transformation instance $\mathcal{T}(I) = O$. Given an output item $o \in O$, let I^* be o’s lineage based on \mathcal{T}’s transformation class as defined in Section 5.3.1.
1. If T is a forward key-map with schema mapping $f(A) \xrightarrow{T} B_{key}$, then $I^* = \{ i \in I \mid f(i.A) = o.B_{key} \}$.

2. If T is a backward key-map with schema mapping $A_{key} \xleftarrow{T} g(B)$, then $I^* = \{ i \in I \mid i.A_{key} = g(o.B) \}$.

3. If T is a backward total-map with schema mapping $A \xleftarrow{T} g(B)$, then $I^* = \{ g(o.B) \}$.

Proof:

1. Let T be a forward key-map with schema mapping $f(A) \xrightarrow{T} B_{key}$. Consider an instance $T(I) = O = \{ o_1, \ldots, o_n \}$. We want to prove that $\forall o_k$, o_k’s lineage is $\{ i \in I \mid f(i.A) = o_k.B_{key} \}$. According to Theorem 5.3.7, T is an aggregator, and from part (4) of our proof for Theorem 5.3.7, we know that partition I_1, \ldots, I_n where $I_k = \{ i \in I \mid f(i.A) = o_k.B_{key} \}$ is the unique input partition such that $T(I_k) = \{ o_k \}$. According to the lineage definition for aggregators, o_k’s lineage is $I_k = \{ i \in I \mid f(i.A) = o_k.B_{key} \}$.

2. Let T be a backward key-map with schema mapping $A_{key} \xleftarrow{T} g(B)$. Consider an instance $T(I) = O$. We want to prove that $\forall o \in O$, o’s lineage is $\{ i \in I \mid i.A_{key} = g(o.B) \}$. According to Theorem 5.3.7, T is a dispatcher. Thus, according to the lineage definition for dispatchers, o’s lineage is $I^* = \{ i \in I \mid o \in T(\{ i \}) \}$. According to Theorem 5.3.5, I^* is a subset of $I' = \{ i \in I \mid i.A_{key} = g(o.B) \}$. Since I' contains a single item by the definition of key, I^* is either empty or contains a single item. We will prove that I^* is nonempty by contradiction, from which we can conclude that $I^* = I' = \{ i \in I \mid i.A_{key} = g(o.B) \}$. Suppose that I^* is empty. Then, $\forall i \in I, o \not\in T(\{ i \})$. Therefore, since T is a dispatcher according to Theorem 5.3.7, $o \not\in \bigcup_{i \in I} T(\{ i \}) = T(I)$, which contradicts $o \in O$.

3. Let T be a backward total-map with schema mapping $A \xleftarrow{T} g(B)$ to the entire input schema A. We want to prove that $\forall I$ and $\forall o \in O = T(I)$, o’s lineage is $\{ g(o.B) \}$. Since a backward total-map is a backward key-map, by part (2) of this proof we know that the lineage of o is $I^* = \{ i \in I \mid i.A = g(o.B) \}$. Since $i.A = i$ for all $i \in I$, $I^* = \{ g(o.B) \}$. □
5.3. LINEAGE TRACING USING TRANSFORMATION PROPERTIES

procedure TraceFM(\(\mathcal{T}, O^*, I\)) // let \(f(A) \xrightarrow{\mathcal{T}} B_{\text{key}}\)
\[I^* \leftarrow \emptyset;\]
for each \(i \in I\) do
 if \(f(i.A) \in \pi_{B_{\text{key}}}(O^*)\) then \(I^* \leftarrow I^* \cup \{i\}\);
return \(I^*\);

procedure TraceBM(\(\mathcal{T}, O^*, I\)) // let \(A_{\text{key}} \xleftarrow{\mathcal{T}} g(B)\)
\[I^* \leftarrow \emptyset;\]
for each \(i \in I\) do
 if \(i.A_{\text{key}} \in \pi_{g(B)}(O^*)\) then \(I^* \leftarrow I^* \cup \{i\}\);
return \(I^*\);

procedure TraceTM(\(\mathcal{T}, O^*\)) // let \(A \xleftarrow{\mathcal{T}} g(B)\)
return \(\pi_{g(B)}(O^*)\);

Figure 5.12: Tracing procedures using schema mappings

According to Theorem 5.3.8, we can use the tracing procedures shown in Figure 5.12 for transformations with the schema mapping properties specified in Definition 5.3.6. For example, procedure TraceFM(\(\mathcal{T}, O^*, I\)) performs lineage tracing for a forward key-map \(\mathcal{T}\), which by Theorem 5.3.7 also could be traced using procedure TraceKP of Figure 5.11. Both algorithms scan each input item once, however TraceKP applies transformation \(\mathcal{T}\) to each item, while TraceFM applies function \(f\) to some attributes of each item. Certainly \(f\) is very unlikely to be more expensive than \(\mathcal{T}\), since \(\mathcal{T}\) effectively computes \(f\) and may do other work as well; \(f\) may in fact be quite a bit cheaper. TraceBM(\(\mathcal{T}, O^*, I\)) uses a similar approach for a backward key-map, and is usually more efficient than TraceDS(\(\mathcal{T}, O^*, I\)) of Figure 5.8 for the same reasons. TraceTM(\(\mathcal{T}, O^*\)) performs lineage tracing for a backward total-map, which is very efficient since it does not need to scan the input data set and makes no transformation calls.

Example 5.3.9 Considering some examples from Section 5.1:

- \(\mathcal{T}_1\) is a backward key-map with schema mapping order-id \(\xleftarrow{\mathcal{T}_1}\) order-id. We can trace the lineage of an output data item \(o\) using TraceBM, which simply retrieves items in \(\text{Order}\) that have the same order-id as \(o\).
The four is a forward key-map with schema mapping prod-name \(\xrightarrow{T_4} \) prod-name. We can trace the lineage of an output data item \(o \) using TraceFM, which simply retrieves the input items that have the same prod-name as \(o \).

The five is a backward total-map with \(\langle \text{prod-name, q1, q2, q3, q4} \rangle \xleftarrow{T_5} \langle \text{prod-name, q1, q2, q3, q4} \rangle \).

We can trace the lineage of an output data item \(o \) using TraceBM, which directly constructs \(\langle o.\text{prod-name, o.q1, o.q2, o.q3, o.q4} \rangle \) as \(o \)’s lineage.

In Section 5.3.6 we will discuss how indexes can be used to further speed up procedures TraceFM and TraceBM.

5.3.3 Provided Tracing Procedure or Transformation Inverse

If we are very lucky, a lineage tracing procedure may be provided along with the specification of a transformation \(T \). The tracing procedure \(TP \) may require access to the input data set, i.e., \(TP(O^*, I) \) returns \(O^* \)'s lineage according to \(T \), or the tracing procedure may not require access to the input, i.e., \(TP(O^*) \) returns \(O^* \)'s lineage. A related but not identical situation is when we are provided with the inverse for a transformation \(T \). Sometimes, but not always, the inverse of \(T \) can be used as \(T \)'s tracing procedure.

Definition 5.3.10 (Inverse Transformation) A transformation \(T \) is invertible if there exists a transformation \(T^{-1} \) such that \(\forall I, T^{-1}(T(I)) = I \), and \(\forall O, T(T^{-1}(O)) = O \). \(T^{-1} \) is called \(T \)'s inverse.

Theorem 5.3.11 If a transformation \(T \) is an aggregator with inverse \(T^{-1} \), then for all instances \(T(I) = O \) and all \(o \in O \), the lineage of \(o \) according to \(T \) is \(T^{-1}(\{o\}) \).

Proof: Consider an aggregator \(T \) with inverse \(T^{-1} \). We want to prove that given any instance \(T(I) = O \) and \(o \in O \), \(o \)'s lineage is \(T^{-1}(\{o\}) \). Since \(T \) is an aggregator, according to the definition of aggregator in Section 5.3.1, for \(T(I) = O = \{o_1, \ldots, o_n\} \) there exists a unique partition \(I_1, \ldots, I_n \) of \(I \) such that \(T(I_k) = \{o_k\} \) for \(k = 1..n \), and \(I_k \) is \(o_k \)'s lineage. According to Definition 5.3.10 \(T^{-1}(T(I)) = I \). Therefore, \(\forall o_k \in O, T^{-1}(\{o_k\}) = T^{-1}(T(I_k)) = I_k \), which is \(o_k \)'s lineage.
5.3. LINEAGE TRACING USING TRANSFORMATION PROPERTIES

Note that in fact a full inverse T^{-1} is not needed for Theorem 5.3.11 to hold, but only a weak inverse. A weak inverse guarantees $\forall I, T^{-1}(T(I)) = I$, but not necessarily $\forall O, T(T^{-1}(O)) = O$.

According to Theorem 5.3.11, we can use a transformation’s inverse for lineage tracing if the invertible transformation is an aggregator, as we will illustrate in Example 5.3.12(1). However, if the invertible transformation is a dispatcher or black-box, we cannot always use its inverse for lineage tracing, as we will illustrate in Example 5.3.12(2).

Example 5.3.12 (Lineage Tracing Using Inverses)

1. Consider a transformation \mathcal{T} that performs list merging, essentially the opposite of transformation \mathcal{T}_1 in Section 5.1. \mathcal{T} takes a two-attribute input set and produces a two-attribute output set. It groups the input set according to the first attribute. For each group, it produces one output item containing the grouping value along with a list of the second attribute values from the input. For instance, given input data set $I = \{\langle 1, a \rangle, \langle 1, c \rangle, \langle 2, b \rangle, \langle 2, g \rangle, \langle 2, h \rangle\}$, the output is $O = \mathcal{T}(I) = \{\langle 1, "a, c" \rangle, \langle 2, "b, g, h" \rangle\}$. \mathcal{T} has an inverse \mathcal{T}^{-1} which splits the second attribute of its input data items to produce multiple output items, i.e., $\mathcal{T}^{-1}(O) = I$.

\mathcal{T} is an aggregator, so according to Theorem 5.3.11 we can perform lineage tracing for \mathcal{T} by applying its inverse \mathcal{T}^{-1} to the traced data item(s). For example, given output item $o = \langle 2, "b, g, h" \rangle \in O$, o’s lineage is $\mathcal{T}^{-1}({o}) = \{\langle 2, b \rangle, \langle 2, g \rangle, \langle 2, h \rangle\}$.

2. Now consider transformation \mathcal{T}_1 from Section 5.1, which is a dispatcher and has an inverse \mathcal{T}_1^{-1} that assembles lists in a similar manner to transformation \mathcal{T} as described in (1). If we apply inverse transformation \mathcal{T}_1^{-1} to output item $\langle 0101, AAA, 2/1/1999, 222, 10 \rangle$ then we obtain $\{\langle 0101, AAA, 2/1/1999, "222(10)" \rangle\}$, instead of the correct lineage $\{\langle 0101, AAA, 2/1/1999, "333(10), 222(10)" \rangle\}$.

Although we can guarantee very little about the accuracy or efficiency of provided tracing procedures or transformation inverses in the general case, it is our experience that, when provided, they are usually the most effective way to perform lineage tracing. We will make this assumption in the remainder of the chapter.
Table 5.1: Summary of transformation properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Tracing Procedure</th>
<th># of Transformation Calls</th>
<th># of Input Accesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>dispatcher</td>
<td>TraceDS</td>
<td>$</td>
<td>I</td>
</tr>
<tr>
<td>filter</td>
<td>return</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>aggregator</td>
<td>TraceAG</td>
<td>$O(2^{</td>
<td>I</td>
</tr>
<tr>
<td>context-free aggregator</td>
<td>TraceCF</td>
<td>$O(</td>
<td>I</td>
</tr>
<tr>
<td>key-preserving aggregator</td>
<td>TraceKP</td>
<td>$</td>
<td>I</td>
</tr>
<tr>
<td>black-box</td>
<td>return</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>forward key-map</td>
<td>TraceFM</td>
<td>0</td>
<td>$</td>
</tr>
<tr>
<td>backward key-map</td>
<td>TraceBM</td>
<td>0</td>
<td>$</td>
</tr>
<tr>
<td>backward total-map</td>
<td>TraceTM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tracing procedure requiring input</td>
<td>TP</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>tracing procedure not requiring input</td>
<td>TP</td>
<td>?</td>
<td>0</td>
</tr>
</tbody>
</table>

5.3.4 Transformation Property Summary and Hierarchy

Table 5.1 summarizes the transformation properties covered in the previous three sections. The table specifies which tracing procedure is applicable for each property, along with the number of transformation calls and number of input data item accesses for each procedure. We omit transformation inverses from the table, since when applicable they are equivalent to a provided tracing procedure not requiring input.

As discussed earlier, a transformation may satisfy more than one property. Some properties are better than others: tracing procedures may be more efficient, they may return a more accurate lineage result, or they may not require access to input data. Figure 5.13 specifies a hierarchy for determining which property is best to use for a specific transformation. In the hierarchy, a solid arrow from property p_1 to p_2 means that p_2 is more restrictive than p_1, i.e., all transformations that satisfy property p_2 also satisfy property p_1. Further, according to Table 5.1, whenever p_2 is more restrictive than p_1, the tracing procedure for p_2 is no less efficient (and usually more efficient) by any measure: number of transformation calls, number of input accesses, and whether the input data is required at all. (Black-box transformations, which are the only type with less accurate lineage results, are placed in a separate branch of the hierarchy.) A dashed arrow from property p_1 to p_2 in the hierarchy means that even though p_2 is not strictly more restrictive than p_1, p_2 does yield a tracing
5.3. LINEAGE TRACING USING TRANSFORMATION PROPERTIES

5.3.5 Nondeterministic Transformations

Recall from Section 5.2 that we have assumed all transformations to be deterministic. The reason we sometimes require determinism is that several of our tracing procedures call procedure that again is no less efficient (and usually more efficient) by any measure.\(^4\)

Let us make the reasonable assumption that a provided tracing procedure requiring input is more efficient than \(\text{TraceBM}\), and that a tracing procedure not requiring input is more efficient than \(\text{TraceTM}\). Then we can derive a total order of the properties as shown by the numbers in Figure 5.13: the lower the number, the better the property is for lineage tracing. Given a set of properties for a transformation \(\mathcal{T}\), we always use the best one, i.e., the one with the lowest number, to trace data lineage for \(\mathcal{T}\). Table 5.2 lists the best property for example transformations \(\mathcal{T}_1–\mathcal{T}_7\) from Section 5.1 and \(\mathcal{T}_8–\mathcal{T}_9\) from Section 5.2.2, along with other properties satisfied by these transformations. Note that we list only the most restrictive property on each branch of the hierarchy.

\(^4\)In some cases the tracing efficiency difference represented by a solid or dashed arrow is significant, while in other cases it is less so. This issue is discussed further in Section 5.4.
transformation \mathcal{T}, often repeatedly, as part of the lineage tracing process, specifically procedures TraceAG, TraceCF, TraceKP, and TraceDS. Those procedures that do not call transformation \mathcal{T}—TraceBM, TraceTM, TraceFM, tracing procedures for filters and black-boxes, and user-provided tracing procedures—do not require determinism. Note that a transformation that selects a random sample of the input is a filter, and a transformation that attaches timestamps to tuples is a backward total-map, so neither of these common nondeterministic transformations poses a problem in our approach.

5.3.6 Improving Tracing Performance Using Indexes

Several of the lineage tracing algorithms presented in Sections 5.3.1–5.3.3 can be sped up if we can build indexes on the input data set. We consider two types of indexes:

- **Conventional indexes**, which allow us to quickly locate data items matching a given value. We can use a conventional index on a key for I to speed up procedure TraceBM, as well as the schema mapping “narrowing down” technique in Section 5.3.2.

- **Functional indexes** (e.g., [Ora]), which are constructed for a given function F and allow us to quickly locate data items i such that $F(i) = V$ for a value V. We can use a functional index with $F = f$, where f is the schema mapping function, to speed up procedure TraceFM (and again the schema mapping “narrowing down” in Section 5.3.2). We can also use a functional index with $F = \mathcal{T}$ to speed up procedures TraceDS and TraceKP.

<table>
<thead>
<tr>
<th></th>
<th>Best Property</th>
<th>Additional Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>backward key-map</td>
<td></td>
</tr>
<tr>
<td>T_2</td>
<td></td>
<td>filter</td>
</tr>
<tr>
<td>T_3</td>
<td>see Section 5.5</td>
<td></td>
</tr>
<tr>
<td>T_4</td>
<td>forward key-map</td>
<td></td>
</tr>
<tr>
<td>T_5</td>
<td>backward total-map</td>
<td>forward key-map</td>
</tr>
<tr>
<td>T_6</td>
<td></td>
<td>filter</td>
</tr>
<tr>
<td>T_7</td>
<td>backward key-map</td>
<td>forward key-map</td>
</tr>
<tr>
<td>T_8</td>
<td></td>
<td>filter</td>
</tr>
<tr>
<td>T_9</td>
<td>forward key-map</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2: Properties of T_1–T_9
5.4. LINEAGE TRACING THROUGH A TRANSFORMATION SEQUENCE

Of course we could also build a complete lineage index, which maps the key of an output data item \(o \) to the set of input items that comprise \(o \)'s lineage. This approach is similar to using annotations to record instance-level lineage, which can be very expensive and tends to be worthwhile only for lineage-intensive warehouses. We will discuss annotation-based lineage tracing further in Section 6.1.1. Some intermediate kinds of indexes—less expensive than lineage indexes but more specialized than the two index types discussed above—may also be beneficial for some of our tracing procedures, but are not explored further in this thesis.

5.4 Lineage Tracing through a Transformation Sequence

Now that we have specified how to perform lineage tracing for a single transformation with one input set and one output set, we will consider lineage tracing for sequences of such transformations. Multiple input and output sets are discussed in Section 5.5, and arbitrary acyclic transformation graphs are covered in Section 5.6.

5.4.1 Data Lineage for a Transformation Sequence

Consider a simple sequence of two transformations, such as \(\mathcal{T}_1 \circ \mathcal{T}_2 \) in Figure 5.14 composed from Figures 5.7(a) and 5.7(b). For an input data set \(I \), let \(I_2 = \mathcal{T}_1(I) \) and \(O = \mathcal{T}_2(I_2) \). Given an output data item \(o \in O \), if \(I_2^* \subseteq I_2 \) is the lineage of \(o \) according to \(\mathcal{T}_2 \), and \(I^* \subseteq I \) is the lineage of \(I_2^* \) according to \(\mathcal{T}_1 \), then \(I^* \) is the lineage of \(o \) according to \(\mathcal{T}_1 \circ \mathcal{T}_2 \). For example, in Figure 5.14 if \(o \in O \) is item 3, then \(I_2^* \) is items \(\{4, 5, 6\} \) in \(I_2 \), and \(I^* \) is items \(\{1, 3\} \) in \(I \). This lineage definition generalizes to arbitrarily long transformation sequences using the associativity of composition.

Consider a transformation sequence \(\mathcal{T}_1 \circ \cdots \circ \mathcal{T}_n \) as illustrated in Figure 5.15, where each \(I_k \) is the intermediate result output from \(\mathcal{T}_{k-1} \) and input to \(\mathcal{T}_k \). A correct but brute-force approach is to store all intermediate results \(I_2, \ldots, I_n \) (in addition to initial input \(I \)) at loading time, then trace lineage backward through one transformation at a time. This approach is inefficient both due to the large number of tracing procedure calls when iterating through all transformations in the sequence, and due to the high storage cost for all
intermediate results. The longer the sequence, the less efficient the overall tracing process. For realistic transformation sequences (in practice sometimes as many as 60 transformations) the cost can be prohibitive. Furthermore, if any transformation T in the sequence is a black-box, we will end up tracing the lineage of the entire input to T regardless of what transformations follow T in the sequence. Fortunately, it is often possible to mitigate these problems by combining adjacent transformations in a sequence for the purpose of lineage tracing. Also since we do not always need input sets for lineage tracing as discussed in Sections 5.3.1–5.3.3, some intermediate results can be discarded.

We will use the following overall strategy.

- When a transformation sequence $S = T_1 \circ \cdots \circ T_n$ is defined, we first normalize the sequence, to be specified in Section 5.4.2, by combining transformations in S when it is beneficial to do so. We then determine which intermediate results need to be saved for lineage tracing, based on the best properties for the remaining transformations.

- When data is loaded through the transformation sequence, the necessary intermediate results are saved.

- We can then trace the lineage of any output data item o in the warehouse through the normalized transformation sequence using the iterative tracing procedure described at the beginning of this section.
5.4. LINEAGE TRACING THROUGH A TRANSFORMATION SEQUENCE

5.4.2 Transformation Sequence Normalization

As discussed in Section 5.4.1, we want to combine transformations in a sequence for the purpose of lineage tracing when it is beneficial to do so. Specifically, we can combine transformations T_{k-1} and T_k as shown in Figure 5.16(a) by replacing the two transformations with the single transformation $T' = T_{k-1} \circ T_k$ as shown in Figure 5.16(b), eliminating the intermediate result I_k and tracing through the combined transformation in one step.

To decide whether combining a pair of transformations is beneficial, and to use combined transformations for lineage tracing, as a first step we need to determine the properties of a combined transformation based on the properties of its component transformations. Let us associate with each transformation T_k all known schema information (input schema $T_k.A$, input key $T_k.A_{key}$, output schema $T_k.B$, output key $T_k.B_{key}$), all known schema mappings (forward mappings $T_k.fmappings$ and backward mappings $T_k.bmappings$), whether T_k is complete ($T_k.complete$), and a set $T_k.properties$ of all known properties T_k satisfies from the hierarchy in Figure 5.13. Procedure Combine(T_1, T_2) in Figure 5.17 sets these features for combined transformation $T = T_1 \circ T_2$ based on the features for T_1 and T_2. Note from the algorithm that we need all of these features in order to properly determine $T.properties$ from T_1 and T_2. However, only the properties sets will be important in our final decision of whether to combine transformations.

Theoretically we can combine any adjacent transformations in a sequence. In fact we can collapse the entire sequence into one large transformation. However, combined transformations may have less desirable properties than their component transformations, leading to less efficient or less accurate lineage tracing. Thus, we want to combine transformations only if it is beneficial to do so. Given a transformation sequence, determining the best way to combine transformations in the sequence is a difficult combinatorial problem—solving it accurately, or even just determining accurately when it is beneficial to combine two transformations, would require a detailed cost model that takes into account transformation properties, the cost of applying a transformation, the cost of storing intermediate results, and an estimated workload (including, e.g., data size and tracing frequency). Developing such a cost model is beyond the scope of this thesis.
procedure Combine(T_1, T_2)

$T \leftarrow T_1 \circ T_2$;
$T.A \leftarrow T_1.A$; $T.A_key \leftarrow T_1.A_key$;
$T.B \leftarrow T_2.B$; $T.B_key \leftarrow T_2.B_key$;
$T.fmappings \leftarrow \emptyset$; $T.bmappings \leftarrow \emptyset$; $T.properties \leftarrow \emptyset$;
$T.complete \leftarrow T_1.complete \text{ and } T_2.complete$;

for each property p in \{aggregator, dispatcher, filter, tracing-proc w/o input\} do
 if $p \in T_1.properties \text{ and } p \in T_2.properties$ then add p to $T.properties$;
 for each $f_1(A) \rightarrow A'$ in $T_1.fmappings$ do
 if $\exists f_2(A') \rightarrow B$ in $T_2.fmappings$ then add $f_1 \circ f_2(A) \rightarrow B$ to $T.fmappings$;
 for each $A \leftarrow g_1(A')$ in $T_1.bmappings$ do
 if $\exists A' \leftarrow g_2(B)$ in $T_2.bmappings$ then add $A \leftarrow g_2 \circ g_1(B)$ to $T.bmappings$;
 if $\exists f(A) \rightarrow T.B_key$ in $T.fmappings$ and $T.complete$ then add f to $T.properties$;
 if $\exists T.A_key \leftarrow g(B)$ in $T.bmappings$ then add $bkmap$ to $T.properties$;
 if $\exists T.A \leftarrow g(B)$ in $T.bmappings$ then add $btmap$ to $T.properties$;

return T;

Figure 5.17: Combining Transformation Pairs

Instead, we suggest a greedy algorithm Normalize shown in Figure 5.18. The algorithm repeatedly finds beneficial combinations of transformation pairs in the sequence, combines the “best” pair, and continues until no more beneficial combinations are found. In general, a combination should be considered beneficial only if it reduces the overall tracing cost while improving or retaining tracing accuracy. We determine whether it is beneficial to combine two transformations based solely on their properties using the following two heuristics. First, we do not combine transformations into black-boxes, unless we are certain that the combination will not degrade the accuracy of the lineage result, which can only be determined as a last step of the Normalize procedure. Second, we do not combine transformations if their composition is significantly worse for lineage tracing, i.e., it has much higher tracing cost or leads to a less accurate result. We divide the properties in Figure 5.13 into five groups: group 1 contains properties 1–3, group 2 contains properties 4–8, group 3 contains property 9, group 4 contains property 10, and group 5 contains property 11. Within each group, the efficiency and accuracy of the tracing procedures are fairly similar, while they differ significantly across groups. The group of a transformation T, denoted $\text{group}(T)$, is the group that T’s best property belongs to. The lower the group number, the better T is for lineage tracing, and we consider it beneficial to combine two
5.4. LINEAGE TRACING THROUGH A TRANSFORMATION SEQUENCE

procedure Normalize($S = T_1 \circ \cdots \circ T_n$)
while $(k \leftarrow \text{BestCombo}(S)) \neq 0$
 replace T_k and T_{k+1} in S with $T \leftarrow \text{Combine}(T_k, T_{k+1})$;
if S contains black-box transformations then
 $j \leftarrow$ lowest index of a black-box in S;
 replace transformations T_j, \ldots, T_n in S with $T \leftarrow T_j \circ \cdots \circ T_n$;

procedure BestCombo($S = T_1 \circ \cdots \circ T_n$)
 $k \leftarrow 0$; $N[1..5] \leftarrow [0, 0, 0, 0, 0]$;
 for $j = 1..n$ do $g \leftarrow \text{group}(T_j)$; $N[g] \leftarrow N[g] + 1$; // initialize vector
 for $j = 1..n-1$ do
 cur$N \leftarrow N$;
 $T \leftarrow \text{Combine}(T_j, T_{j+1})$;
 $g \leftarrow \text{group}(T)$;
 if $g < 5$ then // T is not a black-box
 $g_1 \leftarrow \text{group}(T_j)$; $g_2 \leftarrow \text{group}(T_{j+1})$;
 cur$N[g] \leftarrow \text{cur}N[g] + 1$; cur$N[g_1] \leftarrow \text{cur}N[g_1] - 1$; cur$N[g_2] \leftarrow \text{cur}N[g_2] - 1$;
 if cur$N < N$ then $k \leftarrow j$; $N \leftarrow \text{cur}N$; // see text for defn. of $\text{cur}N < N$
 return k;

Figure 5.18: Normalizing a transformation sequence

transformations T_1 and T_2 only if $\text{group}(T_1 \circ T_2) \leq \max(\text{group}(T_1), \text{group}(T_2))$.\(^5\)

Based on the above approach, procedure BestCombo in Figure 5.18, called by Normalize, finds the best pair of adjacent transformations to combine in sequence S, and returns its index. The procedure returns 0 if no combination is beneficial. We consider a beneficial combination to be the best if the combination leaves the fewest “bad” transformations in the sequence, compared with other candidates. Formally, we associate with S a vector $N[1..5]$, where $N[j]$ is the number of transformations in S that belong to group j. (So $\sum_{j=1..5} N[j]$ equals the length of S.) Given two sequences S_1 and S_2 with vectors N_1 and N_2 respectively, let k be the highest index in which $N_1[k]$ differs from $N_2[k]$. We say $N_1 < N_2$ if $N_1[k] < N_2[k]$, which implies that S_1 has fewer “bad” transformations than S_2. Then we say that the best combination is the one that leads to the lowest vector N for

\(^5\)Note that the presence of non-key-map schema mappings (Section 5.3.2) or indexes (Section 5.3.6) for a transformation T does not improve T‘s tracing efficiency to the point of moving it to a different group. Thus, we do not take these factors into account in our decision process.
the resulting sequence.

After we finish combining transformations as described above, suppose the sequence still contains one or more black-box transformations. During lineage tracing, we will end up tracing the lineage of the entire input to the earliest (left-most) black-box T in S, regardless of what transformations follow T. Therefore, as a final step we combine T with all transformations that follow T to eliminate unnecessary tracing and storage costs.

Our Normalize procedure has complexity $O(n^2)$ for a transformation sequence of length n. Although we use a greedy algorithm and heuristics for estimating the benefit of combining transformations, our approach is quite effective in improving tracing performance for sequences, as we will see in Section 5.7.

Example 5.4.1 Consider the sequence of transformations $S = T_4 \circ T_5 \circ T_6 \circ T_7$ from Section 5.1. Figure 5.19 shows the sequence and the best property of each transformation. The initial vector of S is $N = [2, 2, 0, 0, 0]$. Using our greedy normalization algorithm, we first consider combining $T_4 \circ T_5$ into T'_4 with best property $fkmap$, combining $T_5 \circ T_6$ into T'_5 with best property $btmap$, or combining $T_6 \circ T_7$ into T'_6 with best property $bkmap$. It turns out that all these combinations reduce S’s vector N to $[1, 2, 0, 0, 0]$. So let us combine $T_4 \circ T_5$ obtaining T'_4, T'_5, and T_7. In the new sequence, combining $T'_4 \circ T_6$ results in a black-box, which is disallowed, while combining $T_6 \circ T_7$ results in a transformation T'_6 with best property $bkmap$, which reduces N to $[0, 2, 0, 0, 0]$. Therefore, we choose to combine $T_6 \circ T_7$ obtaining T'_4 and T'_6. Combining these two transformations would result in a black-box, so we stop at this point. The final normalized sequence is shown in Figure 5.20.

\[\square \]

5.5 Transformations with Multiple Input and Output Sets

So far we have addressed the lineage tracing problem for transformations with a single input set and single output set (Section 5.3), and for linear sequences of such transformations (Section 5.4). In this section, we extend our approach to handle individual transformations...
with multiple input and/or multiple output sets. In Section 5.6, we put everything together to tackle the lineage tracing problem for arbitrary acyclic transformation graphs.

5.5.1 Multiple-Input Single-Output Transformations

We first consider transformations with multiple input sets but only one output set, which we call *Multiple-Input Single-Output (MISO)* transformations. What is most relevant about a transformation T with multiple input sets is how exactly T combines its input sets to produce its output. After studying MISO transformations in practice we determined that although it is possible to define a large number of narrow MISO transformation classes, it makes more sense to define just two broad classes—exclusive and inclusive MISO transformations. These classes still enable efficient and accurate lineage tracing in almost all cases. Furthermore, as will be seen, this approach to MISO transformations exploits our entire framework for single-input transformations, simply adding to it the mechanics for handling transformations that operate on multiple inputs.

Exclusive MISO Transformations

Consider a MISO transformation T with m input sets I_1, \ldots, I_m and one output set O. Informally, T is an *exclusive* transformation if it effectively transforms each input set independently and produces as output the union of the results. More formally, $\forall I_1, \ldots, I_m$, $T(I_1, \ldots, I_m) = \bigcup_{j=1}^{m} T(\emptyset, \ldots, I_j, \ldots, \emptyset)$. Note that since we are considering set union, it is still possible for an output item $o \in O$ to be produced by more than one input set.

By the above definition of an exclusive MISO transformation, we can “split” T into j independent transformations, one for each input. Specifically, for $j = 1..m$ we define a single-input *split transformation* $T[j](I) = T(\emptyset, \ldots, \emptyset_{j-1}, I, \emptyset_{j+1}, \ldots, \emptyset)$. Now let $O[j] = T[j](I_j)$ for $j = 1..m$; that is, $O[j]$ is the portion of the output produced from the jth input. We define the lineage of an output item $o \in O$ according to T to be the lineage of o according to all split transformations $T[j]$ where $o \in O[j]$.

Based on these definitions, let us now consider how we enable and perform lineage tracing. Since an exclusive MISO transformation effectively transforms each input independently, we assume that the transformation author can understand and specify the properties
of each split transformation $T[j]$, just as he would do for a single-input transformation. Any of the properties from our hierarchy in Figure 5.13 can be specified. Thus, to trace the lineage of an output item $o \in O$, we first determine all j's such that $o \in O[j]$ (we may want to compute and store the $O[j]$’s at load time for this purpose). Then we trace o through each relevant $T[j]$ to input I_j based on $T[j]$’s specified properties, using the algorithms of Section 5.3.

The most obvious example of an exclusive MISO transformation is set union, for which each split transformation is a filter.

Inclusive MISO Transformations

The other class of MISO transformations—all MISO transformations that are not exclusive—is the inclusive MISO transformations. Informally, MISO transformations are inclusive when all of their input sets need to be combined together in some fashion to produce the output set. (A MISO transformation could treat some inputs exclusively and others inclusively, but such transformations are rare in practice and we treat them as purely inclusive.)

For inclusive transformations we also define the notion of split transformations to enable the definition of lineage and the tracing process. However, the definition of split transformation differs from that for exclusive MISO transformations, in that it must be based on each transformation instance. For an inclusive MISO transformation instance $T(I_1, \ldots, I_m) = O$, the split transformation $T[j]$ is defined as $T[j](I) = T(I_1, \ldots, I_{j-1}, I, I_j, \ldots, I_m)$. That is, $T[j]$ takes as a parameter the jth input set and treats the other input sets as constants. Note that $T[j](I_j) = O$ for all $j = 1..m$, so we do not need the concept of $O[j]$. Otherwise, we proceed in the same way as for the exclusive case: The transformation author specifies properties for each split transformation. To trace the lineage of an output item $o \in O$, we trace its lineage through each split transformation $T[j]$.

It is easy to see intuitively why standard relational operators such as join, intersection, and difference are inclusive: they need all of their inputs in order to produce their output. As a concrete example, consider transformation T_3 in Section 5.1, which joins the order information in input I_1 and the product information in input I_2. T_3’s split transformation $T_3[1](I_1)$ effectively takes each order $i \in I_1$, finds (in I_2) the corresponding product information, and attaches it to i to produce an output item. $T_3[1]$ has a backward schema.
5.6. LINEAGE TRACING THROUGH TRANSFORMATION GRAPHS

mapping order-id \(T_3[1] \) order-id to the input key, so it is a backward key-map. Similarly, \(T_3[2] \) is a backward key-map. Thus, to trace an output item \(o \) through \(T_3 \), we find the corresponding order tuple in input \(I_1 \) through \(T_3[1] \) using \texttt{TraceBM} and the corresponding product tuple in input \(I_2 \) through \(T_3[2] \) also using \texttt{TraceBM}.

5.5.2 Multiple-Input Multiple-Output Transformations

Consider a multiple-input multiple-output transformation \(T \) that takes \(m \) input sets \(I_1, \ldots, I_m \) and produces \(n \) output sets \(O_1, \ldots, O_n \). To trace the lineage of an output item \(o \in O_k \), we consider a restriction \(T^k \) of \(T \) on output \(O_k \) such that \(T^k(I_1, \ldots, I_m) = O_k \). That is, \(T^k \) acts like \(T \) but produces only \(O_k \), ignoring the other output sets. We define the lineage of \(o \) according to \(T \) as \(o \)'s lineage according to \(T^k \). Since \(T^k \) is a MISO transformation, we proceed as in Section 5.5.1. Note that the transformation author must understand the restricted transformations \(T^k \), but they are usually very straightforward and frequently symmetric.

5.6 Lineage Tracing Through Transformation Graphs

Finally we consider the most general case: lineage tracing for arbitrary acyclic graphs of transformations. Consider a transformation graph \(G \) with \(m \) initial inputs \(I_1, \ldots, I_m \) and \(n \) outputs \(O_1, \ldots, O_n \). Each transformation in \(G \) can have any number of inputs and outputs, and we know from Section 5.5.2 how to trace through any such transformation. Thus, to trace the lineage of an output item \(o \in O_k \), we can trace \(o \) through the entire graph backwards, similar to our approach for sequences but possibly needing to follow multiple backward paths through the graph. To enable tracing in this fashion, at loading time we may need to store all intermediate results for each edge of the graph, add indexes as appropriate, and store split transformation outputs for exclusive multiple-input transformations as described in Section 5.5.1.

It is not immediately obvious how to fully generalize our idea of improving lineage tracing performance by combining transformations (Section 5.4) to the graph case, and doing so in depth is beyond the scope of this thesis. However, because our approach to lineage tracing for multiple-input transformations is based on the notion of single-input split
transformations (Sections 5.5.1 and 5.5.1), often we can improve overall performance of lineage tracing through a transformation graph by applying techniques developed earlier in this chapter—we normalize and trace lineage through each path in the graph independently:

1. When \(G \) is defined, we create a tracing sequence \(S \) for each path in \(G \) from an initial input set to a final output set. If a transformation \(T \) on the path has multiple inputs and/or multiple outputs, then in sequence \(S \) we replace \(T \) with its restricted (Section 5.5.2) and split (Section 5.5.1) transformation \(T^k[j] \), where the previous transformation in \(S \) provides \(T \)'s \(j \)th input in \(G \), and the next transformation in \(S \) takes \(T \)'s \(k \)th output in \(G \). Given our overall approach, the transformation author will already have specified properties for all \(T^k[j] \)'s. We then normalize each sequence \(S \) as described in Section 5.4.2. When finished, we have \(q \) normalized tracing sequences \(S_1, \ldots, S_q \) for \(q \) paths in \(G \).

2. When the warehouse data is loaded, intermediate results required for tracing through each normalized tracing sequence \(S_1, \ldots, S_q \) are saved (sharing is sometimes possible), and indexes are built as desired.

3. When tracing the lineage of output item \(o \in O \), we simply trace \(o \) through each normalized tracing sequence \(S \) that ends in \(O \), and combine the results.

Example 5.6.1 (Lineage Tracing for SalesJump) Recall the warehouse table SalesJump from Section 5.1, created by transformation graph \(G \) in Figure 5.3. From \(G \), we create two tracing sequences as shown in Figure 5.21(a), where \(T_3[1] \) and \(T_3[2] \) are split transformations of \(T_3 \). The figure also shows the best property for each transformation in the sequences. We then use our greedy algorithm Normalize to combine transformations in the two tracing sequences as described in Section 5.4.2. We obtain the two normalized tracing sequences shown in Figure 5.21(b). At loading time, to enable lineage tracing through our two normalized tracing sequences, we only need to save the initial inputs and the intermediate results from transformations \(T_3 \) and \(T_5 \) in the original graph \(G \). At tracing time, consider as an example output data item \(o = \langle \text{Sony VAIO}, 11250, 39600 \rangle \) in SalesJump, which was also used as a motivating example in Section 5.1. We first trace \(o \)’s lineage in Order through
5.7 Performance Experiments

We have implemented all of the algorithms described in this chapter in a prototype data lineage tracing system for general warehouse transformations. For convenience we decided to use a standard commercial relational DBMS for storing all data (input sets, output sets, and intermediate results), and we implemented our lineage tracing procedures as well as our test suite of data transformations as parameterized stored procedures.

In this section we provide some performance results. Specifically, we consider the following three questions for a few representative cases:
1. Roughly how fast are the lineage tracing procedures?

2. How much speedup can we obtain using indexes?

3. How much faster can we trace through transformation sequences when we combine transformations as in Section 5.4?

The data we used for our experiments is based on the TPC-D benchmark [TPC96]. Specifically, our input tables are LineItem, Order, and PartSupp from the benchmark. Contents of the tables were generated by the standard dbgen program supplied with the benchmark. Note that a TPC-D scale factor of 1.0 means that the entire warehouse is about 1GB in size.

5.7.1 Tracing Performance

In the first experiment, we consider a simple relational transformation T which could be defined in SQL as follows:

```
SELECT PartKey, SuppKey, AvailQty*SupplyCost FROM PartSupp;
```

This transformation is a dispatcher, and also is a backward key-map with a schema mapping from the output key attributes PartKey and SuppKey to the same input attributes, so we can trace its data lineage using either TraceDS or TraceBM. We vary the input table scale factor from 0.08 to 1, and we measure lineage tracing time for a single tuple using TraceDS and TraceBM with and without the indexes described in Section 5.3.6. From the results shown in Figure 5.23, we see that when indexes are not used procedure TraceBM is significantly faster than TraceDS. (Note the log scale on the y axis.) With indexes both tracing procedures are very fast.

5.7.2 Combining Versus Not Combining

Our second experiment studies the benefit of combining transformations using the techniques introduced in Section 5.4. We consider the transformation graph \mathcal{G} in Figure 5.25, which is based on query Q12 from the TPC-D benchmark. The graph takes as input tables LineItem and Order, and produces as output the number of high and low priority orders on a selected set of line items for each shipment mode. (Recall that α represents grouping
5.8. RELATED WORK

There has been a significant body of work on data transformations in general, including aspects such as transforming data formats, models, and schemas, e.g., [ACM+99, BDH+95,

and aggregation.) Given this transformation graph, in one experiment we trace lineage one transformation at a time (for two paths), based on the individual transformation properties marked in Figure 5.25. In the other experiment, we first normalize the two sequences, which results in the combined transformations $T_1, T_2,$ and T_3 shown by the dashed regions in Figure 5.25. We then trace lineage through the combined transformations on both paths. We vary the input scale factor from 0.01 to 1 and obtain the results shown in Figure 5.24. We see that as the input size grows, combining transformations provides a significant reduction in tracing time.

5.8 Related Work

There has been a significant body of work on data transformations in general, including aspects such as transforming data formats, models, and schemas, e.g., [ACM+99, BDH+95,
CR99, HMN+99, LSS96, RH01, Shu87, Squ95]. Often the focus is on data integration or warehousing, but none of these papers considers lineage tracing through transformations, or even addresses the related problem of transformation inverses. A recent paper on interactive data transformation and data cleaning [GFS+01] discusses how to use data lineage to develop effective data cleaning tools that allow navigation back and forth in a transformation graph.

As discussed briefly in Section 1.5, there has also been work on tracing schema-level lineage for data transformations providing information such as which transformations were involved in producing a given warehouse data item [BB99, LBM98], or which source attributes derive certain warehouse attributes [YMHR01, HQGW93, MBR01, RS98]. As seen earlier in this chapter, we can sometimes use such information (e.g., schema mappings) in support of our instance-level lineage tracing techniques.

Also as discussed briefly in Section 1.5, [WS97] proposed a general framework for computing fine-grained data lineage in a transformational setting. The paper defines and traces data lineage for each transformation based on a weak inverse, which must be specified by the transformation definer. Lineage tracing through a transformation graph proceeds by tracing through each path one transformation at a time. In our approach, the definition and tracing of data lineage is based on general transformation properties, and we specify an algorithm for combining transformations in a sequence or graph for improved tracing performance.

Finally, [LGMW00] considers an ETL setting like ours, and defines the concept of a contributor in order to enable efficient resumption of interrupted warehouse loads. Although similar in overall spirit, the definition of a contributor in [LGMW00] is different from our definition of data lineage, and does not capture all aspects of data lineage we consider in this chapter. In addition, we consider a more general class of transformations than those considered in [LGMW00].

5.9 Chapter Summary

We presented a complete set of techniques for lineage tracing when the warehouse data is loaded through a graph of general transformations. Our approach relies on a variety of
transformation properties that hold frequently in practice, and that can be specified easily by transformation authors. We also introduced some optimization techniques, including building indexes and combining transformations for the purpose of lineage tracing. All algorithms presented in this chapter have been implemented in a prototype lineage tracing system and performance results are reported.

The results in this chapter can be used to develop principles for creating transformations and transformation graphs that are amenable to lineage tracing. As a first step, transformation authors can be sure to specify the most restrictive properties that a transformation satisfies based on our property hierarchy (Figure 5.13), to ensure that the most efficient tracing procedure is selected. Second, a transformation might be modified slightly to improve its properties, for example retaining key values so that a dispatcher becomes a backward key-map. Third, in many cases complex black-box transformations can be avoided by splitting the transformation into simpler transformations with better properties for more refined or efficient lineage tracing. In general, for the purposes of lineage tracing it is better to specify smaller atomic transformations rather than larger ones, since the lineage tracing system will combine transformations automatically anyway when it is beneficial to do so.
Chapter 6

Conclusions and Future Work

This thesis addressed the general problem of lineage tracing in a data warehousing environment. We considered two data warehousing scenarios: warehouses defined by relational views and warehouses constructed through graphs of general data transformations. For each scenario, we provided a formal lineage definition, lineage tracing algorithms, and optimization techniques. Unlike most previous work on data lineage, which requires the warehousing system to annotate warehouse data items with lineage information when they are computed, our algorithms perform lineage tracing in a lazy fashion: we use automatically-generated tracing procedures to trace data lineage only when a lineage query is issued. Based on our results, we have implemented a lineage tracing system prototype for relational views within the WHIPS [HGMW+95] data warehousing project at Stanford, and we have implemented our algorithms for lineage tracing in the presence of general transformations. A variety of empirical results were reported in the thesis.

In Chapter 2, we formulated the data lineage problem and provided lineage tracing algorithms for a very general class of relational views. Ours was the first work we know of to provide a declarative definition of data lineage and detailed tracing algorithms. Although the concept of data lineage seems straightforward in many of our examples, finding a declarative and intuitive definition for data lineage turned out to be one of the biggest challenges in our work.

In Chapter 3, we addressed performance and implementation issues. We began by considering select-project-join (SPJ) views. We introduced a family of schemes for storing
auxiliary views at the warehouse to provide consistent and efficient lineage tracing in a distributed warehousing environment. In general, storing auxiliary views will incur additional warehouse loading and maintenance cost. However, some auxiliary views that are useful for lineage tracing can also support maintenance of the original view. To study the performance tradeoffs among lineage tracing and warehouse maintenance, we ran simulations on our auxiliary view schemes. The results showed that auxiliary views can improve performance dramatically, while different auxiliary view schemes offer different advantages and thus are suitable for different settings. We then considered arbitrary aggregate-select-project-join (ASPJ) views. Here we faced a combinatorial optimization problem, and we proposed four algorithms: *exhaustive*, *greedy*, *three-step*, and *naive*. Our experiments showed that although the greedy and three-step algorithms do not guarantee to always find an optimal auxiliary view set, they do find a near-optimal auxiliary view set quickly in most cases. We saw that even a naive selection of auxiliary views can again reduce overall cost dramatically. In general, our performance experiments underscored the importance of materializing auxiliary views for the dual purposes of lineage tracing and view maintenance in a warehousing environment. Chapter 3 also described the lineage tracing prototype we implemented in the context of the WHIPS data warehousing system at Stanford.

In Chapter 4, we studied the relationship between data lineage and the view update problem for deletions. We devised a fully automatic algorithm for translating deletions against SPJ views into deletions against the underlying database using techniques based on data lineage. Unlike most previous work on view update, our algorithm does not require user intervention or additional semantic information. Instead, it uses only the view definition at compile time and the base data at view-update time to find a translation that is guaranteed to be exact (side-effect free) whenever an exact translation exists.

In Chapter 5, we extended our lineage definition and provided new lineage tracing algorithms for data warehouses created through graphs of general transformations. Our approach relied on a variety of transformation properties that hold frequently in practice, and that can be specified easily by transformation authors. In cases where the transformations are relational operators, the new lineage definition is the same as the lineage definition for relational views from Chapter 2. We also presented optimization techniques such as building indexes and combining transformations for the purpose of lineage tracing. Our
results can guide the design of transformation-based data warehouses that enable efficient
and accurate lineage tracing.

6.1 Future Work

We propose several possible avenues of future work related to the results in this thesis.

6.1.1 Annotation-Based Lineage Tracing

Throughout the thesis we have assumed that most of the work for lineage tracing should
be done at tracing time. That is, we don’t want to expend considerable extra computation
or storage cost during the warehouse load or refresh process just for lineage tracing. An
alternative approach is to annotate each warehouse data item with its lineage information
at warehouse load time. Then, at tracing time we can obtain the lineage of any given
warehouse data item directly from its precomputed annotation. There are a number of
ways to compute and store lineage annotations, some proposed in previous work (e.g.,
[HQGW93]), and others that could exploit our lineage tracing algorithms.

The lineage annotation approach improves lineage tracing performance at the expense
of warehouse load and refresh performance, and is preferred only when lineage queries are
frequent and tracing performance is crucial. The “lazy” tracing approach used throughout
this thesis and the lineage annotation approach actually delineate two extremes in terms
of how much work should be done at warehouse load time versus lineage tracing time. It
might be interesting to explore middle-ground approaches, which compute and store some
amount of annotation information to support lineage tracing, but without incurring undue
performance degradation at load time.

6.1.2 Missing Data

Data lineage as defined in this thesis explains how certain base data causes certain ware-
house data to exist. As such, lineage tracing is a useful technique for investigating the
origins of potentially erroneous warehouse data. However, in some cases a warehouse data
item may be erroneous not (only) because some existing source data items that derive it
are erroneous, but because source data items that should appear in the lineage are missing. For example, a source tuple may contribute to the wrong group in a relational aggregate view because its grouping value is incorrect. It is also possible that some data items that should appear in the warehouse are missing because of erroneous (or missing) source data. One area of future work is to explore how both of these “missing data” problems can be addressed in our lineage framework.

6.1.3 Generalizing View Update

In Chapter 4, we considered the view update problem for select-project-join (SPJ) views. More general relational views (including, e.g., aggregation, set union, or difference) pose additional challenges to the view update problem. Our work on relational data lineage does cover a very general class of relational views. We suspect that, as we have shown with SPJ views, our lineage work on more general views (such as views with aggregation) can be used as the basis of new view update translation algorithms. Going one step further, we also addressed the data lineage problem for general transformation graphs, which appears to pose an even more challenging view update problem.

We have addressed the deletion-to-deletion view update translation problem only. Even extending to consider base insertions or modifications when translating view deletions (the “compensation” idea discussed in Section 4.1) is a significant step, particularly if we wish to retain our exactness guarantee. We might also consider extending our algorithm to provide translations for view insertions or modifications, although as discussed in Section 4.1 it appears that data lineage techniques may not be applicable in these cases.

Our algorithms in Chapter 4 did not attempt to produce any kind of minimal translation, e.g., one that deletes the fewest base tuples. Using cardinality as a minimality metric, modifying our algorithm is not difficult, but keeping it efficient is a challenge. We also did not take constraints on base data (or on base data updates) into account—again the challenge may be one primarily of efficiency. Finally, our view update solution considers each view in isolation. When there are multiple views, an update translation could induce side-effects on views other than the view being updated, and it might be interesting to take such “side-side-effects” into account.
6.1.4 Generalizing Transformation-Based Lineage Tracing

In Chapter 5, we assumed that properties of a transformation are provided to the lineage tracing system, either by the transformation author, or because the transformation is a prepackaged component with known properties. A separate line of research is that of inferring a transformation’s properties, either by examining the specification (e.g., using program analysis techniques over the code), or by running sample data through the transformation and examining the results [YMHR01, MBR01].

As discussed in Section 5.4.2, we used a simple cost metric and greedy algorithm for normalizing transformation sequences. Although we already obtain good performance improvements (Section 5.7), clearly it would be interesting to develop a more detailed and accurate cost model and more sophisticated algorithms for exploring the space of transformation combinations. More generally, in the case of transformation graphs, we might benefit from normalizing the graph globally, rather than normalizing each path independently. Even more generally, in the presence of commutative transformations (which are not common but do occur), we might consider reorganizing a transformation sequence or graph to obtain a better normalized result.
Bibliography

[HMN+99] L.M. Haas, R.J. Miller, B. Niswonger, M.T. Roth, P.M. Schwarz, and E.L. Wimmers. Transforming heterogeneous data with database middleware:

[Sag] Sagent Technology. \url{http://www.sagent.com/}.

