
Sliding Window Computations over Data Streams

Brian Babcock� Mayur Datary Rajeev Motwaniz Liadan O'Callaghanx

Abstract

The sliding window model, where data elements arrive continually and only the most recent
N elements are used when answering queries, has been deemed appropriate for most applications
that handle data in a streaming fashion. We present a novel technique for solving two important
and related problems in the sliding window model | maintaining variance and maintaining a k{
medians clustering. Our solution to the problem of maintaining variance provides a continually
updated estimate of the variance of the last N values in a data stream with relative error of at
most � using O(1

�2 logN) memory. We present a constant-factor bicriteria approximation algorithm

which maintains approximate k-medians for the last N data points using O(k
�4N

2� log2N) memory,
where � < 1=2 is a parameter which trades o� the space bound with the approximation factor of
O(2O(1=�)). We also present an algorithm that uses exactly k centers, as opposed to 2k in the
previous result, and has the same approximation guarantee of O(2O(1=�)); however, this algorithm

is more complicated and requires O(k
1=�

�4 N2� log2N) memory.

�Department of Computer Science, Stanford University, Stanford, CA 94305. Email: babcock@cs.stanford.edu.
Supported in part by a Stanford Graduate Fellowship and NSF Grant IIS-0118173.

yDepartment of Computer Science, Stanford University, Stanford, CA 94305. Email: datar@cs.stanford.edu. Sup-
ported in part by a Microsoft Graduate Fellowship and NSF Grant IIS-0118173.

zDepartment of Computer Science, Stanford University, Stanford, CA 94305. Email: rajeev@cs.stanford.edu.
Supported in part by NSF Grant IIS-0118173, an Okawa Foundation Research Grant, and Veritas.

xDepartment of Computer Science, Stanford University, Stanford, CA 94305. Email: loc@cs.stanford.edu. Research
supported in part by NSF Graduate Fellowship and NSF Grant IIS-0118173.

1 Introduction

A new model of computation called data streams has emerged in the database community [4], mo-
tivated by applications involving massive data sets (much larger than available main memory) that
need to be processed in a single pass. The data stream model, in which data items are presented as
a possibly in�nite sequence of records, captures many of the required characteristics of such appli-
cations, as distinct from standard applications that can be processed in random-access memory. In
telecommunications, for example, call records are generated continuously; the information they contain
cannot reasonably be extracted except by a small-memory algorithm that operates in one pass. The
collection and analysis of the streams of packet headers from routers can aid network traÆc engineers.
There are many other traditional and emerging applications in which data streams play an important
and natural role, such as web tracking/personalization, network security, medical monitoring, sensor
databases, and �nance. There are also applications such as data mining and OLAP in which stored
data is treated as a stream because the volume of data on disk is so large that it is only possible to
make one pass. Refer to the survey [4] for more details on applications and prior work.

A challenging issue in processing data streams is that although they are of unbounded length,
making storing the entire stream impossible, for many applications it is still important to retain an
ability to execute queries referencing past data. Given memory constraints, it becomes necessary to
devise techniques for maintaining summaries or synopses of the stream's history. However, in most
applications very old data is considered less useful than more recent data. Data from the recent past
is more likely to be relevant and interesting than older data. The sliding window model [4, 9] has
emerged as a mechanism for discounting stale data. Here, only the last N elements to arrive in the
stream are considered relevant for answering queries, where N is the window size.

In a recent paper, Datar, Gionis, Indyk, and Motwani [9] considered the problem of maintaining
simple statistics over sliding windows, which is an important tool for processing data stream queries.
They presented a general framework based on a novel data structure called an exponential histogram

(EH) to estimate a class of aggregate functions over sliding windows. Their result applies to any
function f satisfying the following properties for all multisets X;Y : (1) f(X) � 0; (2) f(X) �
poly(jXj); (3) f(X [Y) � f(X) + f(Y); and, (4) f(X [Y) � Cf (f(X) + f(Y)), where Cf � 1 is a
constant. Furthermore, for their technique to be eÆcient, it must be possible to compute (or at least
estimate) f(X) from a small sketch of X, where a sketch is a synopsis structure of small size which is
additive | given the sketches for two multisets X and Y , a sketch for X [Y can be quickly computed.
They observe that sum and l1/l2 vector norms satisfy these properties. However, many interesting
statistics do not satisfy these properties and cannot be estimated using their techniques.

In this paper, we build upon the EH technique, extending it to work for statistics that do not obey
the above properties. We consider two important statistics | variance and k-medians. Note that the
variance is nothing but the k-medians cost under the sum of squares metric for k = 1. The technique
that we use to solve both problems is to summarize intervals of the data stream using combinable
synopses. In order to make eÆcient use of memory, synopses for adjacent intervals are combined when
doing so will not increase the relative error signi�cantly. The synopsis for the interval that straddles
the sliding window boundary is inaccurate because some of the points it summarizes no longer fall
within the sliding window, but we are able to contain this inaccuracy by appropriately adjusting the
synopsis, treating the expired points as though they were \typical" points from the interval.

Our main results are as follows. We show how to estimate variance over sliding windows with
relative error at most � using O(1

�2
logN) memory. Further, we present an algorithm for k{medians

clustering over sliding windows using O(k
�4
N2� log2N) memory. This is a constant-factor bicriteria

approximation algorithm for the k{median problem | it uses 2k centers and the objective function
value is within a constant factor (2O(1=�)) of optimal, where � < 1=2 is a parameter which captures the
trade-o� between the space bound and the approximation ratio. We build upon this solution to devise

1

an algorithm using exactly k centers and providing the same approximation guarantee of (2O(1=�)),

albeit at the cost of an increased memory requirement of O(k
1=�

�4 N2� log2N).
Our result for clustering adapts the one-pass algorithm for clustering data streams of Guha, Mishra,

Motwani, and O'Callaghan [17]. Their algorithm uses O(n�) memory and provides a constant factor
(2O(1=�)) approximation to the k{medians problem. Our adaptation to the sliding window model also
makes use of EH to estimate the value of the k{medians objective function, though direct application
of the techniques from Datar, Gionis, Indyk, and Motwani [9] is impossible (as in variance) because the
k{medians objective function does not satisfy property (4) from above. If there are two sets of data
points, each tightly clustered about its mean, then the variance of each set will be small; however, if
the means of the two sets are far apart, then the variance of their union can be arbitrarily large. The
same is true for clustering | although each of two sets of points may cluster nicely into k clusters, if
the two sets of cluster centers are far apart, the union of the two sets is diÆcult to cluster.

The violated property (4) is crucial to the EH technique. A major issue in the sliding window
model is �guring out how to eliminate expired data; since there is not enough memory to store
the entire window, at best it is only possible to have a rough idea of the value of the expired data
elements. Exponential histograms deal with this problem by grouping data elements into buckets
covering contiguous time intervals and maintaining summary statistics for each bucket. The statistics
for the bucket straddling the sliding window boundary will be inaccurate because it contains expired
data and there is no way to distinguish the relative contribution of such stale data towards the overall
bucket statistics. The EH algorithm ensures that no bucket greatly inuences the function being
computed; therefore, while estimating the function, the error due to the oldest bucket containing
expired data can be suitably bounded. However, when a single bucket may greatly inuence the value
of the function (as in variance and k{medians), the EH technique no longer works.

1.1 Related Work

Algorithms for streaming data have been an area of much recent research interest. Early work [1, 12, 18]
on stream computations addresses the problems of approximating frequency moments and computing
the lp di�erences of streams. More recent work [13, 14, 15, 16] has focused on building summaries
like histograms and wavelet coeÆcients over data streams. Domingos et al. [10, 11] have studied
the problem of maintaining decision trees over data streams. As mentioned earlier, Guha et al. [17]
studied the problem of one-pass clustering of data streams. Previous work on k{median clustering
includes [2, 3, 6, 7, 8, 19, 20, 22, 21, 23, 24]. Datar et al. [9] have considered the problem of maintaining
simple statistics over sliding windows. Our work can be considered an extension of that work; we
estimate functions over sliding windows that cannot be estimated using their techniques. A detailed
survey of the algorithmic and database research in data streams is also available [4].

1.2 Model and Summary of Results

In the sliding window model, data elements arrive in a stream and only the last N (window size)
elements to have arrived are considered relevant at any moment. These most recent N elements are
called active data elements; the rest are termed expired and they no longer contribute to query answers
or statistics on the data set. Once a data element has been processed, it cannot be retrieved for further
computation at a later time, unless it is explicitly stored in memory. The amount of memory available
is assumed to be limited, in particular, sublinear in the size of the sliding window. Therefore algorithms
that require storing the entire set of active elements are not acceptable within this model.

We employ the notion of a timestamp, which corresponds to the position of an active data element
in the current window. We timestamp the active data elements from most recent to oldest with the
most recently arrived data element having a timestamp of 1. Let xi denote the data element with

2

timestamp i. Clearly, the timestamps change with every new arrival, and we do not wish to make
explicit updates. A simple solution is to record the arrival times in a wraparound counter of logN
bits; then the timestamp can be extracted by comparison with the counter value of the current arrival.

We will maintain histograms for the active data elements in the data stream. Our notion of
histograms is far more general than the traditional one used in the database literature. In particular,
every bucket in our histograms stores some summary/synopsis structure for a contiguous set of data
elements, i.e., the histogram is partitioned into buckets based on the arrival time of the data elements.
Along with this synopsis, for every bucket, we keep the timestamp of the most recent data element in
that bucket (the bucket timestamp). When the timestamp of a bucket reaches N+1, all data elements
in the bucket have expired, so we can drop that bucket and reclaim its memory. All buckets, save the
last, contain only active elements, while the last bucket may contain some expired elements besides at
least one active element. The buckets are numbered B1; B2; : : : ; Bm, starting from most recent (B1)
to oldest (Bm); further, t1; t2; : : : ; tm denote the bucket timestamps.

We now formally state the problems considered and our results.

Problem 1 Given a stream of numbers, maintain at every instant the variance of the last N values,

VAR =
PN

i=1 (xi � �)2, where � = 1
N

PN
i=1 xi denotes the mean of the last N values.

Unless we decide to bu�er the entire sliding window in memory, we cannot hope to compute the
variance exactly at every instant. In Section 2 we present a small-space algorithm to solve this
problem approximately. Our algorithm uses O(1

�2
logN) memory and provides an estimate at every

instant that has relative error at most �. The time required per new element is amortized O(1).
We then extend our work to a clustering problem. Given a multiset X of objects in a metric space

M with distance function d, the k{medians problem is to choose k points c1; : : : ; ck 2 M so as to
minimize

P
x2X d(x;C(x)), where C(x) is the closest of c1; : : : ; ck to x.1 If ci = C(x) then x is said

to be assigned to ci, and d(x; ci) is called the assignment distance of x. The objective function is the
sum of assignment distances.

Problem 2 (SWKM) Given a stream of points from a metric space M with distance function d, win-
dow size N , and parameter k, maintain at every instant t a median set c1; c2; : : : ; ck 2M minimizingP

x2Xt
d(x;C(x)), where Xt is the multiset of the N most recent points at time t.

In Section 3 we show how to maintain approximate k{medians over sliding windows using ~O(k
�4N

2�)

memory, for any � < 1=2, using amortized ~O(k) insertion time per data point. The algorithm pro-
duces 2k medians such that the sum of assignment distances of the points in Xt is within a constant
multiplicative factor of 2O(1=�) of the assignment cost attainable by an optimal choice of k medians.
We remove the need for a bicriteria relaxation in Section 3.4 using a more sophisticated algorithm

which produces exactly k clusters, with a slightly increased memory requirement of ~O(k
1=�

�4 N2�).

2 Maintaining Variance over Sliding Windows

Datar, Gionis, Indyk, and Motwani [9] presented a space lower bound of
(1� logN(logN + logR))
bits for approximately (with error at most �) maintaining the sum, where N is the sliding window
size and each data value is at most R. Assuming R = poly(N), this translates to a lower bound of

(1� logN) words for maintaining the sum, and hence the variance, of the last N elements. There is
a gap of 1

� between this lower bound and the upper bound obtained here.
We now describe our algorithm for solving Problem 1, i.e., to compute an estimate of the variance

with relative error at most �. As mentioned before, elements in the data stream are partitioned into

1This formulation of k{medians is called continuous k{medians. In discrete k{medians, the medians must be chosen
from the set X. For us, \k{medians" will refer to the continuous version.

3

buckets by the algorithm. For each bucket Bi, besides maintaining the timestamp ti of the most recent
data element in that bucket, our algorithm maintains the following summary information: the number
of elements in the bucket (ni), the mean of the elements in the bucket (�i), and the variance of the
elements in the bucket (Vi). The actual data elements that are assigned to a bucket are not stored.

In addition to the buckets maintained by the algorithm, we de�ne another set of suÆx buckets,
denoted B1� ; : : : ; Bj� , that represent suÆxes of the data stream. Bucket Bi� represents all elements
in the data stream that arrived after the elements of bucket Bi, that is, Bi� =

Si�1
l=1 Bl. Except for

the bucket Bm� , which represents all points arriving after the oldest non-expired bucket, these suÆx
buckets are not maintained by the algorithm, though their statistics are calculated temporarily during
the course of the algorithm described below.

Algorithm Insert: xt denotes the latest element.

1. If xt = �1, then extend bucket B1 to include xt, by incrementing n1 by 1. Otherwise, create a new bucket
for xt. The new bucket becomes B1 with V1 = 0, �1 = xt, n1 = 1. An old bucket Bi becomes Bi+1.

2. If the last bucket Bm has timestamp greater than N , delete the bucket. Bucket Bm�1 becomes the new
\oldest" bucket. Maintain the statistics of B�

m�1 (instead of B�

m), which can be computed using the
previously maintained statistics for B�

m and statistics for Bm�1.

3. Let k = 9
�2 and Vi;i�1 denote the variance of the bucket obtained by combining buckets Bi and Bi�1.

While there exists an index i > 2 such that kVi;i�1 � V �

i�1, �nd the smallest such i and combine buckets
Bi and Bi�1 using the combination rule described below. Note that the statistics for B�

i can be computed
incrementally from the statistics for Bi�1 and Bi�1� .

4. Output estimated variance at time t according to the estimation procedure below.

Combination Rule: While maintaining the histogram, our algorithm sometimes needs to combine
two adjacent buckets. The statistics (count, mean, and variance) for the resulting combined bucket
are computed according to the following combination rule. Consider two buckets Bi and Bj that get
combined to form a new bucket Bi;j. The statistics for Bi;j are computed from the statistics of Bi

and Bj as follows: ni;j = ni + nj; �i;j =
�ini+�jnj

ni;j
; and, Vi;j = Vi + Vj +

ninj
ni;j

(�i � �j)
2. Note that

the combination rule can also be used to \delete" a set of points (A) from a larger set (B � A), i.e.,
calculate the statistics corresponding to the di�erence (B�A), based on the statistics for the two sets
A;B. The following lemma (whose proof is in the Appendix) shows the correctness of the statistics
computed by the combination rule.

Lemma 1 The bucket combination procedure correctly computes ni;j, �i;j, and Vi;j for the new bucket.

Estimation: Let B1; : : : ; Bm be the set of histogram buckets at time t. We describe a procedure
to estimate the variance over the current active window. Let Bm be the earliest active bucket. It
contains some active elements, including the one with timestamp N , but may also contain expired
data. We maintain statistics corresponding to Bm� , the suÆx bucket containing all elements that
arrived after bucket Bm. To this end, we use the combination rule for every new data element
that arrives. Whenever the earliest bucket gets deleted, we can �nd the new Bm� by \deleting" the
contribution of the new earliest bucket (Bm) from the previous Bm� , using the combination rule.

Let B ~m refer to the non-expired portion of the bucket Bm, i.e., the set of elements in Bm that are
still active. (See Figure 1 in the Appendix for an illustration.) Since we do not know the statistics
n ~m, � ~m, and V ~m corresponding to bucket B ~m, we estimate them as follows: nEST~m = N + 1 � tm;
�EST~m = �m; and, V

EST
~m = Vm

2 . Note that n ~m is exact, i.e., nEST~m = n ~m.
The statistics for B ~m and Bm� are suÆcient to accurately compute the variance at the time instant

t. In fact the variance is nothing but the variance corresponding to the bucket B ~m;m� obtained by
combining B ~m and B�

m. Therefore, by the combination rule, the actual variance (^VAR(t)) for the

4

current active window is given by: ^VAR(t) =
�
V ~m + Vm� + n ~mnm�

n ~m+nm�
(� ~m � �m�)2

�
. At every time

instant t we estimate the variance by computing the variance of B ~m;m� using the estimates above for
B ~m. This estimate can be found in O(1) time provided we maintain the statistics for B ~m and B�

m.
The error in our estimate arises due to the error in the estimate of the statistics for B ~m. As we shall
prove below, this error is small (within factor �) as compared to the exact answer (^VAR(t)) provided
we maintain the following invariant:

Invariant 1 For every bucket Bi, kVi � Vi� , where k =
9
�2
.

The algorithm maintains an additional invariant ensuring that the total number of buckets is small:

Invariant 2 For every bucket Bi (i > 1), kVi;i�1 > Vi�1�, where k =
9
�2
.

The proof of the next lemma is omitted.

Lemma 2 The number of buckets maintained at any point in time by an algorithm that maintains

Invariant 2 is O(1
�2
logNR2), where R is an upper bound on the absolute value of the data elements.

Note that we require
(logR) bits of memory to represent each data element. The proof of the
following technical lemma is in the Appendix.

Lemma 3 For any choice of a and any set of data elements B with mean �,
P

x2B (x� a)2 =P
x2B (x� �)2 + jBj(a� �)2

The following theorem summarizes the algorithm's performance; the proof is in the Appendix.

Theorem 1 Let VAR(t) be the variance estimate provided by the algorithm maintaining Invariants 1

and 2, and let ^VAR(t) be the actual variance. Then (1��) ^VAR(t) � VAR(t) � (1+�) ^VAR(t). Further,
this algorithm uses O(1� logNR2) memory.

The algorithm presented earlier requires O(1
�2
logNR2) time per new element. Most of the time is

spent in Step 3 where we make the sweep to combine buckets. This time is proportional to the size of
the histogram (O(1

�2
logNR2)). A simple trick is to skip Step 3 till we have seen �(1

�2
logNR2) data

points. This ensures that the running time of the algorithm is amortized O(1). While we may violate
Invariant 2 temporarily, we restore it every �(1

�2
logNR2) data points when we execute Step 3. This

ensures that the number of buckets is O(1�2 logNR2).

3 Clustering over Sliding Windows

We now present a solution to the SWKM problem (Problem 2). As mentioned earlier, we focus
on continuous k{medians; however, the techniques also apply to discrete k{medians, although the
approximation ratios will be di�erent. Our solution is an adaptation to the sliding window model of
the algorithm of Guha, Mishra, Motwani, and O'Callaghan [17]. We begin by briey reviewing some
important ideas from there and giving some intuition that will be useful in explaining our solution.

3.1 Memory-Constrained k-Medians Algorithm

Guha, Mishra, Motwani, and O'Callaghan [17] presented a small-space, constant-factor approximation
algorithm for clustering in data streams. This is a divide-and-conquer algorithm which can be viewed
as incremental hierarchical agglomerative clustering (HAC). Let n be the number of input points. On
seeing the �rst m points, reduce them to O(k) points using any bicriteria clustering algorithm A that
generates O(k) medians and gives a solution of cost within a constant factor of optimal k{medians
cost; for example, the linear-space algorithm of Charikar and Guha [6] produces at most 2k medians
within a constant factor of optimal. We discard the originalm points and store only the O(k) medians
(called \level-1 medians") along with weights denoting the number of points assigned to these medians.
Repeating this m=O(k) times yields m medians with associated weights. We cluster these weighted

5

medians to obtain O(k) level-2 medians. In general, we maintain at most m level-i medians and on
seeing m of them, generate O(k) level-(i+1) medians of weight equal to the sum of the weights of the
intermediate medians assigned to them. For m = O(n�), with constant � < 1, we obtain a constant
factor (2O(1=�)) approximation algorithm requiring O(n�) memory. We view the solution as a tree with
leaf nodes as data elements and interior nodes as medians. Each node's parent is the median of the
next higher level to which it is assigned. A node's weight is the number of leaves in the subtree rooted
at it. At all times, the memory contents maintain a frontier of the tree with nodes from di�erent
levels. (See Figure E in the Appendix.)

The following theorems due to Guha, Mishra, Motwani, and O'Callaghan [17] are key to the
analysis of our divide-and-conquer strategy. The �rst theorem states that the sum of the individual
costs of optimum solutions for the di�erent partitions is at most the cost of the optimum solution
for the entire set. In the algorithm described above these intermediate medians are further clustered
when enough of them are gathered. The second theorem bounds the cost of an optimum solution for
the instance (�0) that consists of O(lk) weighted medians, where the weight of every median is the
number of points assigned to it in the solution corresponding to its partition.

Theorem 2 (Theorem 2.2 [17]) Consider any set of n points arbitrarily partitioned into disjoint

sets �1; : : : ; �l. The sum of optimum solution values for the k{medians problem on the l sets of points
is at most the cost of the optimum k{medians solution for all the n points.

Theorem 3 (Theorem 2.3 [17]) If C is the sum of the costs of the l optimum k{medians solutions
for �1; : : : ; �l and C� is the cost of the optimum k{medians solution for the entire set S, then there

exists a solution of cost at most C + C� to the new weighted instance �0.

Using these two theorems it is not diÆcult to prove (see Theorem 2.4 in [17]) that if we have a
bicriteria b-approximation algorithm (where at most ak medians are output with cost at most b times
the optimum k{medians solution) for clustering the l partitions and a c approximation algorithm
for clustering the weighted medians we get an (c(1 + b) + b)-approximation algorithm. Guha et al.
apply this idea recursively to get a 2O(1=�) factor approximation algorithm using O(n�) memory. The
overall running time of their algorithm is ~O(nk). It is important to note that the approximation factor
increases exponentially with the depth of the hierarchical tree.

3.2 Bicriteria k-Medians over Sliding Windows

We now adapt the above algorithm to sliding windows using ideas from the previous section. This
section is organized as follows: �rst, we describe the EH data structure used by our algorithm and the
method for associating a cost with each bucket; next, we describe the combination step for combining
two buckets; then, we discuss the estimation procedure of the �nal clustering of the current active
window after each data point arrives, or whenever a clustering is desired; and �nally, we present the
overall algorithm that maintains the data structure as new points arrive.

Data Structure: The data structure maintained is an EH whose buckets are numberedB1; B2; : : : ; Bm

from most recent to oldest, and buckets containing only expired points are discarded. As with vari-
ance, each bucket stores a summary structure for a set of contiguous points as well as the timestamp
of the most recent point in the bucket. In the case of variance, the summary structure contained the
triplet (ni; �i; Vi); for clustering, each bucket consists of a collection of data points or intermediate
medians. For consistency, we will refer to the original points as level-0 medians.

Each median is represented by the triple (p(x); w(x); c(x)). The value p(x) is the identi�er of x;
in Euclidean space, for example, this could be the coordinates of x, and in a general metric this could
simply be the index of x in the point set. The value w(x) is the weight of a median x, i.e., the number
of points that x represents. If x is of level 0, w(x) = 1, and if x is of level i, then w(x) is the sum of the
weights of the level-(i � 1) points that were assigned to x when the level-i clustering was performed.

6

Finally, c(x) is the estimated cost of x, i.e., an estimate of the sum of the costs d(x; y) of assigning to
x each of the leaves y of the subtree rooted at x. If x is of level 0, c(x) = 0; if x is of level 1, c(x) is
the sum of assignment distances of the members of x; and, if x is of level i > 1, c(x) is the sum over
all members y of x, of c(y) + w(y) � d(x; y). Thus, c(x) is an overestimate of the \true" cost of x.

As in the algorithm of Guha et al. [17], we maintain medians at intermediate levels and whenever
there are N � medians at the same level we cluster them into O(k) medians at the next higher level.

Thus, each bucket Bi can be split into 1=� (the maximum tree height) groups R0
i ; : : : ; R

1=��1
i , where

each Rj
i contains medians at level j. Each group contains at most N

� medians. Along with a collection
of medians, the algorithm also maintains for each bucket Bi a bucket cost, which is a conservative
overestimate of the assignment cost of clustering all the points represented by the bucket.

Cost Function: The bucket cost function is an estimate of the assignment cost of clustering the

points represented by the bucket. Consider a bucket Bi and let Yi =
S1=��1
j=0 Rj

i be the set of medians
in the bucket. As explained earlier, each median x is associated with a cost c(x) which is an estimate
of the sum of the distances to x from all points assigned to x by the clustering algorithm. We
cluster the points in Yi to produce k medians c1; : : : ; ck. The cost function for bucket Bi is given by:
f(Bi) =

P
x2Yi

c(x) + w(x) � d(x;C(x)); where C(x) 2 fc1; : : : ; ckg is the median closest to x.

Combination: Let Bi and Bj be two (typically adjacent) buckets that need to be combined to form

the merged bucket Bi;j, and let R0
i ; : : : ; R

1=��1
i and R0

j ; : : : ; R
1=��1
j be the groups of medians from

the two buckets, where Rl
i (similarly, R

l
j) represents the group of medians at level l in bucket Bi. We

set R0
i;j = R0

i

S
R0
j . If jR

0
i;j j > N � , then cluster the points from R0

i;j and set R0
i;j to be empty. Let C0

denote the set of O(k) medians obtained by clustering R0
i;j, or the empty set if R

0
i;j did not need to be

clustered. We carry over these level-1 medians to the next group R1
i;j. Set R

1
i;j = R1

i

S
R1
j

S
C0. As

before, if there are more than N � medians, we cluster them to get a carry-over set C1, and so on. In
general, after at most 1=� unions, each possibly followed by clustering, we get the combined bucket
Bi;j. Finally, the bucket cost is computed by clustering all medians in the bucket (at all levels).

Estimation: Let B1; B2; : : : ; Bm denote the buckets at any time instant t. Bm is the last bucket and
contains medians that represent some data points that have already expired. If a query is posed at
this moment that asks for a clustering of the active elements we do the following:

� Consider all but the last of the buckets: B1; : : : ; Bm�1. They each contain at most 1
�N

� medians.
We will prove that the number of buckets is O(logN). Thus we have O(1�N

� logN) medians.
Cluster them to produce k medians.

� Similarly, cluster bucket Bm to produce k additional medians.

� Present the 2k medians as the answer.

If required, the procedure can also provide an estimate for the assignment cost using the same
technique as that used for computing the cost function over buckets.

Algorithm: The algorithm for combining and maintaining buckets is very similar to that used for
estimating variance. As before, we de�ne suÆx buckets Bi� which represent the combination of all
buckets that are later than a particular bucket (Bi). These are not maintained at all times but instead

7

are computed when required, as in the case of variance.

Algorithm Insert: xt denotes the latest element.

1. If there are less than k level-0 medians in B1 add the point xt as a level-0 median in bucket B1. Otherwise,
create a new bucket B1 to contain xt and renumber the existing buckets accordingly.

2. If bucket Bm has timestamp more than N , delete it; now, Bm�1 becomes the last bucket.

3. Make a sweep over the buckets from most recent to least recent and while there exists an index i > 2
such that f(Bi;i�1) � 2f(Bi�1�), �nd the smallest such i and combine buckets Bi and Bi�1 using the
combination procedure described above. The suÆx bucket Bi� is computed as we make the sweep.

Our algorithm maintains the following two invariants, which leads to the following two lemmas.

Invariant 3 For every bucket Bi, f(Bi) � 2f(Bi�).

Invariant 4 For every bucket Bi (i > 1), f(Bi;i�1) > 2f(Bi�1�).

Lemma 4 The algorithm, which maintains Invariant 3, produces a solution with 2k medians whose

cost is within a multiplicative factor of 2O(1=�) of the cost of the optimal k{medians solution.

Proof Sketch: Let Bm be the last bucket in the histogram. Recall that Bm may contain some
medians that represent points that have expired. Consider �rst the suÆx bucket Bm� representing all
points from buckets with timestamps later than Bm and compare our algorithm's performance on this
set of points to the optimal solution on the same set of points.

We cluster medians at any level only when there are at least N � medians at that level, which
guarantees that the depth of the hierarchical clustering tree is at most 1

� . As discussed above, at each
level in the tree, the divide-and-conquer approach introduces a constant multiplicative approximation
factor. These approximation factors accumulate, so the overall clustering cost for our algorithm's
clustering of Bm� is 2O(1=�) times the cost of the optimal k-median clustering of Bm� .

Now consider the non-expired points from bucket Bm. Invariant 3 guarantees that f(Bm) �
2f(Bm�). This means that f(Bm), our algorithm's cost for clustering all of Bm, is at most twice
f(Bm�), which is within a 2O(1=�) factor of the optimal clustering cost for Bm� . Only the cost of
clustering the non-expired portion of Bm counts against us, but this can only be less than the clustering
cost when summing over Bm in its entirety.

Therefore the costs of our algorithm's solution for the points in Bm� and also for the points in Bm

are both within a 2O(1=�) factor of the optimal clustering cost for Bm� . Bm� is a subset of the active
points, so the cost of the optimal k{medians clustering of all active points can only be greater than
the cost of the optimal clustering of Bm� .

Lemma 5 The algorithm which maintains Invariant 4 has at most O(1� logN) buckets at any time.2

Proof Sketch: Invariant 4 guarantees that the number of buckets is at most 2 logR where R is our
cost function over the entire sliding window. Lemma 4 proves that our cost function is at most 2O(1=�)

times the cost of the optimal k{medians solution. Since the optimal k{medians cost for N points is
poly(N) this gives us that logR = O(1� logN).

3.3 Optimizing the Bicriteria k-Medians Algorithm

The above k{medians algorithm is eÆcient in terms of memory, but not in running time. After each
element arrives, the algorithm checks all the buckets to see whether Invariant 4 is violated, in which
case it combines two adjacent buckets to restore the invariant. The computation cost is dominated
by the time taken to compute the f(Bi�) values, the estimated costs of clustering the suÆx buckets.
The statistics for the suÆx buckets can be generated incrementally while sweeping over the buckets.

2We assume that d(x; y) is bounded by a polynomial in N .

8

Computing f(Bi�) for a single bucket Bi involves clustering as many as N � medians per level at 1
�

levels. Since this computation must be done once per bucket for O(1� logN) buckets, the total running
time for each sweep over the buckets is O(1

�3
N2� logN), assuming that a O(n2) algorithm is used as

the clustering subroutine.
The running time is substantial given that a sweep over the buckets is performed each time a

new data point arrives. We now optimize the algorithm to reduce the cost of maintaining the EH
data structure to ~O(k) amortized time per data point. To this end, we draw a distinction between
data structure maintenance and output production. Our algorithm's goal is to be able to generate a
near-optimal k{medians clustering of the most recent N data elements at any time. For eÆciency, we
assume that the algorithm will not actually be called upon to continually maintain a clustering of the
sliding window at every time; rather, the algorithm should continually maintain suÆcient statistics so
as to be able, upon request, to quickly generate a valid clustering. Requests for the current clusters
may come at arbitrary points in time, but we assume that they will not come too frequently.

We optimize the algorithm by processing new data points in batches. As these points arrive, they
are simply added to bucket B1 until it contains k

�3N
2� logN points. No e�ort is made to maintain

the invariants until the bucket \�lls up," at which time the points in B1 are clustered and replaced
by k level-1 medians. However, the original data points are not yet discarded; they are retained until
their bucket satis�es Invariant 3. After clustering the points in B1, the other steps in the algorithm
(discarding expired buckets and maintaining Invariant 4) are performed. Finally, a new empty bucket
B1 is created and the subscripts of the existing buckets are incremented.

Consider what happens to the invariants as points accumulate in bucket B1. Since the value of
f(Bi�) is increasing for all i > 1, it is possible that Invariant 4 may no longer be satis�ed. However,
the temporary failure of this invariant is not important; recall that Invariant 4 is not essential for the
correctness of the answer provided by the algorithm, but only to ensure that the number of buckets
remains small. However, while the algorithm is �lling up bucket B1, the number of buckets does
not increase, and as soon as the bucket is complete the invariant is restored by combining buckets
as necessary. Thus, the number of buckets maintained by the algorithm is always O(1� logN) and
Lemma 5 is still valid although Invariant 4 may be temporarily violated.

Invariant 3 will not cause trouble for any bucket Bi (i > 1) as bucket B1 �lls, because the increase
in f(Bi�) for these buckets only strengthens the invariant. However, this invariant is almost certain
to be violated for bucket B1. Since f(B1�) = 0, Invariant 3 fails to hold as soon as the clustering
cost for bucket B1 becomes non-zero, i.e., as soon as there are k + 1 distinct points in bucket B1.
Recall from the proof of Lemma 4 that the use that we made of Invariant 3 in the analysis was to
ensure that the bucket cost f(Bm) of the oldest bucket was not much more than the combined bucket
cost f(Bm�) of the other buckets. This was essential because we could bound the performance of the
optimal algorithm in terms of f(Bm�), but not in terms of f(Bm) because f(Bm) potentially includes
the cost of clustering expired points. If the expired points are outliers, then f(Bm) could be much
larger than the cost of the optimal algorithm's solution over all non-expired data points. However,
as long as we maintain the original data points from each bucket Bi that violates Invariant 3, this is
a non-issue. If the invariant holds for the oldest bucket Bm, then we use the estimation procedure
described earlier; if the invariant fails for Bm, then given the original data points for the bucket, we
can distinguish the expired elements from the active ones and cluster only the latter.

We cluster the level-0 medians using the randomized algorithm from Indyk [19] with the local
search algorithm from Charikar and Guha [6] as a subroutine. This procedure requires linear space
and takes time ~O(nk) (where n is the number of points that are clustered) while providing a constant
factor approximation with high probability. All higher level (level-1 and above) medians are clustered
using the O(n2) local search algorithm from Charikar and Guha [6]. While this algorithm uses up to
2k centers, the number can be reduced to k for the �nal answer via the primal-dual algorithm of Jain
and Vazirani [20].

9

Putting everything together we have the following theorem. The memory bound follows from
Lemma 5. The space used to maintain the original data points for buckets violating Invariant 3
dominates the space used to maintain the EH itself. The approximation guarantee follows from
Lemma 4, while the maintenance time bound follows from the preceding discussion.

Theorem 4 The algorithm presented above (including the batch-processing optimization) provides a

(2; 2O(1=�)) (� < 1=2) bicriteria approximation to the SWKM problem. It uses O(k 1
�4
N2� log2N)

memory and requires amortized ~O(k) maintenance time per data element.

Finally, a note on the query time of our data structure. Whenever a current clustering is desired, we
cluster the medians in the last bucket Bm, and then the active medians in the suÆx buckets Bm� . If
bucket Bm violates Invariant 3 then we cluster only the active elements in it using the randomized
algorithm from [19] to get their k-medians, which are then clustered with the rest of the active medians
in the suÆx bucket Bm� . The total number of such medians is at most O(1

�2N
� logN). The running

time for clustering the active elements in Bm dominates, and the total time is ~O(1
�4
N2�).

3.4 Approximate Clustering with Exactly k Clusters

We now present a new algorithm which builds upon the previous one and reduces the number of
medians returned from 2k to k, while preserving the approximation guarantee of 2O(1=�), but increasing
the memory requirement by a factor k

1
� logN .

The new algorithm is identical to the previous one, except for the following two things: (1) with
every median we maintain additional information that lets us estimate to within a constant factor the
number of active data points that are assigned to it, and (2) we change the estimation procedure that
produces the solution whenever a request is made for the current clusters. Rather than separately
clustering the last bucket Bm and the suÆx bucket Bm� , we cluster the medians from all the buckets
together. However, the weights of the medians in bucket Bm are adjusted so that they reect only the
contribution of active data points, discounting the contribution of the expired points.

The algorithm maintains that both the cost of Bm and Bm� are within 2O(1=�) times the cost of
the optimal k{medians solution for the current window. Using this fact and Theorem 3 it is easy to
prove the following Lemma for the modi�ed estimation procedure above.

Lemma 6 The estimation procedure above produces a solution with k medians whose cost is 2O(1=�)

times the cost of the optimal k{medians solution for the current window.

We now show how to estimate the number of active data points assigned to each median using at
most k1=� logN space per median. For any median cj , consider the following imaginary stream Z(j)

of 0� 1 values: For each actual data point xi, Z
(j)
i = 1 if xi was assigned to median cj , and Z

(j)
i = 0

otherwise. Note that Z
(j)
i will always be zero outside the interval covered by the bucket containing cj .

We would like to count the number of ones from the last N elements of Z(j). If the stream Z(j) were
presented explicitly, this problem could be solved using an EH data structure that uses O(1� logN)
memory and provides an estimate at all times that has error at most �, as shown in [9]. However,
medians at level 2 and above are produced by the combination of lower-level medians. All points
previously assigned to lower-level medians are now assigned to a higher-level median, but there is no
way to reconstruct the exact arrival order of those points to simulate the stream Z(j) since the original
points have been discarded. However, the EH for a median at level-l can be constructed from the EHs
for the medians at level-l � 1 that are assigned to it. The number of buckets of an EH for a median
at level-l is given by kl�1 logN . This gives the following theorem proved in the Appendix:

Theorem 5 For � < 1=2, the SWKM algorithm provides a 2O(1=�)-approximation. It uses O(k
1=�

�4
N2� log2N)

memory and uses ~O(k) amortized maintenance time per data element.

10

References

[1] N. Alon, Y. Matias, and M. Szegedy. \The Space Complexity of Approximating the Frequency
Moments." In Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC),
1996, pages 20{29.

[2] S. Arora, P. Raghavan, and S. Rao. \Approximation Schemes for Euclidean k{Medians and
Related Problems." In Proceedings of the 30th Annual ACM Symposium on Theory of Computing

(STOC) 1998, pages 106{113.

[3] V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, and K. Munagala. \Local Search
Heuristics for k{Median and Facility Location Problems." In Proceedings of the 33rd Annual

ACM Symposium on Theory of Computing (STOC), 2001, pages 21{29.

[4] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. \Models and Issues in Data Stream
Systems." To appear in Proceedings of ACM SIGMOD Symposium on Principles of Databases

Systems, 2002. Available at http://www-db.stanford.edu/stream/.

[5] B. Babcock, M. Datar, and R. Motwani. \Sampling from a Moving Window over Streaming
Data." In Proceedings of Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2002, pages 633{634.

[6] M. Charikar and S. Guha. \Improved Combinatorial Algorithms for the Facility Location and
k{Median Problems." In Proceedings of the 40th Annual IEEE Symposium on Foundations of

Computer Science(FOCS), 1999, pages 378{388.

[7] M. Charikar, S. Guha, E. Tardos, and D. Shmoys. \A Constant-Factor Approximation Algo-
rithm for the k{Median Problem (Extended Abstract)." In Proceedings of the 31st Annual ACM

Symposium on Theory of Computing (STOC), 1999, pages 1{10.

[8] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan, \Algorithms for Facility Location
Problems with Outliers." In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), 2001, pages 642{651.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani. \Maintaining Stream Statistics over Sliding
Windows." In Proceedings of Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2002, pages 635{644.

[10] P. Domingos and G. Hulten. \Mining High-speed Data Streams." In Proceedings of the 6th

International Conference on Knowledge Discovery and Data Mining (KDD), 2000, pages 71{80.

[11] P. Domingos, G. Hulten, and L. Spencer. \Mining Time-changing Data Streams." In Proceedings

of the 7th International Conference on Knowledge Discovery and Data Mining (KDD), 2001,
pages 97{106.

[12] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. \An Approximate L1-Di�erence
Algorithm for Massive Data Streams." In Proceedings of the 40th Annual IEEE Symposium on

Foundations of Computer Science (FOCS), 1999, pages 501{511.

[13] A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. Strauss. \Fast, Small-
Space Algorithms for Approximate Histogram Maintenance." To appear in Proceedings of the

34th Annual ACM Symposium on Theory of Computing (STOC), 2002.

11

[14] S. Guha and N. Koudas. \Approximating a Data Stream for Querying and Estimation: Algorithms
and Performance Evaluation." In Proceedings of the 18th International Conference on Data

Engineering (ICDE), 2002.

[15] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. \Sur�ng Wavelets on Streams: One-
pass Summaries for Approximate Aggregate Queries." In Proceedings of the Annual Conference

on Very Large Data Bases (VLDB), 2001, pages 79{88.

[16] S. Guha, N. Koudas, and K. Shim. \Data-Streams and Histograms." In Proceedings of the 33rd

Annual ACM Symposium on Theory of Computing (STOC), 2001, pages 471{475.

[17] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan. \Clustering Data Streams." In Proceedings
of the 41st Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2000, pages
359{366.

[18] P. Indyk. \Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream Com-
putation." In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer

Science (FOCS), 2000, pages 189{197.

[19] P. Indyk. \Sublinear Time Algorithms for Metric Space Problems." In Proceedings of the 31st

Annual ACM Symposium on Theory of Computing (STOC), 1999, pages 428{434.

[20] K. Jain and V. Vazirani. \Primal-Dual Approximation Algorithms for Metric Facility Location
and k-Median Problems." In Proceedings of the 40th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), 1999, pages 1{10.

[21] N. Mishra, D. Oblinger, and L. Pitt. \Sublinear Time Approximate Clustering." In Proceedings of
the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2001, pages 439{447.

[22] R. R. Mettu and C. G. Plaxton. \The Online k{Median Problem." In Proceedings of the 41st

Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2000, pages 339-348.

[23] L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani. \Streaming-Data Algorithms
for High-Quality Clustering." In Proceedings of the 18th Annual IEEE International Conference

on Data Engineering (ICDE), 2001.

[24] M. Thorup. \Quick k{Median, k{Center, and Facility Location for Sparse Graphs." In Proceed-

ings of the 28th Annual International Colloquium on Algorithms, Languages, and Programming

(ICALP), LNCS, 2001, pages 249{260.

[25] Stanford Stream Data Manager Project. http://www-db.stanford.edu/stream.

Appendix

A Proof of Lemma 1

Proof Sketch: First, note that ni;j and �i;j are correctly computed by the de�nitions of count and
average. De�ne Æi = �i � �i;j and Æj = �j � �i;j.

12

Vi;j =
X

xl2Bi;j

(xl � �i;j)
2

=
X
xl2Bi

(xl � �i + Æi)
2 +

X
xl2Bj

(xl � �j + Æj)
2)

=
X
xl2Bi

(xl � �i)
2 + 2Æi(xl � �i) + Æi

2 +
X
xl2Bj

(xl � �j)
2 + 2Æj(xl � �j) + Æj

2

= Vi + Vj + Æi
2ni + Æj

2nj + 2Æi

0
@X

xl2Bi

xi �
X
xl2Bi

�i

1
A+ 2Æj

0
@ X

xl2Bj

xj �
X
xl2Bj

�j

1
A

= Vi + Vj + (Æi)
2ni + (Æj)

2nj

= Vi + Vj + ni(
nj(�j � �i)

ni + nj
)2 + nj(

ni(�i � �j)

ni + nj
)2

= Vi + Vj +
ninj
ni;j

(�i � �j)
2

B Proof of Lemma 3

Proof Sketch: The proof follows from the following calculations.

X
x2B

(x� �)2 + jBj(a� �)2 =
X
x2B

(x� �)2 + (a� �)2

=
X
x2B

x2 + 2�2 + a2 � 2x�� 2a�

=
X
x2B

x2 + 2�(�� x)� 2a�+ a2

=
X
x2B

x2 � 2ax+ a2

=
X
x2B

(x� a)2

C Proof of Theorem 1

Proof Sketch: The memory usage is demonstrated by Lemma 2. De�ne Æ = �m�� ~m = �EST~m �� ~m.
By the combination rule and our estimates for B ~m,

VAR(t)� ^VAR(t) = (V EST
~m + Vm� +

n ~mnm�

n ~m + nm�
(�EST~m � �m�)2)� (V ~m + Vm� +

n ~mnm�

n ~m + nm�
(� ~m � �m�)2)

= (Vm=2� V ~m) +
n ~mnm�

n ~m + nm�
(2Æ(� ~m � �m�) + Æ2)

= (Vm=2� V ~m) +
n ~mnm�

n ~m + nm�
Æ2 +

n ~mnm�

n ~m + nm�
(2Æ(� ~m � �m�))

13

We will show that each of the three additive terms in the error is small. Since B ~m is a subinterval
of Bm we know that V ~m � Vm. As variance is always non-negative, it follows that j

Vm
2 �V ~mj �

Vm
2 . By

Lemma 3 we know that n ~m(� ~m � �EST~m)2 = n ~m(� ~m � �m)
2 �

P
x2B ~m

(x� �m)
2 � Vm, which implies

that j n ~mnm�

n ~m+nm�
Æ2j � Vm. De�ne c2 = 3, a constant derived from the analysis. For the third error term,

consider two cases:

Case 1 (j�
~m � �m� j � jc2Æ

�
j): Then j n ~mnm�

n ~m+nm�
2Æ(� ~m � �m�)j � n ~mnm�2c2Æ2

(n ~m+nm�)�
� 2c2Vm

� .

Case 2 (j�
~m � �m� j > jc2Æ

�
j): The actual variance ^VAR(t) is at least n ~mnm�

n ~m+nm�
(� ~m � �m�)2. The

ratio between the third error term and the overall variance is at most j2Æ(� ~m��m�)j
(� ~m��m�)2

� j 2Æ
� ~m��m�

j �
2�
c2
.

By Invariant 1 we know that Vm � �2

9 Vm� . The �rst two error terms contribute a combined additive

error of at most 3
2Vm, which is a multiplicative error of at most 1

6�
2 since Vm� � ^VAR(t). The third

error term contributes an additive error of at most 2c2Vm
� (in case 1), which represents a multiplicative

error of at most 2
3�. In case 2 the multiplicative error from the third error term is at most 2

3�. We
assume that � � 1 since otherwise the trivial algorithm that always returns zero suÆces. In both cases
we have the total error strictly less than an � fraction of the overall variance, proving the theorem.

D Proof of Theorem 5

Proof Sketch: Lemma 6 proves the approximation guarantee of the modi�ed algorithm. The mem-
ory usage of the modi�ed algorithm, in terms of the number of medians that need to stored, is no
di�erent from the previous algorithm that provides a bicriteria approximation and whose performance
is summarized in Theorem 4. What remains to prove is that the memory requirement of the EHs that
are maintained with every level-1 and higher level median is no more than k

1
� logN . To this end we

make the following two observations about EHs over 0� 1 data streams:

1. Consider two Exponential Histograms (EH1 and EH2) corresponding to two 0� 1 data streams
for the same error parameter � and same window size N . If all the 1's in EH1 have arrival
times strictly greater than the arrival times for 1's in EH2 then we can combine the two EH's
to get an EH for the union of the two streams in time O(1� logN). We term the original EHs as
non-overlapping or disjoint. This \combination" can be easily achieved by placing the buckets
of the two EHs one after the other and then making a sweep from right to left to combine the
buckets, similar to all EHs, so that there are no more than O(1� logN) buckets.

2. If the two data streams (respectively two EHs) are overlapping, i.e., they do not satisfy the
property that all the 1's in one of them arrive before the 1's in other, then we can maintain two
separate EHs corresponding to them to answer count queries over the union of the two streams.

When a higher level median is formed by clustering lower level medians we assign all the EHs of
the lower level medians to the higher level medians. We combine as many EHs as possible which are
non-overlapping. However, those that are overlapping are maintained separately. Thus, what we refer
to as an EH of a median, in the discussion preceding the Theorem, is actually a collection of EHs,
where the size of each EH is O(1� logN). We now prove using induction, that we can combine EHs
during clustering such that a median at level l needs to maintain no more than kl�1 EHs. Since 1

� is
the maximum level of any median we get our �nal result.

Original points (level-0 medians) do not maintain an EH, they simply maintain their timestamps.
The Z(j)'s corresponding to them have 1 in exactly one position and zero everywhere else. When

14

level-0 medians are clustered to form level-1 medians, for each level-1 median thus formed we can
insert the level-0 medians assigned to it in the sorted (decreasing) order of timestamps so that we
get a single EH for a level-1 median. Note, the level-1 medians obtained in this clustering may have
overlapping EHs. Consider what happens when we cluster level-1 medians to form a level-2 median.
Any level-2 median can be assigned at most k (O(k)) level-1 medians with overlapping EHs. We can
form groups of overlapping EHs that all belong to the same time interval and arbitrarily index them
from 1 to at most k, since there will at most k in a group. Now, all EHs with same the index across
groups are non overlapping and we can combine them to form a single EH. Thus a level-2 median
will have at most k EHs. In general, consider the case when level-l medians are clustered to form
level-l+ 1 medians. By induction hypothesis each level-l median has at most kl�1 EHs which may be
overlapping. Any level-l + 1 median can be assigned at most k (O(k)) level-l medians which belong
to same time interval and have overlapping EHs. Every level-l median will contribute at most kl�1

EHs. Thus if we form groups of overlapping EHs (that belong to same time interval) there will at
most kl in each group. We can index them from 1 to at most kl. Again, all EHs with the same index
are non-overlapping and can be combined into a single EH. Thus we get that a level-l+1 median will
have at most kl EHs.

A few �nal observations: For all the EHs we can set the error parameter � to 1
2 . The combination

procedure described above will be executed during the clustering of higher level (level-1 and above)
medians. It is done in the last phase when points are assigned to the cluster centers. The time taken
to assign every point is now O(k

1
� logN) instead of O(1). Since we use a quadratic running time

algorithm to cluster the higher level medians this does not a�ect the asymptotic running time for
clustering provided k

1
� logN < N � . This completes the proof.

E Figures

TIME

Bm Bm�1 B2 B1

B
m�

Bm�

(current window, size N)

Figure 1: An illustration of the histogram.

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
�����������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

FRONTIER

Figure 2: Contents of main memory : A frontier of the hierarchical clustering tree

15

