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Abstract

In this paper, we consider the design of a reliable multicast facility over an unreliable
multicast network. Our multicast facility has several interesting properties: it has di�erent
numbers of clients interested in each data packet, allowing us to tune our strategy for each
data transmission; has recurring data items, so that missed data items can be rescheduled for
later transmission; and allows the server to adjust the scheduler according to loss information.
We exploit the properties of our system to extend traditional reliability techniques for our
case, and use performance evaluation to highlight the resulting di�erences. We �nd that our
reliability techniques can reduce the average client wait time by over thirty percent.

1 Introduction

Data dissemination to many users remains, despite the growth of network capacity over

time, an expensive proposition for all but the best-funded servers. When an information

server becomes popular, many users often show up requesting the same data of the server,

or requesting data that overlaps with the requests of other users. For example, a Web server

may �nd that it repeatedly sends some same items to users (such as a Web site's front page

and its cited images).

Where multicast-capable networks (such as IP multicast) are available (such as Internet2),

a server can instead retain a repository of data items and o�er them over a multicast facility,

so that users can use a corresponding multicast client to request the subsets of data items

that they are interested in fetching. Such a multicast facility can send the same data once

over multicast to satisfy multiple users' requests for it simultaneously, dramatically reducing

the waste of network resources and lowering the corresponding network costs.

The idea of such a multicast facility is well-established, having been envisioned and studied

for Teletext [2], Datacycle [4], and broadcast disks [1], among others. As a local case in point,
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Figure 1: The WebBase Multicast Facility

we are interested in creating a multicast facility for our WebBase project, which crawls the

Web to create a repository of Web pages for research. We would like to o�er our repository to

other researchers so that they can request subsets of our repository in a simple and eÆcient

way, using a multicast facility that might look like Figure 1. (There are other bene�ts to

a multicast-distributed crawled Web repository, including less load on the individual Web

servers that get crawled for multicast distribution, that are documented in earlier work for

this multicast facility [5].)

For such a data multicast facility to be useful, however, clients must be able to receive all

their requested data; the facility cannot drop bits to its clients because the resulting partial

data may be unusable. Existing multicast networks, such as the IP multicast backbone

(MBone), may not guarantee this; to the contrary, IP multicast is only a best-e�ort datagram

service and prone to packet loss. One report [12], for example, found that IP multicast sites

lose anywhere from less than 5% to more than 20% of the packets they request from a �xed-

throughput multicast source. In short, data sent from a server over multicast may not reach

all|or any|of its clients; the multicast facility must make special arrangements to ensure

that its clients receive their data.

As a result, a multicast facility transmitting loss-intolerant data (such as we describe

above, in contrast to loss-tolerant video or audio) will be unusable on existing multicast

networks unless its data transmission can be made reliable.

In this paper, we will consider the design of a multicast facility for such lossy multicast

networks. While there is existing work in general-case reliable multicast, peculiar properties

of our multicast facility open up a number of new possibilities that were not available to

generic reliable multicast, which we will study here.
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Current approaches to reliability hinge on two basic ways to cope with loss on the network:

on-demand retransmission of data to \make up" for lost data, and addition of precomputed

redundant information to the data so that lost data can be reconstructed using the redundant

additional data (called \forward error correction," FEC, in the networking community). Our

multicast facility adds one counterintuitive technique not available to generic multicast|

ignoring the losses. Because the multicast facility schedules data for transmission as it is

requested, it is possible to have clients \give up" in the face of loss and simply rerequest the

data item for a new transmission later. Because the data may well be retransmitted later

anyway, for other clients requesting the same data, this scheme could be more eÆcient. In

e�ect, clients can get the reliability of retransmission, without the server ever committing

valuable network resources to speci�c \make-up" or retransmission packets.

Also, because di�erent data items are requested by di�erent clients, and by varying num-

bers of clients, we can attempt to exploit these variations among data items using new,

dynamically adjusted reliability schemes. Lastly, we can create hybrid approaches that com-

bine multiple reliability schemes, new and traditional, to improve performance.

Current approaches to reliability have also typically centered on the transmission of a

single data item to clients requesting it. Unlike such work, we expect clients to request (need)

multiple data items at a time, and choose our metric to better match this bulk-download

case. This di�erence in metric requires us to consider not only how long a multicast server

takes to successfully transmit a data item to its clients, but also how a method for doing so

will impact the transmission of other data items that clients still need.

In this paper, we will present new extensions to existing reliability techniques, and de�ne

a metric by which to measure their performance. Finally, we will use simulations to evaluate

these techniques, and to address the following questions:

� When clients lose data, should a multicast server send retransmission packets or simply

schedule the data item for later transmission? Would it be advantageous for a server to

send retransmission packets selectively?

� Is forward error correction e�ective in our multicast facility, even though the data is

latency insensitive, and clients can wait for retransmission? Does a dynamically-adjusted
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forward error correction scheme improve performance?

� If forward error correction fails to recover all lost packets, should the multicast facility

revert to retransmitting lost packets or rescheduling the data item for later?

� When a new client connects to a multicast server, requesting a particular data item

already being sent at that instant, should the server have the client pick up partial data

and request retransmission, even if it requires more implementation complexity and causes

more retransmission traÆc? Or, should the server not inform the client of the transmission

and make the client wait for the data item's next transmission?

� Can the multicast scheduler exploit client data-loss information to improve performance?

For example, would performance improve for a scheduler that uses client loss rates to

more accurately estimate the time a client needs to receive a data item over its lossy link?

If so, how much improvement would such a modi�cation gain?

We will outline in Section 2 a possible network traÆc layout that isolates the network-

consuming data transmission itself for further study and optimization. In Section 3, we

describe traditional approaches such as retransmission and forward error correction, and

introduce new possibilities that are possible for our multicast facility as suggested above.

In Section 2.1, we will propose a simple client delay metric to gauge the performance of

our design decisions. In Section 4, we describe the simulation we use to evaluate our design

options. In Sections 5 and 6, we will examine some results from our study to form suggestions

for the design of a reliable-multicast facility over an unreliable multicast network.

2 The Multicast Facility

In our multicast facility, the multicast server has a number of data items (intuitively, static

�les) ready for dissemination, from which each client will request some (not necessarily

proper) subset. The server breaks each data item up into a number of same-size packets.

A new client requests a subset of the server's data items using a reliable unicast connection

to the server. Because reliable unicast connections are widespread (e.g., TCP), we will

assume the connection exists and always delivers its data.
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To multicast a requested data item to clients, the server needs to send information identi-

fying a data item, and then the data item itself. Clients always need to receive information

identifying the data item the server is about to send, to determine whether they requested

the data item. On the other hand, clients do not need to receive all the actual data items,

only the ones they request.

multicast serverc
c

#
#

control channel (announcements)

client client client client
? ? ? ?

-
requests

data channel

? ?

Figure 2: Information Flow in the Multicast Facility

To minimize the consumption of clients' download links, then, we should separate the

server's traÆc into a low-bandwidth control channel announcing data items, and a data

channel, consuming the server's remaining outgoing bandwidth, to carry the data items

themselves. The resulting separation of network traÆc is shown in Figure 2.

All clients would always subscribe to the control channel, because they must receive all

the announcements on the control channel promptly. Clients would use the announcements

to determine when to subscribe to the data channel, so that they receive the data items they

request and skip the ones they didn't request.

For the control channel to work e�ectively, clients must receive control channel traÆc

reliably and promptly, so the channel must use a latency-sensitive low-bandwidth reliable

multicast protocol to ensure all control channel traÆc reaches its subscribers. The simplest

solution for this channel is to use an existing reliable multicast protocol to ensure the prob-

ability of loss is negligible; protocols have been proposed for exactly this type of application,

including SRM [3].

On the data channel, on the other hand, the traÆc is relatively high-bandwidth and

latency-insensitive: that is, performance may su�er if packets take longer to arrive, but

there is no deadline before which packets must arrive to be useful. Even more notably, data

channel traÆc has two properties, enumerated below, that are particular to this multicast
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facility and a related system called \broadcast disks," in which a server sends small single-

item requests on a local broadcast network to satisfy local clients' requests. (Broadcast disks

are brie
y described in Related Work.) As we shall see later, we can attempt to exploit these

properties for more eÆcient reliable transmission:

� The information on the data channel is \interesting" to only a (varying) subset of the

server's clients at any one time. Unlike the control channel, whose information all clients

need, the data item being sent on a data channel is probably needed by some but not

all of the server's clients. As a result, we may want our reliability scheme for the data

channel to vary in some way with the clients that actually need the data on the channel

at the time. We consider some of these possibilities in Section 3.

� Any information on the data channel can, and is likely to be, retransmitted at a later

time as a result of new requests from new clients. This is a stronger claim than saying

that the data channel is latency-insensitive and so we can always resend lost packets;

this claim actually says that if a client does not receive a data item successfully from the

data channel, the multicast server could decide to not retransmit the client's losses at all,

instead compelling the client to wait the next time the entire data item is transmitted

again.

When a client has received all the data items it requested, it disconnects from the control

channel and its request is considered complete. The sooner a client receives its data, the

sooner a user is happy and able to use the data, so we will use this as our performance

metric.

2.1 Metric

In a number of scenarios|such as researchers analyzing subsets of a Web repository, software

updates being saved and applied, and media downloaders downloading material to burn to

disc or export to a portable device|the measure of performance users care about is that of

client delay, the time it takes a client to receive all the data it requested. This simply re
ects

how users often request multiple data items because they need them all, and because even
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where it is not strictly necessary to do so, it is often more convenient to batch-process data

than incrementally process it.

Because of this, we will focus on client delay as our performance metric. We de�ne this

notion below. It is intuitively similar to the notion of client delay de�ned in [5].

For a multicast server with n data items D = fd1; d2; d3; : : : ; dng, and k clients C = fc1,

c2; : : :, ckg, each client ci is characterized by the data items it requests, Ri � D;Ri 6= ;, and

by the time at which the client makes its request, ti.

We de�ne the client delay of a client ci using the earliest time Ti > ti when the client has

all the data items it requests Ri. We simply say that for this client, its delay is di = Ti � ti.

For k clients C, we de�ne the average client delay over all clients as d = 1

k

Pk

i=1 di.

We might also measure the network usage of the multicast facility, and use it as a metric;

unfortunately, this is not particularly enlightening because a multicast facility striving to

serve its clients will always be using the network whenever there is new, requested data to

distribute. As such, the network usage of the facility depends primarily on how much data

clients request and how frequently clients appear, rather than on any particular server's

design.

2.2 Multicast Operation

The server operates by gathering the clients' request subsets and using a scheduler, such as

R/Q [5], to decide which requested data item to send on the data channel.

The R/Q heuristic is designed to help minimize average client delay, de�ned in Section 2.1,

and operate quickly even when scheduling large numbers of data items. In this heuristic, for

each data item i, the server determines Ri, how many clients are requesting the data item i,

and Qi, the size of the smallest outstanding request for a client requesting that data item i.

The heuristic chooses to send a data item with the highest Ri=Qi score.

Example. Suppose three clients, A, B, and C have pending requests on a multicast

server. Client A needs three data items, numbered 1, 2, and 3; B needs items 2 and 4, and

C needs items 2 and 3.

A multicast server implementing R/Q would determine each of the item's R=Q scores,

which begin as (in increasing order of item number) 1

3
, 3

2
, 1, and 1

2
. In absence of other
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clients, then, the server would send item 2 �rst, then item 3, then the remaining two items

in arbitrary order (after items 2 and 3 are sent, both items 1 and 4 have R=Q score 1).

As we can see, the heuristic helps minimize client delay because it sends the items that

are most requested, and most quickly help to satisfy a client request, �rst.

To keep the computation simple, let us say each item takes one unit of time to send on

the data channel, and arrives without loss or delay. Let us suppose the R/Q implementation

chose to send item 1 before item 4. Then the client delay for the three clients would be

dA = 3, dB = 4, and dC = 2, for an average client delay of d = 3. (If the implementation

chose the reverse, the average client delay is the same.) In this simple example, this is an

optimal average client delay, preferrable over the other possible values of d = 10

3
, 11

3
, or 4. 2

3 Making the Data Stream Reliable

To protect an arbitrary data item from loss over an unreliable data channel, the server can

apply several complementary approaches. First, the server can try to prevent the data item

from being lost, by sending redundant packets of (error-correcting) data with the data item

so that clients can use redundant packets to recompute the data in some lost packets (forward

error correction). Next, the server can react to lost packets by retransmitting data for the

data item as needed (retransmission). Finally, clients that still do not have the data item

can have their request for the data item added back to the multicast server's request list, so

that the scheduler can try to send the data item again in the future (rescheduling).

3.1 Forward Error Correction

One well-known approach to reliable multicast is to add a predetermined amount of error-

correcting (FEC) data to the data being sent, so that if some of the data is lost during the

transmission, receivers (clients) can use the error-correcting data they receive over the data

channel to mathematically reconstruct the lost data. Typically, the redundant packets are

constructed using error-correcting codes (or more speci�cally, erasure codes) that allow any

subset of the packets to be used in reconstructing data. Packets made using such codes

require more precomputation than would simply cloning particular data packets, but the
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error-correcting packets are more widely usable than the simple copies.

Example. As a simple example, let's use a form of parity as our error-correction scheme.

Further, let's suppose a data item takes up two numbered packets, each with payloads 8 bits

long: 00110101 and 00001010. To ensure that each of the 8 bit positions has an even number

of ones across all packets for this item, a parity packet would carry in its payload the value

00111111. (The parity packet is, equivalently, the exclusive-or (XOR) of the data packets.)

(This is called even parity.)

The server could then send all three packets on its data channel (so in this instance,

expanding the data by a factor of 50%), to ensure that clients can drop one packet out of the

three and still receive the entire data item. For example, if a client loses the parity packet,

the client can ignore the loss. If a client loses the �rst data packet, the client can compute it

as the XOR of the two packets it does have: 00001010 XOR 00111111 = 00110101, the �rst

data packet. Similarly, it can compute the second data packet as the XOR of the �rst data

packet and the parity packet.

The example uses parity for demonstration, but parity is a fairly limited scheme. In

practice, one would choose a di�erent error-correcting code, which could be easily adjusted

to allow the recovery of more than one data packet using as many error-correcting packets

as we expect clients to recover from loss. 2

We can apply forward error correction to a multicast server in a number of ways.

� We can choose a �xed expansion factor f > 0 for the server. For d data packets, the

server would then send an additional dfde error-correcting packets.

� We can have the server increases its expansion ratio with the number of clients interested

in the data item, such as expansion factor = fR, for R clients and a parameter f > 0.

For d data packets, the server would then send a total of d(1 + f)de packets of data and

redundancy. Intuitively, we are backing more popular data items with more redundancy

so that its many (more) clients are less likely to lose the data item.

� We can make the expansion factor inversely proportional to the number of clients inter-

ested in the data item, such as expansion factor = f(R)�1, for a parameter f > 0. Then,

the server would send a total of d(1 + f

R
)de packets of data and redundancy. Intuitively,
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we are backing less popular data items with more redundancy, because their repeated

transmission would be more costly to the client delay of other clients. Also, more popular

data items are likely to be scheduled for transmission again shortly, as new clients request

them, so there is less delay in losing, and waiting for, a popular data item.

� We can attempt to match the expansion factor to a factor of the maximum estimated

loss rate any client requesting the data item is su�ering. (The server can determine a

client's average loss rate simply by determining what percentage of packets sent to the

client trigger NAK responses.) That is, if of all clients requesting data item i, the client

losing the most packets has a loss rate of l, then we can choose an expansion factor of fl,

for a parameter f presumably near one.

We will denote the forward error correction scheme, with expansion factor f , as FEC(f).

For example, to denote a varying FEC scheme in which the server increases the expansion

factor from zero, by 1% per client requesting a data item, we will use FEC(0:01R).

Should forward error correction fail, because a client does not receive enough redundant

packets to reconstruct an original data item, the multicast facility must fall back on some

other reliability scheme, such as the two schemes described next, so that the client's request

for the data item is eventually satis�ed. If a system designer wishes to avoid depending on

the fallback scheme, then, the forward error correction parameters must be chosen so that a

client's probability of loss is negligible.

3.2 Retransmit

Another well-known approach to reliable multicast is for the server to receive NAKs from

clients indicating their lost data, then retransmit lost data so that clients have another chance

to receive it.

3.2.1 Retransmissions Are Multicast

We notice that the server must consume the same network resources to send these additional

packets unicast or multicast: It must consume the same number of bytes on its network link

to do so, a resource that could not be spent sending other data. Because multicast can
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bene�t multiple clients at the same time, though, it is therefore to the server's advantage to

always send its additional packets of data over the data channel, where it originally sent its

data items. As a special case, if only one client needs the additional packets, sending those

packets unicast is equivalent to sending them multicast, except that over a reliable unicast

stream (TCP), we are locked into TCP's retransmit-as-needed reliability scheme, rather than

being able to take advantage of the design choices we make for the data channel. Therefore,

we assume below that any additional packets of data the server must send will be sent over

the data channel.

3.2.2 Retransmissions Use Error-Correcting Codes

The simplest implementation of retransmission could determine which packets clients need

from the NAK, and retransmit exactly those packets again. As an enhancement, instead

of actually resending the lost data, a server using a retransmission scheme should send pre-

computed error-correcting packets for the data instead, because a same-size error-correcting

packet can \make up" for the loss of (allow the reconstruction of) one data packet, even if

di�erent clients lost di�erent data packets.

For example, consider the forward error correction example, but now the server does not

preemptively send the parity packet on the data channel. If a client reports a lost packet,

the server can then send the parity packet instead of the actually-lost packet, so that the

client recomputes its lost packet using the parity packet. This allows two clients to each

lose a di�erent packet, and still recover the data item using only the same parity packet

transmission.

Using error-correcting packets allows the server to send no more error-correcting packets

than the largest number of data packets lost by one client, even though the union of all

data packets lost by all clients may have larger cardinality. This scheme is mentioned, for

example, in MFTP [7].

3.2.3 Clients Unicast One NAK Per Data-Item Transmission

In our multicast system, clients will send a NAK only at the end of a transmission of a data

item, when it has already attempted to use whatever error correction packets it has already
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received, and when it has determined the packets it still needs to complete its copy of a

data item. We require NAKs to be sent this way for two reasons: The �rst is that having

clients send a separate NAK for each packet lost can collectively �ll the network links to a

multicast server more quickly than if they sent their NAKs in larger aggregate. The second

is that retransmission may be used as a reliability scheme only after variable forward error

correction fails to make up for client losses; if so, only after the client has tried to receive all

the sent packets can it determine whether it actually needs any more packets at all, and if

so, how many the client actually needs to reconstruct a data item.

The NAK is sent unicast instead of multicast because only the server needs to receive

the NAKs; unlike some other published reliable multicast schemes such as SRM [3], in this

system one client sending a NAK does not prevent any other client from sending its NAK.

It is perhaps worth noting that unicasting NAKs rules out SRM-style schemes where clients

can transmit data to �ll NAKs in place of the server, but by restricting retransmissions to

the server, we also easily avoid accidental or malicious data corruption from clients sending

mangled retransmits to each other.

If all clients send their NAK at the same time following the end of a data item's trans-

mission, then the instantaneous spike in network traÆc to the server may 
ood the server's

incoming link and cause NAKs to be lost or delayed. To prevent this \NAK implosion"

on the server at the end of each data item, each client delays its NAKs by a random time,

chosen uniformly from a small interval (e.g., as in wb [3]). A server could, further, instruct

its clients (over a control channel) to expand its NAK-delay interval as the server's ceiling

number of incoming NAKs approaches the server's incoming bandwidth.

Beyond the random delay associated with each NAK, we do not further consider the cost

of the NAKs coming into the server. The cost of per-item-per-client NAKs are unlikely to

determine or a�ect the server's network costs in practice because we expect NAK packets to

be much smaller than the corresponding data item transmissions to which they respond, so

the cost of the data item transmissions should dominate. Further, if a network connection or

its costs are asymmetric, it is often the server's (larger) outgoing data transmissions that are

expensive, not the (smaller) incoming NAK traÆc. (Consider, for example, that consumer

and business \broadband" connections, when asymmetric, have lower upload speed caps
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than download speed limits.)

Because error-correcting packets are themselves sent on the data channel, they too can

be lost. Therefore, when an announced retransmission concludes, clients may again send

NAKs for more packets they still need, and the server may accommodate. The server could

complete as many rounds of retransmission as necessary for its clients to reconstruct the

data item, to guarantee reliability.

3.2.4 Selective Retransmission

In our multicast facility, we can apply our retransmission scheme as we have describe it so

far, but we have other options. In particular, the server can choose to ignore NAKs and

reschedule the a�ected clients, in e�ect using rescheduling (described below) as a backup for a

weak-retransmission scheme. With this 
exibility, we could try to choose when NAKs should

be best handled by retransmission, and when NAKs should be best handled by rescheduling

the client.

In particular, we can choose to honor only retransmissions of small size, on the intuition

that they have little time cost compared to the cost of making the a�ected clients wait for

the next scheduled transmission of the data item. The server could begin retransmission, for

example, only when it receives a NAK of no more than p packets, and reschedule otherwise.

When the server is retransmitting, since it is already delaying a new data item to re-

transmit packets for an old one, the server could also accept and coalesce subsequent NAKs

so that those NAKs are also satis�ed. Outside of this retransmission period (i.e., if the

server does not notice any clients nearly completing a data item, or if the server has already

�nished helping a client complete a data item), the server ignores NAKs from clients. In

e�ect, a server is \convinced" to honor retransmission requests only if doing so completes a

very-nearly-completed data item.

We will denote the retransmission scheme with R(1), if the server retransmits for any

NAK. If the server sends retransmissions for a data item only if it receives a NAK of no

more than p packets as described above, we will call it R(p).
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3.3 Reschedule

The server can decide not to change its data transmission to accommodate losses. Instead,

it would receive NAKs from clients as indications that the client needs the data item again,

and add back the client's request for the NAK'd data item. The scheduler would decide

when to reschedule the data item for retransmission. This scheme is easy to implement and

requires no additional network resources, but at possible cost in higher client delay.

Rescheduling is a reliability option that is particular to this multicast facility: even if we

choose this nearly \do nothing" scheme, we can still assert that clients will eventually receive

their entire data request, because the scheduler holds the client's data request.

We will denote this reliability option as R(0). Intuitively, the notation considers a

reschedule-only scheme to be equivalent to a retransmission scheme that sends additional

packets only if the server receives a NAK of zero packets|a NAK that would never be sent.

The ultimate \do nothing" scheme, in which NAKs are entirely ignored, cannot guarantee

reliability because the server may never send a lost data item again if no other clients ask

for it, so we ignore that scheme here.

4 Simulation

Variable Description Base value

Number of data items available 100
Size of a data item (in packets) 60
Number of data items requested per client (mean) 9
Time between new clients 4 000 ms (4 sec)
Server link loss rate 0%
Client link loss rate 5%
Time to send one packet 80 ms
NAK delay time (range) [30ms - 210ms)
NAK send time (minimum) 80 ms
NAK send time (mean) 100 ms
Simulated time (length) 86 400 000 ms (1 day)

Table 1: Simulation Parameters and their Base Values

To assess the performance of these di�erent possibilities, we turn to simulation to predict
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their e�ect on a multicast system under a variety of loads. We describe the simulation in

this section, then present the results of the simulation in the next.

We assume here a simple star-shaped topology for the multicast network as an approx-

imation of the real multicast backbone's (MBone's) loss behavior, as suggested in [12]. In

this topology, the server and each client have separate lossy links to the multicast backbone.

Because the multicast \backbone" was observed to lose relatively few packets that correlate

among multiple but not all clients, functionally we can approximate the core \backbone" as

reliable and push the dropped packets to server and client links. Therefore, the backbone is

represented as a single node that simply connects all the lossy links. In e�ect, packets are

dropped getting into the core backbone or getting out; they are not lost on the backbone

itself.

We assume also that data transmissions are nonpreemptible; that is, once a server decides

to send a data item, or send retransmissions for a data item, it will send all of that chosen

transmission before choosing to send something else. This reduces the number of announce-

ments that the server must make to its clients, and reduces the unneeded (irrelevant) traÆc

that clients receive from the data channel.

Because a multicast facility is uninteresting when it is not loaded enough for client requests

to overlap, we will consider a hypothetical high-load scenario that would be impractical to

service using unicast (TCP) delivery alone. One can easily imagine a variety of such scenarios,

such as

� a newswire over a low-throughput wide-area wireless network;

� an ISP reserving a small portion of its network capacity to deliver its own popular content

to its subscribers;

� a software vendor disseminating widely needed patches for its products; or,

� a government sending reports and instructions to its diplomatic missions through expen-

sive and full satellite links.

In Table 1, we enumerate the parameters for our simulation's base case. In this base case,

we try to portray a Web server for a small business that faces a sudden increase in requests
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over its limited network connection. In our experiments, we vary some of these base values.

In this scenario, a Web server linked to the world over a relatively small business \broad-

band" connection with IP multicast, is suddenly being deluged with requests because of

its newfound popularity. Normally, using only unicast traÆc, such a Web server would be

crippled by a large spike in requests, because its outgoing link would be divided by so many

requesting Web clients that none of them get enough throughput to make progress. The

Web server would appear down, and be unable to provide any service at all for as long as it

remains popular|the time when its service is most needed.

Fortunately, in our scenario, while the server's main Web page might be delivered to

clients over unicast using HTTP, most of the requested data by volume|the images for

the Web page, the animated vector graphics, and the Web client scripts|are sent using a

multicast facility, and Web clients have plug-ins that support this method of download.

The multicast server could be busy sending about a hundred such very popular items,

from images to scripts, to clients making new requests every few seconds. (In Table 1, we

arbitrarily choose four seconds, a number small enough to induce numerous simultaneous

clients.) Clients would request about nine such items on average to �ll a typical Web page

request.

For these kinds of items (images, vector animation, and scripts), we estimate an average

size of about 30 kilobytes each, which would be broken up into packets of 512 bytes each.

The packets size is necessarily so small because Internet hosts send UDP packets over IP

multicast, and IP(v4) requires UDP packets of only up to 576 bytes to be supported for

delivery. (Larger packets may be fragmented or dropped over individual network links.)

Consequently, some popular UDP-based services such as DNS restrict their packets to a

maximum 512 bytes of payload, to ensure their operation over IP. Our hypothetical multicast

server would be wise to do the same, so the server's 30-kilobyte data items are divided into

sixty 512-byte packets each.

The multicast channel is assigned a relatively small sliver of outgoing network throughput

so that even Web clients running behind modem connections can keep up. At 50 kilobits per

second (just under the 53 kilobits per second at which the fastest POTS-line modems can

currently download in the United States), the multicast data channel could send 512 bytes
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(one packet of data) about 50 * 1024 / 8 / 512 = 12.5 times per second. This means one

packet is sent every 80 milliseconds.

The NAK delay-time range in Table 1 is chosen to match the NAK delay-time range

described for wb, an already-available whiteboard application for IP multicast; a multicast

client chooses a delay time for each NAK uniformly randomly from the given range of delay

times. Lastly, we estimate the mean NAK send time, the time it takes a NAK to arrive

at the multicast server after a multicast client decides to send it, at 100 milliseconds, as a

loose estimate of the time it takes a small packet to travel half the world's circumference

over currently available IP networks.

We simulate a multicast system over a day of load to determine its performance for clients

over that time.

5 Results for Uniform Loss Rates

First, we consider how the various reliability schemes compare when all clients have the

same data-channel packet-loss rate. This is plausible, for example, when we have relatively

controlled conditions (such as large-area internal networks or experimental high-capacity

networks) in which a multicast server's clients can connect to the server over comparable

network links. This allows us to study the performance of our various reliability schemes

when clients are of fairly similar capability. In the next section, we will consider how these

reliability schemes are a�ected by the presence of clients with di�erent loss rates.

5.1 Retransmission and Rescheduling

We �rst consider what happens in the simplest case, in which the multicast facility uses

only retransmission (Section 3.2). In Figure 3, we compare several forms of retransmission,

including no retransmission. In the �gure, we graph the average client delay as a function of

client loss rates. Other parameters of the simulation are as speci�ed in Table 1. The client

delay is the time it takes clients to request their items, measured in seconds. The client loss

rates are speci�ed in percentage of data-channel packets lost, �xed for all clients. In this

relatively low-loss scenario, the server's link to the multicast backbone is assumed to lose no
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packets. The plot labelled \R(1)" represents a retransmit-always scheme, as described in

Section 3.2. The plot labelled \R(0)," by contrast, represents a reschedule-only server, which

never sends packets in response to NAKs. The other plots represent a spectrum of selective

retransmission schemes that lie between sending packets for all NAKs and no NAKs.

The plot shows, for example, that in a multicast scenario where the server loses no packets

and clients independently lose 2% of packets in the data channel, a retransmit-always mul-

ticast system will have an average client delay of about 695 seconds, or about 11.5 minutes.

If the system starts retransmitting only on NAKs for few packets, on the other hand, clients

get substantially lower delay. For NAKs of up to 10 packets, for example, clients have 460

seconds delay, or about 7.5 minutes (just over half the delay they would su�er under the

reschedule-only system, which does worst in this group at over 14 minutes). Increasing the

size of accepted NAKs further does not dramatically improve performance, so we plot only

the lines shown to reduce clutter. As we can see, there is advantage to selective retrans-

mission, a system that retransmits principally for small losses where retransmission is short,

and that forces larger losses to be rescheduled.

As we expect, the average client delay rises as clients lose more of their data; this is because

clients need more attempted packet transmissions to get the same number of packets needed

to form a data item.

Also, we see that for relatively low client loss rates, retransmission (FEC(0)+R(1)) is

a better choice than rescheduling (FEC(0)+R(0)). This is because clients will typically

lose a few packets from each data item they request, and having just a few extra packets

retransmitted is much less time-consuming than waiting for the data items to be rescheduled.

As long as the packet losses are not very large, clients bene�t more from the server consuming

slightly more network time for each data item (which consists of the time for the original

transmission plus the time for small retransmissions) than from the server delaying clients

until data items are rescheduled (which incurs no retransmission delays for new data items,

but forces most clients to wait for a data item to be scheduled at least twice).

On the other hand, rescheduling outperforms retransmission for higher loss rates (starting

at about 8%). Most strikingly, the performance of rescheduling only does not degrade

substantially from 6% up to 30% client data-loss rates (not plotted), holding at about 15
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minutes average client delay.

In retrospect, we can see why this is so: Clearly, retransmit-always servers must deterio-

riate over time; as clients lose more data, the server must spend more time retransmitting.

Worse, as clients lose more data, they become increasingly likely to drop packets from a

retransmission, compelling them to send another round of NAKs and wait for another round

of retransmission. On the other hand, for reschedule-only servers, the loss rate a�ects only

the number of times a client needs to have a data item scheduled for transmission, before

the client receives enough packets to reconstruct the data item. (This is because clients can

combine the distinct error-correcting packets from multiple transmissions of a data item to

reconstruct missing the data.) In our case, the number of times a client needs a data item to

be scheduled is very consistently two, for a large range of high-loss rates. As retransmission

continues to deteriorate, and rescheduling holds steady, the penalty from clients waiting for

and receiving their increasingly long retransmission requests starts to outweigh the cost of

simply rescheduling the data item in its entirety for old and new clients, and letting the

server transmit new data instead.

We also observe that limiting server retransmissions to bene�t small-NAK clients can

provide an improvement over both schemes discussed so far. In particular, the improvement is

most noticeable when selective retransmission consistently covers the clients losing fairly few

packets. For example, the 1-packet NAK scheme nets lower client delay than a retransmit-

always scheme, but falters compared to more lenient selective-retransmission schemes as

client losses rise above one packet per data item (which is about 2% of data-channel packets).

This is because clients having a higher loss rate have a correspondingly smaller chance of

losing no more than one packet for a data item. As the chance of some client losing suÆciently

few packets to trigger retransmission falls, more and more data items must be rescheduled

for clients to receive them in full, incurring higher delay.

Another bene�t of selective retransmission is more subtle. It turns out that in practice, it

is possible for new multicast clients to send large NAKs for data items they missed, causing

additional delay in a retransmit-always system; this delay, selective transmission can avoid.

The reason a new client can send large NAKs is that a new multicast client connecting

to the data channel will not only receive new data items, it will also receive retransmissions
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for data items the client missed while joining the system. This means that the client can

send NAKs after receiving the partial retransmission, requesting the remainder of the data

item that the client doesn't yet have. Relatively few of these clients requesting relatively

large retransmissions in this way would cause delays on the data channel, increasing clients'

average delay; therefore, the selective retransmission scheme, which is able to ignore these

large NAKs, can reduce the impact of these requests. A selective retransmission scheme can

better choose to retransmit when retransmission's cost is small, and avoid retransmission

when its bene�ts are small.

We see, therefore, that the choice of retransmission scheme a designer should apply to

the multicast facility depends on the expected loss rates clients will su�er. Given the two

simplest-to-implement choices, retransmission is preferable for low loss rates, and reschedul-

ing is preferable for high loss ones; the two break even near 10%, a loss rate that e�ectively

divides relatively clear networks from congested or faulty ones. If more complex server imple-

mentations are possible, though, a selective-retransmission scheme can signi�cantly improve

performance even more. By triggering retransmissions only for small NAKs|NAKs of many

more packets than necessary for the expected loss rate, but much fewer packets than the size

of a data item|we can help the server appropriately isolate small losses for retransmission

and large losses for rescheduling.

More generally, we would like to combine to the most e�ective retransmission scheme

with the most e�ective forward error correction scheme. To evaluate forward error correction

schemes, as we do next, we must choose a baseline retranmission scheme as a backup for

forward error correction. For simplicity, we will choose retransmit-always below.

5.2 Forward Error Correction

If we are willing to consider applying forward error correction in addition to retransmission,

we are able to do better than retransmission alone. Because in this section, we are considering

a scenario in which client losses are similar, we could apply a �xed expansion factor of error-

correcting data to each data item. If forward error correction fails, we must have some form

of retransmission or rescheduling as backup; for simplicity, we will choose retransmit-always

here, R(1).
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Figure 3: Retransmission Schemes
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Figure 4: Constant Forward Error Correc-
tion Schemes

To evaluate these schemes, we consider a higher-loss scenario, in which the server's link

drops about 10% of data-channel packets from the source. Besides allowing us to illustrate

another representative section of the parameter space that we have studied, this scenario

allows us to highlight variations between the forward error correction schemes.

The resulting performance for various expansion factors are shown in Figure 4. Along the

horizontal axis, we vary the percentage of packets independently lost by each client. On the

vertical axis, we plot the average client delay of forward error correction schemes applied

with various expansion factors. For our base case, recall that FEC(0.0) represents no forward

error correction; the plot so labelled is simply a retransmit-always server. If clients lose 4%

of data-channel packets, in addition to the server losing 10% of its outgoing data-channel

packets, for example, we see that a server acting without forward error correction and a

server with 10% expansion show similar performance (at 17.5 minutes average client delay).

Higher expansion factors improved performance here; 20% expansion cut client delay over

15%, and 30% expansion almost by half.

From this data, we notice that as client losses consume the forward error correction,

the average client delay rises until FEC's e�ect fades and the system approximates the

performance of retransmission alone. Worse, because FEC might add unnecessary but �xed

error-correcting data to some data items while neglecting other losses, inadequate FEC with
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retransmission could, as losses rise, approach a level of performance slightly worse than that

of retransmission alone. (At 10% server loss and 4% individual client loss as before, for

example, a server with 10% expansion factor actually had a client delay about 1% worse

than a retransmit-always server.)

We also see that the performance of forward error correction is, like retransmission

schemes, sensitive to the actual loss rate of the clients. Excess error correction simply

pads client delay by about the amount of the excess: at the far left of the plot, for example,

a 10% increase in the expansion factor between 20% expansion and 30% expansion increased

client delay by just over 6%, from 507 seconds to 539 seconds. Though not plotted here, the

gap can be larger: As packet losses decline, client delay under 20% expansion will decline

until stabilizing near the expected client delay when the server needs no retransmission.

We note also, however, that the optimal expansion factor is not the same as the clients' net

loss rate; the expansion factor must be set higher, because clients can lose more or less data

than their average rate during any one data item. For example, FEC with 30% expansion

outperforms FEC with 20% expansion in performance dramatically even when clients lose

but 14.5% of their data channel (10% loss due to server, 5% loss due to clients).

If carefully chosen, though, an appropriate expansion factor can improve the performance

of a multicast system, beyond that of retransmission alone. This plot, for example, suggests

that a designer can choose an expansion factor about twice the expected packet loss rate of

the system's clients to exploit added forward error correction without making it excessive,

and yield better delay than a retransmit-only scheme.

Ideally, a multicast implementation could combine the best of both forward error cor-

rection and retransmission. After setting the forward error correction expansion factor, the

system designer could then have a multicast server use selective retransmission to decide

between retransmission and rescheduling when forward error correction fails. The use of

forward error correction reduces the delay of clients waiting for retransmission, and makes

up for most of the clients' losses so that selective retransmission could be con�gured to

retransmit only for small NAKs as suggested in the previous section.
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5.3 Clients Requesting Data in Transmission

In all our simulations so far, we have been assuming that a new client begins receiving data

from the server not when the client �rst connects to the multicast server, but at the earliest

time the server sends a new data item after the client joins the system. This is because a new

client would not have received the announcement (or headers) for a data item in progress at

the time the new client joins, and so the client would not know of the data item unless the

server explicitly noti�es the client of the transmission in progress.

Intuitively, it seems that the server should in fact notify the new client of a transmission in

progress when it joins, if the transmission is relevant to the client's request. Then, the client

could behave as if it had simply lost early packets of the transmission due to an unreliable

network, and send a negative acknowledgment for them as usual.

Intuitively, it is comparable to a bus stopping and waiting for late passengers: All pas-

sengers already on board take a delay, but provide a dramatic bene�t to the new but late

passenger, who gets to board an earlier bus. Like a late passenger whose alternative is to

wait the entire interval between buses, a client that misses a transmission in progress would

otherwise be compelled to wait a long time for the next transmission. Is it worth making

passengers on board wait for a latecomer?

In our case of the multicast system, however, there are additional factors that can a�ect

the result of our modi�cation. Because other clients may also need retransmissions anyway

to cope with network losses, the cost of retransmitting for (catching up) a new client could be

slightly lower, by the cost of retransmission for other clients. Also, a server might not choose

to retransmit at all; if the server does not retransmit in response to the new client's NAK,

then the client gets a slight bene�t from getting a few packets early, but neither gets the

bene�t of receiving an entire data item early nor negatively impacts the rest of the system.

We consider the e�ect of new-client noti�cation here, which we will highlight in our results

with a \+notify" notation. For example, since we denote a default rescheduling scheme

\FEC(0)+R(0)," we would denote a rescheduling scheme with the new-client noti�cation

\FEC(0)+R(0)+notify." (Clearly, new-client noti�cation is a design decision independent of

the forward error correction and retransmission schemes we have considered.)
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In Figures 5 and 6, we show the e�ect of new-client noti�cation on our multicast facility.

We plot the relative performance of several multicast schemes that do not do this noti�cation

to variants that do. Along the horizontal axis, we vary the percentage of packets each

individual client loses. On the vertical axis, we see the average client delay of the multicast

system. In Figure 5, the server link loses no packets, a low-loss scenario (as we had used

when we considered retransmission earlier). In Figure 6, the server link loses 10% of its

packets, a high-loss scenario (as we had used when we considered forward error correction

earlier).

For example, we see that if the only packet loss comes from clients losing 6% of their

incoming data packets, a retransmit-always multicast server would yield an average client

delay of about 815 seconds (13.5 minutes). If we modi�ed it to notify new clients of relevant

transmissions in progress, then the average client delay rises just over two minutes to 944

seconds. Similarly, in Figure 6, if the server link loses 10% of its data channel packets, and

clients each additionally lose 6% of the data channel packets that remain, a multicast server

that sends data items with 20% error-correction padding and retransmits on demand would

yield an average client delay of just over 17 minutes, versus just over 22 minutes if we added

new-client noti�cation.
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We see, then, that for retransmission-backed schemes, including those using forward error
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correction (labelled R(1) in Figures 5 and 6), new-client noti�cation actually hurts average

client delay. This suggests that, especially given our high simulated load, the large number

of clients that need other data are signi�cantly hurt by a new client triggering extra NAKs

under new-client noti�cation, and the penalty to waiting clients outweighs the bene�t to the

new one. In fact, we can also observe in Figure 6 that, when client losses are poorly covered

by forward error correction, new-client noti�cation hurts client delay much more than if

client losses are mostly covered by FEC. This suggests that, as clients lose more packets

than forward error correction can cover, more clients (waiting for other retransmissions

and new data) are forced to su�er additional delay caused by a new client. Further, this

additional delay apparently outweighs the ameliorating e�ect of a new client \sharing" its

cost of retransmission with other clients.

By contrast, if we consider a multicast system that never sends retransmissions on demand

(plots labelled R(0) in Figure 5), we get a slight bene�t from new-client noti�cation, as we

might expect. A client in this system can catch the tail of a transmission already in progress,

but that in itself is not enough for a client to reconstruct the data item. Because its NAKs

would be ignored, it is unable to �ll in the data it is still missing, and must wait for the

next transmission of the data item to �ll in the rest. In e�ect, a late client must still wait

for the next transmission anyway; its bene�t is that it may not need the entirety of the

next transmission, since the client already knows how the transmission will end. This may

allow clients to complete their requests before the end of a transmission of a data item, and

reduce their delay accordingly. Alternatively, this reduces the chance that a client needs yet

another transmission of a data item to reconstruct lost packets, delaying itself and other

clients. Lastly, unlike the retransmit-always server, a rescheduling server does not change its

dissemination to accommodate new clients, so there is no client delay penalty. The net result,

as we see in the �gure, is a consistent, small client delay bene�t for new-client noti�cation,

of about half a minute (3%-5%).
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6 Results for Non-Uniform Loss Rates

Under less-controlled environments, di�erent clients may be connecting to a multicast server

over links of varying quality, leading to di�erent loss rates to di�erent clients. As a result,

the reliability schemes we study can behave di�erently while trying to accommodate (or not)

clients that lose more packets than others. Also, we can try to improve the performance of

the system by adjusting our reliability schemes, or our multicast facility scheduler, to �t the

demands of the requesting clients.

In this section, we will �rst review how retransmission and rescheduling fare in this new

environment, then consider the addition of forward error correction. In particular, we will

see the e�ect of using a variable expansion factor for forward error correction. We will also

separately tune forward error correction and the multicast scheduler itself using client loss

information, and evaluate their impact on system performance.

To study how our schemes are a�ected by the presence of poorly connected clients, we run

simulations in which clients are grouped into two classes. One class of clients, having \good"

links, lose only 5% of the data channel packets sent to them. The other class of clients,

having \bad" links, lose 50% of the data channel packets sent to them. Clearly, poorly

linked clients' loss rate is extreme; this is chosen to amplify the e�ects they would have on

the system, so that we can see them more visibly in our results. To observe the behavior of

our multicast facility as poorly linked clients enter the system, we vary the relative fraction

of well-linked and poorly linked clients in the system.

With clients having di�erent loss rates, we can consider another metric that biases client

delay by the loss rate of the client su�ering it. Unlike the average client delay metric we have

been using so far, we could consider a loss-weighted average client delay that averages, for

each client, the product of the client's delay and one minus its average loss rate. (Intuitively,

this makes the delay of low-loss clients more important the delay of high-loss clients.) Though

we study this metric in addition to average client delay, we report only on average client

delay here.
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6.1 Retransmission versus Rescheduling

In this environment, we �nd that a rescheduling server consistently outperforms a retrans-

mitting server. Though this observation appears to invert the results in the last section, it

is actually consistent with our earlier conclusions there: Rescheduling is more e�ective than

retransmission when clients lose a large fraction of their packets, and in this environment,

some of the clients lose a large fraction indeed. Whether in the minority or majority, the

high-loss clients compel a retransmit-always server to incur all the expense of retransmis-

sion for high-loss clients. Hence, reschedule-only performs better than retransmission in this

environment. Data from this two-tiered case is available as part of Figure 10, where it is

compared to an equivalent scenario without the use of error-correcting packets.

6.2 Forward Error Correction
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Figure 7: Variable Forward Error Correc-
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Figure 8: Variable Forward Error Correc-
tion

In Figures 7 and 8, a zoomed-in view of Figure 7, we see how various forward error

correction schemes perform for clients of di�erent data-channel loss rates. Here, we use a

server whose link to the multicast backbone does not lose packets, and vary the proportion of

low-loss clients versus high-loss clients. For example, at the left edge of the plots, all clients

have low-loss rates (5%), and at the right edge, all clients have high-loss rates (50%). Along
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the vertical axis, we plot the resulting average client delay for various forms of forward error

correction. Plots labelled \nR" indicate a forward error correction scheme whose expansion

factor (as de�ned in Section 3.1) is a linear function of the number of clients wanting the

data item being padded. The plot labelled \FEC(0.1)" is a �xed error-correction factor,

included for comparison for Figure 7. (Other �xed expansion factors are omitted from this

graph to reduce clutter; their curves are similar to the curve shown.)

For example, in a scenario with about 10% of clients having very lossy links, a multicast

system using a �xed expansion factor of 10% with retransmission would have an average

client delay of about 1450 seconds (24 minutes). For multicast systems with linearly varied

FEC and retransmission, the delays are generally better; for example, a server using an

expansion factor of 0.05R, the client delay is 1100 seconds (18 minutes).

The more sustained improvements come, however, when we consider linearly varied FEC

without retransmission. The minimum delays plotted are for the non-retransmitting servers:

Using an expansion factor of 0.01R, 0.03R, and 0.05R, they net an average client delay of 560

seconds (9 minutes), 780 seconds (13 minutes), and 1040 seconds (17 minutes). Intuitively,

these results are an extension of rescheduling's better performance than retransmission in

this environment, suggesting that to optimize the use of forward error correction, we must

use it without the penalizing interference of retransmit-always as backup.

If we look more closely at the reschedule-backed schemes (as shown in Figure 8, which

plots a di�erent range on the vertical axis), we also see that the optimally tuned expansion

factor varies by average loss rate, suggesting the importance of tuning the expansion factor

appropriately. In this case, we see that a server using a large expansion factor (0:05R) can

provide a bene�t to even the high-loss clients; its performance is relatively stable, even as

high-loss clients dominate the system. On the other hand, a server using a smaller expansion

factor can only help low-loss clients from requiring repeated transmission of their data item,

and is not nearly as e�ective on high-loss clients. As a result, its performance deteriorates

as more high-loss clients enter the system. We see, then, that is advantageous to provide

enough forward error correction to cover the low-loss clients (0:01R), but not much more

than that (0:03R), as the excess does not contribute to the remaining clients (who need

another scheduled transmission anyway). If high-loss clients dominate, however, then it may
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be helpful to adjust the expansion factor to follow, as we see at the far right of our plot.

The behavior of retransmit-backed forward error correction schemes is slightly di�erent.

Here, because losses are always �lled by retransmission anyway, the negative e�ect of high-

loss clients is more pronounced, and the partial bene�t of a larger expansion factor directly

helps to reduce the time devoted to retransmission. (Consequently, a server using expansion

factor 0:03R does better than a server using expansion factor 0:01R in this case.)

Also, excess padding (0:05R) causes a particularly painful delay penalty when its padding

is not quite enough for a high-loss client; in that circumstance, not only does the expansion

factor approximately double the size of the data item (and therefore, the time to transmit it),

it approximately doubles the later rescheduled transmission needed for the high-loss client

to �ll in its last missing packets. We see the e�ect of this penalty as we move right in the

plot; the more high-loss clients we have in the system, the more likely we are to have clients

lose many more packets than expected, simply because of chance.

In summary, we conclude that 0.01R-expansion-factor FEC with rescheduling provides a

good performance tradeo� for this scenario, and one that is useful when facing widely-varying

loss rates in general. The FEC expansion factor is suÆciently large to ensure low-loss clients

receive their data without waiting for repeated rescheduling, while high-loss clients wait

for their data to be rescheduled so as not to raise low-loss client delay needlessly. Excess

transmission than that necessary to accommodate low-loss clients appears to hurt client

delay overall, hurting low-loss clients more than it helps lossy clients.

6.3 Exploiting Client Knowledge

Suppose a multicast server tracked the performance of its clients, and could therefore estimate

their loss rates. Could the multicast server use this information to improve performance?

With this information, we could modify the reliability scheme so that it sends just enough

data for all of the clients requesting each data item. Alternatively, we could modify the

multicast scheduler itself to take client loss rates into account. We consider each of these

possibilities in turn in this section. To see what the potential gains are for each option, we

assume in this section that the multicast server has \perfect knowledge" of the loss rates of

its clients. That is, when we assign each client its average data-channel loss rate, we provide

29



the value to the server as well. This allows us to see the ideal behavior of each option, by

assuming that the server's estimates of client losses are perfect.

6.3.1 FEC with Client Knowledge
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Figure 9: Perfectly Loss-Aware Forward
Error Correction

In Figure 9, we consider how a forward error correction scheme without retransmission

would perform if the server knew the largest loss rate of any client requesting a data item, and

used that loss rate to determine its FEC expansion factor. That is, the server determines the

minimum FEC expansion factor that should allow every client to reconstruct the transmitted

data item immediately, assuming that each client loses as many packets as expected for its

loss rate. In our two-tiered-client simulation, the e�ect is that the expansion factor matches

the loss rate of a high-loss client if a high-loss client is requesting the data item being

transmitted. The expansion factor matches the loss rate of a low-loss client otherwise.

We denote this minimum expansion factor \maxloss" in the plot. So, \FEC(maxloss+0.05)"

represents forward error correction whose expansion factor is always 5% higher than the high-

est loss rate of a client requesting the item being sent. As in the prior section, we use a

server whose link to the multicast backbone does not lose backets, so the server link does

not a�ect the server's estimates of client data-channel loss.
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We see that it is a net loss to increase the expansion factor beyond the value that matches

the highest client loss rate for a data item; across the plot, padding the expansion factor

\just in case" a client loses more packets than expected is an overall loss. Also, we see from

this plot con�rmation for what we had observed before|that it is helpful to focus on the

low-loss clients to the relative neglect of high-loss clients. In this perfect-knowledge system,

the server chooses an expansion factor that matches that of a high-loss client if a high-loss

client is requesting the data item being transmitted. Doing so incurs a worse client delay

than a linearly varied FEC system, despite the server knowing in advance the minimum

number of packets to send to such clients, so it is the attempt to accommodate the high-loss

clients that causes client delay to deterioriate in a perfect-knowledge system. As a result,

this use of client-loss information does not improve the performance of the multicast facility.

6.3.2 Tuning the Scheduler

We can attempt to improve our results by breaking the abstraction barrier between the

scheduler, which takes information about clients' requests for data and determines which

data item to transmit, and the reliability scheme, which ensures that clients receive the data

item being transmitted or ensures that their requests are returned to the scheduler for later

transmission. In particular, we could change the scheduler itself so that it takes into account

the clients' loss rates. We consider how we could make this change, and evaluate its potential

e�ect by simulating the resulting server with perfect knowledge of clients' data-channel loss

rates.

A Loss-Adjusted Scheduler For example, for our R/Q scheduler, we are intuitively

computing a score for each data item that rises with the number of clients needing the data

item, and rises with the smallest request-size of any client wanting the data item. The latter

is useful because we would like to complete almost-satis�ed and very-short requests, so that

clients do not wait for transmission needlessly. To adjust the scheduler, therefore, we observe

that the latter factor is really a \shortest time to a satis�ed client" factor, and that the time

to completion for a client depends not only on how many data items it still needs, but also

how long it will take to receive them over a lossy network.

31



We observe that clients su�ering high loss will take longer to receive a same-size data

item than clients su�ering little loss; therefore, we should raise the score of a data item not

by the smallest request-size of any client needing the data item, but rather by the shortest

expected time to completion of any client needing the data item. So, we compute the request

size divided by the �ll rate (the fraction of packets the client receives on its link), and use

that as the client's expected time to completion. In the revised R/Q scheduler, we �nd the

client with the smallest expected time to completion, divide the number of clients wanting

the data item by it, and choose a data item with the highest such score.

A Minimal E�ect The resulting performance is shown in Figure 11. In this plot, we see

the average client delay as we vary the proportion of high-loss to low-loss clients, for several

multicast systems with the normal and revised R/Q schedulers. The server is assumed to

lose no packets on its link to the multicast backbone. The plots labelled \R/(Q/�ll)" use

the revised R/Q scheduler as described above.

As we can see, the relative performance of the original R/Q scheduler and the revised

scheduler are fairly similar. For example, if nearly half (about 45%) of clients are high-loss

clients, then both the basic R/Q scheduler and our revised R/Q scheduler incur an average

client delay of about 110 minutes.

This suggests that, in general, adding complexity to the scheduler to take client loss rates

into account nets no appreciable bene�t. To see whether our intuition for the scheduler is

incorrect, we run simulations with other variants of R/Q, in which we bias the scheduler

towards clients with higher loss rates rather than lower ones as above (arguing that clients

with high loss rates need more service to receive their data). The results there suggest that

our original intuition for adjusting R/Q is correct, and that the standard R/Q matches or

outperforms the resulting scheduler.

6.4 The Advantage of Error-Correcting Packets

As we have asserted earlier, when a multicast server needs to compensate for losses on the

network, erasure-coded packets that a client can use to compute the value of any one other

missing packet is at least as useful as an exact transmission of a particular data packet. These
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erasure-coded packets, however, may be expensive to compute. The simpler alternative to

computation is for the multicast server to send only the original data packets, and to resend

those exact packets if they are lost.

To determine the e�ect of error-correcting packets on the client delay of the facility, we run

simulations in which the multicast server retransmits the speci�c data packets a client lost,

versus ones in which the server sends packets from a large pool of error-correcting packets.

The results of the simulations are shown in Figure 10. In this plot, we chart the average

client delay versus the fraction of clients of high loss, for multicast systems that use error-

correcting packets as before, and systems that must transmit exact data packets. This plot

shows the delay that results in scenarios where the server link loses 3% of data channel

packets; plots for other server-link loss rates are similar, so we omit them for brevity. The

systems that do not use error correcting codes for their data packets are marked \no ECC,"

to contrast the systems that do use them by default.

For example, if about 10% of clients have very lossy links, then retransmit-always and

reschedule-only schemes using error-correcting packets have average client delay of about 28

and 16 minutes, respectively. By contrast, if these two schemes used only exact data packets,

then they would incur a much higher 57 and 28 minutes of client delay, respectively.

Clearly, we see that there is a dramatic di�erence in performance between a basic exact-
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packet transmission scheme and an error-correcting packet scheme. Whether the server sends

retransmissions on demand, or ignores them for later scheduling, average client delay from

the multicast facility is much lower when error-correcting packets are used.

In an exact-packet scheme, clients' NAKs for data must coincide for any retransmitted

data to help more than one client at a time, negating much of the advantage of multicasting

retransmissions of data. In the error-correcting-packet scheme, every packet helps every

client that receives it. This di�erence makes the latter scheme's retransmissions much more

e�ective, as shown in the results.

For a retransmit-never scheme, the issue is the same. When a large pool of error-correcting

packets are available, the server can use a di�erent set of packets for a data item when it

transmits the item another time. This allows clients missing some packets to bene�t from

every received packet of a later transmission of the item. By contrast, a multicast system

using only exact packets runs the risk that a client can simply miss the same data packets

again in a rescheduled transmission, by coincidence, making the retransmission useless for

those packets.

Of course, when a multicast facility runs out of new error-correcting packets to transmit,

the risk of coincidental, repeated packet loss returns for any very high-loss clients that notice

the repetition. The results here suggest, therefore, that it is helpful to pregenerate and use

as much error-correcting data as system resources allow.

7 Related Work

General-purpose reliable multicast protocols have been widely studied, with numerous vari-

ations proposed. A networking text [10] details the design of IP multicast; a multicast

book [6] can survey a number of such protocols, such as [3] and [7]. In this paper, we extend

general-purpose techniques to optimize our multicast application, which not only has varying

numbers of interested clients from data packet to data packet, but also allows longer client

delays to improve network eÆciency, and later rescheduling of requested data items.

The work in this paper is designed to complement reliable multicast data dissemination,

such as in \broadcast disks" [1] as well as our own multicast facility [5]. Work in this area
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often assumes a reliable network, but multicast networks such as IP multicast can often lose

packets.

Closest to our work in broadcast disks, [11] considers scheduling given a known �xed loss

rate and no speci�c client information; here, by contrast, we consider clients of di�erent loss

rates and speci�c client requests.

Of course, reliable multicast dissemination is also assumed and considered for use in

other contexts, such as publish/subscribe (e.g., Gryphon [8]) and Web caching (e.g., [9]),

but there, client latency is expected to remain very small, limiting the 
exibility of the

reliability mechanism.

8 Conclusion

In this paper we studied how to use a multicast facility to reliably disseminate data to

interested clients over an unreliable network. Since data is repeatedly transmitted from a

repository, reliability can be achieved by either rescheduling requests, adding redundancy to

transmissions, or adding retransmissions.

From numerous simulations, we �nd that retransmission is most e�ective when applied

selectively, so that clients su�ering large losses wait for the entire data item to be rescheduled

rather than having their losses retransmitted. This can complement forward error correction,

which in our scenario performs best when set to expand each data item by a fraction about

twice that of the expected packet-loss rate of the interested clients|a fraction that accommo-

dates clients that may lose more data than expected for any one item. If a server faces clients

of widely di�erent loss rates, it should have its forward error correction tuned to satisfy only

lower-loss clients, so that high-loss clients must wait for rescheduled transmissions.

Under a server that only reschedules data items for losses, it is helpful to direct newly

joining clients to the data item being sent at the time; for other servers, however, such a

direction can actually hurt performance.

Lastly, we �nd that error-correcting packets are essential to good performance, but that

having the server estimate client loss rates for its reliability scheme or scheduler can provide

little bene�t.
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We �nd that the proper choice and tuning of reliability schemes can improve performance

by over 30%, suggesting the importance of careful design choices. The results provide insights

that are guiding the design of our own multicast facility for Web data.
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