
In: Won Kim, editor, Modern Database Systems: The Object Model,

Interoperability, and Beyond, Addison-Wesley, Reading, Massachusetts, Sep. 1994

Active Database Systems

Umeshwar Dayal

Hewlett-Packard Laboratories

1501 Page Mill Road

Palo Alto, CA 94303

dayal@hplabs.hp.com

Eric N. Hanson

Dept. of Computer and Information Sciences

University of Florida

Gainesville, FL 32611

hanson@cis.u
.edu

Jennifer Widom

Dept. of Computer Science

Stanford University

Stanford, CA 94305-2140

widom@cs.stanford.edu

Abstract

Integrating a production rules facility into a database system provides a uniform mech-
anism for a number of advanced database features including integrity constraint en-
forcement, derived data maintenance, triggers, alerters, protection, version control, and
others. In addition, a database system with rule processing capabilities provides a
useful platform for large and e�cient knowledge-base and expert systems. Database
systems with production rules are referred to as active database systems, and the �eld
of active database systems has indeed been active. This chapter summarizes current
work in active database systems; topics covered include active database rule models and
languages, rule execution semantics, and implementation issues.

0

1 Introduction

Conventional database systems are passive: they only execute queries or transactions explicitly

submitted by a user or an application program. For many applications, however, it is important

to monitor situations of interest, and to trigger a timely response when the situations occur. For

example, an inventory control system needs to monitor the quantity in stock of items in the inven-

tory database, so that when the quantity in stock of some item falls below a threshold, a reordering

activity may be initiated. This behavior could be implemented over a passive database system in

one of two ways, neither of which is satisfactory. First, the semantics of condition checking could

be embedded in every program that updates the inventory database, but this is a poor approach

from the software engineering perspective. Alternatively, an application program can be written to

poll the database periodically to check for relevant conditions. However, if the polling frequency

is too high, this can be ine�cient, and if the polling frequency is too low, conditions may not be

detected in a timely manner.

An active database system, in contrast, is a database system that monitors situations of interest,

and when they occur, triggers an appropriate response in a timely manner. The desired behavior

is expressed in production rules (also called event-condition-action rules), which are de�ned and

stored in the database. This has the bene�t that the rules can be shared by many application

programs, and the database system can optimize their implementation.

The production rule paradigm originated in the �eld of Arti�cial Intelligence (AI) with ex-

pert systems rule languages such as OPS5 [Brownston et al. 1985]. Typically, in AI systems, a

production rule is of the form:

condition ! action

An inference engine cycles through all the rules in the system, matching the condition parts of

the rules with data in working memory. Of all the rules that match (the candidate set), one is

selected using some con
ict resolution policy, and this selected rule is �red, that is, its action part

is executed. The action part may modify the working memory, possibly according to the matched

data, and the cycle continues until no more rules match.

This paradigm has been generalized to event-condition-action rules for active database systems.

These are of the form:

1

on event
if condition
then action

This allows rules to be triggered by events such as database operations, by occurrences of database

states, and by transitions between states (among other things), instead of being evaluated by an

inference engine that cycles periodically through the rules. When the triggering event occurs, the

condition is evaluated against the database; if the condition is satis�ed, the action is executed.

Rules are de�ned and stored in the database, and evaluated by the database system, subject to

authorization, concurrency control, and recovery.

Such event-condition-action rules are a powerful and uniform mechanism for a number of useful

database tasks: they can enforce integrity constraints, implement triggers and alerters, main-

tain derived data, enforce access constraints, implement version control policies, gather statistics

for query optimization or database reorganization, and more [Eswaran 1976, Morgenstern 1983,

M. Stonebraker 1982]. Previous support for these features, when present, provided little generality

and used special-purpose mechanisms for each. In addition, the inference power of production rules

makes active database systems a suitable platform for building large and e�cient knowledge-base

and expert systems.

While the power of active database systems was recognized some time ago, a true research

�eld did not emerge until relatively recently [Dayal 1988]. However, the �eld has quickly blos-

somed, and it currently enjoys considerable activity and recognition. A number of powerful

research prototypes have been built [Hanson 1992] [Chakravarthy et al. 1989] [Dayal et al. 1988]

[McCarthy and Dayal 1989] [Gehani and Jagadish 1991] [Stonebraker et al. 1990]

[Stonebraker and Kemnitz 1991] [Delcambre and Etheredge 1988] [Widom et al. 1991]

[Widom and Finkelstein 1990] [Beeri and Milo 1991] [Cohen 1989] [Diaz et al. 1991] [Kotz et al. 1988]

[Schreier et al. 1991] [Simon et al. 1992] [Buchmann 1990] [E. Anwar 1993] [S. Gatziu 1991]. In

this chapter, we will illustrate the features of active database systems using Ariel [Hanson 1992],

HiPAC [Chakravarthy et al. 1989, Dayal et al. 1988, McCarthy and Dayal 1989], POSTGRES

[Stonebraker et al. 1990, Stonebraker and Kemnitz 1991], and Starburst

[Widom et al. 1991, Widom and Finkelstein 1990] as representative of the �eld. Limited produc-

tion rule capabilities are now appearing in commercial database products such as Ingres [INGRES 1992],

InterBase, Oracle [ORACLE 1992], Rdb [Rdb 1991], and Sybase [Howe 1986], and in the emerging

SQL2 and SQL3 standards.

2

This chapter provides a broad survey of current work in active database systems. The discussion

is divided into three technical areas. Rule models and language design are discussed in Section 2,

rule execution semantics in Section 3, and implementation issues in Section 4. Section 5 concludes

and discusses areas for future research.

2 Rule Models and Languages

This section describes the issues involved in designing a database production rule language and

explains how those issues have been addressed in various active database systems. We also describe

the rule language features proposed for SQL2 and SQL3, which are indicative of the state of

commercial practice.

Some of the di�erences among rule languages stem from di�erences in the underlying data

models supported by the di�erent systems. In relational systems such as Ariel, POSTGRES,

Starburst, and the commercial products, rules are de�ned (and named) as metadata in the schema,

together with tables, views, integrity constraints, and the like. As with other metadata, operations

are provided to add, drop, or modify rules. In object-oriented systems such as HiPAC, rules are

treated as �rst class objects that are instances of rule types de�ned in the schema. These rule

types are subtypes of a generic type rule. Rules are structured objects, having events, conditions,

and actions as their components. Like any object, rules can be created, deleted, or modi�ed.

In addition, rule objects have some special operations, including: �re, which causes a rule to

be triggered; enable, which causes a rule to be activated; disable, which causes a rule to be

deactivated (so that it won't be triggered even if its triggering event occurs).

Database rule languages vary considerably in the complexity of speci�able events, conditions,

and actions. In some languages, the triggering event may be implicit|any relevant change to the

database that can cause the condition to become true is treated as a triggering event. However, a key

advantage of making events explicit is the
exibility gained in expressing transitions. For example,

suppose it is desired to keep the salaries of two employees, Alice and Bob, the same. Suppose

further that the following semantics are desired: if the constraint is violated because Alice's salary

is changed by a user transaction, then change Bob's as well; however, if the constraint is violated

because Bob's salary is changed by a user transaction, then abort the transaction. With explicit

events, it becomes possible to specify these separate transitions.

In addition, some languages provide mechanisms whereby data (parameters) can be bound

3

in the event and/or condition part of a rule, then passed to the condition and/or action. Some

languages provide rule ordering as a con
ict resolution mechanism. Finally, some languages provide

mechanisms for organizing a large rule base. In the remainder of this section we address each of

these issues in further detail.

2.1 Event Speci�cation

The most common triggering events in active database rule languages are modi�cations to the data

in the database. In relational database systems, these modi�cations take place through insert,

delete, and update commands; in object-oriented database systems, these modi�cations may

also take place through method invocations. All active database systems support rules that are

explicitly or implicitly triggered by database modi�cations. In a relational database system, a rule

explicitly triggered by database modi�cations might look like:

de�ne rule MonitorNewEmps
on insert to employee
if ...
then ...

where employee is a table of employee information. In an object-oriented database system, a rule

explicitly triggered by database modi�cations might look like:

de�ne rule CheckRaises
on employee.salary-raise()
if ...
then ...

where salary-raise is a method de�ned over objects in an employee class.

Some rule languages also allow rules to be triggered by data retrieval:

de�ne rule MonitorSalAccess
on retrieve salary
from employee
if ...
then ...

Other database operations such as transaction commit, abort, or prepare-to-commit are al-

lowed by some languages.

Some languages support rules triggered by temporal events. These might be absolute (e.g.,

08:00:00 hours on 1 January 1994), relative (e.g., 5 secs. after takeo�), or periodic (e.g., 17:00:00

hours every Friday).

4

Finally, a number of languages allow composite events, ranging from simple disjunctions of

modi�cation events to arbitrary combinations of events speci�ed by powerful event composition

operators.

The SQL2 standard allows assertions to be de�ned on tables. Each assertion is a simple rule

that is triggered by one of the following events: before commit, after insert, after delete, or

after update of a table. In the case of updates, a subset of the table's columns may be speci�ed,

so that the rule is triggered only when those columns are updated. The proposed SQL3 standard

introduces triggers in addition to assertions (the di�erence will become clear when we discuss

the action parts of these rules). The allowed triggering events are before or after an insertion,

deletion, or update of a table.

The triggering events allowed in most relational research prototypes are similar to those for

SQL2 assertions (although commit events typically are not allowed). Additionally, in Starburst, a

rule may specify more than one modi�cation operation on the same table; the rule is triggered when

any of the operations occur (i.e., the event is a disjunction). In Ariel, the event may be omitted

from a rule, in which case triggering is de�ned implicitly by the rule's condition. (Any event that

causes the condition to be satis�ed triggers the rule.) POSTGRES allows single explicit triggering

events, which may be updates, some disjunctions of updates, or retrieval operations.

The object-oriented active database systems typically support a richer event speci�cation lan-

guage. In HiPAC, events can be generic database operations (retrieve, insert, delete, update),

type-speci�c operations (method invocations) including operations on rule objects, transaction op-

erations, temporal events, external events such as messages or signals from devices, and various com-

positions of these events, including disjunction, sequence, and repetition. Also, in HiPAC, events

are de�ned to have formal parameters (e.g., salary-raise(e:employee, oldsal:integer, newsal:integer)

has three parameters, e of type employee, and oldsal and newsal of type integer). When an in-

stance of this event type occurs, the formal parameters are bound to a speci�c employee (the one

whose salary is being updated) and two speci�c integers (this employee's old salary and new salary).

Other object-oriented systems (e.g., DOM, Ode, Adam, Samos, and Sentinel) have proposed similar

capabilities.

5

2.2 Condition Speci�cation

In all database production rule languages, the condition part of a rule speci�es a predicate or query

over the data in the database. The condition is satis�ed if the predicate is true or if the query

returns a non-empty answer. When the event is explicit, the condition may often be omitted, in

which case it is always satis�ed. Many database rule languages allow conditions in rules triggered

by database modi�cations to refer both to the modi�ed data and to the database state preceding

the triggering event. These mechanisms are described in Section 2.4. With such mechanisms,

transition conditions, which are conditions over changes in the database state, may be expressed.

In the commercial systems, and in Ariel, POSTGRES, and Starburst, rule conditions are ar-

bitrary predicates over the database state; modi�ed data also can be referenced, so transition

conditions can be speci�ed. An example of such a rule is the following:

de�ne rule MonitorRaise
on update to employee.salary
if employee.salary > 1.1 � old employee.salary
then ...

In SQL2 assertions, the condition also is a predicate, but the condition is satis�ed if the predicate

is false. In HiPAC, rule conditions are sets of predicates or queries on the database; if all of the

predicates are satis�ed and all of the queries' results are non-empty, then the condition is satis�ed.

Transition conditions may be expressed in HiPAC using the event parameter mechanism described

in Section 2.1.

2.3 Action Speci�cation

The action part of a database production rule speci�es the operations to be performed when the

rule is triggered and its condition is satis�ed. In AI rule languages, the action part of a rule

usually inserts, deletes, or updates data in the working memory based on data matching the rule's

condition. However, most database production rule languages allow more general rule actions.

In SQL2 assertions, the action part is implicit. When the condition is satis�ed (i.e., when the

predicate is false), the implicit action is to abort the current transaction.

In SQL3 triggers, Ariel, POSTGRES, and Starburst, rule actions can be arbitrary sequences of

retrieval and modi�cation commands over any data in the database. Rule actions also may specify

rollback to abort the current transaction. All of these languages have a mechanism whereby rule

actions can refer to the data whose modi�cation caused the rule to be triggered (see Section 2.4).

6

Hence, if desired, rule actions can be based on triggering data as in AI rule languages. An example

of this is the following:

de�ne rule FavorNewEmps
on insert to employee
then delete employee e where e.name = employee.name

This rule is triggered whenever a new employee is inserted; its action deletes any existing employees

with the same name. In POSTGRES, a rule's action may be tagged with the keyword instead,

indicating that the action is to be executed instead of the triggering operation.

Rule actions in HiPAC can contain arbitrary database operations, transaction operations, rule

operations, signals that user-de�ned events have occurred, or calls to application procedures.

2.4 Event-Condition-Action Binding

In AI rule languages such as OPS5, there is a link between the data that matches a rule's condition

and the behavior of the rule's action. Each time an OPS5 rule is executed, the variables in the

condition are bound to data items in working memory that satisfy the condition, and these are

then passed to the action.

Since database production rule languages may have explicitly speci�ed events, and since they

have di�erent and more varied conditions and actions than OPS5 rules, the notion of binding also

is di�erent and more varied. In HiPAC, the triggering event of a rule may be parameterized, and

these parameters may be referenced in the rule's condition and action. For example, if a rule

is triggered by salary-raise(e:employee, oldsal:integer, newsal:integer), then e in the condition or

action refers to the employee object on which the method was invoked, and oldsal and newsal refer

to the integers bound when the event occurred. For composite events, the parameters have to

be accumulated before being passed to the condition and action. For example, for the repetition

event salary-raise*(e:employee, oldsal:integer, newsal:integer), which allows the salary-raise event

to occur one or more times, the data passed to the condition is a multiset of 3-tuples of (e, oldsal,

newsal) values, one for each occurrence of the salary-raise event. Recall that rule conditions in

HiPAC can be sets of queries. The results of these queries can also be referenced (along with the

event parameters) in rule actions.

In SQL2/SQL3, Ariel, POSTGRES, and Starburst, rules are (explicitly or implicitly) triggered

by insertions, deletions, and/or updates on a particular table. Hence, each rule language has a

7

mechanism whereby the inserted, deleted, or updated tuples can be referenced in rule conditions

and actions.

In SQL2/SQL3 and Ariel, when a rule is triggered by a change to a table T , then any reference

to T in the rule condition or action implicitly references the changed tuple. This is illustrated by

the following SQL3 trigger:

create trigger DeptDel
before delete on department
when department.budget < 100,000
delete employee where employee.dno = department.dno

This rule is triggered before the deletion of a department; the condition (when clause) and action

refer to the department being deleted.

Old and new values of updated tuples can also be referenced in the condition and action parts,

as illustrated by rule MonitorRaise in Section 2.2. SQL2 assertions use the keywords old and new.

SQL3 triggers allow the trigger de�nition statement to give speci�c \correlation names" to the old

and new values; these names are then used in the condition and action. In Ariel, the old value

is referenced using the keyword previous. The entire table on which the change occurs, rather

than just the changed tuples, can also be referenced in the condition and action parts. This is

achieved through the use of tuple variables or �synonyms as illustrated by the rule FavorNewEmps

in Section 2.3.

In POSTGRES, the event-condition binding is similar: a reference to the table whose change

triggered the rule implicitly references the changed tuple. However, in the action part, a reference

to the table whose change triggered the rule produces the entire table. To reference the modi�ed

tuple before and after the triggering event, POSTGRES uses the special tuple variables new and

old. For example, the FavorNewEmps rule in Section 2.3 would be written in POSTGRES as

follows:

de�ne rule FavorNewEmps
on append to employee
then delete employee where employee.name = new.name

In Starburst, a single rule triggering may involve arbitrary combinations of inserted, deleted, and

updated tuples (as will be described in Section 3). These changes may be referenced in the condition

and action part of a Starburst rule using transition tables. Transition tables are logical tables that

are referenced just like database tables. At rule execution time, transition table inserted contains

8

the tuples that were inserted to trigger the rule, transition table deleted contains the tuples that

were deleted to trigger the rule, and transition tables new-updated and old-updated contain

the new and old values, respectively, of the tuples that were updated to trigger the rule. As

an example, the following Starburst rule aborts the transaction whenever the average of updated

employee salaries exceeds 100:

de�ne rule AvgTooBig
on update to employee.salary
if (select avg(salary) from new-updated) > 100
then rollback

2.5 Rule Ordering

SQL2 and SQL3 do not allow more than one rule to be de�ned with the same triggering event,

hence con
ict resolution is never needed. However, most other rule languages do not impose such

a severe syntactic restriction. In many active database systems, the choice of which rule to execute

when more than one is triggered is made more or less arbitrarily, although some languages do

provide features whereby the rule de�ner can in
uence con
ict resolution.

Various features have been considered for POSTGRES, including numeric priorities and excep-

tion hierarchies, but none have been incorporated to date. In Starburst, rules are partially ordered.

That is, for any two rules, one rule can be speci�ed as having higher priority than the other rule,

but an ordering is not required. In Ariel, rules have numeric priorities. Each rule is assigned a

oating point number between �1000 and 1000; if no number is speci�ed explicitly then a default

of 0 is assigned. HiPAC departs from other active database systems in that multiple triggered rules

are executed concurrently (see Section 3.5). Even so, HiPAC includes a mechanism whereby rules

can be relatively ordered to in
uence the serialization order of concurrent execution.

2.6 Rule Organization

Since the number of rules de�ned in an active database system may be very large, some languages

include mechanisms for organizing the collection of rules. Also, some include mechanisms for

selectively activating and deactivating rules as a way of controlling the number of rules that must

be monitored by the system at any given time.

In relational systems, rules are de�ned in the schema. Rules refer to particular tables, and so

are subject to the same controls as other metadata objects (e.g., views, constraints); thus, if a table

9

is dropped, all rules de�ned for it are no longer operative. No special mechanisms are provided for

organizing the rules in a schema.

In HiPAC, rules are �rst class objects. Hence, they can be organized in types like any other

objects. Rule types can participate in subtype hierarchies, they can have attributes, and they can

be related to other objects. Like other objects, rules can be included in collections, which may be

explicitly named or de�ned by queries. For example, one can de�ne the collection

f r in Flight-rule where E�ective-date(r) after 1/1/90 g

where Flight-rule is a rule type and E�ective-date is an attribute de�ned for this type. Collections

of rules can be selectively activated and deactivated using the enable and disable operations.

These can be invoked from within a user transaction or in the actions of other rules.

3 Rule Execution Semantics

The semantics of a database production rule language determines how rule processing will take place

at run-time once a set of rules has been de�ned, including how rules will interact with the arbitrary

database operations and transactions that are submitted by users and application programs. Even

for relatively small rule sets, rule behavior can be complex and unpredictable, so a precise execution

semantics is very important.

As explained in Section 1, in AI rule languages rules are processed by an inference engine

that cycles through all rules in the system, in each cycle �nding those rules whose conditions

are true and choosing one such rule whose action is then executed. In active database systems

this approach is not always appropriate or adequate. Most importantly, unlike in AI systems, in

active database systems rule processing is integrated with conventional database activity|queries,

modi�cations, and transactions|and it is this activity that causes rules to become triggered and

initiates rule processing. Furthermore, during rule processing in an active database system it may

be too ine�cient to determine, in each cycle, the entire set of rules whose conditions are true.

As with the rule language itself, there are a number of alternatives for rule execution, and

there is considerable variance in the semantics taken by existing active database systems. One

issue considered by active database system designers is the granularity of rule processing, especially

for rules that are triggered by modi�cation events. Since in most database system languages,

operations work on sets of tuples (or sets of objects), there is a choice of �ring the rule after each

10

tuple (or object) is modi�ed, or once for the entire set of modi�cations speci�ed by the operation.

Other choices are possible; for instance, rules may be �red at the end of an entire transaction.

Another issue is whether more than one rule can be triggered by the same event; some languages

preclude this, and others allow it. If it is allowed, then is the execution sequential, using some

form of con
ict resolution to select one rule at a time, or can rules execute concurrently? Some

languages have sequential execution semantics, while others allow concurrent execution. With

either sequential or concurrent execution semantics, there is also the issue of whether one rule can

trigger the execution of another rule or of (another instance of) the same rule. Clearly, if such

nested triggering is allowed, termination is a concern.

Finally, the interplay between rule execution and the execution of user-initiated transactions is

also an issue. Some systems execute rules within the scope of the triggering transaction, that is,

the transaction in which the triggering event occurred. Others allow more
exible scoping of rules

and transactions.

In this section, we separately consider the four example active database systems we have been

discussing|Ariel, POSTGRES, Starburst, and HiPAC|and describe each system's approach to

run-time rule execution. We also describe the semantics of rule execution in SQL2 and SQL3, and

brie
y consider the issue of error recovery during rule processing. For convenience, in the remainder

of this section we use the term database \user" to mean user or application program.

3.1 Ariel

In Ariel, rules are triggered by transitions, which are database modi�cations induced either by a

single database command or by a sequence of commands grouped together by the user to delineate

rule processing. Since a single data modi�cation command in relational systems such as Ariel is

a set-oriented insert, delete, or update operation, the minimum granularity of rule processing

in Ariel is a set of tuple-level operations. Commands grouped together may constitute an entire

transaction, but they may not span transactions, so the maximum rule processing granularity is

an entire transaction. Rule processing is invoked automatically at the end of each transition and

takes place as part of the transaction containing the transition. Once rule processing begins, Ariel

uses a cycling inference engine similar to that used by AI rule languages.

Recall from Section 2.4 that Ariel rule actions can reference the data whose modi�cation trig-

gered the rule. Since Ariel rules may be triggered by sets of changes, these references may correspond

11

to sets of tuples rather than single tuples. As an example, consider the following rule:

de�ne rule MonitorNewBobs
on insert to employee
if employee.name = \Bob"
then retrieve employee

If multiple tuples are inserted into the employee table before this rule is executed, then the rule's

action will retrieve all of the inserted tuples whose value in column name is \Bob". In general, when

a triggered rule is executed in Ariel, the rule processes the entire set of triggering changes, including

both the user-generated changes that initiated rule processing and any subsequent changes made

by rule actions. If a rule is executed multiple times during rule processing (e.g., because it is

re-triggered by another rule's changes, or because it triggers itself), then each time it executes, it

processes all matching changes since the last time it executed. If rollback is executed in a rule

action, then rule processing terminates and the transaction is aborted.

Recall from Section 2.5 that each Ariel rule is assigned a numeric priority, but that the assign-

ments need not be unique. Hence, when multiple rules are triggered, con
ict resolution in Ariel

proceeds as follows:

1. Pick the rule(s) with highest numeric priority.
2. If there's a tie, pick the rule(s) most recently matched by changes.
3. If there's still a tie, pick the rule(s) whose condition is the most selective.
4. If there's still a tie, pick a rule arbitrarily.

Finally, note that when Ariel rules are processed after a transition, the rules actually consider

the net e�ect of the modi�cations in the transition, rather than the individual modi�cations. In

most cases the net e�ect is the same as the individual modi�cations. However, in some cases there

is a di�erence: if a tuple is updated several times in a transition, the net e�ect is a single update;

if a tuple is updated and then deleted, the net e�ect is deletion of the original tuple; if a tuple is

inserted and then updated, the net e�ect is insertion of the updated tuple; if a tuple is inserted

and then deleted, the net e�ect is no modi�cation at all.

3.2 POSTGRES

In POSTGRES rule processing is invoked immediately after any modi�cation to any tuple that

triggers and satis�es the condition of one or more rules. This sometimes is referred to as tuple-

oriented rule processing, as opposed to Ariel's set-oriented rule processing. Recall that rule actions

12

in POSTGRES are arbitrary database operations. Hence, when a rule's action is executed, it

may modify multiple additional tuples, each of which may (immediately) trigger additional rules.

Consequently, rule processing in POSTGRES is inherently recursive and synchronous (similar to a

procedure call mechanism), rather than sequential as in Ariel. The basic rule processing algorithm

in POSTGRES is described as follows:

1. Some (user- or rule-generated) tuple modi�cation occurs.
2. The modi�cation triggers and satis�es the conditions of rules R1, R2, : : : , Rn.
3. For each rule Ri execute Ri's action.

As mentioned above, action execution (step 3) can perform tuple modi�cations that recursively

invoke this rule processing algorithm. There is no con
ict resolution mechanism in POSTGRES|

triggered rules are executed in arbitrary order. If rollback is executed in a rule action, then rule

processing terminates and the transaction is aborted.

As a simple example of the di�erence between tuple-oriented and set-oriented rule processing

in relational systems, consider the following rule:

de�ne rule SetSalary
on insert to employee
then begin

starting-salary := (select avg(salary) from employee) � 10 ;
update employee (salary = starting-salary) where employee.id = new.id

end

This rule is triggered by insertions into the employee table; its action sets the starting salary for

inserted employees to 10 less than the average employee salary. Suppose a set of new employees is

inserted. In a tuple-oriented rule system such as POSTGRES, this rule is triggered once for each

inserted employee, so the salaries of the new employees di�er. In a set-oriented rule system such

as Ariel, this rule is triggered only once, so the salaries of the new employees are the same.

3.3 Starburst

In Starburst, rule processing is invoked automatically at the end of each user transaction that

triggers one or more rules. In addition, users can invoke rule processing within transactions by

issuing special commands. Hence, as in Ariel, the minimum rule processing granularity is a single

relational database command (i.e., a set of tuple-level operations) and the maximum granularity is

an entire transaction.

13

We �rst explain end-of-transaction rule processing in Starburst, then describe rule processing

within transactions in response to user commands. Recall that Starburst rules may be triggered by

inserts, deletes, and/or updates; a rule is triggered whenever one or more of its triggering operations

occurs. During Starburst rule processing, the �rst time a triggered rule is executed it considers all

modi�cations since the start of the transaction, including the user modi�cations and any subsequent

modi�cations made by rules. If the rule is triggered additional times, it considers all modi�cations

since the last time it was triggered. Like Ariel, Starburst rules consider the net e�ect of sets of

modi�cations, rather than the individual modi�cations (recall Section 3.1).

Starburst rule processing uses an inference engine similar to AI rule languages and to Ariel.

However, in each cycle Starburst determines the rules that are triggered, but does not eliminate

those whose condition is false|a triggered rule's condition is not evaluated until the rule is selected

for consideration. For con
ict resolution, recall that Starburst rules may be assigned relative

priorities. Hence, when a triggered rule is selected for condition evaluation and possible execution,

it is selected such that no other triggered rule has higher priority.

In addition to automatic rule processing at the end of each transaction, rule processing in Star-

burst is invoked within transactions when the user issues one of three commands: process rules,

process ruleset S, or process rule R. Command process rules invokes the same rule process-

ing algorithm that is invoked at transaction end. Command process ruleset S also invokes rule

processing, but only for those rules in the user-de�ned rule set S. Command process rule R is

similar, except only rule R can be triggered or executed. Regardless of whether a rule is executed

in response to one of these commands or in response to end-of-transaction rule processing, the

semantics is the same: the rule considers the entire set of modi�cations since it was last considered

within the transaction, or since the start of the transaction if it has not yet been considered. As

in the other systems, if rollback is executed in a rule action, then rule processing terminates and

the transaction is aborted.

3.4 SQL2 and SQL3

SQL2 and SQ3 permit both tuple-level and set-level processing of assertions and triggers. The

choice is made at rule de�nition time by specifying a for each row option (which induces tuple-

level processing) or omitting it. Recall that assertions can be de�ned with a database modi�cation

command as the triggering event or with the special event before commit. In either case, the

14

condition is evaluated over the current state of the database, including all modi�cations made since

the start of the transaction. Triggers are triggered by database modi�cations; they can refer to the

states of the modi�ed table prior to (old) or immediately following (new) the modi�cation.

Rule processing is strictly sequential. No con
ict resolution is necessary, since no two rules

can be de�ned to have the same triggering event. Further, additional syntactic restrictions on

rule de�nitions ensure that the same table cannot be modi�ed multiple times in a sequence of rule

�rings, thereby ensuring termination. Note that none of the other systems guarantees termination.

3.5 HiPAC

Before describing run-time rule processing in HiPAC, it is necessary to introduce the concept of cou-

pling modes. Coupling modes originated in the HiPAC project but subsequently have been discussed

in the context of other active database systems, e.g. [Gehani and Jagadish 1991, Schreier et al. 1991,

S. Gatziu 1991, E. Anwar 1993, Buchmann 1990]. Coupling modes determine how rule events, con-

ditions, and actions relate to database transactions. Whereas in Ariel, POSTGRES, Starburst, and

many other active database systems, rule conditions are evaluated and actions are executed in the

same transaction as the triggering event, in HiPAC this is not always the case. The rule de�ner has

the
exibility of deciding whether or not the conditions and actions should execute in the triggering

transaction.

Let E, C, and A denote the event, condition, and action, respectively, of a rule. Associated

with each HiPAC rule is an E-C coupling mode and a C-A coupling mode. The E-C coupling mode

determines when the rule's condition is executed with respect to the triggering event, and the C-A

coupling mode determines when the rule's action is executed with respect to the condition. Each

coupling mode is either: immediate, indicating immediate execution; deferred, indicating execution

at the end of the current transaction; decoupled, indicating execution in a separate transaction. Not

all combinations of coupling modes make sense; Figure 1 shows the seven combinations that are

allowed and the two that are not. For each of these combinations, it is relatively easy to construct

an active database application for which that behavior seems most appropriate. In addition, for

the decoupled mode, a causality constraint can optionally be speci�ed; if speci�ed, this constraint

means that the triggered transaction can commit only if the triggering transaction commits, and

the triggered transaction must follow the triggering transaction in the serialization ordering.

Rule processing in HiPAC is invoked whenever any event occurs that triggers one or more rules.

15

C-A Mode

E-C Mode immediate deferred decoupled

immediate condition checked and
action executed after
event

condition checked after
event, action executed
at end of transaction

condition checked after
event, action executed
in separate transaction

deferred not allowed condition checked and
action executed at end
of transaction

condition checked at
end of transaction, ac-
tion executed in sepa-
rate transaction

decoupled condition checked and
action executed in sep-
arate transaction

not allowed condition checked in
one separate transac-
tion, action executed
in a di�erent separate
transaction

Figure 1: Coupling modes in HiPAC

As mentioned in Section 2.5, HiPAC di�ers considerably from most other active database systems

in its handling of multiple triggered rules. Rather than selecting one triggered rule to execute using

some form of con
ict resolution, HiPAC executes all triggered rules concurrently. If, during rule

execution, additional rules are triggered, they also are executed concurrently. To do this, HiPAC

uses an extension of the nested transaction model of execution [Moss 1985], which lends itself well

to this rule processing semantics and to the realization of coupling modes.

The basic rule processing algorithm in HiPAC is described as follows:

1. Some (user- or rule-generated) event triggers rules R1, R2, : : : , Rn.
2. For each rule Ri schedule a transaction to

a. evaluate Ri's condition;
b. if the condition is true, schedule a transaction to execute Ri's action.

Transaction scheduling in step 2 is based onRi's E-C coupling mode, while transaction scheduling in

step 2b is based on Ri's C-A coupling mode: Immediate mode causes a nested sub-transaction to be

spawned immediately, deferred mode causes a nested sub-transaction to be spawned at the commit

point of the current transaction, and decoupled mode causes a separate (top-level) transaction to be

spawned. Note that both condition evaluation and action execution (steps 2a and 2b) can generate

events that recursively invoke this rule processing algorithm. Finally, as mentioned in Section 2.5,

HiPAC rules may have relative ordering, and this ordering is used to in
uence the serialization

order of concurrently executing nested sub-transactions.

16

3.6 Error Recovery

One issue not yet fully addressed in many active database systems is the semantics of error recovery

during rule processing. A database rule may generate an error during its execution for a number of

reasons|for example, because data it read has been deleted, because data access privileges have

been revoked, because concurrently executing transactions have created a deadlock, because of a

system-generated error, or because the rule action itself has uncovered an error condition.

Errors such as missing data or revoked privileges can usually be avoided in any database system

with a sophisticated enough dependency-tracking facility. In such systems, when a data item is

deleted or privileges are revoked, rules that depend on their existence are invalidated. Most database

rule systems handle errors during rule processing by aborting the current transaction, since this is

how conventional database systems typically handle errors during transaction processing. However,

in the case of error conditions produced by rule actions, this is not the only possible reasonable

behavior. Other alternatives are to terminate execution of that rule and continue rule processing,

to return to the state preceding rule processing and resume database processing, or to restart rule

processing.

The nested transaction model used in HiPAC allows some of these possibilities. When a rule

execution subtransaction fails, the failure event is returned to its parent, which has the option of

spawning a sibling subtransaction to repair the error (this may be accomplished through the �ring

of another rule that is triggered by the failure event). Alternatively, failure can be propagated up

the transaction tree all the way to the root (top) transaction.

Another issue is how to recover events after system crashes. For events that are database

operations, there is no problem: these are recovered as part of normal transaction recovery. For

temporal or external events (such as those supported by HiPAC), events have to be declared to

be recoverable or not; for recoverable events, their occurrences and parameter bindings have to be

reliably logged. As part of recovery, uncommitted transactions (for the decoupled conditions and

actions) triggered by the recovered event signals have to be restarted.

4 Implementation Issues

Active database systems must support all of the features provided by conventional database sys-

tems, including data de�nition, data manipulation, storage management, transaction management,

concurrency control, and crash recovery. In addition, active database systems must provide mech-

17

anisms for event detection and rule triggering, for condition testing, for rule action execution, and

for user development of rule applications.

4.1 Characteristics of Representative Systems

The Ariel active database system is built using the Exodus database toolkit [Carey et al. 1991]. The

focus of Ariel's implementation is on e�cient condition testing, which is achieved by incorporating

a highly tuned discrimination network that extends the Rete and TREAT networks used by AI rule

languages [Wang and Hanson 1992]. When data modi�cation commands are executed in Ariel,

the modi�ed tuples are packaged as tokens and passed to the discrimination network, where rule

conditions are tested. In addition, the Ariel architecture includes the following components:

� A rule manager/rule catalog for handling rule de�nition and manipulation tasks.

� A rule execution monitor for maintaining the set of triggered rules and scheduling their

execution.

� A rule action planner, which is invoked by the rule execution monitor to produce optimized

execution strategies for database commands occurring in rule actions; these commands are

executed by the same query processor that executes user commands.

In POSTGRES, two di�erent mechanisms are implemented for rules: tuple level processing and

query rewrite. When a rule is created, the user selects which mechanism is to be used for that rule.

Tuple level processing places a marker on each tuple for each rule that has a condition matching

that tuple. When a tuple is modi�ed or retrieved, if the tuple has one or more markers on it, then

the rule or rules associated with the marker(s) are located and their actions are executed. Markers

must be installed and removed when rules and data are created, deleted, and modi�ed. In contrast,

the query rewrite implementation consists of a module between the command parser and the query

processor. This module intercepts each user command and augments it with additional commands

re
ecting the e�ects of rules triggered by the original command. Since the additional commands also

may trigger rules, query rewrite must be applied recursively; in some cases it may not terminate.

However, when applicable, the \compile-time" approach of query rewrite can be considerably more

e�cient than the \run-time" approach of tuple level processing. Unfortunately, the semantics can

di�er between the two approaches, as explained in [Stonebraker and Kemnitz 1991].

18

The Starburst database system has as one of its primary goals extensibility [Haas et al. 1990],

and the rule system implementation relies on Starburst's extensibility features. The attachment

feature is used to monitor data modi�cations that are of interest to rules. These modi�cations

are stored in a main-memory data structure called a transition log. When rules are processed

at the end of a transaction or in response to a user command, the transition log is consulted to

determine which rules are triggered. Triggered rules are indexed in a sort structure re
ecting rule

priorities; rule conditions are evaluated and actions are executed through Starburst's normal query

processor. References to transition tables (recall Section 2.4) are implemented using Starburst's

table function feature: table functions for each of the four transition tables use the transition log to

produce appropriate tuples at run time. The Starburst rule system also includes components for

concurrency control, authorization, and crash recovery.

The HiPAC architecture extends an object-oriented database system with: a rule manager,

which coordinates rule processing; event detectors for the di�erent types of events. It also ex-

tends the functions of the object manager to store rule objects and implement operations on them;

and the functions of the transaction manager to implement the coupling modes of the execution

model, and to provide concurrency control and recovery for rule objects in addition to data ob-

jects. Algorithms for incremental evaluation of rule conditions after database modi�cations were

also developed. There are three di�erent main memory prototype implementations of HiPAC. The

most substantial of these is a Smalltalk-80 implementation, which includes both a rule manager

and a transaction manager. Concurrent transactions are implemented as Smalltalk threads (i.e.,

light-weight processes). A unique feature of this implementation is its support for bidirectional

interaction between application programs and the database rule system: applications can invoke

database operations, and rules running inside the database can invoke application operations.

4.2 Rule Programming Support

The implementation of an active database system can include many useful features that support the

rule programmer. Features for analyzing rule processing include the ability to trace rule execution,

to display the current set of triggered rules, to query and browse the set of rules, and to cross-

reference rules and data. Other useful features include the ability to control errors in rule programs,

to activate and deactivate selected rules or groups of rules while the database system is processing

transactions, and to experiment with rules on an o�-line subset of a working database. Simple

19

versions of some of these features exist in some active database systems, while more sophisticated

and complete versions will certainly emerge over time.

4.3 Rule Termination

Rule processing is subject to in�nite loops, that is, rules may trigger one another inde�nitely. In

a database system this behavior can be catastrophic; for example, rules could erroneously �ll the

disk with data by repeatedly performing inserts on a table, eventually crashing the system. At the

very least, a transaction in which rules are looping would surely inhibit concurrency (by holding

locks on data) and saturate memory bu�ers, slowing system throughput. Recall that SQL2 and

SQL3 avoid this problem by imposing su�cient syntactic restrictions on rule de�nitions; however,

these restrictions are very strong and limit the expressiveness of the rule language. In general,

given the power of the other rule languages discussed in this survey, it is an undecidable problem to

determine in advance whether rules are guaranteed to terminate, although conservative algorithms

have been proposed that warn the rule programmer when looping is possible [Aiken et al. 1992]. A

run-time solution to detecting and preventing in�nite loops is to provide a rule triggering limit. In

this case, the number of rules executed during rule processing is monitored; if the limit is reached,

rule processing is terminated. Most active database systems provide such a limit, speci�ed by the

user and/or by a system default. Another mechanism is to detect if the same rule is triggered a

second time with the same set of parameters.

5 Conclusions and Future Directions

This chapter has provided an overview of active database systems, including database production

rule models and languages, rule execution semantics, and implementation issues. The rules pro-

vided by active database systems can be used for integrity constraint enforcement, derived data

maintenance, authorization checking, versioning, and many other database system applications;

they also enable more advanced and powerful applications, and they provide a platform for large

and e�cient knowledge-base and expert systems.

The theory and technology of active database systems is still maturing. There are several areas

that researchers and practitioners will likely address in the future, particularly as active databases

emerge in the commercial arena. These include the following:

Support for application development: In Section 4.2 we described a number of features, not

20

present in many active database system prototypes, that are vital for the development

of database rule applications. One suggested approach to application development treats

database rules as \assembly language", automatically generating rules from higher level spec-

i�cations [Ceri 1992, Ceri and Widom 1990, Ceri and Widom 1991]. While this approach

works well for a number of standard applications, there will always be a need to develop

applications using rules directly. In addition, considerable work is needed on increasing the

communication capability between database rules and applications.

Increasing the expressive power of rules: Some applications may need the ability to de�ne

rules with more complex triggering events, conditions, or actions than currently can be ex-

pressed in database rule languages. Methods for increasing the expressiveness of database

rule language while maintaining an e�cient implementation deserve further study.

Improved algorithms: E�cient algorithms for processing rules are crucial for delivering the func-

tionality of active databases without excessively degrading the performance of conventional

database processing. While some work has been done in this area, continued improvements

are needed.

Distribution and Parallelism: So far, active databases have been considered primarily in cen-

tralized database environments. An initial consideration of the problem of rule processing in

distributed and parallel environments appears in [Ceri and Widom 1992], but this is only a

theoretical study relating to a particular rule language. Many issues arise when considering a

distributed or parallel active database system, including the distribution and fragmentation

of rules and algorithms that guarantee equivalence with centralized rule processing. Note

that, even in centralized database systems, parallelism might be exploited to improve the

performance of rule processing.

References

[Aiken et al. 1992] Aiken, A., Widom, J., and Hellerstein, J. M. (1992). Behavior of database
production rules: Termination, con
uence, and observable determinism. In Proceedings of the
ACM SIGMOD International Conference on Management of Data.

[Beeri and Milo 1991] Beeri, C. and Milo, T. (1991). A model for active object oriented database.
In Proceedings of the Seventeenth International Conference on Very Large Data Bases.

21

[Brownston et al. 1985] Brownston, L., Farrell, R., Kant, E., and Martin, N. (1985). Program-
ming Expert Systems in OPS5: An Introduction to Rule-Based Programming. Addison-Wesley,
Reading, Massachusetts.

[Buchmann 1990] Buchmann, A. (1990). Modelling heterogeneous systems as a space of active
objects. In Proceedings of the Fourth International Workshop on Persistent Object Bases.

[Carey et al. 1991] Carey, M. et al. (1991). The architecture of the exodus extensible dbms. In
Dittrich, K., Dayal, U., and Buchmann, A., editors, Object-Oriented Database Systems. Springer-
Verlag, Berlin.

[Ceri 1992] Ceri, S. (1992). A declarative approach to active databases. In Proceedings of the
Eighth International Conference on Data Engineering.

[Ceri and Widom 1990] Ceri, S. and Widom, J. (1990). Deriving production rules for constraint
maintenance. In Proceedings of the Sixteenth International Conference on Very Large Data Bases.

[Ceri and Widom 1991] Ceri, S. and Widom, J. (1991). Deriving production rules for incremental
view maintenance. In Proceedings of the Seventeenth International Conference on Very Large
Data Bases.

[Ceri and Widom 1992] Ceri, S. and Widom, J. (1992). Production rules in parallel and distributed
database environments. In Proceedings of the Eighteenth International Conference on Very Large
Data Bases.

[Chakravarthy et al. 1989] Chakravarthy, S. et al. (1989). HiPAC: A research project in active,
time-constrained database management (�nal report). Technical Report XAIT-89-02, Xerox
Advanced Information Technology, Cambridge, Massachusetts.

[Cohen 1989] Cohen, D. (1989). Compiling complex database transition triggers. In Proceedings
of the ACM SIGMOD International Conference on Management of Data.

[Dayal 1988] Dayal, U. (1988). Active database management systems. In Proceedings of the Third
International Conference on Data and Knowledge Bases.

[Dayal et al. 1988] Dayal, U. et al. (1988). The HiPAC project: Combining active databases and
timing constraints. SIGMOD Record, 17(1):51{70.

[Delcambre and Etheredge 1988] Delcambre, L. M. L. and Etheredge, J. N. (1988). The Relational
Production Language: A production language for relational databases. In Proceedings of the
Second International Conference on Expert Database Systems.

[Diaz et al. 1991] Diaz, O., Patom, N., and Gray, P. (1991). Rule management in object-oriented
databases: A uniform approach. In Proceedings of the Seventeenth International Conference on
Very Large Data Bases.

[E. Anwar 1993] E. Anwar, L. Maugis, S. C. (1993). A new perspective on rule support for object-
oriented databases. In Proceedings of the ACM SIGMOD International Conference on Mange-
ment of Data.

[Eswaran 1976] Eswaran, K. P. (1976). Speci�cations, implementations and interactions of a trig-
ger subsystem in an integrated database system. Technical Report RJ 1820, IBM Research
Laboratory, San Jose, California.

22

[Gehani and Jagadish 1991] Gehani, N. and Jagadish, H. V. (1991). Ode as an active database:
Constraints and triggers. In Proceedings of the Seventeenth International Conference on Very
Large Data Bases.

[Haas et al. 1990] Haas, L. et al. (1990). Starburst mid-
ight: As the dust clears. IEEE Transac-
tions on Knowledge and Data Engineering, 2(1):143{160.

[Hanson 1992] Hanson, E. N. (1992). Rule condition testing and action execution in Ariel. In
Proceedings of the ACM SIGMOD International Conference on Management of Data.

[Howe 1986] Howe, L. (1986). Sybase data integrity for on-line applications. Technical report,
Sybase Inc.

[INGRES 1992] INGRES (1992). INGRES/SQL Reference Manual, Version 6.4. ASK Computer
Co.

[Kotz et al. 1988] Kotz, A. M., Dittrich, K. R., and Mulle, J. A. (1988). Supporting semantic rules
by a generalized event/trigger mechanism. In Proceedings of the International Conference on
Extending Data Base Technology.

[M. Stonebraker 1982] M. Stonebraker, e. a. (1982). A rules system for a relational database man-
agement system. In Proceedings of the Second International Conference on Databases.

[McCarthy and Dayal 1989] McCarthy, D. R. and Dayal, U. (1989). The architecture of an active
database management system. In Proceedings of the ACM SIGMOD International Conference
on Management of Data.

[Morgenstern 1983] Morgenstern, M. (1983). Active databases as a paradigm for enhanced com-
puting environments. In Proceedings of the Ninth International Conference on Very Large Data
Bases.

[Moss 1985] Moss, E. (1985). Nested Transactions: An Approach to Reliable Distributed Comput-
ing. MIT Press, Cambridge, Massachusetts.

[ORACLE 1992] ORACLE (1992). ORACLE7 Reference Manual. ORACLE Corporaton.

[Rdb 1991] Rdb (1991). Rdb/VMS { SQL Reference Manual. Digital Equipment Corporation.

[S. Gatziu 1991] S. Gatziu, A. Geppert, K. D. (1991). Integrating active concepts into an object-
oriented database systems. In Proceedings of the Third International Workshop on Database
Programming Languages.

[Schreier et al. 1991] Schreier, U., Pirahesh, H., Agrawal, R., and Mohan, C. (1991). Alert: An
architecture for transforming a passive DBMS into an active DBMS. In Proceedings of the
Seventeenth International Conference on Very Large Data Bases.

[Simon et al. 1992] Simon, E., Kiernan, J., and de Maindreville, C. (1992). Implementing high-
level active rules on top of relational databases. In Proceedings of the Eighteenth International
Conference on Very Large Data Bases.

[Stonebraker et al. 1990] Stonebraker, M., Jhingran, A., Goh, J., and Potamianos, S. (1990). On
rules, procedures, caching and views in data base systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data.

23

[Stonebraker and Kemnitz 1991] Stonebraker, M. and Kemnitz, G. (1991). The POSTGRES next-
generation database management system. Communications of the ACM, 34(10):78{92.

[Wang and Hanson 1992] Wang, Y.-W. and Hanson, E. N. (1992). A performance comparison of
the Rete and TREAT algorithms for testing database rule conditions. In Proceedings of the
Eighth International Conference on Data Engineering.

[Widom et al. 1991] Widom, J., Cochrane, R. J., and Lindsay, B. G. (1991). Implementing set-
oriented production rules as an extension to Starburst. In Proceedings of the Seventeenth Inter-
national Conference on Very Large Data Bases.

[Widom and Finkelstein 1990] Widom, J. and Finkelstein, S. J. (1990). Set-oriented production
rules in relational database systems. In Proceedings of the ACM SIGMOD International Con-
ference on Management of Data.

24

